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Preface: General Chair

Welcome to ACL 2017 in Vancouver, Canada! This is the 55th annual meeting of the Association for
Computational Linguistics. A tremendous amount of knowledge has been presented at more than half
a century’s worth of our conferences. Hopefully, some of it is still relevant now that deep learning has
solved language. We are anticipating one of the largest ACL conferences ever. We had a record number
of papers submitted to the conference, and a record number of industry partners joining us as sponsors of
the conference. We are on track to be one of the best attended ACL conferences to date. I hope that this
year’s conference is intellectually stimulating and that you take home many new ideas and techniques
that will help extend your own research.

Each year, the ACL conference is organized by a dedicated team of volunteers. Please thank this year’s
organizers for their service to the community when you see them at the conference. Without these peo-
ple, this conference would not happen: Regina Barzilay and Min-Yen Kan (Program Co-Chairs), Priscilla
Rasmussen and Anoop Sarkar (Local Organizing Committee), Wei Xu and Jonathan Berant (Workshop
Chairs), Maja Popovi¢ and Jordan Boyd-Graber (Tutorial Chairs), Wei Lu, Sameer Singh and Mar-
garet Mitchell (Publication Chairs), Heng Ji and Mohit Bansal (Demonstration Chairs), Spandana Gella,
Allyson Ettinger, and Matthieu Labeau (Student Research Workshop Organizers), Cecilia Ovesdotter
Alm, Mark Dredze, and Marine Carpuat (Faculty Advisors to the Student Research Workshop), Charley
Chan (Publicity Chair), Christian Federmann (Conference Handbook Chair), Maryam Siahbani (Student
Volunteer Coordinator), and Nitin Madnani (Webmaster and Appmaster).

The organizers have been working for more than a year to put together the conference. Far more than
a year in advance, the ACL 2017 Coordinating Committee helped to select the venue and to pick the
General Chair and the Program Co-Chairs. This consisted of members from NAACL and ACL executive
boards. Representing NAACL we had Hal Daumé 111, Michael White, Joel Tetreault, and Emily Bender.
Representing ACL we had Pushpak Bhattacharyya, Dragomir Radev, Graeme Hirst, Yejin Choi, and
Priscilla Rasmussen. I would like to extend a personal thanks to Graeme and Priscilla who often serve
as the ACL’s institutional memory, and who have helped fill in many details along the way.

I would like to extend a special thanks to our Program Co-Chairs, Regina Barzilay and Min-Yen Kan.
They documented their work creating the program by running a blog. They used their blog as a plat-
form for engaging the ACL community in many of the decision making processes including soliciting
suggestions for the conference’s area chairs and invited speakers. They hosted discussions with Marti
Hearst and Joakim Nivre about the value of publishing pre-prints of submitted paper on arXiv and how
they relate to double blind reviewing. They even invited several prominent members of our community
to provide last-minute writing advice. If you weren’t following the blog in the lead-up to the conference,
I highly recommend taking a look through it now. You can find it linked from the ACL 2017 web page.

This year’s program looks like it will be excellent! We owe a huge thank you to Regina Barzilay and Min-
Yen Kan. They selected this year’s papers from 1,318 submissions with the help of 44 area chairs and
more than 1,200 reviewers. Thanks to Regina, Min, the area chairs, the reviewers and the authors. Be-
yond the papers, we have talks by luminaries in the field of NLP, including ACL President Joakim Nivre,
invited speakers Mirella Lapata and Noah Smith, and the recipient of this year’s Lifetime Achievement
Award. We also have an excellent set of workshops and tutorials. On the tutorial day, there will also be a
special workshop on Women and Underrepresented Minorities in Natural Language Processing. Thank
you to our workshop organizers and tutorial presenters.

This year’s conference features two outreach activities that I would like to highlight. First, on Sunday,
July 30, 2017, there will be a workshop on Women and Underrepresented Minorities in Natural Lan-
guage Processing organized by Libby Barak, Isabelle Augenstein, Chloé Braud, He He, and Margaret
Mitchell. The goals of the workshop are to increase awareness of the work women and underrepresented
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groups do, support women and underrepresented groups in continuing to pursue their research, and mo-
tivate long-term resources for underrepresented groups within ACL. Second, for the first time ever, ACL
is offering subsidized on-site childcare at the conference hotel. The goal of this is to allow ACL partic-
ipants with children to more readily be able to attend the conference. Since childcare duties often fall
disproportionately on women, our hope is that by having professional childcare on-site that we will allow
more women to participate, and therefore to help promote their careers. My hope is that the childcare
will be continued in future conferences.

I would like to thank our many sponsors for their generous contributions. Our platinum sponsors are Al-
ibaba, Amazon, Apple, Baidu, Bloomberg, Facebook, Google, Samsung and Tencent. Our gold sponsors
are eBay, Elsevier, IBM Research, KPMG, Maluuba, Microsoft, Naver Line, NEC, Recruit Institute of
Technology, and SAP. Our silver sponsors are Adobe, Bosch, CVTE, Duolingo, Huawei, Nuance, Oracle,
and Sogou. Our bronze sponsors are Grammarly, Toutiao, and Yandex. Our supporters include Newsela
and four professional master’s degree programs from Brandeis, Columbia, NYU and the University of
Washington. We would like to acknowledge the generous support of the National Science Foundation
which has awarded a $15,000 grant to the ACL Student Research Workshop. Finally, NVIDIA donated
several Titan X GPU cards for us to raffle off during the conference.

Lastly, I would like to thank everyone else who helped to make this conference a success. Thank you
to our area chairs, our army of reviewers, our workshop organizers, our tutorial presenters, our invited
speakers, and our authors. Best regards to all of you.

Welcome to ACL 2017!

Chris Callison-Burch
General Chair
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Preface: Program Committee Co-Chairs

Welcome to the 55th Annual Meeting of the Association for Computational Linguistics! This year,
ACL received 751 long paper submissions and 567 short paper submissions'. Of the long papers, 195
were accepted for presentation at ACL — 117 as oral presentations and 78 as poster presentations (25%
acceptance rate). 107 short papers were accepted — 34 as oral and 73 as poster presentations (acceptance
rate of 18%). In addition, ACL will also feature 21 presentations of papers accepted in the Transactions
of the Association for Computational Linguistics (TACL). Including the student research workshop and
software demonstrations, the ACL program swells to a massive total of 367 paper presentations on the
scientific program, representing the largest ACL program to date.

ACL 2017 will have two distinguished invited speakers: Noah A. Smith (Associate Professor of Com-
puter Science and Engineering at the University of Washington) and Mirella Lapata (Professor in the
School of Informatics at the University of Edinburgh). Both are well-renowned for their contributions to
the field of computational linguistics and are excellent orators. We are honored that they have accepted
our invitation to address the membership at this exciting juncture in our field’s history, addressing key
issues in representation learning and multimodal machine translation.

To manage the tremendous growth of our field, we introduced some changes to the conference. With the
rotation of the annual meeting to the Americas, we anticipated a heavy load of submissions and early
on we decided to have both the long and short paper deadlines merged to reduce reviewing load and to
force authors to take a stand on their submissions’ format. The joint deadline allowed us to only load
our reviewers once, and also enabled us to have an extended period for more lengthy dialogue among
authors, reviewers and area chairs.

In addition, oral presentations were shortened to fourteen (twelve) minutes for long (short) papers, plus
time for questions. While this places a greater demand on speakers to be concise, we believe it is worth
the effort, allowing far more work to be presented orally. We also took advantage of the many halls
available and expanded the number of parallel talks to five during most of the conference sessions.

In keeping with changes introduced in the ACL community from last year, we continued the practice of
recognizing outstanding papers at ACL. The 22 outstanding papers (15 long, 7 short, 1.6% of submis-
sions) represent a broad spectrum of exciting contributions and have been specially placed on the final
day of the main conference where the program is focused into two parallel sessions of these outstanding
contributions. From these, a best paper and a best short paper those will be announced in the awards
session on Wednesday afternoon.

Chris has already mentioned our introduction of the chairs’ blog?, where we strove to make the selec-
tion process of the internal workings of the scientific committee more transparent. We have publicly
documented our calls for area chairs, reviewers and accepted papers selection process. Via the blog,
we communicated several innovations in the conference organization workflow, of which we would call
attention to two key ones here.

In the review process, we pioneered the use of the Toronto Paper Matching System, a topic model based
approach to the assignment of reviewers to papers. We hope this decision will spur other program
chairs to adopt the system, as increased coverage will better the reviewer/submission matching process,
ultimately leading to a higher quality program.

For posterity, we also introduced the usage of hyperlinks in the bibliography reference sections of papers,

!'These numbers exclude papers that were not reviewed due to formatting, anonymity, or double submission violations or
that were withdrawn prior to review, which was unfortunately a substantial number.
2https://chairs—-blog.acl2017.0rg/
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and have worked with the ACL Anthology to ensure that digital object identifiers (DOIs) appear in the
footer of each paper. These steps will help broaden the long-term impact of the work that our community
has on the scientific world at large.

There are many individuals we wish to thank for their contributions to ACL 2017, some multiple times:

e The 61 area chairs who volunteered for our extra duty. They recruited reviewers, led discussions
on each paper, replied to authors’ direct comments to them and carefully assessed each submission.
Their input was instrumental in guiding the final decisions on papers and selecting the outstanding
papers.

e Our full program committee of BUG hard-working individuals who reviewed the conference’s
1,318 submissions (including secondary reviewers).

e TACL editors-in-chief Mark Johnson, Lillian Lee, and Kristina Toutanova, for coordinating with
us on TACL presentations at ACL.

e Noah Smith and Katrin Erk, program co-chairs of ACL 2016 and Ani Nenkova and Owen Rambow,
program co-chairs of NAACL 2016, who we consulted several times on short order for help and
advice.

e Wei Lu and Sameer Singh, our well-organized publication chairs, with direction and oversight
from publication chair mentor Meg Mitchell. Also, Christian Federmann who helped with the
local handbook.

e The responsive team at Softconf led by Rich Gerber, who worked quickly to resolve problems and
who strove to integrate the use of the Toronto Paper Matching System (TPMS) for our use.

e Priscilla Rasmussen and Anoop Sarkar and the local organization team, especially webmaster Nitin
Madnani.

e Christopher Calliston-Burch, our general chair, who kept us coordinated with the rest of the ACL
2017 team and helped us free our time to concentrate on the key duty of organizing the scientific
program.

e Key-Sun Choi, Jing Jiang, Graham Neubig, Emily Pitler, and Bonnie Webber who carefully re-
viewed papers under consideration for best paper recognition.

e Our senior correspondents for the blog, who contributed guest posts and advice for writing and
reviewing: Waleed Ammar, Yoav Artzi, Tim Baldwin, Marco Baroni, Claire Cardie, Xavier Car-
reras, Hal Daumé, Kevin Duh, Chris Dyer, Marti Hearst, Mirella Lapata, Emily M. Bender, Au-
rélien Max, Kathy McKeown, Ray Mooney, Ani Nenkova, Joakim Nivre, Philip Resnik, and Joel
Tetreault. Without them, the participation of the community through the productive comments, and
without you the readership, our blog for disseminating information about the decision processes
would not have been possible and a success.

We hope that you enjoy ACL 2017 in Vancouver!

ACL 2017 program co-chairs
Regina Barzilay, Massachusetts Institute of Technology
Min-Yen Kan, National University of Singapore
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Outstanding Papers

With twin upward trends in the interest in computational linguistics and natural language processing
and the size of our annual meeting, ACL has begun the practice of recognizing outstanding papers that
represent a select cross-section of the entire field, as nominated by reviewers and vetted by the area chairs
and program co-chairs. These papers have been centrally located in the program, on the last day of our
meeting, in a more focused two parallel tracks format.

This year, we have nominated 15 long papers and 7 short papers, representing 1.8% of all submissions
and approximately 5% of the accepted ACL program. Congratulations, authors!

(in alphabetical order by first author surname)

Long Papers
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ing for Chinese Word Segmentation.

e Ryan Cotterell and Jason Eisner. Probabilistic Typology: Deep Generative Models of Vowel
Inventories.

e Yanzhuo Ding, Yang Liu, Huanbo Luan and Maosong Sun. Visualizing and Understanding
Neural Machine Translation.

e Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier. Vancouver
Welcomes You! Minimalist Location Metonymy Resolution.

e Daniel Hershcovich, Omri Abend and Ari Rappoport. A Transition-Based Directed Acyclic
Graph Parser for UCCA.

e Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi. Neural Joint Model for Transition-
based Chinese Syntactic Analysis.

e Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua
Bengio and Joelle Pineau. Towards an Automatic Turing Test: Learning to Evaluate Dialogue
Responses.

e Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi and Tomoko Ohkuma. Unifying Text,
Metadata, and User Network Representations with a Neural Network for Geolocation Pre-
diction.

e Ramakanth Pasunuru and Mohit Bansal. Multi-Task Video Captioning with Visual and En-
tailment Generation.

e Maxim Rabinovich, Mitchell Stern and Dan Klein. Abstract Syntax Networks for Code Gen-
eration and Semantic Parsing.

e Ines Rehbein and Josef Ruppenhofer. Detecting annotation noise in automatically labelled
data.

e Jiwei Tan, Xiaojun Wan and Jianguo Xiao. Abstractive Document Summarization with a
Graph-Based Attentional Neural Model.

e Mingbin Xu, Hui Jiang and Sedtawut Watcharawittayakul. A Local Detection Approach for
Named Entity Recognition and Mention Detection.

e Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu. Joint
Extraction of Entities and Relations Based on a Novel Tagging Scheme.
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Short Papers

e Xinyu Hua and Lu Wang. Understanding and Detecting Diverse Supporting Arguments on
Controversial Issues.

e Jindfich Libovicky and Jindfich Helcl. Attention Strategies for Multi-Source Sequence-to-
Sequence Learning.

e Bogdan Ludusan, Reiko Mazuka, Mathieu Bernard, Alejandrina Cristia and Emmanuel Dupoux.
The Role of Prosody and Speech Register in Word Segmentation: A Computational Modelling
Perspective.

e Afshin Rahimi, Trevor Cohn and Timothy Baldwin. A Neural Model for User Geolocation
and Lexical Dialectology.

o Keisuke Sakaguchi, Matt Post and Benjamin Van Durme. Error-repair Dependency Parsing
for Ungrammatical Texts.

e Alane Suhr, Mike Lewis, James Yeh and Yoav Artzi. A Corpus of Compositional Language
for Visual Reasoning.

e Yizhong Wang, Sujian Li and Houfeng Wang. A Two-stage Parsing Method for Text-level
Discourse Analysis.
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Abstract

Temporal relation classification is becom-
ing an active research field. Lots of meth-
ods have been proposed, while most of
them focus on extracting features from
external resources. Less attention has
been paid to a significant advance in a
closely related task: relation extraction.
In this work, we borrow a state-of-the-art
method in relation extraction by adopting
bidirectional long short-term memory (Bi-
LSTM) along dependency paths (DP). We
make a “‘common root” assumption to ex-
tend DP representations of cross-sentence
links. In the final comparison to two state-
of-the-art systems on TimeBank-Dense,
our model achieves comparable perfor-
mance, without using external knowledge
and manually annotated attributes of enti-
ties (class, tense, polarity, etc.).

1 Introduction

Recently, the need for extracting temporal infor-
mation from text is motivated rapidly by many
NLP tasks such as: question answering (QA), in-
formation extraction (IE), etc. Along with the
TimeBank' (Pustejovsky et al., 2003) and other
temporal information annotated corpora, a se-
ries of temporal evaluation challenges (TempEval-
1,2,3) (Verhagen et al., 2009, 2010; UzZaman
et al., 2012) are attracting growing research ef-
forts.

Temporal relation classification is a task to iden-
tify the pairs of temporal entities (events or tem-
poral expressions) that have a temporal link and
classify the temporal relations between them. For
instance, we show an event-event (E-E) link with
‘DURING’ type in (i), an event-time (E-T) link

'https://catalog.ldc.upenn.edu/LDC2006T08

1

with ‘INCLUDES’ type in (ii) and an event-DCT
(document creation time, E-D) with ‘BEFORE’
type in (iii).

(i) There was no hint of trouble in the last con-

versation between controllers and TWA pilot
Steven Snyder.

(ii) In Washington today, the Federal Aviation
Administration released air traffic control
tapes.

(iii) The U.S. Navy has 27 ships in the maritime
barricade of Iraq.

Marcu and Echihabi (2002) propose an ap-
proach considering word-based pairs as useful fea-
tures. The following researchers (Laokulrat et al.,
2013; Chambers et al., 2014; Mani et al., 2006;
D’Souza and Ng, 2013) focus on extracting lex-
ical, syntactic or semantic information from var-
ious external knowledge bases such as: Word-
Net (Miller, 1995) and VerbOcean (Chklovski and
Pantel, 2004). However, these feature based meth-
ods rely on hand-crafted efforts and external re-
sources. In addition, these works require the fea-
tures of entity attributes (class, tense, polarity,
etc.), which are manually annotated to achieve
high performance. Consequently, they are hard to
obtain in practical application scenarios.

In relation extraction, there is an explosion of
the works done with the dependency path (DP)
based methods, which employ various models
along dependency paths (Bunescu and Mooney,
2005; Plank and Moschitti, 2013). In recent years,
the DP-based neural networks (Socher et al., 2011;
Xu et al., 2015a,b) show state-of-the-art perfor-
mance, with less requirements on explicit features.
Intuitively, the DP-based approaches have the po-
tential to classify temporal relations.

Both relation extraction and temporal relation
classification require the identification of relation-
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Sentence 1: The company said it has agreed to sell the extrusion division.

Entity Attributes
Class: OCCURRENCE
Tense: INFINITIVE

Polarity: POSITIVE
Etc.

Sentence 2: The sale of the extrusion division is subject to audit adjustments for working capital

changes through the closing.

Tense: NONE
Polarity: POSTIVE

Entity Attributes
Class: OCCURRENCE
Etc.

Figure 1: An example of the sentences with entity attributes annotated in TimeBank.

ship between entities in texts. However, temporal
relation classification is more challenging, since it
includes three different type of entities: ‘event’,
‘time expression’ and DCT. Cross-sentence links
also add additional complexity into the task. Due
to the outstanding performance of DP-based neu-
ral networks revealed in relation extraction, we
borrow this state-of-the-art approach to temporal
relation classification.

In Section 2 of this paper, we review related
work and introduce TimeBank-Dense. We dis-
cuss the cross-sentence link problem and the ar-
chitectures of our E-E, E-T and E-D classifiers in
Section 3. In Section 4, the experiments are per-
formed on TimeBank-Dense and we compare our
model to the baseline and two state-of-the-art sys-
tems. The final conclusion is made in Section 5.

2 Background

2.1 Related Work

Current state-of-the-art temporal relation classi-
fiers exploit a variety of features. Laokulrat et al.
(2013); Chambers et al. (2014) extract lexical
and morphological features derived from Word-
Net synsets. Mani et al. (2006); D’Souza and
Ng (2013) incorporate semantic relations between
verbs from VerbOcean as features. In addition,
most of the systems include the entity attributes
(Figure 1) specified in TimeML ? as basic features,
which actually need heavy human annotations.

In this work, we push this work into a more
practical level by using only word, part-of-speech
(POS), dependency parsing information, without
incorporating entity attributes, as well as any other
external resources.

In relation extraction, Bunescu and Mooney
(2005) propose an observation that a relation
can be captured by the shortest dependency path

*http://timeml.org/

—

adjustments audit subject

f_\ﬁl

sell agreed said

(a) The source SDP. (b) The target SDP.

Figure 2: An example of the DP representation of
a cross-sentence link between the two sentences in
Figure 1.

(SDP) between the two entities in the entire depen-
dency graph. Plank and Moschitti (2013) extract
syntactic and semantic information in a tree ker-
nel. Following this line, researchers (Socher et al.,
2011; Xu et al., 2015a,b) achieve state-of-the-art
performance by building various neural networks
over dependency path.

Our system is similar to the work by Xu et al.
(2015b). They perform LSTM with max pooling
separately on each feature channel along depen-
dency path. In contrast, our system adopts bidi-
rectional LSTM on the concatenation of feature
embeddings.

2.2 TimeBank-Dense

In the original TimeBank, temporal links have
been created on those pairs with semantic connec-
tions, which led to a sparse annotation style. Cas-
sidy et al. (2014) 3 propose a mechanism to force
annotators to create complete graphs over the enti-
ties in neighboring sentences. Compared to 6,418
links in 183 TimeBank documents, TimeBank-
Dense achieves greater density with 12,715 links
in 36 documents.

We follow a similar experiment setting to the
other two systems (Mirza and Tonelli, 2016;
Chambers et al., 2014) with the same 9 documents

3https://www.usna.edu/Users/cs/nchamber/caevo



as test data and the others as training data (15%
of training data is split as validation data for early

stopping).
3 The Proposed Method

3.1 Cross-sentence Dependency Paths

Intuitively, the dependency path based idea can
be introduced into the temporal relation classifica-
tion task. However, around 64% E-E, E-T links in
TimeBank-Dense are with the ends in two neigh-
boring sentences, called cross-sentence links.

A crucial obstacle is how to represent the depen-
dency path of a cross-sentence link. In this work,
we make a naive assumption that two neighbor-
ing sentences share a “common root”. Therefore,
a cross-sentence dependency path can be repre-
sented as two shortest dependency path branches
from the ends to the “common root”, as shown in
Figure 2.

Stanford CoreNLP* is used to parsing syntactic
structures of sentences in this work.

3.2 Temporal Relation Classifiers

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a natural choice for pro-
cessing sequential dependency paths. As the re-
versed order also takes useful information, a back-
ward representation can be achieved by feed-
ing LSTM with the same input in reverse. We
adopt the concatenation of the forward and back-
ward LSTMs outputs, referred to as bidirectional
LSTM (Graves and Schmidhuber, 2005).

Figure 3a shows the neural network architec-
ture of our E-E, E-T classifier. Given an E-E or
E-T temporal link, our system first generates two
SDP branches: 1) the source entity to common
root, 2) the target entity to common root. For
each word along a SDP branch, concatenation of
word, POS and dependency relation (DEP) em-
beddings (word-level) is fed into Bi-LSTM. The
forward and backward outputs of both source and
target branches are all concatenated, and fed into a
fully connected hidden units layer. The final Soft-
max layer generates multi-class predictions. Since
an E-D link contains single event SDP branch,
our system applies a similar architecture, but with
single branch Bi-LSTM with outputs fed into the
penultimate hidden layer, as shown in Figure 3b.

In this work, we use word2vec® (Mikolov et al.,

*http://stanfordnlp.github.io/CoreNLP/
>https://code.google.com/archive/p/word2vec/

LINK type E-D E-E E-T
AFTER 493 477 350
BEFORE 552 380 311
SIMULTANEOUS - - -

INCLUDES 305 185 254
IS_INCLUDED S13 296 204
VAGUE 482 656 .616
Overall 491 544 480

Table 1: The best sentence-level 5-fold CV per-
formance (Micro-average Overall F1-score).

2013a,b) to train 200-dimensions word embed-
dings on English Gigaword 4th edition with skip-
gram model and other default settings. For ei-
ther of POS or DEP, we adopt the 50-dimensions
lookup table initialized randomly.

4 Experiments

4.1 Hyper-parameters and Cross-validation

The grid search exploring a full hyper-parameter
space takes time for three classifiers (E-E, E-T and
E-D). Empirically, we set each single LSTM out-
put with the same dimensions (equal to 300) as the
concatenation of word, POS, DEP embeddings.
The hidden layer is set as 200-dimensions.

Our system adopts dependency paths as input,
which means that the entities in the same sen-
tences contain highly covered word sequence in-
put. Simple cross-validation (CV) on links can not
reflect the generalization ability of our model cor-
rectly. We use a grouped 5-fold CV based on the
source entity ids (document id + sentence id) of
links. This schema can reduce bias separately in
either the source SDP or the target SDP. Although
document level CV can avoid this issue, it’s not
feasible for TimeBank-Dense because it contains
only 27 training documents.

Early stopping is used to save the best model
based on the validation data. In each run of the
5-fold cross-validation, we split 80% of ‘original
training’ as ‘tentative training’ and 20% as ‘ten-
tative test’. 85% of ‘tentative training’ is used to
learning and 15% is used for validation. We also
adopt early stopping in the final system on the val-
idation data (15% of ‘original training’). The pa-
tience is set as 10.

Dropout (Srivastava et al., 2014) recently is
proved to be an useful approach to prevent neu-
ral networks from over-fitting. We adopt dropout
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Figure 3: The DP-based Bi-LSTM temporal relation classifier.

Our Mirza | Our Mirza

LINK type E-D E-D | E-E E-E
AFTER 582 466 | 440 430
BEFORE .634 671 | 460 471
SIMULTA. - - - -

INCLUDES | .056 .250 | .025 .049
ISINCLUD. | .595 .600 | .170 .250
VAGUE 526 502 | .624 613
Overall 546 534 | 529 519

Table 2: The detailed comparison of E-E and E-T
against relation types to Mirza and Tonelli (2016)
(Micro-average Overall F1-score) on test data.

separately after the following layers: embeddings,
LSTM, and hidden layer to investigate the impact
of dropout on performance. Table 1 shows the best
CV results recorded in tuning dropout. The hyper-
parameter setting with the best CV performance is
adopted in the final system.

4.2 Overall Performance

Recently, Mirza and Tonelli (2016) report state-of-
the-art performance on TimeBank-Dense. They
show the new attempt to mine the value of low-
dimensions word embeddings by concatenating
them with sparse traditional features. Their tra-
ditional features include entity attributes, tempo-
ral signals, semantic information of WordNet, etc.,
which means it’s a hard setting for challenging
their performance. In Table 2 and 3, ‘Mirza’ de-
notes their system.

Table 2 shows the detailed comparison to

Systems | E-D E-E E-T | Overall
Baseline | 471 .502 .437 486
Proposed | .546 .529 471 520
Mirza 534 519 468 S12
CAEVO | .553 494 494 502

Table 3: The final comparison of E-E, E-T and E-
D to the baseline and two state-of-the-art systems
on test data.

their work. Our system achieves higher perfor-
mance on ‘AFTER’, ‘VAGUE’, while lower on
‘BEFORE’, ‘INCLUDES’ (5% of all data) and
‘IS_INCLUDED’ (4% of all data). It is likely that
their rich traditional features help the classifiers to
capture more minority-class links. On the whole,
our system reaches better ‘Overall’ on both E-E
and E-D. As their E-T classifier does not include
word embeddings, the E-T results are not listed.

The final comparison is shown in Table 3. An
one-layer fully connected hidden units baseline
(200-dimensions) with word, POS embeddings as
input (without any dependency information) is
provided. The significant out-performance of our
proposed model over the baseline indicates the ef-
fectiveness of the dependency path information
and our Bi-LSTM in classifying temporal links.
As a hybrid system, ‘CAEVO’ (Chambers et al.,
2014) includes hand-crafted rules for their E-T and
E-D classifiers. For instance, the temporal prepo-
sitions in, on, over, during, and within indicate
‘IN_INCLUDED’ relations. Their system is supe-
rior in E-T and E-D. *Miza’ takes the pure feature-



based methods and performs slightly better in E-
E and overall, compared to ‘CAEVO’. Our sys-
tem shows the highest scores in E-E and overall
among the four systems. In general, our system
achieves comparable performance to two state-of-
the-art systems, without using any hand-crafted
features, rules, or external resources.

5 Conclusion

We borrow the idea of the dependency path based
neural networks into temporal relation classifica-
tion. A “common root” assumption adapts our
model to cross-sentence links. Our model adopts
bidirectional LSTM for capturing both forward
and backward orders information. We observe
the significant benefit of the DP-based Bi-LSTM
model by comparing it to the baseline. Our model
achieves comparable performance to two state-of-
the-art systems without using any explicit features
(class, tense, polarity, etc.) or external resources,
which indicates that our model can capture such
information automatically.
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Abstract

This paper addresses the task of AMR-to-
text generation by leveraging synchronous
node replacement grammar. During train-
ing, graph-to-string rules are learned us-
ing a heuristic extraction algorithm. At
test time, a graph transducer is applied to
collapse input AMRs and generate output
sentences. Evaluated on a standard bench-
mark, our method gives the state-of-the-art
result.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism en-
coding the meaning of a sentence as a rooted,
directed graph. AMR uses a graph to represent
meaning, where nodes (such as “boy”, “want-01")
represent concepts, and edges (such as “ARGO”,
“ARG1”) represent relations between concepts.
Encoding many semantic phenomena into a graph
structure, AMR is useful for NLP tasks such as
machine translation (Jones et al., 2012; Tamchyna
etal., 2015), question answering (Mitra and Baral,
2015), summarization (Takase et al., 2016) and
event detection (Li et al., 2015).

AMR-to-text generation is challenging as func-
tion words and syntactic structures are abstracted
away, making an AMR graph correspond to mul-
tiple realizations. Despite much literature so far
on text-to-AMR parsing (Flanigan et al., 2014;
Wang et al., 2015; Peng et al., 2015; Vanderwende
et al., 2015; Pust et al., 2015; Artzi et al., 2015;
Groschwitz et al., 2015; Goodman et al., 2016;
Zhou et al., 2016; Peng et al., 2017), there has been
little work on AMR-to-text generation (Flanigan
etal., 2016; Song et al., 2016; Pourdamghani et al.,
2016).

7

Figure 1: Graph-to-string derivation.

Flanigan et al. (2016) transform a given AMR
graph into a spanning tree, before translating it
to a sentence using a tree-to-string transducer.
Their method leverages existing machine transla-
tion techniques, capturing hierarchical correspon-
dences between the spanning tree and the surface
string. However, it suffers from error propagation
since the output is constrained given a spanning
tree due to the projective correspondence between
them. Information loss in the graph-to-tree trans-
formation step cannot be recovered. Song et al.
(2016) directly generate sentences using graph-
fragment-to-string rules. They cast the task of
finding a sequence of disjoint rules to transduce
an AMR graph into a sentence as a traveling sales-
man problem, using local features and a language
model to rank candidate sentences. However, their
method does not learn hierarchical structural cor-
respondences between AMR graphs and strings.

We propose to leverage the advantages of hier-
archical rules without suffering from graph-to-tree
errors by directly learning graph-to-string rules.
As shown in Figure 1, we learn a synchronous
node replacement grammar (NRG) from a cor-
pus of aligned AMR and sentence pairs. At test
time, we apply a graph transducer to collapse input
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ARG1

( C) (root)

- G = @ & T

{#X3# wants to go}

{the boy wants to go}

Figure 2: Example deduction procedure

ARGO
String:  {#S#} {#X1#} {#X2# to go}

ID. F E
(a) (b/boy) the boy
(b) (w / want-01

:ARGO (X / #X#))  #X# wants

X/ #X#
(c) :ARGI (g/go-01  #X#to go
:ARGO X))

@ (w / want-01

:ARGO (b/boy))  the boy wants

Table 1: Example rule set

AMR graphs and generate output strings accord-
ing to the learned grammar. Our system makes
use of a log-linear model with real-valued fea-
tures, tuned using MERT (Och, 2003), and beam
search decoding. It gives a BLEU score of 25.62
on LDC2015E86, which is the state-of-the-art on
this dataset.

2 Synchronous Node Replacement
Grammar

2.1 Grammar Definition

A synchronous node replacement grammar (NRG)
is a rewriting formalism: G = (N, X, A, P, S),
where N is a finite set of nonterminals, > and A
are finite sets of terminal symbols for the source
and target sides, respectively. S € N is the start
symbol, and P is a finite set of productions. Each
instance of P takes the form X; — ((F, E), ~),
where X; € N is a nonterminal node, F' is a
rooted, connected AMR fragment with edge labels
over X and node labels over N U X, F is a corre-
sponding target string over N U A and ~ denotes
the alignment of nonterminal symbols between F'
and E. A classic NRG (Engelfriet and Rozenberg,
1997, Chapter 1) also defines C, which is an em-
bedding mechanism defining how F’ is connected
to the rest of the graph when replacing X; with
F on the graph. Here we omit defining C and
allow arbitrary connections.! Following Chiang

!This may over generate, but does not affect our case, as
in our bottom-up decoding procedure (section 3) when F' is
replaced with X;, nodes previously connected to F' are re-
connected to X;

Data: training corpus C'
Result: rule instances R
R+ [l
for (Sent, AMR,~)in C do
Recur < FRAGMENTEXTRACT(Sent,AM R,~);
for r; in R¢yr do
R.APPEND(T;) ;
for r; in Rcur/{r:} do
if ;. CONTAINS(7;) then
Tij < Ti.COLLAPSE(’r‘j);
R.APPEND(7;5) ;
end
end

- - 7 I R I S I

-
-

end

—
)

end

-
w

Algorithm 1: Rule extraction

(2005), we use only one nonterminal X in addi-
tion to S, and use subscripts to distinguish differ-
ent non-terminal instances.

Figure 2 shows an example derivation process
for the sentence “the boy wants to go” given the
rule set in Table 1. Given the start symbol S,
which is first replaced with X7, rule (c) is applied
to generate “Xs to go” and its AMR counterpart.
Then rule (b) is used to generate “X3 wants” and
its AMR counterpart from X5. Finally, rule (a)
is used to generate “the boy” and its AMR coun-
terpart from X3. Our graph-to-string rules are
inspired by synchronous grammars for machine
translation (Wu, 1997; Yamada and Knight, 2002;
Gildea, 2003; Chiang, 2005; Huang et al., 2006;
Liu et al., 2006; Shen et al., 2008; Xie et al., 2011;
Meng et al., 2013).

2.2 Induced Rules

There are three types of rules in our system,
namely induced rules, concept rules and graph
glue rules. Here we first introduce induced rules,
which are obtained by a two-step procedure on a
training corpus. Shown in Algorithm 1, the first
step is to extract a set of initial rules from train-
ing (sentence, AMR, ~)? pairs (Line 2) using the
phrase-to-graph-fragment extraction algorithm of
Peng et al. (2015) (Line 3). Here an initial rule

2~ denotes alignment between words and AMR labels.



contains only terminal symbols in both F' and E.
As a next step, we match between pairs of initial
rules r; and 7;, and generate r;; by collapsing r;
with r;, if ; contains 7; (Line 6-8). Here r; con-
tains r;, if 7;.F" is a subgraph of r;.F' and r;.E/
is a sub-phrase of ;.. When collapsing r; with
rj, we replace the corresponding subgraph in r;. F’
with a new non-terminal node, and the sub-phrase
in ;. E/ with the same non-terminal. For example,
we obtain rule (b) by collapsing (d) with (a) in Ta-
ble 1. All initial and generated rules are stored in
arule list R (Lines 5 and 9), which will be further
normalized to obtain the final induced rule set.

2.3 Concept Rules and Glue Rules

In addition to induced rules, we adopt concept
rules (Song et al., 2016) and graph glue rules to en-
sure existence of derivations. For a concept rule, F'
is a single node in the input AMR graph, and E'is a
morphological string of the node concept. A con-
cept rule is used in case no induced rule can cover
the node. We refer to the verbalization list® and
AMR guidelines” for creating more complex con-
cept rules. For example, one concept rule created
from the verbalization list is “(k / keep-01 :ARG1
(p/ peace)) ||| peacekeeping”.

Inspired by Chiang (2005), we define graph
glue rules to concatenate non-terminal nodes con-
nected with an edge, when no induced rules can be
applied. Three glue rules are defined for each type
of edge label. Taking the edge label “ARGO” as an
example, we create the following glue rules:

ID. F E

1 (X1/#X1# ARGO (X2 / #X2#) #X1# #X2#
ro  (X1/#X1#:ARGO (X2 / #X2#)) #X2o# #X1#
rs  (X1/#X1# :ARGO X1) #X1#

where for both r; and r9, F' contains two non-
terminal nodes with a directed edge connecting
them, and FE' is the concatenation the two non-
terminals in either the monotonic or the inverse
order. For r3, F' contains one non-terminal node
with a self-pointing edge, and F is the non-
terminal. With concept rules and glue rules in our
final rule set, it is easily guaranteed that there are
legal derivations for any input AMR graph.

3 Model

We adopt a log-linear model for scoring search hy-
potheses. Given an input AMR graph, we find

3http://amr.isi.edu/download/lists/verbalization-list-
v1.06.txt
*https://github.com/amrisi/amr-guidelines

the highest scored derivation ¢* from all possible
derivations ¢:

t = argmaxexp 3 wifi(g,t), (D

(2

where g denotes the input AMR, f;(-,-) and w;
represent a feature and the corresponding weight,
respectively. The feature set that we adopt in-
cludes phrase-to-graph and graph-to-phrase trans-
lation probabilities and their corresponding lexi-
calized translation probabilities (section 3.1), lan-
guage model score, word count, rule count, re-
ordering model score (section 3.2) and moving
distance (section 3.3). The language model score,
word count and phrase count features are adopted
from SMT (Koehn et al., 2003; Chiang, 2005).
We perform bottom-up search to transduce in-
put AMRs to surface strings. Each hypothesis con-
tains the current AMR graph, translations of col-
lapsed subgraphs, the feature vector and the cur-
rent model score. Beam search is adopted, where
hypotheses with the same number of collapsed
edges and nodes are put into the same beam.

3.1 Translation Probabilities

Production rules serve as a basis for scoring hy-
potheses. We associate each synchronous NRG
rule n — ((F, E), ~) with a set of probabilities.
First, phrase-to-fragment translation probabilities
are defined based on maximum likelihood estima-
tion (MLE), as shown in Equation 2, where ¢r )
is the fractional count of (F, E).

“RE)

F|E) =
p(F|E) S e m)

2

In addition, lexicalized translation probabilities
are defined as:

pw(FIE) =[] D_ plilw) 3)

leF weE

Here [ is a label (including both edge labels such
as “ARGO0” and concept labels such as “want-01")
in the AMR fragment F', and w is a word in
the phrase E. Equation 3 can be regarded as a
“soft” version of the lexicalized translation prob-
abilities adopted by SMT, which picks the align-
ment yielding the maximum lexicalized probabil-
ity for each translation rule. In addition to p(F'|E)
and p,,(F'| E), we use features in the reverse direc-
tion, namely p(E|F') and p,,(E'|F'), the definitions
of which are omitted as they are consistent with



Equations 2 and 3, respectively. The probabilities
associated with concept rules and glue rules are
manually set to 0.0001.

3.2 Reordering Model

Although the word order is defined for induced
rules, it is not the case for glue rules. We learn a
reordering model that helps to decide whether the
translations of the nodes should be monotonic or
inverse given the directed connecting edge label.
The probabilistic model using smoothed counts is
defined as:

1.0 + Zh Zt C(h’7 l7 ta M)
2.0+ ZOG{M,I} Zh Zt C(h7 l,t, 0)

c(h,l,t, M) is the count of monotonic translations
of head h and tail ¢, connected by edge (.

4)

3.3 Moving Distance

The moving distance feature captures the dis-
tances between the subgraph roots of two consec-
utive rule matches in the decoding process, which
controls a bias towards collapsing nearby sub-
graphs consecutively.

4 Experiments

4.1 Setup

We use LDC2015ES86 as our experimental dataset,
which contains 16833 training, 1368 dev and 1371
test instances. Each instance contains a sentence,
an AMR graph and the alignment generated by
a heuristic aligner. Rules are extracted from the
training data, and model parameters are tuned on
the dev set. For tuning and testing, we filter out
sentences with more than 30 words, resulting in
1103 dev instances and 1055 test instances. We
train a 4-gram language model (LM) on gigaword
(LDC2011T07), and use BLEU (Papineni et al.,
2002) as the evaluation metric. MERT is used
(Och, 2003) to tune model parameters on k-best
outputs on the devset, where £ is set 50.

We investigate the effectiveness of rules and
features by ablation tests: “NolnducedRule” does
not adopt induced rules, “NoConceptRule” does
not adopt concept rules, “NoMovingDistance”
does not adopt the moving distance feature,
and “NoReorderModel” disables the reordering
model. Given an AMR graph, if NoConceptRule
cannot produce a legal derivation, we concatenate
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[ System [ Dev [ Test |
TSP-gen 21.12 | 22.44
JAMR-gen 23.00 | 23.00
All 25.24 | 25.62
NolnducedRule 16.75 | 17.43
NoConceptRule 23.99 | 24.86
NoMovingDistance | 23.48 | 24.06
NoReorderModel 25.09 | 25.43

Table 2: Main results.

existing translation fragments into a final transla-
tion, and if a subgraph can not be translated, the
empty string is used as the output. We also com-
pare our method with previous works, in particu-
lar JAMR-gen (Flanigan et al., 2016) and TSP-gen
(Song et al., 2016), on the same dataset.

4.2 Main results

The results are shown in Table 2. First, All out-
performs all baselines. NolnducedRule leads to
the greatest performance drop compared with All,
demonstrating that induced rules play a very im-
portant role in our system. On the other hand, No-
ConceptRule does not lead to much performance
drop. This observation is consistent with the ob-
servation of Song et al. (2016) for their TSP-based
system. NoMovingDistance leads to a significant
performance drop, empirically verifying the fact
that the translations of nearby subgraphs are also
close. Finally, NoReorderingModel does not af-
fect the performance significantly, which can be
because the most important reordering patterns are
already covered by the hierarchical induced rules.
Compared with TSP-gen and JAMR-gen, our fi-
nal model All improves the BLEU from 22.44
and 23.00 to 25.62, showing the advantage of our
model. To our knowledge, this is the best result
reported so far on the task.

4.3 Grammar analysis

We have shown the effectiveness of our syn-
chronous node replacement grammar (SNRG) on
the AMR-to-text generation task. Here we further
analyze our grammar as it is relatively less studied
than the hyperedge replacement grammar (HRG)
(Drewes et al., 1997).

Statistics on the whole rule set

We first categorize our rule set by the number of
terminals and nonterminals in the AMR fragment
F, and show the percentages of each type in Fig-
ure 3. Each rule contains at most 1 nonterminal,
as we collapse each initial rule only once. First
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Figure 3: Statistics on the right-hand side.

Glue
30.0%

Terminal
39.9%

Nonterminal
30.1%

1-best

Table 3: Rules used for decoding.

of all, the percentage of rules containing nonter-
minals are much more than those without nonter-
minals, as we collapse each pair of initial rules (in
Algorithm 1) and the results can be quadratic the
number of initial rules. In addition, most rules are
small containing 1 to 3 terminals, meaning that
they represent small pieces of meaning and are
easier to matched on a new AMR graph. Finally,
there are a few large rules, which represent com-
plex meaning.

Statistics on the rules used for decoding

In addition, we collect the rules that our well-tuned
system used for generating the 1-best output on
the testset, and categorize them into 3 types: (1)
glue rules, (2) nonterminal rules, which are not
glue rules but contain nonterminals on the right-
hand side and (3) terminal rules, whose right-hand
side only contain terminals. Over the rules used on
the 1-best result, more than 30% are non-terminal
rules, showing that the induced rules play an im-
portant role. On the other hand, 30% are glue
rules. The reason is that the data sparsity for graph
grammars is more severe than string-based gram-
mars (such as CFG), as the graph structures are
more complex than strings. Finally, terminal rules
take the largest percentage, while most are induced
rules, but not concept rules.

Rule examples

Finally, we show some rules in Table 4, where F'
and F are the right-hand-side AMR fragment and
phrase, respectively. For the first rule, the root of
Fis a verb (“give-01”) whose subject is a nonter-
minal and object is a AMR fragment “(p / person
:ARGO-of (u / use-01))”, which means “user”. So
it is easy to see that the corresponding phrase E
conveys the same meaning. For the second rule,
“(s3 / stay-01 :accompanier (i / i))” means “stay
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(g / give-01
:ARGO (X1 / #X1#)
:ARG2 (p / person
:ARGO-of (u/use-01)))
#X1# has given users an
(X1 /#X14#
:ARG2 (s3 / stay-01 :ARG1 X1
:accompanier (i /1)))
#X1# staying with me

Table 4: Example rules.

(u / understand-01
:ARGO (y / you)
:ARG]1 (2 / thing
:ARG1-of (f2 / feel-01
:ARGO (p2 / person
:example (p / person :wiki -
:name (t/ name :opl “TMT”)
:location (c / city :wiki “Fairfax,_Virginia”
:name (f / name :opl “Fairfax”))))))
:time (n / now))
Trans: now, you have to understand that people feel about
such as tmt fairfax
Ref: now you understand how people like tmt in fairfax
feel .

Table 5: Generation example.

with me”, which is also covered by its phrase.

4.4 Generation example

Finally, we show an example in Table 5, where the
top is the input AMR graph, and the bottom is the
generation result. Generally, most of the meaning
of the input AMR are correctly translated, such as
“:example”, which means “such as”, and “thing”,
which is an abstract concept and should not be
translated, while there are a few errors, such as
“that” in the result should be “what”, and there
should be an “in” between “tmt” and “fairfax”.

5 Conclusion

We showed that synchronous node replacement
grammar is useful for AMR-to-text generation by
developing a system that learns a synchronous
NRG in the training time, and applies a graph
transducer to collapse input AMR graphs and gen-
erate output strings according to the learned gram-
mar at test time. Our method performs better than
the previous systems, empirically proving the ad-
vantages of our graph-to-string rules.
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Abstract

Lexical features are a major source of in-
formation in state-of-the-art coreference
resolvers.  Lexical features implicitly
model some of the linguistic phenomena
at a fine granularity level. They are es-
pecially useful for representing the con-
text of mentions. In this paper we in-
vestigate a drawback of using many lexi-
cal features in state-of-the-art coreference
resolvers. We show that if coreference
resolvers mainly rely on lexical features,
they can hardly generalize to unseen do-
mains. Furthermore, we show that the
current coreference resolution evaluation
is clearly flawed by only evaluating on a
specific split of a specific dataset in which
there is a notable overlap between the
training, development and test sets.

1 Introduction

Similar to many other tasks, lexical features are
a major source of information in current corefer-
ence resolvers. Coreference resolution is a set par-
titioning problem in which each resulting partition
refers to an entity. As shown by Durrett and Klein
(2013), lexical features implicitly model some lin-
guistic phenomena, which were previously mod-
eled by heuristic features, but at a finer level of
granularity. However, we question whether the
knowledge that is mainly captured by lexical fea-
tures can be generalized to other domains.

The introduction of the CoNLL dataset en-
abled a significant boost in the performance of
coreference resolvers, i.e. about 10 percent differ-
ence between the CoNLL score of the currently
best coreference resolver, deep-coref by Clark and
Manning (2016b), and the winner of the CoNLL
2011 shared task, the Stanford rule-based system
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by Lee et al. (2013). However, this substantial im-
provement does not seem to be visible in down-
stream tasks. Worse, the difference between state-
of-the-art coreference resolvers and the rule-based
system drops significantly when they are applied
on a new dataset, even with consistent definitions
of mentions and coreference relations (Ghaddar
and Langlais, 2016a).

In this paper, we show that if we mainly rely
on lexical features, as it is the case in state-of-the-
art coreference resolvers, overfitting become more
sever. Overfitting to the training dataset is a prob-
lem that cannot be completely avoided. However,
there is a notable overlap between the CoNLL
training, development and test sets that encour-
ages overfitting. Therefore, the current corefer-
ence evaluation scheme is flawed by only evalu-
ating on this overlapped validation set. To ensure
meaningful improvements in coreference resolu-
tion, we believe an out-of-domain evaluation is a
must in the coreference literature.

2 Lexical Features

The large difference in performance between
coreference resolvers that use lexical features and
ones which do not, implies the importance of lex-
ical features. Durrett and Klein (2013) show that
lexical features implicitly capture some phenom-
ena, e.g. definiteness and syntactic roles, which
were previously modeled by heuristic features.
Durrett and Klein (2013) use exact surface forms
as lexical features. However, when word embed-
dings are used instead of surface forms, the use
of lexical features is even more beneficial. Word
embeddings are an efficient way of capturing se-
mantic relatedness. Especially, they provide an ef-
ficient way for describing the context of mentions.

Durrett and Klein (2013) show that the addi-
tion of some heuristic features like gender, num-
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MUC B? CEAF, CoNLL LEA
R P F ]| R P F | R P F[AgH R P F
CoNLL test set
rule-based 6429 65.10 64.74 | 40.18 56.79 52.71 | 52.45 46.58 49.34 | 55.60 || 43.72 5153 47.30
berkeley 67.56  74.09 70.67 | 53.93 63.50 5833 | 53.29 56.22 5472 | 61.24 || 49.66 59.17 54.00
cort 67.83 7835 72.71 | 54.34 68.42 60.57 | 53.10 61.10 56.82 | 63.37 || 50.40 64.46 56.57
deep-coref [conll] | 70.55 79.13 74.59 | 58.17 69.01 63.13 | 54.20 63.44 5845 | 65.39 || 54.55 65.35 59.46
deep-coref [lea] | 70.43 79.57 74.72 | 58.08 69.26 63.18 | 54.43 6417 58.90 | 65.60 || 54.55 65.68 59.60
WikiCoref
rule-based 6042 61.56 60.99 | 43.3% 53.53 47.90 | 50.80 42.70 46.44 | 5177 || 38.79 4892 43.27
berkeley 68.52 55.96 61.61 | 59.08 39.72 47.51 | 48.06 40.44 43.92 | 51.01 - - -
cort 70.39  53.63 60.88 | 60.81 37.58 46.45 | 47.88 38.18 42.48 | 49.94 - - -
deep-coref [conll] | 58.59 66.63 62.35 | 44.40 54.87 49.08 | 4247 51.47 46.54 | 52.65 || 40.36 50.73 44.95
deep-coref [lea] | 57.48 70.55 63.35 | 42.12 60.13 49.54 | 41.40 53.08 46.52 | 53.14 || 38.22 55.98 45.43
deep-coref~ 55.07 71.81 62.33 | 38.05 61.82 47.11 | 38.46 50.31 43.60 | 51.01 || 34.11 57.15 42.72
Table 1: Comparison of the results on the CoNLL test set and WikiCoref.

ber, person and animacy agreements and syntactic
roles on top of their lexical features does not result
in a significant improvement.

deep-coref, the state-of-the-art coreference re-
solver, follows the same approach. Clark and
Manning (2016b) capture the required information
for resolving coreference relations by using a large
number of lexical features and a small set of non-
lexical features including string match, distance,
mention type, speaker and genre features. The
main difference is that Clark and Manning (2016b)
use word embeddings instead of the exact surface
forms that are used by Durrett and Klein (2013).

Based on the error analysis by cort (Martschat
and Strube, 2014), in comparison to systems that
do not use word embeddings, deep-coref has fewer
recall and precision errors especially for pro-
nouns. For example, deep-coref correctly recog-
nizes around 83 percent of non-anaphoric “it” in
the CoNLL development set. This could be a di-
rect result of a better context representation by
word embeddings.

3 Out-of-Domain Evaluation

Aside from the evident success of lexical features,
it is debatable how well the knowledge that is
mainly captured by the lexical information of the
training data can be generalized to other domains.
As reported by Ghaddar and Langlais (2016b),
state-of-the-art coreference resolvers trained on
the CoNLL dataset perform poorly, i.e. worse than
the rule-based system (Lee et al., 2013), on the
new dataset, WikiCoref (Ghaddar and Langlais,
2016b), even though WikiCoref is annotated with
the same annotation guidelines as the CoNLL
dataset. The results of some of recent coreference
resolvers on this dataset are listed in Table 1.

The results are reported using MUC (Vilain
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et al., 1995), B3 (Bagga and Baldwin, 1998),
CEAF. (Luo, 2005), the average F) score of
these three metrics, i.e. CoNLL score, and LEA
(Moosavi and Strube, 2016).

berkeley is the mention-ranking model of Dur-
rett and Klein (2013) with the FINAL feature set
including the head, first, last, preceding and fol-
lowing words of a mention, the ancestry, length,
gender and number of a mention, distance of two
mentions, whether the anaphor and antecedent are
nested, same speaker and a small set of string
match features.

cort is the mention-ranking model of Martschat
and Strube (2015). cort uses the following set of
features: the head, first, last, preceding and fol-
lowing words of a mention, the ancestry, length,
gender, number, type, semantic class, dependency
relation and dependency governor of a mention,
the named entity type of the head word, distance of
two mentions, same speaker, whether the anaphor
and antecedent are nested, and a set of string
match features. berkeley and cort scores in Table 1
are taken from Ghaddar and Langlais (2016a).

deep-coref is the mention-ranking model of
Clark and Manning (2016b). deep-coref incorpo-
rates a large set of embeddings, i.e. embeddings of
the head, first, last, two previous/following words,
and the dependency governor of a mention in ad-
dition to the averaged embeddings of the five pre-
vious/following words, all words of the mention,
sentence words, and document words. deep-coref
also incorporates type, length, and position of a
mention, whether the mention is nested in any
other mention, distance of two mentions, speaker
features and a small set of string match features.

For deep-coref [conll] the averaged CoNLL
score is used to select the best trained model on the
development set. deep-coref [lea] uses the LEA



genre

be bn mz nw pt tc wb
train+dev
43% 50% 51% 45% Ti%  38% 39%
train
41% 49% 39% 44% 6% 3% 38%

Table 2: Ratio of non-pronominal coreferent men-
tions in the test set that are seen as coreferent in
the training data.

metric (Moosavi and Strube, 2016) for choosing
the best model. It is worth noting that the results
of deep-coref’s ranking model may be slightly dif-
ferent at various experiments. However, the per-
formance of deep-coref [lea] is always higher than
that of deep-coref [conll].

We add WikiCoref’s words to deep-coref’s dic-
tionary for both deep-coref [conll] and deep-coref
[lea]. deep-coref™ reports the performance of
deep-coref [lea] in which WikiCoref’s words are
not incorporated into the dictionary. Therefore,
for deep-coref—, WikiCoref’s words that do not
exist in CoNLL will be initialized randomly in-
stead of using pre-trained word2vec word embed-
dings. The performance gain of deep-coref [lea]
in comparison to deep-coref— indicates the bene-
fit of using pre-trained word embeddings and word
embeddings in general. Henceforth, we refer to
deep-coref [lea] as deep-coref.

4 Why do Improvements Fade Away?

In this section, we investigate how much lexical
features contribute to the fact that current improve-
ments in coreference resolution do not properly
apply to a new domain.

Table 2 shows the ratio of non-pronominal
coreferent mentions in the CoNLL test set that also
appear as coreferent mentions in the training data.
These high ratios indicate a high degree of overlap
between the mentions of the CoNLL datasets.

The highest overlap between the training and
test sets exists in genre pt (Bible). The zc (tele-
phone conversation) genre has the lowest over-
lap for non-pronominal mentions. However, this
genre includes a large number of pronouns. We
choose wb (weblog) and pt for our analysis as two
genres with low and high degree of overlap.

Table 3 shows the results of the examined coref-
erence resolvers when the test set only includes
one genre, i.e. pt or wb, in two different settings:
(1) the training set includes all genres (in-domain
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evaluation), and (2) the corresponding genre of the
test set is excluded from the training and develop-
ment sets (out-of-domain evaluation).

berkeley-final is the coreference resolver of
Durrett and Klein (2013) with the FINAL feature
set explained in Section 3. berkeley-surface is the
same coreference resolver with only surface fea-
tures, i.e. ancestry, gender, number, same speaker
and nested features are excluded from the FINAL
feature set.

cort—lexical is a version of cort in which no
lexical feature is used, i.e. the head, first, last, gov-
ernor, preceding and following words of a mention
are excluded.

For in-domain evaluations we train deep-coref’s
ranking model for 100 iterations, i.e. the setting
used by Clark and Manning (2016a). However,
based on the performance on the development set,
we only train the model for 50 iterations in out-of-
domain evaluations.

The results of the pt genre show that when
there is a high overlap between the training and
test datasets, the performance of all learning-based
classifiers significantly improves. deep-coref has
the largest gain from including pt in the training
data that is more than 13% based on the LEA score.
cort uses both lexical and a relatively large num-
ber of non-lexical features while berkeley-surface
is a pure lexicalized system. However, the differ-
ence between the berkeley-surface’s performances
when pt is included or excluded from the train-
ing data is lower than that of cort. berkeley uses
feature-value pruning so lexical features that occur
fewer than 20 times are pruned from the training
data. Maybe, this is the reason that berkeley’s per-
formance difference is less than other lexicalized
systems in highly overlapping datasets.

For a less overlapping genre, i.e. wb, the perfor-
mance gain of including the genre in the training
data is significantly lower for all lexicalized sys-
tems. Interestingly, the performance of berkeley-
final, cort and cort—lexical increases for the wb
genre when this genre is excluded from the train-
ing set. deep-coref, which uses a complex deep
neural network and mainly lexical features, has the
highest gain from the redundancy in the training
and test datasets. As we use more complex neu-
ral networks, there is more capacity for brute-force
memorization of the training dataset.

It is also worth noting that the performance
gains and drops in out-of-domain evaluations are



CoNLL LEA CoNLL LEA
[ AVg F1 R P F1 AVg F1 R P F1
pt
in-domain out-of-domain
rule-based - - - - 65.01 | 50.58 65.02 56.90
berkeley-surface 69.15 | 58.57 65.24 61.73 63.01 | 46.56 62.13 53.23
berkeley-final 70.71 | 60.48 67.29 63.70 64.24 | 47.10 65.77 54.89
cort 72.56 | 61.82 70.70 65.96 64.60 | 46.85 67.69 55.37
cort—lexical 69.48 | 54.26 70.33 61.26 64.32 | 45.63 68.51 54.77
deep-coref 75.61 | 68.48 73.70 71.00 66.06 | 52.44 63.84 57.58
wb
in-domain out-of-domain
rule-based - - - - 53.80 | 45.19 44.98 45.08
berkeley-surface 56.37 | 45.72 47.20 46.45 55.14 | 45.94 44.59 45.26
berkeley-final 56.08 | 44.20 50.45 47.12 57.31 | 50.33 46.17 48.16
cort 59.29 | 50.37 51.56 50.96 58.87 | 51.47 50.96 51.21
cort—lexical 56.83 | 51.00 47.34 49.10 57.10 | 51.50 47.83 49.60
deep-coref 61.46 | 48.04 60.99 53.75 57.17 | 50.29 47.27 48.74

Table 3: In-domain and out-of-domain evaluations for a high and a low overlapped genres.

Anaphor Anaphor

Antecedent Proper Nominal Pronominal | Proper Nominal Pronominal

Proper seen 80% 85% 7% Antecedent Correct decisions
all 3221 261 1200 Proper seen 82% 85% 78%
Nominal seen 75% 93% 95% all 2603 150 921
all 69 1673 1315 Nominal seen 76% 94% 96%
Pronominal €™ 58% 99% 100% all 42 1058 890
all 85 74 4737 Pronominal €™ 63% 98% 100%
all 49 44 3998
Table 4: Ratio of links created by deep-coref for - See;ncorr%%lmswns%% 767,
which the head-pair is seen in the training data. foper all 618 111 279
Nominal sen 74% 92% 94%
all 27 615 425
. . . seen 50% 100% 100%
not entirely because of lexical features, as the per- Pronominal o 36 30 739

formance of cort—lexical also drops significantly
in pt out-of-domain evaluation. The classifier may
also memorize other properties of the seen men-
tions in the training data. However, in compari-
son to features like gender and number agreement
or syntactic roles, lexical features have the highest
potential for overfitting.

We further analyze the output of deep-coref on
the development set. The all rows in Table 4 show
the number of pairwise links that are created by
deep-coref on the development set for different
mention types. The seen rows show the ratio of
each category of links for which the (antecedent
head, anaphor head) pair is seen in the training set.
All ratios are surprisingly high. The most worri-
some cases are those in which both mentions are
either a proper name or a common noun.

Table 5 further divides the links of Table 4 based
on whether they are correct coreferent links. The
results of Table 5 show that most of the incorrect
links are also made between the mentions that are
both seen in the training data.

The high ratios indicate that (1) there is a high
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Table 5: Ratio of links created by deep-coref for
which the head-pair is seen in the training data.

overlap between the mention pairs of the training
and development sets, and (2) even though that
deep-coref uses generalized word embeddings in-
stead of exact surface forms, it is strongly biased
towards the seen mentions.

We analyze the links that are created by Stan-
ford’s rule-based system and compute the ratio of
the links that exist in the training set. All corre-
sponding ratios are lower than those of deep-coref
in Table 5. However, the ratios are surprisingly
high for a system that does not use the training
data. This analysis emphasizes the overlap in the
CoNLL datasets. Because of this high overlap, it
is not easy to assess the generalizability of a coref-
erence resolver to unseen mentions on the CoNLL
dataset given its official split.

We also compute the ratios of Table 5 for the
missing links that are associated with the recall er-



Anaphor

Antecedent Proper Nominal Pronominal
Proper seen 63% 51% 75%
all 818 418 278
Nominal seen 44% 73% 90%
all 168 892 538
Pronominal  S€€M 82% 90% 100%
all 49 59 444

Table 6: Ratio of deep-coref’s recall errors for
which the head-pair exists in the training data.

rors of deep-coref. We compute the recall errors
by cort error analysis tool (Martschat and Strube,
2014). Table 6 shows the corresponding ratios for
recall errors. The lower ratios of Table 6 in com-
parison to those of Table 4 emphasize the bias of
deep-coref towards the seen mentions.

For example, the deep-coref links include 31
cases in which both mentions are either proper
names or common nouns and the head of one of
the mentions is “country”. For all these links,
“country” is linked to a mention that is seen in the
training data. Therefore, this raises the question
how the classifier would perform on a text about
countries not mentioned in the training data.

Memorizing the pairs in which one of them is a
common noun could help the classifier to capture
world knowledge to some extent. From the seen
pairs like (Haiti, his country), and (Guangzhou,
the city) the classifier could learn that “Haiti” is
a country and “Guangzhou” is a city. However, it
is questionable how useful word knowledge is if it
is mainly based on the training data.

The coreference relation of two nominal noun
phrases with no head match can be very hard to
resolve. The resolution of such pairs has been re-
ferred to as capturing semantic similarity (Clark
and Manning, 2016b). deep-coref links 49 such
pairs on the development set. Among all these
links, only 5 pairs are unseen on the training set
and all of them are incorrect links.

The effect of lexical features is also analyzed
by Levy et al. (2015) for tasks like hypernymy and
entailment. They show that state-of-the-art classi-
fiers memorize words from the training data. The
classifiers benefit from this lexical memorization
when there are common words between the train-
ing and test sets.

5 Discussion

We show the extensive use of lexical features bi-
ases coreference resolvers towards seen mentions.
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This bias holds us back from developing more ro-
bust and generalizable coreference resolvers. Af-
ter all, while coreference resolution is an impor-
tant step for text understanding, it is not an end-
task. Coreference resolvers are going to be used
in tasks and domains for which coreference an-
notated corpora may not be available. Therefore,
generalizability should be brought into attention in
developing coreference resolvers.

Moreover, we show that there is a significant
overlap between the training and validation sets in
the CoNLL dataset. The LEA metric (Moosavi and
Strube, 2016) is introduced as an attempt to make
coreference evaluations more reliable. However,
in order to ensure valid developments on corefer-
ence resolution, it is not enough to have reliable
evaluation metrics. The validation set on which
the evaluations are performed also needs to be re-
liable. A dataset is reliable for evaluations if a con-
siderable improvement on this dataset indicates a
better solution for the coreference problem instead
of a better exploitation of the dataset itself.

This paper is not intended to argue against the
use of lexical features. Especially, when word em-
beddings are used as lexical features. The incorpo-
ration of word embeddings is an efficient way for
capturing semantic relatedness. Maybe we should
use them more for describing the context and less
for describing the mentions themselves. Pruning
rare lexical features plus incorporating more gen-
eralizable features could also help to prevent over-
fitting.

To ensure more meaningful improvements, we
ask to incorporate out-of-domain evaluations in
the current coreference evaluation scheme. Out-
of-domain evaluations could be performed by us-
ing either the existing genres of the CoNLL dataset
or by using other existing coreference annotated
datasets like WikiCoref, MUC or ACE.
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Alternative Objective Functions
for Training MT Evaluation Metrics
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Abstract

MT evaluation metrics are tested for cor-
relation with human judgments either at
the sentence- or the corpus-level. Trained
metrics ignore corpus-level judgments and
are trained for high sentence-level correla-
tion only. We show that training only for
one objective (sentence or corpus level),
can not only harm the performance on the
other objective, but it can also be subopti-
mal for the objective being optimized. To
this end we present a metric trained for
corpus-level and show empirical compar-
ison against a metric trained for sentence-
level exemplifying how their performance
may vary per language pair, type and level
of judgment. Subsequently we propose a
model trained to optimize both objectives
simultaneously and show that it is far more
stable than—and on average outperforms—
both models on both objectives.

1 Introduction

Ever since BLEU (Papineni et al., 2002) many
proposals for an improved automatic evaluation
metric for Machine Translation (MT) have been
made. Some proposals use additional information
for extracting quality indicators, like paraphrasing
(Denkowski and Lavie, 2011), syntactic trees (Liu
and Gildea, 2005; Stanojevi¢ and Sima’an, 2015)
or shallow semantics (Rios et al., 2011; Lo et al.,
2012) etc. Whereas others use different match-
ing strategies, like n-grams (Papineni et al., 2002),
treelets (Liu and Gildea, 2005) and skip-bigrams
(Lin and Och, 2004). Most metrics use several
indicators of translation quality which are often
combined in a linear model whose weights are es-
timated on a training set of human judgments.
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Because the most widely available type of hu-
man judgments are relative ranking (RR) judg-
ments, the main machine learning method used for
training the metrics were based on the learning-
to-rank framework (Li, 2011). While the effec-
tiveness of this framework for training evaluation
metrics has been confirmed many times, e.g., (Ye
et al., 2007; Duh, 2008; Stanojevi¢ and Sima’an,
2014; Maet al., 2016), so far there is no prior work
exploring alternative objective functions for train-
ing learning-to-rank models. Without exception,
all existing learning-to-rank models are trained to
rank sentences while completely ignoring the cor-
pora judgments, likely because human judgments
come in the form of sentence rankings.

It might seem that sentence and corpus level
tasks are very similar but that is not the case. Em-
pirically it has been shown that many metrics that
perform well on the sentence level do not perform
well on the corpus level and vice versa. By train-
ing to rank sentences the model does not necessar-
ily learn to give scores that are well scaled, but
only to give higher scores to better translations.
Training for the corpus level score would force the
metric to give well scaled scores on the sentence
level.

Human judgments of sentences can be aggre-
gated in different ways to hypothesize human
judgments of full corpora. However, this fact has
not been used so far to train learning-to-rank mod-
els that are good for ranking different corpora.

This work fills-in this gap by exploring the mer-
its of different objective functions that take corpus
level judgments into consideration. We first create
a learning-to-rank model for ranking corpora and
compare it to the standard learning-to-rank model
that is trained for ranking sentences. This com-
parison shows that performance of these two ob-
jectives can vary radically depending on the cho-
sen meta-evaluation method. To tackle this prob-
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Figure 1: Computation Graph

lem we contribute a new objective function, in-
spired by multi-task learning, in which we train
for both objectives simultaneously. This multi-
objective model behaves a lot more stable over all
methods of meta-evaluation and achieves a higher
correlation than both single objective models.

2 Models

All the models that we define have one basic func-
tion in common, we call it a forward(-) function,
that maps the features of any sentence to a sin-
gle real number. That function can be any differ-
entiable function including multi-layer neural net-
works as in (Ma et al., 2016), but here we will stick
with the standard linear model:
forward(¢) = ¢Tw +b

Here ¢ is a vector with feature values of a sen-
tence, w is a weight vector and b is a bias term.
Usually in training we would like to process a
mini-batch of feature vectors ®, where ® is a ma-
trix in which each column is a feature vector of
individual sentence in the mini-batch or in the cor-
pus. By using broadcasting we can rewrite the pre-
vious definition of the forward(-) function as:

forward(®) = ®Tw + b
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Now we can define the score of a sentence as a
sigmoid function applied over the output of the
forward(-) function because we want to get a
score between 0 and 1:

sentScore(¢) = o forward(p))

As the corpus level score we will use just the av-
erage of sentence level scores:

1
corpScore(®) = — sentScore(P
pScore(®) = — 3" (@)
where m is the number of sentences in the corpus.
Next we present several objective functions that
are illustrated by the computation graph in Fig-
ure 1.

2.1 Training for Sentence Level Accuracy

Here we use the training objective very similar to
BEER (Stanojevi¢ and Sima’an, 2014) which is
a learning-to-rank framework that finds a separat-
ing hyper-plane between “good” and “bad” trans-
lations. Unlike BEER, we use a max-margin ob-
jective instead of logistic regression.

For each mini-batch we randomly select m hu-
man relative ranking pairwise judgments and after
extracting features for all the sentences taking part
in these judgments we put features in two matrices
®,in and Py,s. These matrices are structured in
such a way that for judgment ¢ the column 7 in
®,in contains the features of the “good” transla-
tion in the judgment and the column ¢ in @, the
features of the “bad” translation.

We would like to maximize the average mar-
gin that would separate sentence level scores of
pairs of translations in each judgment. Because
the squashing sigmoid function does not influence
the ranking we can directly optimize on the un-
squashed forward pass and require that the margin
between “good” and “bad” translation is at least 1:

Asent = forward(Psyin) — forward(Pss)
1
— g max(0,1 — Agent)
m

2.2 Training for Corpus Level Accuracy

Lossgent =

At the corpus level we would like to do a simi-
lar thing as on the sentence level: maximize the
distance between the scores of “good” and “bad”
corpora. In this case we have additional informa-
tion that is not present on the sentence level: we
know not only which corpus is (according to hu-
mans) better, but also by how much it is better. For



that we can use one of the heuristics such as the
Expected Wins (Koehn, 2012). We can use this
information to guide the learning model by how
much it should separate the scores of two corpora.

For doing this we use an approach similar
to Max-Margin Markov Networks (Taskar et al.,
2003) where for each training instance we dynami-
cally scale the margin that should be enforced. We
want the margin between the scores A, to be
at least as big as the margin between the human
scores Apyuman assigned to these systems. In one
mini-batch we will use only a randomly chosen
pair of corpora with feature matrices Py, and
® ;s for which we have a human comparison. The
corpus level loss function is given by:

Acorp = corpScore(Peyin) — corpScore(Pos)
Acor‘p)

LOSSCmnp = mam(O, Ahuman -

2.3 Training Jointly for Sentence and Corpus
Level Accuracy

In this model we optimize both objectives jointly
in the style of multi-task learning (Caruana, 1997).
Here we employ the simplest approach of just
tasking the interpolation of the previously intro-
duced loss functions.

Loss joint = o - Lossgent + (1 — &) - LosScorp

The interpolation is controlled by the hyper-
parameter o which could in principle be tuned for
good performance, but here we just fix it to 0.5 to
give both objectives equal importance.

2.4 Feature Functions

The feature functions that are used are reimple-
mentation of many (but not all) feature functions
of BEER. Because the point of this paper is about
the exploration of different objective functions we
did not try to experiment with more complex fea-
ture functions based on paraphrasing, function
words or permutation trees.

We use just simple precision, recall and 3 types
of F-score (with 8 parameters 1, 2 and 0.5) over
different “pieces” of translation:

e character n-grams of orders 1,2,3,4 and 5
e word n-grams of orders 1,2,3 and 4

e skip-bigrams of maximum skip 2 and oo
(similar to ROUGE-S2 and ROUGE-S* (Lin
and Och, 2004))
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One final feature deals with length-disbalance.
If the length of the system and reference trans-
lation are a and b respectively then this feature
is computed as maw(gﬁgﬁ? (@9 1t is computed

both for word and character length.

3 Experiments

Experiments are conducted on WMTI3
(Machéacek and Bojar, 2013), WMT14 (Machacek
and Bojar, 2014) and WMT16 (Bojar et al., 2016)
datasets which were used as training, validation
and testing datasets respectively.

All of the models are implemented using Ten-
sorFlow! and trained with L2 regularization A =
0.001 and ADAM optimizer with learning rate
0.001. The mini-batch size for sentence level
judgments is 2000 and for the corpus level is one
comparison. Each model is trained for 200 epochs
out of which the one performing best on the val-
idation set for the objective function being opti-
mized is used during the test time.

We show the results for the relative ranking
(RR) judgments correlation in Table 1. For all lan-
guage pairs that are of the form en-X we show it
under the column X and for all the language pairs
that have English on the target side we present
their average under the column en.

RR corpus vs. sentence objective The corpus-
objective is better than the sentence-objective for
both corpus and sentence level RR judgments on 5
out of 7 languages and also on average correlation.

RR joint vs. single-objectives Training for the
joint objective improves even more on both lev-
els of RR correlation and outperforms both single-
objective models on average and on 4 out of 7 lan-
guages.

Making confident conclusions from these re-
sults is difficult because, to the best of our knowl-
edge, there is no principled way of measuring sta-
tistical significance on the RR judgments. That
is why we also tested on direct assessment (DA)
judgments available from WMT16. On DA we
can measure statistical significance on the sen-
tence level using Williams test (Graham et al.,
2015) and on the corpus level using combination
of hybrid-supersampling and Williams test (Gra-
ham and Liu, 2016). The results of correlation
with human judgment are for sentence and corpus
level are shown in Table 2.

"https://www.tensorflow.org/



Objective H en ‘ cs ‘ de ‘ fi ‘ ro ‘ ru ‘ tr H Average
sent 0.963 | 0.977 | 0.737 | 0.938 | 0.922 | 0.905 | 0.937 0.912
corpus 0.944 | 0.982 | 0.765 | 0.940 | 0.917 | 0.907 | 0.954 0.916
joint 0.963 | 0.983 | 0.748 | 0.951 | 0.933 | 0.905 | 0.946 0.918
(a) Corpus level
Objective H en \ cs \ de \ fi \ ro \ ru \ tr H Average
sent 0.347 | 0.405 | 0.345 | 0.304 | 0.293 | 0.382 | 0.304 0.340
corpus 0.337 | 0.414 | 0.349 | 0.307 | 0.292 | 0.385 | 0.325 0.344
joint 0.350 | 0.410 | 0.356 | 0.296 | 0.299 | 0.396 | 0.312 0.346

(b) Sentence level

Table 1: Relative Ranking (RR) Correlation. The corpus level correlation is measured with Pearson r
and sentence level with Kendall 7

Objective H en-ru ‘ cs-en ‘ de-en fi-en ro-en ru-en tr-en H Average
sent 0.91135 | 0.9839¢ | 0.8483% | 0.95565 | 0.8348% | 0.8888" | 0.97065 | 0.9133
corpus 0.9086 | 09790 [0.8032 |[0.9121 |0.7933 | 0.8857 [ 0.9011 | 0.8833
joint 0.9111° | 0.9844< | 0.84885 | 0.9545% | 0.8399 | 0.89355 | 0.9647¢ | 0.9138
(a) Corpus level
Objective H en-ru cs-en de-en fi-en ro-en ru-en tr-en H Average
sent 0.6655% | 0.6478% | 0.4930% | 0.4608° | 0.5066° | 0.5535% | 0.5800¢ || 0.5582
corpus 0.5632 | 0.5676 | 0.3913 | 03644 | 0.3771 | 0.4306 | 0.4579 || 0.4503
joint 0.6668° | 0.66312, | 0.50197, | 0.4608% | 0.52767, | 0.5564C | 0.5830C | 0.5657

(b) Sentence level

Table 2: Direct Assessment (DA) Pearson r Correlation. Super- and sub-scripts S, C and J signify that
the model outperforms with statistical significance (p < 0.05) the model trained for sentence, corpus or
joint objective respectively. Bold marks that the system has outperformed both other models significantly.

DA corpus vs. other objectives On DA judg-
ments the results for corpus level objective are
completely different than on the RR judgments.
On DA judgments the corpus-objective model is
significantly outperformed on both levels and on
all languages by both of the other objectives.

This shows that gambling on one objective
function (being that sentence or corpus level ob-
jective) could give unpredictable results. This
is precisely the motivation for creating the joint
model with multi-objective training.

DA joint vs. single objectives By choosing to
jointly optimize both objectives we get a much
more stable model that performs well both on DA
and RR judgments and on both levels of judgment.
On the DA sentence level, the joint model was not
outperformed by any other model and on 3 out of 7
language pairs it significantly outperforms both al-
ternative objectives. On the corpus level results are
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a bit mixed, but still joint objective outperforms
both other models on 4 out of 7 language pairs and
also it gives higher correlation on average.

4 Conclusion

In this work we found that altering the objective
function for training MT metrics can have radi-
cal effects on performance. Also the effects of
the objective functions can sometimes be unex-
pected: the sentence objective might not be good
for sentence level correlation (in case of RR judg-
ments) and the corpus objective might not be good
for corpus level correlation (in case of DA judg-
ments). The difference among objectives is better
explained by different types of human judgments:
the corpus objective is better for RR while sen-
tence objective is better for DA judgments.

Finally, the best results are achieved by training
for both objectives at the same time. This gives



an evaluation metric that is far more stable in its
performance over all methods of meta-evaluation.
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Abstract

We present a new framework for evaluat-
ing extractive summarizers, which is based
on a principled representation as optimiza-
tion problem. We prove that every ex-
tractive summarizer can be decomposed
into an objective function and an opti-
mization technique. We perform a com-
parative analysis and evaluation of sev-
eral objective functions embedded in well-
known summarizers regarding their corre-
lation with human judgments. Our com-
parison of these correlations across two
datasets yields surprising insights into the
role and performance of objective func-
tions in the different summarizers.

1 Introduction

The task of extractive summarization (ES) can nat-
urally be cast as a discrete optimization problem
where the text source is considered as a set of sen-
tences and the summary is created by selecting an
optimal subset of the sentences under a length con-
straint (McDonald, 2007; Lin and Bilmes, 2011).

In this work, we go one step further and mathe-
matically prove that ES is equivalent to the prob-
lem of choosing (i) an objective function 6 for
scoring system summaries, and (ii) an optimizer
0. We use (6, O) to denote the resulting decompo-
sition of any extractive summarizer. Our proposed
decomposition enables a principled analysis and
evaluation of existing summarizers, and addresses
a major issue in the current evaluation of ES.

This issue concerns the traditional “intrinsic”
evaluation comparing system summaries against
human reference summaries. This kind of evalu-
ation is actually an end-to-end evaluation of sum-
marization systems which is performed after 6 has
been optimized by O. This is highly problematic
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from an evaluation point of view, because first,
0 is typically not optimized exactly, and second,
there might be side-effects caused by the particu-
lar optimization technique O, e.g., a sentence ex-
tracted to maximize 6 might be suitable because of
other properties not included in 6. Moreover, the
commonly used evaluation metric ROUGE yields
a noisy surrogate evaluation (despite its good cor-
relation with human judgments) compared to the
much more meaningful evaluation based on hu-
man judgments. As a result, the current end-to-
end evaluation does not provide any insights into
the task of automatic summarization.

The (0, O) decomposition we propose addresses
this issue: it enables a well-defined and principled
evaluation of extractive summarizers on the level
of their components 6 and O. In this work, we fo-
cus on the analysis and evaluation of 6, because
f is a model of the quality indicators of a sum-
mary, and thus crucial in order to understand the
properties of “good” summaries. Specifically, we
compare 6 functions of different summarizers by
measuring the correlation of their 6 functions with
human judgments.

Our goal is to provide an evaluation framework
which the research community could build upon
in future research to identify the best possible 6
and use it in optimization-based systems. We be-
lieve that the identification of such a @ is the cen-
tral question of summarization, because this op-
timal 6 would represent an optimal definition of
summary quality both from an algorithmic point
of view and from the human perspective.

In summary, our contribution is twofold: (i) We
present a novel and principled evaluation frame-
work for ES which allows evaluating the objec-
tive function and the optimization technique sep-
arately and independently. (ii) We compare well-
known summarization systems regarding their im-
plicit choices of § by measuring the correlation
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of their # functions with human judgments on
two datasets from the Text Analysis Conference
(TAC). Our comparative evaluation yields surpris-
ing results and shows that extractive summariza-
tion is not solved yet.

The code used in our experiments, includ-
ing a general evaluation tool is available at
github.com/UKPLab/acl2017-theta_
evaluation_summarization.

2 Evaluation Framework

2.1

Let D = {s;} be a document collection consid-
ered as a set of sentences. A summary S is then a
subset of D, or we can say that .S is an element of
P (D), the power set of D.

Objective function We define an objective func-
tion to be a function that takes a summary of the
document collection D and outputs a score:

(6, O) decomposition

0 : P(D)

S

— R

— 0p(S) M

Optimizer Then the task of ES is to select the
set of sentences S* with maximal 6(S*) under a
length constraint:

S* = argmax 6(S)

S
len(S) = Zlen(s) <c

sES

2)

We use O to denote the technique which solves
this optimization problem. O is an operator which
takes an objective function € from the set of all
objective functions © and a document collection
D from the set of all document collections D, and
outputs a summary S*:

O OxD — S

6,D) — S ©)

Decomposition Theorem Now we show that the
problem of ES is equivalent to the problem of
choosing a decomposition (6, O).

We formalize an extractive summarizer o as a
set function which takes a document collection
D € D and outputs a summary Sp, € P(D).
With this formalism, it is clear that every (¢, O) tu-
ple forms a summarizer because O(6, -) produces
a summary from a document collection.

But the other direction is also true: for every ex-
tractive summarizer there exists at least one tuple
(6, O) which perfectly describes the summarizer:
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Theorem 1 Vo, 3(6, O) such that:
VD € D,o(D) =0(0,D)

This theorem is quite intuitive, especially since
it is common to use a similar decomposition in
optimization-based summarization systems. In the
next section we illustrate the theorem by way of
several examples, and provide a rigorous proof of
the existence in the supplemental material.

2.2 Examples of §

We analyze a range of different summarizers re-
garding their (mostly implicit) 6.

ICSI (Gillick and Favre, 2009) is a global linear
optimization that extracts a summary by solving a
maximum coverage problem considering the most
frequent bigrams in the source documents. ICSI
has been among the best systems in a classical
ROUGE evaluation (Hong et al., 2014). For ICSI,
the identification of @ is trivial because it was for-
mulated as an optimization task. If ¢; is the -th
bigram selected in the summary and w; its weight
computed from D, then:

O1cs1(S) = Z Ci * W4
cGES

LexRank (Erkan and Radev, 2004) is a well-
known graph-based approach. A similarity graph
G(V, E) is constructed where V' is the set of sen-
tences and an edge e;; is drawn between sentences
v; and v; if and only if the cosine similarity be-
tween them is above a given threshold. Sentences
are scored according to their PageRank score in G.
We observe that 07, rank 1S given by:

eLexRank(S> = Z PRG(S)

seS

4

&)

where PR is the PageRank score of sentence s.
KL-Greedy (Haghighi and Vanderwende, 2009)
minimizes the Kullback Leibler (KL) divergence
between the word distributions in the summary
and D (i.e 05 = —KL). Recently, Peyrard and
Eckle-Kohler (2016) optimized KL and Jensen
Shannon (JS) divergence with a genetic algorithm.
In this work, we use KL and JS for both unigram
and bigram distributions.

LSA (Steinberger and Jezek, 2004) is an approach
involving a dimensionality reduction of the term-
document matrix via Singular Value Decomposi-
tion (SVD). The sentences extracted should cover
the most important latent topics:

Orsa= Y A

tesS

(6)



where ¢ is a latent topic identified by SVD on the
term-document matrix and \; the associated sin-
gular value.

Edmundson (Edmundson, 1969) is an older
heuristic method which scores sentences accord-
ing to cue-phrases, overlap with title, term fre-
quency and sentence position. 6 ggmundson 1S SiM-
ply a weighted sum of these heuristics.

TF+IDF (Luhn, 1958) scores sentences with the
TF*IDF of their terms. The best sentences are then
greedily extracted. We use both the unigram and
bigram versions in our experiments.

3 Experiments

Now we compare the summarizers analyzed above
by measuring the correlation of their # functions
with human judgments.

Datasets We use two multi-document summa-
rization datasets from the Text Analysis Confer-
ence (TAC) shared task: TAC-2008 and TAC-
2009." TAC-2008 and TAC-2009 contain 48 and
44 topics, respectively. Each topic consists of 10
news articles to be summarized in a maximum of
100 words. We use only the so-called initial sum-
maries (A summaries), but not the update part.

For each topic, there are 4 human reference
summaries along with a manually created Pyramid
set. In both editions, all system summaries and
the 4 reference summaries were manually evalu-
ated by NIST assessors for readability, content se-
lection (with Pyramid) and overall responsiveness.
At the time of the shared tasks, 57 systems were
submitted to TAC-2008 and 55 to TAC-2009. For
our experiments, we use the Pyramid and the re-
sponsiveness annotations.

System Comparison For each 6, we compute
the scores of all system and all manual summaries
for any given topic. These scores are compared
with the human scores. We include the manual
summaries in our computation because this yields
a more diverse set of summaries with a wider
range of scores. Since an ideal summarizer would
create summaries as well as humans, an ideal 0
would also be able to correctly score human sum-
maries with high scores.

For comparison, we also report the correlation
between pyramid and responsiveness.

Correlations are measured with 3 metrics: Pear-

'nttp://tac.nist.gov/2009/
Summarization/, http://tac.nist.gov/2008/
Summarization/
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son’s 1, Spearman’s p and Normalized Discounted
Cumulative Gain (Ndcg). Pearson’s r is a value
correlation metric which depicts linear relation-
ships between the scores produced by 6 and the
human judgments. Spearman’s p is a rank correla-
tion metric which compares the ordering of sys-
tems induced by 6 and the ordering of systems
induced by human judgments. Ndcg is a metric
that compares ranked lists and puts more emphasis
on the top elements by logarithmic decay weight-
ing. Intuitively, it captures how well 6 can rec-
ognize the best summaries. The optimization sce-
nario benefits from high Ndcg scores because only
summaries with high 6 scores are extracted.

Previous work on correlation analysis averaged
scores over topics for each system and then com-
puted the correlation between averaged scores
(Louis and Nenkova, 2013; Nenkova et al., 2007).
An alternative and more natural option which we
use here is to compute the correlation for each
topic and average these correlations over topics
(CORRELATION-AVERAGE). Since we want to
estimate how well # functions measure the quality
of summaries, we find the summary level averag-
ing more meaningful.

Analysis The results of our correlation analysis
are presented in Table 1.

In our (6,0) formulation, the end-to-end ap-
proach maps a set of documents to exactly one
summary selected by the system. We call the (clas-
sical and well known) evaluation of this single
summary end-to-end evaluation because it mea-
sures the end product of the system. This is in con-
trast to our proposed evaluation of the assumption
made by individual summarizers shown in Table 1.
A system summary was extracted by a given sys-
tem because it was high scoring using its 6, but we
ask the question whether optimizing this § made
sense in the first place.

We first observe that scores are relatively low.
Summarization is not a solved problem and the
systems we investigated can not identify correctly
what makes a good summary. This is in contrast
to the picture in the classical end-to-end evaluation
with ROUGE where state-of-the-art systems score
relatively high. Some Ndcg scores are higher (for
TAC-2008) which explains why these systems can
extract relatively good summaries in the end-to-
end evaluation. In this classical evaluation, only
the single best summary is evaluated, which means
that a system does not need to be able to rank all



TAC-2008 TAC-2009
responsiveness Pyramid responsiveness Pyramid

0 r P Ndcg r p Ndcg r P Ndcg r p Ndcg
TF«IDF-1 | .1777 2257 5031 | .1850 .2386 .3575 | .1996 .2282 3826 | .2514 .2890 .2280
TF«IDF-2 | .0489 .1548 .5952 | .0507 .1833 4811 | .0061 .1736 .4984 | .1073 .2383 .3844
ICSI .1069 1885 .6153 | .1147 2294 5228 | .1050 .1821 .5707 | .1379 .2466 .5016
JS-1 2504 2762 4411 | 2798 3205 2804 | 2021 2282 3896 | .2616 .3042 2272
JS-2 .0383 1698 .5873 | .0410 .2038 .4804 | .0284 .1475 .5646 | .0021 .2084 4734
LexRank | .1995 .1821 .6618 | .2498 .2168 .5935 | .2831 .2585 .6028 | .3714 3421 5764
LSA .0437 1137  .6772 | .1144 1131 .5997 | .2965 2127 .6641 | 3677 .2935 .6467
Edmunds. | 2223 .2686 .6372 | .2665 .3164 .5521 | .2598 .2604 5852 | .3647 .3720 .5594
KL-1 1796 2249 4899 | 2016 .2690 3439 | .1827 2275 4047 | 2423 2981 .2466
KL-2 .0023  .1661 .6165 | .0023 .1928 5135 | .0437 .1435 .6171 | .0211 .2060 .5462
Pyramid | .7031 .6606 .8528 | — — — | 7174 6414 8520 | — — —

Table 1: Correlation of # functions with human judgments across various systems.

possible summaries correctly.

We see that systems with high end-to-end
ROUGE scores (according to Hong et al. (2014))
do not necessarily have a good model of summary
quality. Indeed, the best performing 6 functions
are not part of the systems performing best with
ROUGE. For example, ICSI is the best system ac-
cording to ROUGE, but it is not clear that it has
the best model of summary quality. In TAC-2009,
LexRank, LSA and the heuristic Edmundson have
better correlations with human judgments. The
difference with end-to-end evaluation might stem
from the fact that ICSI solves the optimization
problem exactly, while LexRank and Edmundson
use greedy optimizers. There might also be some
side-effects from which ICSI profits: extracting
sentences to improve 6 might lead to accidentally
selecting suitable sentences, because 6 can merely
correlate well with properties of good summaries,
while not modeling these properties itself.

It is worth noting that systems perform differ-
ently on TAC2009 and TAC2008. There are sev-
eral differences between TAC2008 and TAC2009
like redundancy level or guidelines for annota-
tions; for example, responsiveness is scored out
of 5 in 2008 and out of 10 in 2009. The LSA sum-
marizer ranks among the best systems in TAC2009
with pearson’s r but is closer to the worst sys-
tems in TAC2008. While this is difficult to ex-
plain we hypothesize that the model of summary
quality from LSA is sensitive to the slight vari-
ations and therefore not robust. In general, any
system which claims to have a better 6 than previ-
ous works should indeed report results on several
datasets to ensure robustness and generality.

Interestingly, we observe that the correlation be-
tween Pyramid and responsiveness is better than in
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any system, but still not particularly high. Respon-
siveness is an overall annotation while Pyramid is
a manual measure of content only. These results
confirm the intuition that humans take into account
much more aspects when evaluating summaries.

4 Related Work and Discussion

While correlation analyses on human judgment
data have been performed in the context of validat-
ing automatic summary evaluation metrics (Louis
and Nenkova, 2013; Nenkova et al., 2007; Lin,
2004), there is no prior work which uses these data
for a principled comparison of summarizers.

Much previous work focused on efficient opti-
mizers O, such as ILP, which impose constraints
on the 0 function. Linear (Gillick and Favre, 2009)
and submodular (Lin and Bilmes, 2011) 6 func-
tions are widespread in the summarization com-
munity because they can be optimized efficiently
and effectively via ILP (Schrijver, 1986) and the
greedy algorithm for submodularity (Fujishige,
2005). A greedy approach is often used when 6
does not have convenient properties that can be
leveraged by a classical optimizer (Haghighi and
Vanderwende, 2009).

Such interdependencies of O and 6 limit the ex-
pressiveness of §. However, realistic € functions
are unlikely to be linear or submodular, and in
the well-studied field of optimization there exist
arange of different techniques developed to tackle
difficult combinatorial problems (Schrijver, 2003;
Blum and Roli, 2003).

A recent example of such a technique adapted to
extractive summarization are meta-heuristics used
to optimize non-linear, non-submodular objec-
tive functions (Peyrard and Eckle-Kohler, 2016).



Other methods like Markov Chain Monte Carlo
(Metropolis et al., 1953) or Monte-Carlo Tree
Search (Suttner and Ertel, 1991; Silver et al.,
2016) could also be adapted to summarization and
thus become realistic choices for O. General pur-
pose optimization techniques are especially ap-
pealing, because they offer a decoupling of # and
O and allow investigating complex 6 functions
without making any assumption on their mathe-
matical properties. In particular, this supports fu-
ture work on identifying an “optimal” § as a model
of relevant quality aspects of a summary.

5 Conclusion

We presented a novel evaluation framework for ES
which is based on the proof that ES is equivalent
to the problem of choosing an objective function
0 and an optimizer O. This principled and well-
defined framework allows evaluating # and O of
any extractive summarizer — separately and inde-
pendently. We believe that our framework can
serve as a basis for future work on identifying an
“optimal” 6 function, which would provide an an-
swer to the central question of what are the prop-
erties of a “good” summary.
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Abstract

A common test administered during neu-
rological examination is the semantic flu-
ency test, in which the patient must list as
many examples of a given semantic cate-
gory as possible under timed conditions.
Poor performance is associated with neu-
rological conditions characterized by im-
pairments in executive function, such as
dementia, schizophrenia, and autism spec-
trum disorder (ASD). Methods for analyz-
ing semantic fluency responses at the level
of detail necessary to uncover these dif-
ferences have typically relied on subjec-
tive manual annotation. In this paper, we
explore automated approaches for scor-
ing semantic fluency responses that lever-
age ontological resources and distribu-
tional semantic models to characterize the
semantic fluency responses produced by
young children with and without ASD. Us-
ing these methods, we find significant dif-
ferences in the semantic fluency responses
of children with ASD, demonstrating the
utility of using objective methods for clin-
ical language analysis.

1 Introduction

Semantic fluency tasks, in which patients under-
going neuropsychological evaluation must list as
many items as possible in a particular semantic
category in a fixed, brief period of time, are widely
used by clinicians to evaluate language, develop-
ment, and cognition. Performance on such tasks
is usually measured in terms of the raw number of
appropriate items produced. A more detailed anal-
ysis of these lists, however, can reveal patterns as-
sociated with a variety of neurological conditions,
including autism, dementia, and schizophrenia.
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Semantic fluency responses hold particular
promise for shedding light on the language of chil-
dren with autism spectrum disorder (ASD). ASD
has been associated with atypical semantics and
pragmatic expression since the condition was was
first identified over 70 years ago (Kanner, 1943).
One linguistic feature of ASD, referenced in many
of the diagnostic instruments for the disorder, is
the use of words that are meaningful but unex-
pected (Lord et al., 2002; Rutter et al., 2003), a
phenomenon that could play an important role in
the production of semantically related words.

In this paper, we present NLP-informed ap-
proaches for automatically approximating the sub-
jective manual methods described in the psychol-
ogy literature for analyzing semantic fluency re-
sponses. Applying these methods to data collected
from young children with and without ASD, we
find that none of the standard manual measures of
semantic fluency are able to distinguish children
with ASD from those without. Several compu-
tationally derived measures, however, are signifi-
cantly different between diagnostic groups. These
results indicate that computationally derived mea-
sures of semantic fluency tap into subtle differ-
ences that would be difficult to detect using stan-
dard manual metrics, lending support for the clin-
ical utility of computational linguistic analysis.

2 Background

The semantic fluency task is a subtype of a more
general word-generation task commonly referred
to as verbal fluency. In such tasks, a participant
must verbally produce a list of words belonging
to some category (e.g., animals) within a predeter-
mined amount of time, usually 60 seconds. Per-
formance on verbal fluency tasks has been corre-
lated with executive function, and differences in
verbal fluency scores have been noted in a vari-
ety of neurological conditions including dementia
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(Henry et al., 2004), schizophrenia (Frith et al.,
1995), and autism (Turner, 1999; Geurts et al.,
2004; Spek et al., 2009; Begeer et al., 2014).

The rate at which speakers generate words in
a semantic fluency response has been observed to
vary throughout the timed period, typically with
several related words being produced in close suc-
cession followed by a pause before a new burst
of related words (Bousfield et al., 1954). Troyer
et al. (1997) proposed two cognitive processes
underlying this pattern: clustering and switching.
Clustering refers to the tendency of speakers to list
words in clusters according to their membership
in a particular subcategory of the larger seman-
tic category (e.g., pets for the larger category of
animals). Switching is the decision made by the
speaker to abandon a subcategory when it has been
exhausted and to list items in a new subcategory.

Autism is associated with deficits in executive
function, and thus we should expect to see con-
sistent patterns demonstrating deficits in seman-
tic fluency performance in the ASD population.
Several studies have found overall weaker perfor-
mance, in terms of raw item count, in individu-
als with ASD (Turner, 1999; Geurts et al., 2004,
Spek et al., 2009); other more recent studies, how-
ever, have not been able to replicate this finding
(Lopez et al., 2005; Inokuchi and Kamio, 2013;
Begeer et al., 2014). Similarly conflicting results
have been reported when evaluating the semantic
relatedness of adjacent words, with some finding
smaller clusters in ASD (Turner, 1999), some find-
ing larger clusters (Begeer et al., 2014), and still
others finding no differences (Spek et al., 2009).

One likely source of these discrepancies is the
subjectivity inherent in the cluster assignment
task. Troyer et al. (1997) provide examples of
common clusters and their member animals, but
they note the difficulty in assigning items to sub-
categories, explaining that their proposed subcate-
gories were not generated using any existing tax-
onomy but instead grew organically out of the pat-
terns observed in the data. An additional compli-
cation is that a word’s subcategory membership is
dependent on its context. The word camel, for in-
stance, could be assigned to any number of cate-
gories (e.g., desert animal, zoo animal), depend-
ing on the nearby words. This is particularly prob-
lematic when analyzing the responses of children,
whose semantic categories might not align with
those of an adult annotator.
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In response to these challenges, some recent
work has focused on modeling the cluster-switch
behavior using computational linguistic methods,
in particular, using latent semantic analysis to cal-
culate the semantic similarity between adjacent
words. Mean scores over these similarity val-
ues can capture a individual’s tendency to use
a naming strategy relying on similarity (Nicode-
mus et al., 2014; Rosenstein et al., 2015). Other
work has focused on setting thresholds over these
similarity values in order to delineate the bound-
aries between clusters or chains of related words
(Rosenstein et al., 2015; Pakhomov and Hemmy,
2014). None of these studies, however, has com-
pared the output of the automated methods to man-
ual annotations in order to determine their accu-
racy. Furthermore, the thresholds used for clus-
ter boundary identification in these studies were
set by “rule of thumb” rather than empirically or
probabilistically.

To our knowledge, this is the first attempt to
use distributional semantic models to analyze se-
mantic fluency responses in children with autism
spectrum disorder. More importantly, it is the first
study that uses machine learning to validate the
utility of these models for replicating and, perhaps
improving upon, human annotation methods of se-
mantic fluency responses.

3 Data

The participants in this study were 22 children
with typical development (TD) and 22 high-
functioning children with ASD, ranging in age
from 4 to 9 years. ASD was diagnosed via
clinical consensus according to the Diagnostic
and Statistical Manual of Mental Disorders, 4th
Edition (DSM-IV-TR) criteria for Autistic Dis-
order (American Psychiatric Association, 2000)
and the established thresholds on two commonly
used diagnostic instruments: the Autism Diagnos-
tic Observation Schedule (ADOS) (Lord et al.,
2002) and the Social Communication Question-
naire (SCQ) (Rutter et al., 2003). None of the
participants analyzed here met the criteria for lan-
guage impairment, and the two groups were se-
lected so that there were no statistically signifi-
cant differences (via two-tailed t-test) between the
groups in chronological age, verbal 1Q, and full
scale IQ. In addition to the experimental corpus,
we had access to a development set of 55 seman-
tic fluency responses that were discarded after the
groups were matched on these three criteria.



During administration of the task, the clinician
asked the child to name as many animals as he
could as quickly as possible. The children’s re-
sponses were timed and recorded. The audio was
then transcribed by a speech-language pathologist,
and the transcripts were reviewed to remove extra-
neous dialogue and to standardize spelling. Two
manual annotations were performed: (1) seman-
tic clusters (Troyer et al., 1997), in which a clus-
ter consists of two or more animals belonging to
same subcategory (giraffe, elephant, lion); and (2)
semantic chains (Pakhomov and Hemmy, 2014),
in which each animal shares something in com-
mon at least with the immediately preceding an-
imal (elephant, lion, cat). Inter-annotator agree-
ment for labeling cluster boundaries according to
the Troyer criteria was low (Cohen’s k < 0.4); we
therefore limit our discussion to semantic chains,
whose boundaries were labeled with more sub-
stantial agreement (k = 0.71).

4 Features
4.1 Manually derived measures

Performance on a verbal fluency task is normally
evaluated by counting the number of unique items
produced in the designated time period. Credit is
given both to a general category such as fish and to
examples of that category, such as salmon; how-
ever, a morphological or descriptive variation of
another item (e.g., doggy for dog) is considered a
repetition and does not contribute to the total. We
report this count, along with the number of seman-
tic chains and mean length of semantic chain.

4.2 Semantic similarity measures

There are a number of ways to measure the seman-
tic similarity between two words, some relying on
manually curated knowledge bases and other de-
rived distributionally from large text corpora. A
high mean similarity between adjacent word pairs
in a list of words might suggest that the list con-
tains a small number of large clusters of strongly
related words (a cluster-and-switch strategy) or a
sequence of items each of which is closely re-
lated to the previous item but not necessarily to the
items before that (a chaining strategy). In either
case, the participant is tapping into semantic sub-
categories when producing his response. A lower
mean similarity should indicate that a participant
has produced a large number of small clusters or
has selected items from the larger category seem-
ingly at random.
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One possible way to capture relatedness is by
using a manually curated lexical ontology that im-
plicitly encodes the similarity between pairs of
words, such as WordNet (Fellbaum, 1998). Var-
ious algorithms have been proposed for assigning
similarities scores for two synsets in WordNet by
traversing the hierarchical trees connecting those
synsets. Here we calculate the mean path sim-
ilarity for each adjacent word pair in a partici-
pant’s generated wordlist. Words not appearing
in WordNet were manually replaced with equiv-
alent synsets (e.g., puppy dog was replaced with
puppy). When multiple synsets were associated
with a given item, we used the first synset whose
hypernym included the synset for animal or imag-
inary being (e.g., pegasus).

One disadvantage inherent in the WordNet on-
tology of animal names is that it is derived from
the biological taxonomy of the animal kingdom;
that is, the degree to which two animals are seman-
tically related within WordNet is determined pri-
marily by their biological similarity and not by se-
mantic features (e.g., region of origin, usual habi-
tat) that a non-zoologist might use to organize an-
imals names. In order to model multiple dimen-
sions of similarity, we turn to the use of vector
space models. We explore two vector-space rep-
resentations: latent semantic analysis (LSA) (Lan-
dauer et al., 1998) and continuous space neural
word embeddings (Bengio et al., 2003). Using
the gensim Python library (Rehtifek and Sojka,
2010), we built an LSA model and a word2vec
model, both with 400 dimensions but otherwise
using default parameters settings, on the full text
of Wikipedia downloaded in November, 2016. For
each model, we take the mean of the set of cosine
similarities between each adjacent pair of items
in a participant’s response. We also calculate the
mean similarity over 100 random permutations of
a participant’s wordlist to capture “global coher-
ence”, as proposed by Nicodemus et al. (2014).

4.3 Measures of identifying semantic chains

Previous work in using word embeddings to model
clustering relied on a simple cosine similarity
threshold, determined heuristically (set arbitrarily
0.9 in Rosenstein et al. (2015), and at the 75th
percentile in Pakhomov and Hemmy (2014)), in
which a cluster boundary is inserted between any
two adjacent words whose similarity did not ex-
ceed that threshold. We instead propose to empiri-
cally determine the optimal value of such a thresh-



Feature | TD [ ASD | t
Raw count 12.0 10.2 1.043
Manual chain count 6.14 4.86 1.603
Manual chain length 2.0 2.13 -0.572
WordNet path similarity | 0.169 | 0.1697 | 0.1721
LSA cosine similarity 0.365 | 0.308 1.636
LSA coherence 0.311 | 0.248 1.934x
w2v cosine similarity 0.427 | 0.392 1.710x
w2v coherence 0.409 | 0.375 1.530
LSA chain count 4.09 431 -0.316
LSA chain length 3.38 1.87 2.310%
w2v chain count 4.14 4.41 -0.3800
w2v chain length 3.07 1.91 1.9265x%
SVM chain count 4.09 4.86 -1.0894
SVM chain length 3.66 2.19 2.4164x%
Table 1: Mean values by diagnostic group for

semantic fluency metrics (¥p <0.05, one-tailed).

old. First, while leaving one subject out, we iter-
atively sweep through a range of possible values
for the threshold to determine the value that max-
imizes the accuracy of semantic chain boundary
identification for the rest of the participants. We
then apply that threshold to the left-out subject.

In addition to thresholding over individual simi-
larity metrics, we also use three similarity metrics
(WordNet path similarity, LSA cosine similarity,
and word2vec cosine similarity) as features within
a support vector machine to classify any pair of ad-
jacent words as either containing a semantic chain
boundary or as belonging to the same semantic
chain. Using all two-word sequences found in the
children’s responses and the manual indications of
the locations of cluster boundaries, we perform
leave-one-out cross validation to predict whether
the second word in each word pair represents the
start of a new chain or a continuation of the previ-
ous chain.

Although the methods all achieved reasonable
boundary identification accuracy, with AUC rang-
ing from 0.65 to 0.8, we note that the goal of de-
termining cluster boundaries in this way is not to
replicate human cluster boundary insertion, which
we know to be subjective and difficult to perform
reliably. Rather, we are attempting to develop an
objective way to insert boundaries that does not
rely on an annotator’s ability to infer another indi-
vidual’s semantic organization of the world.

5 Results

Table 1 shows the mean value for each group and
the t-statistic for each of the features. In contrast to
some previous work (Turner, 1999; Geurts et al.,
2004; Spek et al., 2009), we find no between-
group differences in raw item count. These re-

35

sults, however, support other work that did not find
such differences when comparing groups matched
on verbal ability, as our groups are (Lopez et al.,
2005; Inokuchi and Kamio, 2013).

Mean cosine similarity derived using the
word2vec model is significantly different between
the two groups, with the TD group showing a
higher mean similarity between adjacent items.
We also see that the global coherence measure, de-
rived by taking the mean similarity over 100 ran-
dom orderings of each list, is significantly higher
in the TD group when derived using LSA.

Although there are no between-group differ-
ences in the manually derived measures of chain
count and chain length, we find differences in
chain length when derived using both threshold-
ing over similarity measures and machine learn-
ing. In all three cases, children with typical devel-
opment have longer semantic chains than children
with ASD, suggesting that TD children employ the
semantic chaining strategy that is reportedly pre-
ferred by neurotypical adults. In short, there are
differences in the semantic fluency responses of
young children with ASD, and these differences
would be difficult to reliably detect without ap-
pealing to computational techniques.

Figure 1 shows two semantic fluency responses,
one produced by a child with ASD and one by
a child with TD, with plots indicating the cosine
similarities between adjacent words derived from
both the LSA and word2vec models. Semantic
chain boundaries proposed by the SVM are indi-
cated with vertical dashed lines. Note that LSA
and word2vec similarity values are only some-
what correlated, underscoring the potential utility
of combining the two scores for chain boundary
identification. As expected given the results in Ta-
ble 1, the child with ASD has generally lower co-
sine similarity scores and many more chain bound-
aries than the typically developing child.

6 Discussion and future work

One problem with applying the chaining and clus-
tering paradigms to children is that the semantic
features linking animals for a child might be very
different those of adults. Well over half of the chil-
dren in this study included the sequence cat, bear
or bear, cat, despite the lack of clear relation be-
tween the two words from an adult’s perspective.
We found, however, that our automated methods
usually grouped these two words together, recog-
nizing some similarity that adults seem to miss. At
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Figure 1: Plots of successive word-pair cosine similarity values derived using LSA and word2vec models
for a child with ASD (upper panel) and a child with TD (lower panel). Vertical dashed lines indicate

semantic chain boundaries proposed by the SVM.

the same time, relying on large corpora of adult-
focused texts may introduce problems: the low-
est similarity values found in our data set involved
the word turkey, suggesting a preponderance in the
data of the country rather than the bird. More
sensitive text normalization methods could likely
resolve this problem, but we also plan to build
LSA and neural word embedding models using
child language data (e.g., the CHILDES corpus
(MacWhinney, 2000)) and child-oriented texts in
the public domain.

Future work will focus on improving our meth-
ods for identifying semantic chains while account-
ing for different methods of semantic organiza-
tion by combining information gained from the
rich but out-of-domain data scenarios described
here with in-domain experimental data. In addi-
tion to incorporating more child-oriented training
data, we plan to use graph-based models to cap-
ture the ways in which speakers proceed through
the semantic space (Abbott et al., 2015).
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As the contradictory results in the literature in-
dicate, the precise nature of the linguistic deficits
associated with ASD is somewhat unclear. Many
of the most widely reported linguistic deficits fail
to obtain when participants are carefully matched,
particularly on verbal IQ. The atypical language
features that do persist under strict matching are
usually semantic or pragmatic and, hence, more
difficult to detect using easily scored standard lan-
guage assessment instruments. Methods lever-
aging large corpora that reflect neurotypical lan-
guage use may prove to be one of the more useful
tools for identifying atypical language in ASD.

Acknowledgments

This work was supported in part by NIH
grants RO1DCO013996, R01DCO012033, and
ROIDCO007129. Any opinions, findings, con-
clusions or recommendations expressed in this
publication are those of the authors and do not
necessarily reflect the views of the NIH.



References

Joshua T Abbott, Joseph L. Austerweil, and Thomas L
Griffiths. 2015. Random walks on semantic net-
works can resemble optimal foraging. Psychologi-
cal Review 122(3):558-569.

American Psychiatric Association. 2000. DSM-IV-TR:
Diagnostic and Statistical Manual of Mental Disor-
ders. American Psychiatric Publishing, Washing-
ton, DC.

Sander Begeer, Marlies Wierda, Anke M Scheeren,
Jan-Pieter Teunisse, Hans M Koot, and Hilde M
Geurts. 2014. Verbal fluency in children with autism
spectrum disorders: Clustering and switching strate-
gies. Autism 18(8):1014-1018.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3:1137-1155.

Weston Ashmore Bousfield, CHW Sedgewick, and
BH Cohen. 1954. Certain temporal characteristics
of the recall of verbal associates. The American
Journal of Psychology 67(1):111-118.

Christian Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press, Cambridge, MA.

CD Frith, KJ Friston, S Herold, D Silbersweig,
P Fletcher, C Cahill, RJ Dolan, RS Frackowiak, and
PF Liddle. 1995. Regional brain activity in chronic
schizophrenic patients during the performance of a
verbal fluency task. The British Journal of Psychia-
try 167(3):343-349.

Hilde M Geurts, Sylvie Verté, Jaap Oosterlaan, Herbert
Roeyers, and Joseph A Sergeant. 2004. How spe-
cific are executive functioning deficits in attention
deficit hyperactivity disorder and autism? Journal
of child psychology and psychiatry 45(4):836—854.

Julie D Henry, John R Crawford, and Louise H Phillips.
2004. Verbal fluency performance in dementia of
the Alzheimer’s type: A meta-analysis. Neuropsy-
chologia 42(9):1212-1222.

Eiko Inokuchi and Yoko Kamio. 2013. Qualitative
analyses of verbal fluency in adolescents and young
adults with high-functioning autism spectrum dis-
order. Research in Autism Spectrum Disorders

7:1403-1410.

Leo Kanner. 1943. Autistic disturbances of affective
content. Nervous Child 2:217-250.

Thomas K Landauer, Peter W Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic anal-
ysis. Discourse processes 25(2-3):259-284.

37

Brian Lopez, Alan Lincoln, Sally Ozonoff, and Zona
Lai. 2005. Examining the relationship between ex-
ecutive functions and restricted, repetitive symptoms
of autistic disorder. Journal of Autism and Develop-
mental Disorders 35(4).

Catherine Lord, Michael Rutter, Pamela DiLavore, and
Susan Risi. 2002. Autism Diagnostic Observation
Schedule (ADOS). Western Psychological Services,
Los Angeles.

Brian MacWhinney. 2000. The CHILDES project: The
database, volume 2. Psychology Press.

Kristin K Nicodemus, Brita Elvevag, Peter W
Foltz, Mark Rosenstein, Catherine Diaz-Asper, and
Daniel R Weinberger. 2014. Category fluency, la-
tent semantic analysis and schizophrenia: a candi-
date gene approach. Cortex 55:182-191.

Serguei V.S. Pakhomov and Laura S. Hemmy. 2014. A
computational linguistic measure of clustering be-
havior on semantic verbal fluency task predicts risk

of future dementia in the nun study. Cortex 55:97—
106.

Radim Rehtifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. pages 45-50.

Mark Rosenstein, Peter W. Foltz, Anja Vaskinn, and
Brita Elvevg. 2015. Practical issues in developing
semantic frameworks for the analysis of verbal flu-
ency data: A norwegian data case study. In Proceed-
ings of the 2nd Workshop on Computational Linguis-
tics and Clinical Psychology. pages 124—-133.

Michael Rutter, Anthony Bailey, and Catherine Lord.
2003. Social Communication Questionnaire (SCQ).
Western Psychological Services, Los Angeles.

Annelies Spek, Tjeerd Schatorjé, Evert Scholte, and
Ina van Berckelaer-Onnes. 2009. Verbal fluency in
adults with high functioning autism or asperger syn-
drome. Neuropsychologia 47(3):652—656.

Angela K Troyer, Morris Moscovitch, and Gordon
Winocur. 1997. Clustering and switching as two
components of verbal fluency: evidence from
younger and older healthy adults. Neuropsychology
11(1):138-146.

Michelle A Turner. 1999. Generating novel ideas: Flu-
ency performance in high-functioning and learning
disabled individuals with autism. Journal of Child
Psychology and Psychiatry 40(2):189-201.



Neural Architectures for Multilingual Semantic Parsing

Raymond Hendy Susanto and Wei Lu
Singapore University of Technology and Design
{raymond_susanto, luwei}@sutd.edu.sg

Abstract

In this paper, we address semantic pars-
ing in a multilingual context. We train one
multilingual model that is capable of pars-
ing natural language sentences from mul-
tiple different languages into their corre-
sponding formal semantic representations.
We extend an existing sequence-to-tree
model to a multi-task learning framework
which shares the decoder for generating
semantic representations. We report evalu-
ation results on the multilingual GeoQuery
corpus and introduce a new multilingual
version of the ATIS corpus.

1 Introduction

In this work, we address multilingual seman-
tic parsing — the task of mapping natural lan-
guage sentences coming from multiple different
languages into their corresponding formal seman-
tic representations. We consider two multilin-
gual scenarios: 1) the single-source setting, where
the input consists of a single sentence in a single
language, and 2) the multi-source setting, where
the input consists of parallel sentences in multi-
ple languages. Previous work handled the for-
mer by means of monolingual models (Wong and
Mooney, 2006; Lu et al., 2008; Jones et al., 2012),
while the latter has only been explored by lJie
and Lu (2014) who ensembled many monolingual
models together. Unfortunately, training a model
for each language separately ignores the shared
information among the source languages, which
may be potentially beneficial for typologically re-
lated languages. Practically, it is also inconvenient
to train, tune, and configure a new model for each
language, which can be a laborious process.

In this work, we propose a parsing architec-
ture that accepts as input sentences in several
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languages. We extend an existing sequence-to-
tree model (Dong and Lapata, 2016) to a multi-
task learning framework, motivated by its success
in other fields, e.g., neural machine translation
(MT) (Dong et al., 2015; Firat et al., 2016). Our
model consists of multiple encoders, one for each
language, and one decoder that is shared across
source languages for generating semantic repre-
sentations. In this way, the proposed model po-
tentially benefits from having a generic decoder
that works well across languages. Intuitively, the
model encourages each source language encoder
to find a common structured representation for the
decoder. We further modify the attention mech-
anism (Bahdanau et al., 2015) to integrate multi-
source information, such that it can learn where to
focus during parsing; i.e., which input positions in
which languages.
Our contributions are as follows:

e We investigate semantic parsing in two mul-
tilingual scenarios that are relatively unex-
plored in past research,

e We present novel extensions to the sequence-
to-tree architecture that integrates multilin-
gual information for semantic parsing, and

o We release a new ATIS semantic dataset an-
notated in two new languages.

2 Related Work

In this section, we summarize semantic pars-
ing approaches from previous works. Wong and
Mooney (2006) created WASP, a semantic parser
based on statistical machine translation. Lu et al.
(2008) proposed generative hybrid tree structures,
which were augmented with a discriminative re-
ranker. CCG-based semantic parsing systems have
been developed, such as ZC07 (Zettlemoyer and
Collins, 2007) and UBL (Kwiatkowski et al.,
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2010). Researchers have proposed sequence-to-
sequence parsing models (Jia and Liang, 2016;
Dong and Lapata, 2016; Kocisky et al., 2016). Re-
cently, Susanto and Lu (2017) extended the hybrid
tree with neural features.

Recent progress in multilingual NLP has moved
towards building a unified model that can work
across different languages, such as in multilingual
dependency parsing (Ammar et al., 2016), multi-
lingual MT (Firat et al., 2016), and multilingual
word embedding (Guo et al., 2016). Nonetheless,
multilingual approaches for semantic parsing are
relatively unexplored, which motivates this work.
Jones et al. (2012) evaluated an individually-
trained tree transducer on a multilingual semantic
dataset. Jie and Lu (2014) ensembled monolingual
hybrid tree models on the same dataset.

3 Model

In this section, we describe our approach to
multilingual semantic parsing, which extends
the sequence-to-tree model by Dong and Lap-
ata (2016). Unlike the mainstream approach that
trains one monolingual parser per source lan-
guage, our approach integrates IN encoders, one
for each language, into a single model. This model
encodes a sentence from the n-th language X =
T1,T2, ..., T x| as a vector and then uses a shared
decoder to decode the encoded vector into its cor-
responding logical form Y = y1,y2, ..., yy|. We
consider two types of input: 1) a single sentence
in one of N languages in the single-source setting
and 2) parallel sentences in N languages in the
multi-source setting. We elaborate on each setting
in Section 3.1 and 3.2, respectively.

The encoder is implemented as a unidirectional
RNN with long short-term memory (LSTM) units
(Hochreiter and Schmidhuber, 1997), which takes
a sequence of natural language tokens as input.
Similar to previous multi-task frameworks, e.g., in
neural MT (Firat et al., 2016; Zoph and Knight,
2016), we create one encoder per source language,
ie., {2 1 .. For the n-th language, it updates
the hidden vector at time step ¢ by:

hi' = Wi (hi'y, ERfa]) (D
where W7 = is the LSTM function and E} €
RIVIX4 is an embedding matrix containing row

vectors of the source tokens in the n-th language.
Each encoder may be configured differently, such
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(a)
Figure 1: Illustration of the model with three lan-
guage encoders and a shared logical form decoder
(in A-calculus). Two scenarios are considered: (a)
single-source and (b) multi-source with a com-
biner module (in grey color).

as by the number of hidden units and the embed-
ding dimension for the source symbol.

In the basic sequence-to-sequence model, the
decoder generates each target token in a linear
fashion. However, in semantic parsing, such a
model ignores the hierarchical structure of logi-
cal forms. In order to alleviate this issue, Dong
and Lapata (2016) proposed a decoder that gen-
erates logical forms in a top-down manner, where
they define a “non-terminal” token <n> to indi-
cate subtrees. At each depth in the tree, logical
forms are generated sequentially until the end-of-
sequence token is output.

Unlike in the single language setting, here we
define a single, shared decoder W 4. as opposed to
one decoder per source language. We augment the
parent non-terminal’s information p when com-
puting the decoder state z, as follows:

Zy = \IldeC(thla Ey [gtfl]a p) (2)

where W 4. is the LSTM function and ;1 is the
previous target symbol.

The attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015) computes a time-
dependent context vector c; (as defined later in
Section 3.1 and 3.2), which is subsequently used
for computing the probability distribution over the
next symbol, as follows:

z; = tanh(Uz; + Vy)
P(Ytly<t, X) o< exp(Wzy)

3
4

where U, V, and W are weight matrices. Finally,
the model is trained to maximize the following
conditional log-likelihood:

Y]

LO)= > > logp(uly<, X)

(X,Y)eD t=1

&)



where (X,Y) refers to a ground-truth sentence-
semantics pair in the training data D.

We use the same formulation above for the en-
coders and the decoder in both multilingual set-
tings. Each setting differs in terms of: 1) the de-
coder state initialization, 2) the computation of the
context vector c;, and 3) the training procedure,
which are described in the following sections.

3.1 Single-Source Setting

In this setting, the input is a source sentence com-
ing from the n-th language. Figure 1 (a) depicts
a scenario where the model is parsing Indonesian
input, with English and Chinese being non-active.

The last state of the n-th encoder is used to ini-
tialize the first state of the decoder. We may need
to first project the encoder vector into a suitable
dimension for the decoder, i.e., zo = ¢, (hx).
where ¢} can be an affine transformation. Simi-
larly, we may do so before computing the attention
scores, i.e., fl}g = ¢ (h}). Then, we compute the
context vector ¢}’ as a weighted sum of the hidden
vectors in the n-th encoder:

exp(h} - z)

X
Sl

|X] 3
n __ n n
Cy = Z oy, i
k=1

We set ¢; = ¢ for computing Equation 3. We pro-
pose two variants of the model under this setting.
In the first version, we define separate weight ma-
trices for each language, i.e., {U", V", Wn}N_.
In the second version, the three weight matrices
are shared across languages, essentially reducing
the number of parameters by a factor of V.

The training data consists of the union of
sentence-semantics pairs in /N languages, where
the source sentences are not necessarily parallel.
We implement a scheduling mechanism that cy-
cles through all languages during training, one lan-
guage at a time. Specifically, model parameters
are updated after one batch from one language
before moving to the next one. Similar to Firat
et al. (2016), this mechanism prevents excessive
updates from a specific language.

n o __
Q¢ —

= (6)
exp(hy, - z)

(7

3.2 Multi-Source Setting

In this setting, the input are semantically equiva-
lent sentences in N languages. Figure 1 (b) de-
picts a scenario where the model is parsing En-
glish, Indonesian, and Chinese simultaneously. It
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includes a combiner module (denoted by the grey
box), which we will explain next.

The decoder state at the first time step is ini-
tialized by first combining the N final states from
each encoder, i.e., zg = ¢init(h‘1X|, e hf\)fﬂ),
where we implement ¢y by max-pooling.

We propose two ways of computing ¢, that inte-
grates source-side information from multiple en-
coders. First, we consider word-level combina-
tion, where we combine IV encoder states at every
time step, as follows:

exp(h} - z)

n

Ut = N X — ®)
SN S exp(h - z)
N IX| B
co= 3 ok ®
n=1 k=1

Alternatively, in sentence-level combination,
we first compute the context vector for each lan-
guage in the same way as Equation 6 and 7. Then,
we perform a simple concatenation of N context
vectors: ¢; = [cg; e ;c,{V].

Unlike the single-source setting, the train-
ing data consists of N-way parallel sentence-
semantics pairs. That is, each training instance
consists of NV semantically equivalent sentences

and their corresponding logical form.

4 Experiments and Results

4.1 Datasets and Settings

We conduct our experiments on two multilingual
benchmark datasets, which we describe below.
Both datasets use a meaning representation based
on lambda calculus.

The GeoQuery (GEO) dataset is a standard
benchmark evaluation for semantic parsing. The
multilingual version consists of 880 instances of
natural language queries related to US geography
facts in four languages (English, German, Greek,
and Thai) (Jones et al., 2012). We use the standard
split which consists of 600 training examples and
280 test examples.

The ATIS dataset contains natural language
queries to a flight database. The data is split into
4,434 instances for training, 491 for development,
and 448 for evaluation, same as Zettlemoyer and
Collins (2007). The original version only includes
English. In this work, we annotate the corpus in
Indonesian and Chinese. The Chinese corpus was



annotated (with segmentations) by hiring profes-
sional translation service. The Indonesian corpus
was annotated by a native Indonesian speaker.

We use the same pre-processing as Dong and
Lapata (2016), where entities and numbers are re-
placed with their type names and unique IDs.!
English words are stemmed using NLTK (Bird
et al., 2009). Each query is paired with its cor-
responding semantic representation in lambda cal-
culus (Zettlemoyer and Collins, 2005).

In all experiments, following Dong and Lap-
ata (2016), we use a one-layer LSTM with 200-
dimensional cells and embeddings. We use a mini-
batch size of 20 with RMSProp updates (Tieleman
and Hinton, 2012) for a fixed number of epochs,
with gradient clipping at 5. Parameters are uni-
formly initialized at [-0.08,0.08] and regularized
using dropout (Srivastava et al., 2014). Input se-
quences are reversed. See Appendix A for detailed
experimental settings.

For each model configuration, all experiments
are repeated 3 times with different random seed
values, in order to make sure that our findings
are reliable. We found empirically that the ran-
dom seed may affect SEQ2TREE performance.
This is especially important due to the relatively
small dataset. As previously done in multi-
task sequence-to-sequence learning (Luong et al.,
2016), we report the average performance for the
baseline and our model. The evaluation metric is
defined in terms of exact match accuracy with the
ground-truth logical forms. See Appendix B for
the accuracy of individual runs.

4.2 Results

Table 1 compares the performance of the mono-
lingual sequence-to-tree model (Dong and Lap-
ata, 2016), SINGLE, and our multilingual model,
MULTI, with separate and shared output param-
eters under the single-source setting as described
in Section 3.1. On average, both variants of the
multilingual model outperform the monolingual
model by up to 1.34% average accuracy on GEO.
Parameter sharing is shown to be helpful, in partic-
ular for GEO. We observe that the average perfor-
mance increase on ATIS mainly comes from Chi-
nese and Indonesian. We also learn that although
including English is often helpful for the other lan-
guages, it may affect its individual performance.
Table 2 shows the average performance on

'See Section 3.6 of (Dong and Lapata, 2016).
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SINGLE MuLTi
separate [ shared
GEO
en 84.40 85.00 85.48
de 70.24 71.19 72.86
el 74.40 75.12 75.60
th 72.86 72.26 73.33
avg. 75.48 75.89 76.82
ATIS
en 81.85 81.40 81.77
id 74.85 74.03 75.45
zh 73.66 75.89 73.96
avg. 76.79 77.11 77.06

Table 1: Single-source parsing results in terms of
average accuracy % over 3 runs. Best results are
in bold.

RANKING MULTI
word [ sentence
GEO
en+de+el 83.21 85.48 86.43
en+de+th 82.02 86.19 85.48
en+el+th 82.62 85.60 85.24
de+el+th 79.64 72.14 76.43
" en+detel+th | ~ 8250 | 8548 | 86.79
ATIS
en+id 82.81 83.93 83.78
en+zh 82.81 82.96 82.96
id+zh 78.50 76.79 77.75
Ten+id+zh |~ 8311 ~ | 8222 | 83.85

Table 2: Multi-source parsing results in terms of
average accuracy % over 3 runs. Best results are
in bold.

multi-source parsing by combining 3 to 4 lan-
guages for GEO and 2 to 3 languages for ATIS.
For RANKING, we combine the predictions from
each language by selecting the one with the high-
est probability. Indeed, we observe that system
combination at the model level is able to give bet-
ter performance on average (up to 4.29% on GEO)
than doing so at the output level. Combining at
the word level and sentence level shows compara-
ble performance on both datasets. It can be seen
that the benefit is more apparent when we include
English in the system combination.

Regarding comparison to previous monolingual
works, we want to highlight that there exist two
different versions of the GeoQuery dataset anno-
tated with completely different semantic represen-
tations: semantic tree and lambda calculus. As
noted in Section 5 of Lu (2014), results obtained
from these two versions are not comparable. We
use lambda calculus same as Dong and Lapata
(2016). Under the multilingual setting, the closest
work is Jie and Lu (2014). Nonetheless, they used
the semantic tree version of GeoQuery. They eval-



Model Input

Output

SINGLE (en) | list the airlines with flights to or from ci0

lambda $0 e (and ( airline $0 ) (exists $1 ( and ( flight $1)
(or (from $1 ¢i0 ) (to $1 ¢i0 ) ) (airline $1 $0))))

daftarkan maskapai dengan penerbangan

SINGLE (id) ke atau dari ci0

lambda $0 e ( and ( airline $0 ) (exists $1 (and ( flight $1 )
(from $1 ci0 ) (airline $1 $0))))

5 S H A R cio B s A 7]

SINGLE (zh)

lambda $0 e ( and ( airline $0 ) ( services $0 ci0 ) )

MULTI (en+id+zh)

lambda $0 e (exists $1 (and ( flight $1 ) (or ( from $1 ci0 )
(to $1¢i0)) (= (airline:e $1)$0)))

GoLD (en+id+zh)

lambda $0 e (exists $1 (and ( flight $1 ) (or ( from $1 ci0 )
(to $1¢i0)) (= (airline:e $1)$0)))

Table 3: Example output from monolingual and multilingual models trained on ATIS.

Number of parameters
Model GEO ATIS
SINGLE/RANKING | 3.7 x 10% | 3.1 x 10°
MULTI (single)
- separate 2.3 x 105 | 2.1 x 10°
- shared 2.0 x 10% | 1.9 x 10°
MULTI (multi)
- word 2.0 x 10° | 1.9 x 10°
- sentence 2.1x10° | 1.9 x 108

Table 4: Model size

uated extrinsically on a database query task while
we use exact match accuracy, so their work is not
directly comparable to ours.

S Analysis

In this section, we report a qualitative analysis
of our multilingual model. Table 3 shows exam-
ple output from the monolingual model, SINGLE,
trained on the three languages in ATIS and the
multilingual model, MULTI, with sentence-level
combination. This example demonstrates a sce-
nario when the multilingual model successfully
parses the three input sentences into the correct
logical form, whereas the individual models are
unable to do so.

Figure 2 shows the alignments produced by
MULTI (sentence) when parsing ATIS in the multi-
source setting. Each cell in the alignment matrix
corresponds to «;!, which is computed by Equa-
tion 6. Semanticélly related words are strongly
aligned, such as the alignments between ground
(en), darat (id), T (zh) and ground_transport.
This shows that such correspondences can be
jointly learned by our multilingual model.

In Table 4, we summarize the number of param-
eters in the baseline and our multilingual model.
The number of parameters in SINGLE and RANK-
ING is equal to the sum of the number of parame-
ters in their monolingual components. It can be
seen that the size of our multilingual model is
about 50-60% smaller than that of the baseline.

ground_transport

lambda
$0

)

(

$0

e

(

and
to_city
$0

ci0

<S>
ci0 ||
for .

transport

English

ground
<E>
<S>

ci0 .

untuk

darat

transportasi .

<E>
<S>
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3l
H T
i
cio .

<E>

Chinese

Figure 2: Attention score matrices computed by
MULTI when parsing English, Indonesian, and
Chinese inputs from ATIS. Darker color represents
higher attention score.

6 Conclusion

We have presented a multilingual semantic parser
that extends the sequence-to-tree model to a multi-
task learning framework. Through experiments,
we show that our multilingual model performs bet-
ter on average than 1) monolingual models in the
single-source setting and 2) ensemble ranking in
the multi-source setting. We hope that this work
will stimulate further research in multilingual se-
mantic parsing. Our code and data is available at
http://statnlp.org/research/sp/.
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A Hyperparameters

Table 5 lists the number of training epochs and the
dropout probability used in the LSTM cell and the
hidden layers before the softmax classifiers, which
were chosen based on preliminary experiments on
a held-out dataset. We use a training schedule
where we switch to the next language after train-
ing one mini-batch for GEO and 500 for AT1S. For



SINGLE MuLTt
separate shared
1 2 3 1 2 3 1 2 3

GEO

en 87.14 83.57 82.50 | 85.71 83.93 85.36 | 8536 8393 87.14
de 70.00 70.36 70.36 | 71.79 71.79 70.00 | 73.57 7393 71.07
el 76.43 7250 7429 | 77.14 72.14 76.07 | 7643  74.64 75.71
th 72.50 73.57 7250 | 72.14 72.14 72.50 | 72.50 71.07 76.43
ATIS

en 84.60 79.24 81.70 | 82.14 81.03 81.03 | 82.59 80.36  82.37
id 75.67 7455 7433 | 75.67 72.54 73.88 | 76.56 7545 74.33
zh 7433  73.66 7299 | 74.11 76.12 77.46 | 75.67 7254 73.66

Table 6: Single-source parsing results showing the accuracy of the 3 runs. Best results are in bold.

RANKING MutT
word sentence
1 2 3 1 2 3 1 2
GEO
en+de+el 85.00 8250 82.14 | 87.14 84.64 84.64 | 87.50 85.36 86.43
en+de+th 8429 81.07 80.71 | 87.86 85.00 85.71 | 85.71 86.43 84.29
en+el+th 8429 82.14 8143 | 87.50 8429 85.00 | 84.64 85.71 85.36
de+el+th 80.00 79.29 79.64 | 71.07 72.86 72.50 | 77.86 74.64 76.79
" ent+de+el+th | 83.93 ~ 81.79 ~ 81.79 | 85.71 ~ 86.07 84.64 | 87.50 = 86.79 ~ 86.07
ATIS
en+id 83.48 82.14 82.81 | 83.48 8348 84.82 | 85.27 80.58 85.49
en+zh 84.60 80.80 83.04 | 83.26 82.14 83.48 | 8549 80.13 83.26
id+zh 79.24  78.57 77.68 | 77.46 78.35 74.55 | 80.58 78.13 74.55
“en+id+zh | 84.15 T 81.92 ~ 8326 | 82.14 8125 ~ 8326 | 85.49 = 81.03 ~ 85.04

Table 7: Multi-source parsing results showing the accuracy of the 3 runs. Best results are in bold.

all multilingual models, we initialize the encoders
using the encoder weights learned by the mono-
lingual models. For the multi-source setting, we
also initialize the decoder using the first language
in the list of the combined languages.

B Additional Experimental Results

In Table 6 and 7, we report the accuracy of the 3
runs for each model and dataset. In both settings,
we observe that the best accuracy on both datasets
is often achieved by MULTI. This is the same con-
clusion that we reached when averaging the results
over all runs.
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dropout dropout
#epochs (LSPFM) (outpurt) layer)

GEO

SINGLE 90 0.1 0.4
MULTI (single) 340 0.1 04
MULTI (multi) 150 0.1 0.4
ATIS

SINGLE 130 0.3 0.3
MULTI (single) 390 0.3 0.3
MULTI (multi) 250 0.3 0.3

Table 5: Hyperparameter values
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Abstract

There is a growing demand for automatic
assessment of spoken English proficiency.
These systems need to handle large vari-
ations in input data owing to the wide
range of candidate skill levels and L1s, and
errors from ASR. Some candidates will
be a poor match to the training data set,
undermining the validity of the predicted
grade. For high stakes tests it is essen-
tial for such systems not only to grade
well, but also to provide a measure of
their uncertainty in their predictions, en-
abling rejection to human graders. Pre-
vious work examined Gaussian Process
(GP) graders which, though successful, do
not scale well with large data sets. Deep
Neural Networks (DNN) may also be used
to provide uncertainty using Monte-Carlo
Dropout (MCD). This paper proposes a
novel method to yield uncertainty and
compares it to GPs and DNNs with MCD.
The proposed approach explicitly teaches
a DNN to have low uncertainty on train-
ing data and high uncertainty on generated
artificial data. On experiments conducted
on data from the Business Language Test-
ing Service (BULATS), the proposed ap-
proach is found to outperform GPs and
DNNs with MCD in uncertainty-based re-
jection whilst achieving comparable grad-
ing performance.

1 Introduction

Systems for automatic assessment of spontaneous
spoken language proficiency (Fig. 1) are becom-
ing increasingly important to meet the demand for
English second language learning. Such systems
are able to provide throughput and consistency
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which are unachievable with human examiners.
This is a challenging task. There is a large vari-

Features Grade

Audio

Feature
extraction

Speech

. Tex
recogniser ext

Figure 1: Automatic Assessment System

ation in the quality of spoken English across all
proficiency levels. In addition, candidates of the
same skill level will have different accents, voices,
mispronunciations, and sentence construction er-
rors. All of which are heavily influenced by the
candidate’s L1 language and compounded by ASR
errors. It is therefore impossible in practice to ob-
serve all these variants in training. At test time, the
predicted grade’s validity will decrease the more
the candidate is mismatched to the data used to
train the system. For deployment of these systems
to high-stakes tests the performance on all candi-
dates needs to be consistent and highly correlated
with human graders. To achieve this it is impor-
tant that these systems can detect outlier speakers
who need to be examined by, for example, human
graders.

Previously, separate models were used to fil-
ter out ’non-scorable” candidates (Yoon and Xie,
2014; Zechner et al., 2009; Higgins et al., 2011;
Xie et al., 2012). However, such models reject
candidates based on whether they can be scored at
all, rather than an automatic grader’s uncertainty '
in its predictions. It was shown by van Dalen et al.
(2015) that Gaussian Process (GP) graders give

"Uncertainty is used in the sense of the inverse of confi-
dence to be consistent with Gal and Ghahramani (2016) and
van Dalen et al. (2015).
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state-of-the-art performance for automatic assess-
ment and yield meaningful uncertainty estimates
for rejection of candidates. There are, however,
computational constraints on training set sizes for
GPs. In contrast, Deep Neural Networks (DNNs)
are able to scale to large data sets, but lack a na-
tive measure of uncertainty. However, Gal and
Ghahramani (2016) have shown that Monte-Carlo
Dropout (MCD) can be used to derive an uncer-
tainty estimate for a DNN.

Alternatively, a Deep Density Network (DDN),
which is a Mixture Density Network (Bishop,
1994) with only one mixture component, may be
used to yield a mean and variance corresponding
to the predicted grade and the uncertainty in the
prediction. Similar to GP and DNNs with MCD,
a standard DDN provides an implicit modelling of
uncertainty in its prediction. This implicit model
may not be optimal for the task at hand. Hence,
a novel approach to explicitly model uncertainty is
proposed in which the DDN is trained in a multi-
task fashion to model a low variance real data dis-
tribution and a high variance artificial data dis-
tribution which represents candidates with unseen
characteristics.

2 Prediction Uncertainty

The principled method for dealing with uncer-
tainty in statistical modelling is the Bayesian ap-
proach, where a conditional posterior distribution
over grades, g, given inputs, «, and training data
D = {g, &} is computed by marginalizing over all
models:

plgle, D) = / p(gle, M)p(MID)AM (1)

where p(M|D) is a prior over a model given the
data. Given the posterior, the predictive mean and
the variance (uncertainty) can be computed using:

pg(x) = / p(glz, D)gdg (2)

o2 (i) = / p(gle, D)gPdg — i2(x) ()

2.1 Gaussian Processes

Eq. 2, 3 can be analytically solved for a class
of models called Gaussian Processes (GP) (Ras-
mussen and Williams, 2006), a powerful non-
parametric model for regression. The GP induces

46

a conditional posterior in the form of a normal dis-
tribution over grades g given an input & and train-
ing data D:

p(gle; D) = N(g; pg(2|D), 0 (x[D))  (4)

With mean function p4(2|D) and variance func-
tion 03 (z|D), which is a function of the similarity
of an input «x to the training data inputs &, where
the similarity metric is defined by a covariance
function k(.,.). The nature of GP variance means
that the model is uncertain in predictions for inputs
far away from the training data, given appropriate
choice of k(.,.). Unfortunately, without sparsifi-
cation approaches, the computational and mem-
ory requirements of GPs become prohibitively ex-
pensive for large data sets. Furthermore, GPs are
known to scale poorly to higher dimensional fea-
tures (Rasmussen and Williams, 2006).

2.2 Monte-Carlo Dropout

Alternatively, a grader can be constructed using
Deep Neural Networks (DNNs) which have a very
flexible architecture and scale well to large data
sets. DNNs, however, lack a native measure of un-
certainty. Uncertainty estimates for DNNs can be
computed using a Monte-Carlo ensemble approx-
imation to Eq. 2, 3:

1 N

N;fwM (5)
N

Z( flas MO)) = (@) ©)

=1

where there are N DNN models in the ensemble,
M is a DNN with a particular architecture and
parameters sampled from p(M|D) using Monte
Carlo Dropout (MCD) (Srivastava et al., 2014),
and f(x; M) are the DNN predictions. Recent
work by Gal and Ghahramani (2016) showed that
MCD is equivalent to approximate variational in-
ference in GPs, and can be used to yield mean-
ingful uncertainty estimates for DNNs. Further-
more, Gal and Ghahramani (2016) show that dif-
ferent choices of DNN activation functions corre-
spond to different GP covariance functions. MCD
uncertainty assumes that for inputs further from
the training data, different subnets will produce in-
creasingly differing outputs, leading to larger vari-
ances. Unfortunately, it is difficult to know before-
hand which activation functions accomplish this in
practice.



3 Deep Density Networks

Instead of relying on a Monte Carlo approximation
to Eq. 1, a DNN can be modified to produce a
prediction of both a mean and a variance:

() = fu(mQM)
Ug(x) - fa2<x;M)

(7)
®)

parametrising a normal distribution over grades
conditioned on the input, similar to a GP. This
architecture is a Deep Density Network (DDN),
which is a Mixture Density Network (MDN)
(Bishop, 1994) with only one mixture component.
DDNs are trained by maximizing the likelihood of
the training data. The variance of the DDN rep-
resents the natural spread of grades at a given in-
put. This is an implicit measure of uncertainty, like
GP and MCD variance, because it is learned au-
tomatically as part of the model. However, this
doesn’t enforce higher variance further away from
training points in DDNs. It is possible to explic-

Artificial Data

Real Data

Training data

Mean

Grade

Input features
Figure 2: Desired variance characteristic

itly teach a DDN to predict a high or low vari-
ance for inputs which are unlike or similar to the
training data, respectively (Fig. 2). This requires
a novel training procedure. Two normal distribu-
tions are constructed: a low-variance real (train-
ing) data distribution pp and a high-variance arti-
ficial data distribution py, which models data out-
side the real training data region. The DDN needs
to model both distributions in a multi-task (MT)
fashion. The loss function for training the DDN
with explicitly specified uncertainty is the expec-
tation over the training data of the KL divergence
between the distribution it parametrizes and both
the real and artificial data distributions:

L= Eg[KL(pp|[p(g|&; M)] +

9
o EdKLpulplglE M)

where « is the multi-task weight.
The DDN with explicit uncertainty is trained in
a two stage fashion. First, a standard DDN M

Variance
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is trained, then a DDN M is instantiated using the
parameters of M and trained in a multi-task fash-
ion. The real data distribution pp is defined by M
(Eq. 7, 8). The artificial data distribution py is con-
structed by generating artificial inputs & and the
associated mean and variance targets 1(&), o%(&):

pv = N (g; fu(& Mo),0*(Z))  (10)

The predictions of M, are used as the targets for
w(&). The target variance o(%) should depend
on the similarity of & to the training data. Here,
this variance is modelled by the squared normal-
ized Euclidean distance from the mean of &, with
a diagonal covariance matrix, scaled by a hyper-
parameter A\. The artificial inputs & need to be
different to, but related to the real data &. Ide-
ally, they should represent candidates with unseen
characteristics, such as L1, accent and proficiency.
A simple approach to generating & is to use a Fac-
tor Analysis (FA) (Murphy, 2012) model trained
on &. The generative model of FA is:

T~NWz+p,yP), z~N(0,~I) (11)
where W is the loading matrix, ¥ the diagonal
residual noise variance, p the mean, all derived
from &, and +y is used to control the distance of
the generated data from the real training data re-
gion. During training the artificial inputs are sam-
pled from the FA model.

4 Experimental Results

Pearson Correlation

0'%.0 0.1 0.2 0.4 0.6

Rejection Fraction

0.8 1.0

Figure 3: An example Rejection Plot

AUCyar
AUCmax

As previously stated, the operating scenario is
to use a model’s estimate of the uncertainty in

AUCgg =

(12)
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Figure 4: Rejection Plots for models

its prediction to reject candidates to be assessed
by human graders for high-stakes tests, maximiz-
ing the increase in performance while rejecting the
least number of candidates. The rejection process
is illustrated using a rejection plot (Fig. 3). As the
rejection fraction is increased, model predictions
are replaced with human scores in some particular
order, increasing overall correlation with human
graders. Fig. 3 has 3 curves representing differ-
ent orderings: expected random rejection, optimal
rejection and model rejection. The expected ran-
dom performance curve is a straight line from the
base predictive performance to 1.0, representing
rejection in a random order. The optimal rejec-
tion curve is constructed by rejecting predictions
in order of decreasing mean square error relative
to human graders. A rejection curve derived from
a model should sit between the random and op-
timal curves. In this work, model rejection is in
order of decreasing predicted variance.

The following metrics are used to assess and
compare models: Pearson Correlation Coefficient
(PCC) with human graders, the standard perfor-
mance metric in assessment (Zechner et al., 2009;
Higgins et al., 2011); 10% rejection PCC, which
illustrates the predictive performance at a partic-
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ular operating point, i.e. rejecting 10% of candi-
dates; and Area under a model’s rejection curve
(AUC) (Fig 3). However, AUC is influenced by
the base PCC of a model, making it difficult to
compare the rejection performance. Thus, a metric
independent of predictive performance is needed.
The proposed metric, AUCgg (Eq. 12), is the ratio
of the areas under the actual (AUC,,,) and optimal
(AUCpay) rejection curves relative to the random re-
jection curve. Ratios of 1.0 and 0.0 correspond to
perfect and random rejection, respectively.

All experiments were done using 33-
dimensional pronunciation, fluency and acoustic
features derived from audio and ASR transcrip-
tions of responses to questions from the BULATS
exam (Chambers and Ingham, 2011). The ASR
system has a WER of 32% on a development
set. The training and test sets have 4300 and 224
candidates, respectively. Each candidate provided
a response to 21 questions, and the features used
are aggregated over all 21 questions into a single
feature vector. The test data was graded by expert
graders at Cambridge English. These experts
have inter-grader PCCs in the range 0.95-0.97.
Candidates are equally distributed across CEFR
grade levels (Europe, 2001).



The input features where whitened by subtract-
ing the mean and dividing by the standard devia-
tion for each dimension computed on all training
speakers. The Adam optimizer (Kingma and Ba,
2015), dropout (Srivastava et al., 2014) regulariza-
tion with a dropout keep probability of 0.6 and an
exponentially decaying learning rate are used with
decay factor of 0.86 per epoch, batch size 50. All
networks have 2 hidden layers with 180 rectified
linear units (ReLU) in each layer. DNN and DDN
models were implemented in Tensorflow (Abadi
et al., 2015). Models were initialized using the
Xavier Initializer (Glorot and Bengio, 2010). A
validation set of 100 candidates was selected from
the training data to tune the model and hyper-
parameters. GPs were run using Scikit-Learn (Pe-
dregosa et al., 2011) using a squared exponential
covariance function.

10% Rej.
Grader PCC PCC AUC  AUCgy
GP 0.876 0.897 0.942 0.233
MCD 0.879 0.892 0.937 0.040
MCDyann | 0.865 0.886 0.938 0.226
DDN 0.871 0.887 0.941 0.230
+MT | 0.871 0.902 0.947 0.364

Table 1: Grading and rejection performance

The Gaussian Process grader, GP, is a com-
petitive baseline (Tab. 1). GP variance clearly
yields uncertainty which is useful for rejection. A
DNN with ReLLU activation, MCD, achieves grad-
ing performance similar to the GP. However, MCD
fails to yield an informative uncertainty for rejec-
tion, with performance barely above random. If
the tanh activation function, MCDypp, is used in-
stead, then a DNN is able to provide a meaningful
measure of uncertainty using MCD, at the cost of
grading performance. It is likely that ReLU ac-
tivations correspond to a GP covariance function
which is not suited for rejection on this data.

The standard DDN has comparable grading per-
formance to the GP and DNNSs. AUCgg of the DDN
is on par with the GP, but the 10% rejection PCC
is lower, indicating that the DDN is not as effec-
tive at rejecting the worst outlier candidates. The
approach proposed in this work, a DDN trained in
a multi-task fashion (DDN+MT), achieves signif-
icantly higher rejection performance, resulting in
the best AUCgg and 10% rejection PCC, showing
its better capability to detect outlier candidates.
Note, AUC reflects similar trends to AUCgg, but not
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as clearly, which is demonstrated by Fig. 4. The
model was found to be insensitive to the choice
of hyper-parameters « and -y, but A needed to be
set to produce target noise variances (&) larger
than data variances o (%).

5 Conclusions and Future Work

A novel method for explicitly training DDNs to
yield uncertainty estimates is proposed. A DDN
is a density estimator which is trained to model
two distributions in a multi-task fashion (1) the
low variance (uncertainty) true data distribution
and (2) a generated high variance artificial data
distribution. The model is trained by minimizing
the KL divergence between the DDN and the true
data distribution (1) and between the DDN and the
artificial data distribution (2). The DDN should
assign its prediction of low or high variance (un-
certainty) if the input is similar or dissimilar to the
true data respectively. The artificial data distribu-
tion is given by a factor analysis model trained on
the real data. During training the artificial data is
sampled from this distribution.

This method outperforms GPs and Monte-Carlo
Dropout in uncertainty based rejection for auto-
matic assessment. However, the effect of the
nature of artificial data on rejection performance
should be further investigated and other data
generation methods, such as Variational Auto-
Encoders (Kingma and Welling, 2014), and met-
rics to assess similarity between artificial and real
training data should be examined. The proposed
approach must also be assessed on other tasks and
datasets.
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Abstract

Language identification (LID) is a criti-
cal first step for processing multilingual
text. Yet most LID systems are not de-
signed to handle the linguistic diversity of
global platforms like Twitter, where lo-
cal dialects and rampant code-switching
lead language classifiers to systematically
miss minority dialect speakers and mul-
tilingual speakers. We propose a new
dataset and a character-based sequence-to-
sequence model for LID designed to sup-
port dialectal and multilingual language
varieties. Our model achieves state-of-the-
art performance on multiple LID bench-
marks. Furthermore, in a case study us-
ing Twitter for health tracking, our method
substantially increases the availability of
texts written by underrepresented popula-
tions, enabling the development of “so-
cially inclusive” NLP tools.

1 Introduction

Language identification (LID) is an essential first
step for NLP on multilingual text. In global set-
tings like Twitter, this text is written by authors
from diverse linguistic backgrounds, who may
communicate with regional dialects (Gongalves
and Sanchez, 2014) or even include parallel trans-
lations in the same message to address different
audiences (Ling et al., 2013, 2016). Such di-
alectal variation is frequent in all languages and
even macro-dialects such as American and British
English are composed of local dialects that vary
across city and socioeconomic development level
(Labov, 1964; Orton et al., 1998). Yet current sys-
tems for broad-coverage LID—trained on dozens
of languages—have largely leveraged European-
centric corpora and not taken into account demo-
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1. @username R u a wizard or wat gan sef: in d mornin -
u tweet, afternoon - u tweet, nyt gan u dey tweet. beta
get ur IT placement wiv twitter

2. Be the lord lantern jaysus me heart after that match!!!

3. Aku hanya mengagumimu dari jauh sekarang . RDK
({}) * last tweet about you -_- , maybe

Figure 1: Challenges for socially-equitable LID in Twitter
include dialectal text, shown from Nigeria (#1) and Ireland
(#2), and multilingual text (Indonesian and English) in #3.

graphic and dialectal variation. As a result, these
systems systematically misclassify texts from pop-
ulations with millions of speakers whose local
speech differs from the majority dialects (Hovy
and Spruit, 2016; Blodgett et al., 2016).

Multiple systems have been proposed for broad-
coverage LID at the global level (McCandless,
2010; Lui and Baldwin, 2012; Brown, 2014; Jaech
et al.,, 2016). However, only a handful of tech-
niques have addressed the challenge of linguis-
tic variability of global data, such as the dialec-
tal variability and multilingual text seen in Fig-
ure 1. These techniques have typically focused
only on limited aspects of variability, e.g., indi-
vidual dialects like African American Vernacu-
lar English (Blodgett et al., 2016), online speech
(Nguyen and Dogrudz, 2013), similar languages
(Bergsma et al., 2012; Zampieri et al., 2014a), or
word-level code switching (Solorio et al., 2014;
Rijhwani et al., 2017).

In this work, our goal is to devise a socially
equitable LID, that will enable a massively mul-
tilingual, broad-coverage identification of popu-
lations speaking underrepresented dialects, mul-
tilingual messages, and other linguistic varieties.
We first construct a large-scale dataset of Twit-
ter posts across the world (§2). Then, we intro-
duce an LID system, EQUILID, that produces per-
token language assignments and obtains state-of-
the-art performance on four LID tasks (§3), out-
performing broad-coverage LID benchmarks by
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up to 300%. Finally, we present a case study on us-
ing Twitter for health monitoring and show that (1)
current widely-used systems suffer from lower re-
call rates for texts from developing countries, and
(2) our system substantially reduces this disparity
and enables socially-equitable LID.

2 Curating Socially-Representative Text

Despite known linguistic variation in languages,
current broad-coverage LID systems are trained
primarily on European-centric sources (e.g., Lui
and Baldwin, 2014), often due to data availabil-
ity.  Further, even when training incorporates
seemingly-global texts from Wikipedia, their au-
thors are still primarily from highly-developed
countries (Graham et al., 2014). This latent bias
can significantly affect downstream applications
(as we later show in §4), since language ID is often
assumed to be a solved problem (McNamee, 2005)
and most studies employ off-the-shelf LID sys-
tems without considering how they were trained.

We aim to create a socially-representative cor-
pus for LID that captures the variation within a
language, such as orthography, dialect, formality,
topic, and spelling. Motivated by the recent lan-
guage survey of Twitter (Trampus, 2016), we next
describe how we construct this corpus for 70 lan-
guages along three dimensions: geography, social
and topical diversity, and multilinguality.
Geographic Diversity We create a large-scale
dataset of geographically-diverse text by boot-
strapping with a people-centric approach (Bam-
man, 2015) that treats location and languages-
spoken as demographic attributes to be inferred
for authors. By inferring both for Twitter users
and then collecting documents from monolingual
users, we ensure that we capture regional variation
in a language, rather than focusing on a particular
aspect of linguistic variety.

Individuals® locations are inferred using the
method of Compton et al. (2014) as implemented
by Jurgens et al. (2015). The method first identi-
fies the individuals who have reliable ground truth
locations from geotagged tweets and then infers
the locations of other individuals as the geographic
center of their friends’ locations, iteratively apply-
ing this inference method to the whole social net-
work. The method is accurate to within tens of
kilometers on urban and rural users (Johnson et al.,
2017), which is sufficient for the city-level analy-
sis we use here. We use a network of 2.3B edges
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from reciprocal mentions to locate 132M users.
To identify monolingual users, we classify mul-
tiple tweets by the same individual and consider an
author monolingual if they had at least 20 tweets
and 95% were labeled with one language ¢. All
tweets by that author are then treated as being ¢.
We use this relabeling process to automatically
identify misclassified tweets, which when aggre-
gated geographically, can potentially capture re-
gional dialects and topics.! We construct separate
sets of monolinguals using langid.py and CLD2 as
classifiers to mitigate the biases of each.
Social and Topical Diversity Authors modulate
their writing style for different social registers
(Eisenstein, 2015; Tatman, 2015). Therefore, we
include corpora from different levels of formality
across a wide range of topics. Texts were gathered
for all of the 70 languages from (1) Wikipedia arti-
cles and their more informal Talk pages, (2) Bible
and Quran translations (3) JRC-Acquis (Stein-
berger et al., 2006), a collection of European leg-
islation, (4) the UN Declaration of Human Rights,
(5) the Watchtower online magazines, (6) the 2014
and 2015 iterations of the Distinguishing Simi-
lar Languages shared task (Zampieri et al., 2014b,
2015), and (7) the Twitter70 dataset (Trampus,
2016). We also include single-language corpora
drawn from slang websites (e.g., Urban Dictio-
nary) and the African American Vernacular En-
glish data from Blodgett et al. (2016). For all
sources, we extract instances sequentially by ag-
gregating sentences up to 140 characters.
Multilingual Diversity Authors are known to
generate multilingual texts on Twitter (Ling et al.,
2013, 2014), with Rijhwani et al. (2017) estimat-
ing that 3.5% of tweets are code-switched. To cap-
ture the potential diversity in multilingual docu-
ments, we perform data augmentation to synthet-
ically construct multilingual documents of tweet
length by (1) sampling texts for two languages
from arbitrary sources, (2) with 50% chance for
each, truncating a text at the first occurrence of
phrasal punctuation, and (3) concatenating the two
texts together and adding it to the dataset (if <
140 characters). We create only sentence-level
or phrase-level code-switching rather than word-
level switches to avoid classifier ambiguity for
loan words, which is known to be a significant
challenge (Cetinoglu et al., 2016).

'A manual analysis of 500 tweets confirmed that nearly
all cases (98.6%) where the classifier’s label differed from
the author’s inferred language were misclassifications.



Corpus Summary The geographically-diverse
corpus was constructed from two Twitter datasets:
1.3B tweets drawn from a 10% sample of all
tweets from March 2014 and 14.2M tweets drawn
from 1% sample of all geotagged tweets from
November 2016. Ultimately, we collected 97.8M
tweets from 1.5M users across 197 countries and
in 53 languages. After identifying monolingual
authors in the dataset, 9.4% of the instances
(9.1M) were labeled by CLD2 or langid.py with
a different language than that spoken by its au-
thor; since nearly all are misclassifications, we
view these posts as valuable data to correct sys-
tematic bias.

A total of 258M instances were collected for the
topically and socially-diverse corpora. Multilin-
gual instances were created by sampling text from
all language pairs; a total of 3.2M synthetic in-
stances were created. Full details are reported in
Supplementary Material.

3 Equitable LID Classifier

We introduce EQuILID, and evaluate it on mono-
lingual and multilingual tweet-length text.

Model Character-based neural network architec-
tures are particularly suitable for LID, as they
facilitate modeling nuanced orthographic and
phonological properties of languages (Jaech et al.,
2016; Samih et al., 2016), e.g., capturing regu-
lar morpheme occurrences within the words of a
language. Further, character-based methods sig-
nificantly reduce the model complexity compared
to word-based methods; the latter require sepa-
rate neural representations for each word form and
therefore are prohibitive in multilingual environ-
ments that easily contain tens of millions of unique
words. We use an encoder—decoder architecture
(Cho et al., 2014; Sutskever et al., 2014) with
an attention mechanism (Bahdanau et al., 2015).
The encoder and the decoder are 3-layer recurrent
neural networks with 512 gated recurrent units
(Chung et al., 2014). The model is trained to to-
kenize character sequence input based on white
space and output a sequence with each token’s
language, with extra token types for punctuation,
hashtags, and user mentions.

Setup The data from our socially-representative
corpus (§2) was split into training, development,
and test sets (80%/10%/10%, respectively), sepa-
rately partitioning the data from each source (e.g.,
Wikipedia). Due to different sizes, we imposed
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a maximum of 50K instances per source and lan-
guage to reduce training bias. A total 52.3M in-
stances were used for the final datasets. Multi-
lingual instances were generated from texts within
their respective split to prevent test-train leakage.
For the Twitter70 dataset, we use identical train-
ing, development, and test splits as Jaech et al.
(2016). The same trained model is used for all
evaluations. All parameter optimization was per-
formed on the development set using adadelta
(Zeiler, 2012) with mini-batches of size 64 to train
the models. The model was trained for 2.7M steps,
which is roughly three epochs.

Comparison Systems We compare against two
broad-coverage LID systems, langid.py (Lui and
Baldwin, 2012) and CLD2 (McCandless, 2010),
both of which have been widely used for Twit-
ter within in the NLP community. CLD2 is
trained on web page text, while langid.py was
trained on newswire, JRC-Acquis, web pages, and
Wikipedia. As neither was designed for Twitter,
we preprocess text to remove user mentions, hash-
tags, and URLs for a more fair comparison. For
multilingual documents, we substitute langid.py
(Lui and Baldwin, 2012) with its extension, Poly-
glot, described in Lui et al. (2014) and designed
for that particular task.

We also include the results reported in Jaech
et al. (2016), who trained separate models for two
benchmarks used here. Their architecture uses
a convolutional network to transform each input
word into a vector using its characters and then
feed the word vectors to an LSTM encoder that de-
codes to per-word soft-max distributions over lan-
guages. These word-language distributions are av-
eraged to identify the most-probable language for
the input text. In contrast, our architecture uses
only character-based representations and produces
per-token language assignments.

Benchmarks We test the monolingual setting
with three datasets: (1) the test portion of the
geographically-diverse corpus from §2, which
covers 53 languages (2) the test portion of the
Twitter70 dataset, which covers 70 languages and
(3) the TweetLID shared task (Zubiaga et al.,
2016), which covers 6 languages. The Tweet-
LID data includes Galician, which is not one of
the 70 languages we include due to its relative in-
frequency. Therefore, we report results only on
the non-Galician portions of the data. Multilin-
gual LID is tested using the test data portion of the



Geo.-Diverse Tweets Tweet 70 TweetLIDT Multilingual Tweets
System Macro-F1 Micro-F1 Macro-F1 Micro-F1 ~ Macro-F1 =~ Macro-F1  Micro-F1
langid.py® 0.234 0.960 0.378 0.769 0.580 0.302 0.240
CLD2 0.217 0.930 0.497 0.741 0.544 0.360 0.629
Jaech et al. (2016)* 0.912 0.787
EQUILID 0.598 0.982 0.920 0.905 0.796 0.886 0.853

Table 1: Results on the four benchmarks. ¥ results reported in Jaech et al. (2016) are separate models optimized for each
benchmark t excludes Galician. © For multilingual tweets, we use the extension to langid.py described in Lui et al. (2014).

synthetically-constructed multilingual data from
70 languages. Models are evaluated using macro-
averaged and micro-averaged F1. Macro-averaged
F1 denotes the average F1 for each language, in-
dependent of how many instances were seen for
that language. Micro-averaged F1 denotes the F1
measured from all instances and is sensitive to the
skew in the distribution of languages in the dataset.
Results EquILID attains state-of-the-art perfor-
mance over the other broad-coverage LID systems
on all benchmarks. We attribute this increase to
more representative training data; indeed, Jaech
et al. (2016) reported langid.py obtains a substan-
tially higher F1 of 0.879 when retrained only on
Twitter70 data, underscoring the fact that broad-
coverage systems are typically not trained on data
as linguistically diverse as seen in social media.
Despite being trained for general-purpose, EQui-
LID also outperformed the benchmark-optimized
models of Jaech et al. (2016).

In the multilingual setting, EQUILID substan-

tially outperforms both Polyglot and CLD2, with
over a 300% increase in Macro-F1 over the former.
Further, because our model can also identify the
spans in each language, we view its performance
as an important step towards an all-languages
solution for detecting sentence and phrase-level
switching between languages. Indeed, in the
Twitter70 dataset, EQUILID found roughly 5% of
the test data are unmarked instances of code-
switching, one of which is the third example in
Figure 1.
Error Analysis To identify main sources of clas-
sification errors, we manually analyzed the out-
puts of EQUILID on the test set of Twitter70. The
dataset contains 9,572 test instances, 90.5% of
which were classified correctly by our system; we
discuss below sources of errors in the remaining
909 misclassified instances.

Classification of closely related languages with
overlapping vocabularies written in a same script
is the biggest source of errors (374 misclassified
instances, 41.1% of all errors). Slavic languages
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are the most challenging, with 177 Bosnian and
65 Slovenian tweets classified as Croatian. This
is unsurprising, considering that even for a human
annotator this task is challenging (or impossible).
For example, a misclassified Bosnian tweet Socni
Cokoladni biskvit recept (“juicy chocolate biscuit
recipe”) would be the same in Croatian. Indo-
Iranian languages contribute 39 errors, with Ben-
gali, Marathi, Nepali, Punjabi, and Urdu tweets
classified as Hindi. Among Germanic languages,
Danish, Norwegian, and Swedish are frequently
confused, contributing 22 errors.

Another major source of errors is due to translit-
eration and code switching with English: 328 mes-
sages in Hindi, Urdu, Tagalog, Telugu, and Pun-
jabi were classified as English, contributing 36.1%
of errors. A Hindi-labeled tweet dost tha or ra-
hega ... dont wory ... but dherya rakhe (‘“he was
and will remain a friend ... don’t worry ... but
have faith™) is a characteristic example, misclas-
sified by our system as English. Reducing these
types of errors is currently difficult due to the lack
of transliterated examples for these languages.

4 Case Study: Health Monitoring

We conclude with a real-world case study on us-
ing Twitter posts as a real-time source of infor-
mation for tracking health and well-being trends
(Paul and Dredze, 2011; Achrekar et al., 2011;
Aramaki et al., 2011). This information is es-
pecially critical for regions where local authori-
ties may not have sufficient resources to identify
trends otherwise. Commonly, trend-tracking ap-
proaches first apply language identification to se-
lect language-specific content, and then apply so-
phisticated NLP techniques to identify content re-
lated to their target phenomena, e.g., distinguish-
ing a flu comment from a hangover-related one.
This setting is where socially-inclusive LID sys-
tems can make real, practical impact: LID systems
that effectively classify languages of underrepre-
sented dialects can substantially increase the re-



call of data for trend-tracking approaches, and thus
help reveal dangerous trends in infectious diseases
in the areas that need it most.

Language varieties are associated, among other
factors, with social class (Labov, 1964; Ash, 2002)
and ethnic identity (Rose, 2006; Mendoza-Denton,
1997; Dubois and Horvath, 1998). As a case
study, we evaluate the efficacy of LID systems in
identifying English tweets containing health lex-
icons, across regions with varying Human De-
velopment Index (HDI).> We compare EQUuILID
against langid.py and CLD2.

Setup A list of health-related terms was com-
piled from lexicons for influenza (Lamb et al.,
2013); psychological well-being (Smith et al.,
2016; Preotiuc-Pietro et al., 2015); and temporal
orientation lexica correlated with age, gender and
personality traits (Park et al., 2016). We incorpo-
rate the 100 highest-weighted alphanumeric terms
from each lexicon, for a total of 385 unique terms.

To analyze the possible effect of regional lan-
guage, we selected 25 countries with English-
speaking populations and constructed 62 bounding
boxes for major cities therein for study (listed in
Supplementary Material). Using the Gnip API, a
total of 984K tweets were collected during January
2016 which used at least one term and were au-
thored within one of the bounding boxes. As these
tweets are required to contain domain-specific
terms, the vast majority are English.> We there-
fore measure each system’s performance accord-
ing to what percent of these tweets they classify as
English, which estimates their Recall.

Results To understand how Human Development
Index relates to LID performance, we train a Logit
Regression to predict whether a tweet with one of
the target terms will be recognized as English ac-
cording to the HDI of the tweet’s origin country.
Figure 2 reveals increasing disparity in LID accu-
racy for developing countries by the two baseline
models. In contrast, EQUILID outperforms both
systems at all levels of HDI and provides 30%
more observations for countries with the lowest
development levels. This performance improve-
ment is increasingly critical in the global environ-
ment as more English text is generated from pop-
ulous developing countries such as Nigeria (HDI

2HDI is a composite of life expectancy, education, and
income per capita indicators, used to rank countries into tiers
of human development.

3A manual analysis of a random sample of 1000 tweets
showed that 99.4% were in English.
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Figure 2: Estimated recall of tweets with health-related
terms according to a logit regression on the Human Devel-
opment Index of the tweet’s origin country; bands show 95%
confidence interval.

0.527) and India (HDI 0.624), which have tens of
millions of anglophones each. EQUILID provides
a 23.9% and 17.4% improvement in recall of En-
glish tweets for each country, respectively. This
study corroborates our hypothesis that socially-
equitable training corpora are an essential first step
towards socially-equitable NLP.

5 Conclusion

Globally-spoken languages often vary in how they
are spoken according to regional dialects, topics,
or sociolinguistic factors. However, most LID sys-
tems are not designed and trained for this linguis-
tic diversity, which has downstream consequences
for what types of text are considered a part of the
language. In this work, we introduce a socially-
equitable LID system, EQuUILID, built by (1) cre-
ating a dataset representative of the types of di-
versity within languages and (2) explicitly mod-
eling multilingual and codes-switched communi-
cation for arbitrary language pairs. We demon-
strate that EQuILID significantly outperforms cur-
rent broad-coverage LID systems and, in a real-
world case study on tracking health-related con-
tent, show that EQuILID substantially reduces the
LID performance disparity between developing
and developed countries. Our work continues a
recent emphasis on NLP for social good by en-
suring NLP tools fully represent all people. The
EQUILID system is publicly available at https:
//github.com/davidjurgens/equilid and data
is available upon request.
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Abstract

Traditionally, compound splitters are eval-
vated intrinsically on gold-standard data
or extrinsically on the task of statistical
machine translation. We explore a novel
way for the extrinsic evaluation of com-
pound splitters, namely recognizing tex-
tual entailment. Compound splitting has
great potential for this novel task that is
both transparent and well-defined. More-
over, we show that it addresses certain as-
pects that are either ignored in intrinsic
evaluations or compensated for by task-
internal mechanisms in statistical machine
translation. We show significant improve-
ments using different compound splitting
methods on a German textual entailment
dataset.

1 Introduction

Closed compounding, i.e., the formation of a one-
word unit composing several lexemes, is a com-
mon linguistic phenomenon in several languages
such as German, Dutch, Greek, and Finnish. The
goal of compound splitting is to obtain the con-
stituents of a compound to increase its semantic
transparency. For example, for the German com-
pound Apfelsaft ‘apple; juices’ the desired output
of a compound splitter is Apfely, Safts.

Intrinsic evaluation of compound splitting mea-
sures the correctness of the determined split point
(Riedl and Biemann, 2016) and the resulting lem-
mas by means of precision, recall, Fi-score and
accuracy (e.g., Koehn and Knight (2003)). In ex-
trinsic evaluation setups, compound splitting is
applied to the input data of an external natural lan-
guage processing (NLP) task that benefits from
split compounds. As closed compounding intro-
duces semantic opaqueness and vastly increases
the vocabulary size of a language, many NLP tasks
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benefit from compound splitters. Still, previous
work that evaluates compound splitting with ex-
trinsic evaluation methods mostly focuses on sta-
tistical machine translation (SMT) (e.g., Nieflen
and Ney (2000), Koehn and Knight (2003)).
Some other external tasks such as information re-
trieval (Kraaij and Pohlmann, 1998) or speech
recognition (Larson et al., 2000) have been shown
to benefit from prior compound splitting, yet these
works have not compared the extrinsic perfor-
mance of different compound splitting methods.

Interestingly, the performance found in in-
trinsic evaluations does not automatically propa-
gate to performance in downstream evaluations as
shown in (Fritzinger and Fraser, 2010) for SMT,
where oversplit compounds are simply learned as
phrases (Dyer, 2009; Weller et al., 2014). Over-
splitting is an example of a feature that might
not be measured in intrinsic evaluations, because
some available gold standards contain positive ex-
amples only (Ziering and van der Plas, 2016). It
is highly relevant to increase the number of extrin-
sic tasks for the evaluation of compound splitting
to be able to evaluate features that intrinsic evalu-
ations and known extrinsic evaluations ignore.

In this paper we investigate the suitability of
Recognizing Textual Entailment (RTE) for the
task of compound splitting, inspired by the fact
that previous work in RTE underlined the potential
benefits of compound splitting for this task (Zeller,
2016). Textual Entailment (TE) is a directional
relationship between an entailing text fragment
T and an entailed hypothesis, H, saying that the
meaning of T entails (or implies) the meaning of
H. This relation holds if ‘typically, a human, read-
ing T, would infer that H is most likely true’ (Da-
gan et al., 2006). The following is an example of
an entailing T-H pair:

T: Yoko Ono unveiled a bronze statue of her
late husband, John Lennon.
H: Yoko Ono is John Lennon’s widow.
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We opted for exploring the use of RTE as an ex-
trinsic evaluation for compound splitting for three
main reasons: first, in contrast to SMT systems,
most RTE systems are less complex. In fact, we
deliberately chose an RTE system that reaches
good performance with a method that is transpar-
ent, i.e., a method that allows for exploring the ef-
fect of compounding.! It is not our goal to reach
state-of-the-art performance for the RTE task. We
aim to find a suitable alternative extrinsic eval-
uation for compound splitting. Second, human
agreement on the binary RTE decisions is very
high, e.g., on the dataset used in our experiments,
an average agreement rate of 87.8% with a x level
of 0.75 was reported (Giampiccolo et al., 2007).
Third, the potential benefits for RTE are large.
According to Zeller (2016, p. 182) the number
of T/H pairs in their phenomenon-specific RTE
dataset would rise by about 16 percentage points
by compound splitting. In the dataset we use in
our experiments, about three-quarters of the T-H
pairs contain at least one closed compound.

2 Relevance of Compound Splitting for
RTE

The approach to RTE taken in this paper fol-
lows the Lexical Overlap Hypothesis (LOH),
which states that the higher the number of lex-
ical matches between T and H, the more likely
the T-H pair is entailing rather than non-entailing
(Zeller, 2016). In other words, H is more likely
to be entailed by T if most of its lexical content
also occurs in T. While this hypothesis is a simpli-
fication of the TE problem, it has been shown to
perform reasonably well for some datasets (Noh
et al., 2015). We argue that the brittleness of the
chosen LOH-based RTE system may actually be a
strength in terms of evaluation, since it will penal-
ize oversplitting more severely than, e.g., an RNN-
based RTE system or a phrase-based MT method
that can recover from systematic oversplitting by
chunking the splits.

Under the LOH, the problem caused by the
opacity of closed compounds becomes evident. As
shown in the example below, missing informa-
tion on the constituents of closed compounds hin-
ders the matching of words from T in H1. Con-
versely, compound splitting also helps to detect

'We did not opt for neural RTE systems (Bowman et al.,
2015), albeit state-of-the-art, in this first study because of the

opacity of the models and the inclusion of phrase-level infor-
mation, which will make interpretation of the effect harder.
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non-entailing T-H pairs. By compound splitting,
we increase the number of uncovered tokens in
H2, which makes a non-entailment decision more
likely?.

T: Kinder lieben Fruchtséfte; aus Apfelng ‘Chil-
dren love fruit juices1 made of appless’

H1: Peters Sohn liebt Apfelssaft; ‘Peter’s son

loves apples; juice,’

H2: Peters Sohn liebt Apfelskuchengstiicke;

‘Peter’s son loves pieces; of apple; pieg’

3 Materials and Methods

In this section we explain the splitters and the RTE
framework used in our experiments.

3.1 Inspected Compound Splitters

Our proposed extrinsic evaluation approach for
compound splitting is language-independent as
we do not use any language-specific parameters.
However, in the present work we test it on the
most prominent closed-compounding language,
German (Ziering and van der Plas, 2014). We in-
spect the impact of three different types of auto-
matic compound splitting® methods that follow a
generate-and-rank principle, where the candidate
splits are ranked according to the geometric mean
of the constituents’ frequencies in a given training
corpus (Koehn and Knight, 2003).

FF2010 The compound splitter by Fritzinger
and Fraser (2010) relies on the output of the
German morphological analyzer SMOR (Schmid
et al.,, 2004) to generate several plausible com-
pound splits (e.g., due to word sense ambiguity).

WH2012 As an alternative method, we use
the statistical approach presented in Weller and
Heid (2012) for German compound splitting. In-
stead of using the knowledge-rich SMOR, it in-
cludes an extensive list of hand-crafted transfor-
mation rules that allows to map constituents to
corpus lemmas (e.g., by truncating linking mor-
phemes) to generate all possible splits with up to
four constituents per compound. Moreover, mis-
leading lemmas are removed from the training cor-
pus using hand-crafted filters.

Note that we need to apply lemmatization prior to deter-
mining the lexical matches between T and H.

3The compound splitters are designed to split com-
pounds with any content word as head, i.e., noun compounds
(Hunde|hiitte ‘doghouse’), verb compounds (eis|laufen ‘to
ice-skate’) and adjective compounds (hunde|miide ‘dog-

tired’) and disregard constructions with a functional modifier
(as in the particle verb auf|stehen ‘to stand up’).



System Ace Entailment Non-entailment

P | R | F P | R | F
INIT | 64.13 | 62.50 | 74.57 | 68.00 | 66.67 | 53.20 | 59.18
manual splitting » || 67.88 | 65.08 | 80.20 | 71.85 | 72.64 | 54.99 | 62.59
ZvdP2016 66.63 | 64.55 | 77.02 [ 70.23 | 69.87 | 55.75 [ 62.02
FF2010 67.38 | 65.48 | 76.53 | 70.58 | 70.19 | 57.80 | 63.39
WH2012 66.00 | 63.73 | 77.75 | 70.04 | 69.77 | 53.71 | 60.69

Table 1: Results on RTE performance without (INIT) and with prior compound splitting. : significant
difference of the performance in comparison to INIT

ZvdP2016 Finally, the method using least
language-specific knowledge was proposed by
Ziering and van der Plas (2016). Instead of us-
ing a morphological analyzer or manually com-
piling a hand-crafted list of rules, they recursively
generate all possible binary splits by learning con-
stituent transformations from regular inflection de-
rived from a monolingual lemmatized corpus, e.g.,
the s-suffix in the case of a genitive marker is often
used as linking morpheme. The recursion stops if
a non-splitting (atomic) analysis is ranked highest.

Additionally, to provide an upper bound, we
manually split development and test data.

3.2 RTE Framework

We conduct our RTE experiments using the open-
source Excitement Open Platform (EOP) (Padé
et al., 2015; Magnini et al., 2014), which provides
comprehensive implementations of algorithms and
lexical resources for textual inference. We use
the alignment-based algorithm P1IEDA (Noh et al.,
2015) in all our experiments as it has been shown
to be simple and transparent while yielding rela-
tively good results. P1IEDA is based on the LOH
for RTE explained in Section 2. The algorithm
works in three steps: First, it extracts all possible
alignments between sequences of identical lem-
mas in T and H. Then, it extracts various fea-
tures* from the alignments. Finally, these fea-
tures are given as input to a multinomial logis-
tic regression classifier which is trained on anno-
tated data. For the sake of simplicity, for now
we only use one basic aligner which aligns (se-
quences of) words in T and H that consist of iden-
tical lemmas. We will investigate the impact of
prior compound splitting given additional lexical
resources (such as a derivational morphology lex-

“We use a similar feature set as Noh et al. (2015), namely
the ratio of aligned vs. unaligned words in H with respect to
all words, content words, and named entities.
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icon (Zeller et al., 2013)) in future work. We use
TreeTagger (Schmid, 1995) as integrated in EOP
to provide tokenization, lemmatization and Part-
of-Speech tagging as linguistic preprocessing.

We train and evaluate all models on the Ger-
man translation of the RTE-3 dataset (Dagan et al.,
2006; Magnini et al., 2014). The training and test
dataset contain 800 T-H pairs each. In both sets,
entailing and non-entailing T-H pairs are equally
distributed (chance baseline of 50% accuracy).

We apply a compound splitter on the RTE train-
ing and test dataset before we input the data to the
EOP pipeline. We replace all compounds by their
constituents, separated by white-space. Thus, they
are subsequently treated as individual words by
EOP and the lexical aligner can benefit from the
increased transparency of the compounds.

4 Results and Discussion

Table 1 shows accuracy, precision, recall and F;-
score for the entailment and non-entailment class
on the RTE-3 dataset. As reflected in the results,
reducing the opacity of compounds via the appli-
cation of a compound splitter improves the subse-
quent RTE performance. This holds for all com-
pound splitters that we used in our experiments.
It is also noticeable that the different compound
splitters yield different results in the downstream
task, with FF2010 being the most beneficial and
significantly® outperforming the initial RTE setup
without prior compound splitting (INIT) by up to
four percentage points in accuracy and F;-score.
As expected, manual splitting performs best
overall. The performance difference with FF2010
is however not statistically significant. This is not
surprising because FF2010 reaches an accuracy
of around 90% in intrinsic evaluations (Ziering
and van der Plas, 2016) and the small underperfor-

SMcNemar test (McNemar, 1947), p < 0.05



mance is leveled out by the small size of the test
set. Moreover, manual inspections revealed that
FF2010 has a higher recall than manual splitting
in the non-entailment class due to its undersplit-
ting which results in less lexical overlap between
T and H, pointing to the non-entailment class.

When we compare these results from the ex-
trinsic evaluation with intrinsic evaluation results
(in terms of splitting accuracy) reported in Zier-
ing and van der Plas (2016), we see the same per-
formance ordering with respect to the three com-
pound splitters, while the current extrinsic evalua-
tion on RTE differentiates between the best system
(FF2010) and the two others in that only the for-
mer reached statistically significant improvements
over the INIT baseline.

To analyze the possible causes of difference
in performance between the systems and to see
the benefits of using RTE for compound splitting
evaluation we performed a manual error analysis.
First, we examined all entailment classifications
that were correct using FF2010 and incorrect when
using the INIT baseline. Using FF2010, the classi-
fier was able to correctly classify an additional 36
entailing and 25 non-entailing T-H pairs. As ex-
pected, most of the hypotheses in these pairs con-
tained correctly split compounds where the RTE
system could benefit from the increased trans-
parency. Conversely, we also examined the 28 T-H
pairs that the classifier missed to identify as entail-
ing while they were correct in INIT. Most of the
examples were cases in which there was almost no
lexical overlap between T and H even with com-
pound splitting.

Furthermore, we compared the correct entail-
ment classifications of FF2010 with the other two
splitters. For ZvdP2016, most errors can be at-
tributed to oversplitting. Precisely, 25 out of its 37
(67.5%) misclassifications compared to FF2010
can be attributed to this problem. For exam-
ple, ZvdP2016 oversplit the name Landowska into
Line Dow Ska® that appeared in both T and H in
an non-entailing pair, which artificially increased
the coverage ratio of words in H and therefore
pointed to the incorrect entailment classification.
For WH2012, oversplitting is also a major con-
tributor of RTE errors, however it appeares not as
predominant as for ZvdP2016. 10 out of its 29
(34.5%) misclassifications compared to FF2010

6Misleading knowledge about verbal inflection automati-

cally derived from a lemmatized corpus is responsible for the
oversplitting by ZvdP2016.
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can be attributed to oversplitting, while 4 (13.8%)
missclassifications are due to undersplitting. For
example, in an entailing T-H pair WH2012 cor-
rectly split Amazonas-Regenwald ‘Amazon rain-
forest’ in H into Amazonas Regen Wald, however it
oversplit Amazonas in T into Amazon As ‘Amazon
ace’ and thus, Amazonas in H remained unaligned.
To the contrary, FF2010 did not split Amazonas in
T, which lead to a higher token coverage ratio in H.
Again, in the H Die EU senkt die Fangquoten ‘The
EU lowers the fishing quota’ of another entailing
T-H pair, WH2010 correctly split Fang,quotens
“fishing quota’ in H into fangen; Quotes but failed
to split EU-Quote in T, failing to cover both EU
and Quote in H.

Our closer inspections also showed that com-
pound splitting does not always suffice to reveal
a lexical match between T and H as shown in the
following example:

T: Ben fahrt; einen Mercedesy ‘Ben drives| a
Mercedess’

H: Ben ist Autosfahrer, ‘Ben is a cars driver,’

Given a correct splitting of Autofahrer to
Auto Fahrer, a derivational morphology resource
(Zeller et al., 2013) would be required to discover
the relationship between fahren and Fahrer and a
synonym database to find that Mercedes is a hy-
ponym of Auto. This does not weaken the claim
that RTE is useful for evaluating compound split-
ters. It just shows that deeper, semantic compound
analysis could improve RTE further.

Besides, the error analysis shed some light on
the treatment of compound heads and modifiers. It
seems advisable to weight the compound head and
modifiers differently when computing the ratio of
aligned tokens in H. As illustrated by the follow-
ing example, coverage of the head should be more
important for the entailment decision than of the
modifiers. Given a correct split of Kinderibuchs
into Kind, Bucho, H1 and H2 have the same token
coverage ratio while only H1 is entailed by T.

T: Yuki kauft ein Kinder,buchy ‘Yuki buys a
children’s, booky’

H1: Yuki kauft ein Buch ‘Yuki buys a book’

H2: Yuki ist ein Kind “Yuki is a child’

It should be noted that the transparency gain us-
ing compound splitting is limited to closed com-
pounds that are compositional with respect to at
least one constituent. Splitting compounds in



H that are fairly non-compositional with respect
to all constituents (e.g., Maulwurf ‘mole’ (lit.
‘mouth throw’)) is counterproductive. However,
since most compounds (in particular ad-hoc pro-
ductions) are compositional, this is only a side is-
sue. In fact, we did not observe any cases of non-
compositional compounds in the course of our er-
ror analysis.

In summary, compound splitting is a complex
task that comprises many subtasks. The multiple
evaluation methods available, both intrinsic and
extrinsic, vary in their suitability to evaluate them.
One of these subtasks concerns the ability of com-
pound splitters to determine whether to split or
not, which is an integral part of compound anal-
ysis. While aspects such as oversplitting were not
consistently evaluated in previous intrinsic evalu-
ations, or compensated for by task-internal mech-
anisms in SMT, RTE proved more strict in this re-
spect. Moreover, the transparency of the models
made it possible to better estimate the impact of
splitting. Despite the small size of the dataset, we
were able to show significant differences, partly
due to the clear definition of this binary classifica-
tion task.

On a side note, to the best of our knowledge,
the result we obtained using the FF2010 com-
pound splitter is the best result on the German
RTE-3 dataset that has been reported using EOP.
Notably, we obtain an accuracy which is almost
three percentage points higher than the results of
Noh et al. (2015), although they include further
(language-specific) linguistic knowledge.

5 Conclusion

Inspired by the potential benefits of compound
splitting from the RTE literature and supported by
the transparency of the models and the clear defi-
nition of this binary classification task, we set out
to explore whether RTE is a suitable method to ex-
trinsically evaluate the performance of compound
splitting. We compared several compound split-
ters on a German textual entailment dataset and
found that compound splitting is helpful for RTE
across the board. More importantly, we found that
certain aspects of compound splitters, neglected in
previous evaluations, such as oversplitting, had a
large impact on this task and nicely differentiated
the systems tested. We conclude that RTE repre-
sents a suitable alternative to SMT for the extrinsic
evaluation of compound splitters.
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In future work, we would like to investigate the
interaction between additional lexical resources
(such as GermaNet (Hamp and Feldweg, 1997;
Henrich and Hinrichs, 2010) or DErivBase (Zeller
et al., 2013)) and compound splitting, and the im-
pact on the RTE performance.
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Abstract

A large amount of recent research has
focused on tasks that combine language
and vision, resulting in a proliferation of
datasets and methods. One such task
is action recognition, whose applications
include image annotation, scene under-
standing and image retrieval. In this
survey, we categorize the existing ap-
proaches based on how they conceptualize
this problem and provide a detailed review
of existing datasets, highlighting their di-
versity as well as advantages and disad-
vantages. We focus on recently devel-
oped datasets which link visual informa-
tion with linguistic resources and provide
a fine-grained syntactic and semantic anal-
ysis of actions in images.

1 Introduction

Action recognition is the task of identifying the
action being depicted in a video or still image.
The task is useful for a range of applications such
as generating descriptions, image/video retrieval,
surveillance, and human—computer interaction. It
has been widely studied in computer vision, of-
ten on videos (Nagel, 1994; Forsyth et al., 2005),
where motion and temporal information provide
cues for recognizing actions (Taylor et al., 2010).
However, many actions are recognizable from still
images, see the examples in Figure 1. Due to the
absence of motion cues and temporal features (Ik-
izler et al., 2008) action recognition from stills is
more challenging. Most of the existing work can
be categorized into four tasks: (a) action classi-
fication (AC); (b) determining human—object in-
teraction (HOI); (c) visual verb sense disambigua-
tion (VSD); and (d) visual semantic role labeling
(VSRL). In Figure 2 we illustrate each of these
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playing guitar

riding horse running jumping

Figure 1: Examples of actions in still images

tasks and show how they are related to each other.

Until recently, action recognition was studied as
action classification on small-scale datasets with a
limited number of predefined actions labels (Iki-
zler et al., 2008; Gupta et al., 2009; Yao and Fei-
Fei, 2010; Everingham et al., 2010; Yao et al.,
2011). Often the labels in action classification
tasks are verb phrases or a combination of verb
and object such as playing baseball, riding horse.
These datasets have helped in building models and
understanding which aspects of an image are im-
portant for classifying actions, but most methods
are not scalable to larger numbers of actions (Ra-
manathan et al., 2015). Action classification mod-
els are trained on images annotated with mutually
exclusive labels, i.e., the assumption is that only
a single label is relevant for a given image. This
ignores the fact that actions such as holding bicy-
cle and riding bicycle can co-occur in the same
image. To address these issues and also to under-
stand the range of possible interactions between
humans and objects, the human—object interaction
(HOI) detection task has been proposed, in which
all possible interactions between a human and a
given object have to be identified (Le et al., 2014;
Chao et al., 2015; Lu et al., 2016).

However, both action classification and HOI de-
tection do not consider the ambiguity that arises
when verbs are used as labels, e.g., the verb play
has multiple meanings in different contexts. On
the other hand, action labels consisting of verb-
object pairs can miss important generalizations:
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Figure 2: Categorization of action recognition
tasks in images

riding horse and riding elephant both instanti-
ate the same verb semantics, i.e., riding animal.
Thirdly, existing action labels miss generaliza-
tions across verbs, e.g., the fact that fixing bike
and repairing bike are semantically equivalent, in
spite of the use of different verbs. These observa-
tions have led authors to argue that actions should
be analyzed at the level of verb senses. Gella
et al. (2016) propose the new task of visual verb
sense disambiguation (VSD), in which a verb—
image pair is annotated with a verb sense taken
from an existing lexical database (OntoNotes in
this case). While VSD handles distinction be-
tween different verb senses, it does not identify or
localize the objects that participate in the action
denoted by the verb. Recent work (Gupta and Ma-
lik, 2015; Yatskar et al., 2016) has filled this gap
by proposing the task of visual semantic role la-
beling (VSRL), in which images are labeled with
verb frames, and the objects that fill the semantic
roles of the frame are identified in the image.

In this paper, we provide a unified view of ac-
tion recognition tasks, pointing out their strengths
and weaknesses. We survey existing literature and
provide insights into existing datasets and models
for action recognition tasks.

2 Datasets for Action Recognition

We give an overview of commonly used datasets
for action recognition tasks in Table 1 and group
them according to subtask. We observe that the
number of verbs covered in these datasets is often
smaller than the number of action labels reported
(see Table 1, columns #V and #L) and in many
cases the action label involves object reference. A
few of the first action recognition datasets such
as the Ikizler and Willow datasets (Ikizler et al.,
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2008; Delaitre et al., 2010) had action labels such
as throwing and running; they were taken from
the sports domain and exhibited diversity in cam-
era view point, background and resolution. Then
datasets were created to capture variation in hu-
man poses in the sports domain for actions such
as tennis serve and cricket bowling; typically fea-
tures based on poses and body parts were used to
build models (Gupta et al., 2009). Further datasets
were created based on the intuition that object
information helps in modeling action recognition
(Li and Fei-Fei, 2007; Ikizler-Cinbis and Sclaroff,
2010), which resulted in the use of action labels
such as riding horse or riding bike (Everingham
et al., 2010; Yao et al., 2011). Not only were most
of these datasets domain specific, but the labels
were also manually selected and mutually exclu-
sive, i.e., two actions cannot co-occur in the same
image. Also, most of these datasets do not localize
objects or identify their semantic roles.

2.1 Identifying Visual Verbs and Verb Senses

The limitations with early datasets (small scale,
domain specificity, and the use of ad-hoc labels
that combine verb and object) have been recently
addressed in a number of broad-coverage datasets
that offer linguistically motivated labels. Of-
ten these datasets use existing linguistic resources
such as VerbNet (Schuler, 2005), OntoNotes
(Hovy et al., 2006) and FrameNet (Baker et al.,
1998) to classify verbs and their senses. This al-
lows for a more general, semantically motivated
treatment of verbs and verb phrases, and also takes
into account that not all verbs are depictable. For
example, abstract verbs such as presuming and ac-
quiring are not depictable at all, while other verbs
have both depictable and non-depictable senses:
play is non-depictable in playing with emotions,
but depictable in playing instrument and play-
ing sport. The process of identifying depictable
verbs or verb senses is used by Ronchi and Perona
(2015), Gellaet al. (2016) and Yatskar et al. (2016)
to identify visual verbs, visual verb senses, and the
semantic roles of the participating objects respec-
tively. In all the cases the process of identifying
visual verbs or senses is carried out by human an-
notators via crowd-sourcing platforms. Visualness
labels for 935 OntoNotes verb senses correspond-
ing to 154 verbs is provided by Gella et al. (2016),
while Yatskar et al. (2016) provides visualness la-
bels for 9683 FrameNet verbs.



Dataset Task #L #V Obj Imgs Sen Des Cln ML Resource Example Labels
Ikizler (Ikizler et al., 2008) AC 6 6 0 467 N N Y N — running, walking
Sports Dataset (Gupta et al., 2009) AC 6 6 4 300 N N YN — tennis serve, cricket bowling
Willow (Delaitre et al., 2010) AC 7 6 5 986 N N Y Y - riding bike, photographing
PPMI (Yao and Fei-Fei, 2010) AC 24 2 12 48 N N Y N - play guitar, hold violin
Stanford 40 Actions (Yao et al., 2011) AC 40 33 31 95k N N Y N -— cut vegetables, ride horse
PASCAL 2012 (Everingham et al., 2015) AC 11 9 6 45k N N Y Y — riding bike, riding horse
89 Actions (Le et al., 2013) AC 89 36 19 2k N N Y N — ride bike, fix bike
MPII Human Pose (Andriluka et al., 2014) AC 410 — 66405k N N Y N - riding car, hair styling
TUHOI (Le et al., 2014) HOI 2974 — 189108k N N Y Y — sit on chair, play with dog
COCO-a (Ronchi and Perona, 2015) HOI — 140 80 10k N Y Y Y VerbNet walk bike, hold bike
Google Images (Ramanathan et al., 2015)  AC 2880 — — 102k N N N N - riding horse, riding camel
HICO (Chao et al., 2015) HOI 600111 80 47k Y N Y Y WordNet ride#v#1 bike; hold#v#2 bike
VCOCO-SRL (Gupta and Malik, 2015) VSRL — 26 48 10k N Y Y Y — verb: hit; instr: bat; obj: ball
imSitu (Yatskar et al., 2016) VSRL —504 11k 126k Y N Y N FrameNet verb: ride; agent: girl#n#2

WordNet vehicle: bike#n#l;

place: road#n#2

VerSe (Gella et al., 2016) VSD 163 90 — 35k Y Y Y N OntoNotes ride.v.01, play.v.02
Visual Genome (Krishna et al., 2016) VRD423k —338k 108k N N Y Y — man playing frisbee

Table 1: Comparison of various existing action recognition datasets. #L. denotes number of action labels
in the dataset; #V denotes number of verbs covered in the dataset; Obj indicates number of objects
annotated; Sen indicates whether sense ambiguity is explicitly handled; Des indicates whether image
descriptions are included; Cln indicates whether dataset is manually verified; ML indicates the possibility
of multiple labels per image; Resource indicates linguistic resource used to label actions.

2.2 Datasets Beyond Action Classification

Over the last few years tasks that combine lan-
guage and vision such as image description and
visual question answering have gained much at-
tention. This has led to the creation of new, large
datasets such as MSCOCO (Chen et al., 2015) and
the VQA dataset (Antol et al., 2015). Although
these datasets are not created for action recogni-
tion, a number of attempts have been made to use
the verbs present in image descriptions to annotate
actions. The COCO-a, VerSe and VCOCO-SRL
datasets all use the MSCOCO image descriptions
to annotate fine-grained aspects of interaction and
semantic roles.

HICO: The HICO dataset has 47.8k images an-
notated with 600 categories of human-object in-
teractions with 111 verbs applying to 80 object
categories of MSCOCO. It is annotated to include
diverse interactions for objects and has an aver-
age of 6.5 distinct interactions per object category.
Unlike other HOI datasets such as TUHOI which
label interactions as verbs and ignore senses, the
HOI categories of HICO are based on WordNet
(Miller, 1995) verb senses. The HICO dataset also
has multiple annotations per object and it incorpo-
rates the information that certain interactions such
as riding a bike and holding a bike often co-occur.
However, it fails to include annotations to distin-
guish between multiple senses of a verb.

Visual Genome: The dataset created by Krishna
et al. (2016) has dense annotations of objects, at-
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tributes, and relationships between objects. The
Visual Genome dataset contains 105k images with
40k unique relationships between objects. Unlike
other HOI datasets such as HICO, visual genome
relationships also include prepositions, compara-
tive and prepositional phrases such as near and
taller than, making the visual relationship task
more generic than action recognition. Krishna
et al. (2016) combine all the annotations of ob-
jects, relationships, and attributes into directed
graphs known as scene graphs.

COCO-a: Ronchi and Perona (2015) present
Visual VerbNet (VVN), a list of 140 common vi-
sual verbs manually mined from English VerbNet
(Schuler, 2005). The coverage of visual verbs
in this dataset is not complete, as many visual
verbs such as dive, perform and shoot are not in-
cluded. This also highlights a bias in this dataset
as the authors relied on occurrence in MSCOCO
as a verification step to consider a verb as vi-
sual. They annotated 10k images containing hu-
man subjects with one of the 140 visual verbs, for
80 MSCOCO objects. This dataset has better cov-
erage of human-object interactions than the HICO
dataset despite of missing many visual verbs.

VerSe: Gella et al. (2016) created a dataset of
3.5k images sampled from the MSCOCO and
TUHOI datasets and annotated it with 90 verbs
and their OntoNotes senses to distinguish differ-
ent verb senses using visual context. This is the
first dataset that aims to annotate all visual senses



of a verb. However, the total number of images
annotated and number of images for some senses
is relatively small, which makes it difficult to use
this dataset to train models. The authors further
divided their 90 verbs into motion and non-motion
verbs according to Levin (1993) verb classes and
analyzed visual ambiguity in the task of visual
sense disambiguation.

VCOCO-SRL: Gupta and Malik (2015) anno-
tated a dataset of 16k person instances in 10k im-
ages with 26 verbs and associated objects in the
scene with the semantic roles for each action. The
main aim of the dataset is to build models for vi-
sual semantic role labeling in images. This task
involves identifying the actions depicted in an im-
age, along with the people and objects that in-
stantiate the semantic roles of the actions. In the
VCOCO-SRL dataset, each person instance is an-
notated with a mean of 2.8 actions simultaneously.

imSitu: Yatskar et al. (2016) annotated a large
dataset of 125k images with 504 verbs, 1.7k se-
mantic roles and 11k objects. They used FrameNet
verbs, frames and associated objects or scenes
with roles to develop the dataset. They annotate
every image with a single verb and the semantic
roles of the objects present in the image. VCOCO-
SRL the is dataset most similar to imSitu, however
VCOCO-SRL includes localization information of
agents and all objects and provides multiple action
annotations per image. On the other hand, imSitu
is the dataset that covers highest number of verbs,
while also omitting many commonly studied poly-
semous verbs such as play.

2.3 Diversity in Datasets

With the exception of a few datasets such as
COCO-a, VerSe, imSitu all action recognition
datasets have manually picked labels or focus
on covering actions in specific domains such as
sports. Alternatively, many datasets only cover
actions relevant to specific object categories such
as musical instruments, animals and vehicles. In
the real world, people interact with many more
objects and perform actions relevant to a wide
range of domains such as personal care, house-
hold activities, or socializing. This limits the di-
versity and coverage of existing action recogni-
tion datasets. Recently proposed datasets partly
handle this issue by using generic linguistic re-
sources to extend the vocabulary of verbs in ac-
tion labels. The diversity issue has also been high-
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lighted and addressed in recent video action recog-
nition datasets (Caba Heilbron et al., 2015; Sig-
urdsson et al., 2016), which include generic house-
hold activities. An analysis of various image de-
scription and question answering datasets by Fer-
raro et al. (2015) shows the bias in the distribution
of word categories. Image description datasets
have a higher distribution of nouns compared to
other word categories, indicating that the descrip-
tions are object specific, limiting their usefulness
for action-based tasks.

3 Relevant Language and Vision Tasks

Template based description generation systems
for both videos and images rely on identifying
subject—verb—object triples and use language mod-
eling to generate or rank descriptions (Yang et al.,
2011; Thomason et al., 2014; Bernardi et al.,
2016). Understanding actions also plays an impor-
tant role in question answering, especially when
the question is pertaining to an action depicted in
the image. There are some specifically curated
question answering datasets which target human
activities or relationships between a pair of objects
(Yu et al., 2015). Mallya and Lazebnik (2016)
have shown that systems trained on action recog-
nition datasets could be used to improve the ac-
curacy of visual question answering systems that
handle questions related to human activity and
human-object relationships. Action recognition
datasets could be used to learn actions that are vi-
sually similar such as interacting with panda and
feeding a panda or tickling a baby and calming
a baby, which cannot be learned from text alone
(Ramanathan et al., 2015). Visual semantic role
labeling is a crucial step for grounding actions in
the physical world (Yang et al., 2016).

4 Action Recognition Models

Most of the models proposed for action classifi-
cation and human-object interaction tasks rely on
identifying higher-level visual cues present in the
image, including human bodies or body parts (Ik-
izler et al., 2008; Gupta et al., 2009; Yao et al.,
2011; Andriluka et al., 2014), objects (Gupta et al.,
2009), and scenes (Li and Fei-Fei, 2007). Higher-
level visual cues are obtained through low-level
features extracted from the image such as Scale In-
variant Feature Transforms (SIFT), Histogram of
Oriented Gradients (HOG), and Spatial Envelopes
(Gist) features (Lowe, 1999; Dalal and Triggs,



2005). These are useful in identifying key points,
detecting humans, and scene or background infor-
mation in images, respectively. In addition to iden-
tifying humans and objects, the relative position
or angle between a human and an object is useful
in learning human—object interactions (Le et al.,
2014). Most of the existing approaches rely on
learning supervised classifiers over low-level fea-
tures to predict action labels.

More recent approaches are based on end-to-
end convolutional neural network architectures
which learn visual cues such as objects and im-
age features for action recognition (Chao et al.,
2015; Zhou et al., 2016; Mallya and Lazebnik,
2016). While most of the action classification
models rely solely on visual information, mod-
els proposed for human—object interaction or vi-
sual relationship detection sometimes combine hu-
man and object identification (using visual fea-
tures) with linguistic knowledge (Le et al., 2014;
Krishna et al., 2016; Lu et al., 2016). Other work
on identifying actions, especially methods that fo-
cus on relationships that are infrequent or unseen,
utilize word vectors learned on large text corpora
as an additional source of information (Lu et al.,
2016). Similarly, Gella et al. (2016) show that em-
beddings generated from textual data associated
with images (object labels, image descriptions) is
useful for visual verb sense disambiguation, and is
complementary to visual information.

5 Discussion

Linguistic resources such as WordNet, OntoNotes,
and FrameNet play a key role in textual sense
disambiguation and semantic role labeling. The
visual action disambiguation and visual semantic
role labeling tasks are extensions of their textual
counterparts, where context is provided as an im-
age instead of as text. Linguistic resources there-
fore have to play a key role if we are to make
rapid progress in these language and vision tasks.
However, as we have shown in this paper, only a
few of the existing datasets for action recognition
and related tasks are based on linguistic resources
(Chaoet al., 2015; Gella et al., 2016; Yatskar et al.,
2016). This is despite the fact that the WordNet
noun hierarchy (for example) has played an impor-
tant role in recent progress in object recognition,
by virtue of underlying the ImageNet database, the
de-facto standard for this task (Russakovsky et al.,
2015). The success of ImageNet for objects has
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in turn helped NLP tasks such as bilingual lexi-
con induction (Vuli¢ et al., 2016). In our view,
language and vision datasets that are based on the
WordNet, OntoNotes, or FrameNet verb sense in-
ventories can play a similar role for tasks such as
action recognition or visual semantic role labeling,
and ultimately be useful also for more distantly re-
lated tasks such as language grounding.

Another argument for linking language and vi-
sion datasets with linguistic resources is that this
enables us to deploy the datasets in a multilingual
setting. For example a polysemous verb such as
ride in English has multiple translations in Ger-
man and Spanish, depending on the context and
the objects involved. Riding a horse is trans-
lated as reiten in German and cabalgar in Span-
ish, whereas riding a bicycle is translated as fahren
in German and pedalear in Spanish. In contrast,
some polysemous verb (e.g., English play) are
always translated as the same verb, independent
of sense (spielen in German). Such sense map-
pings are discoverable from multilingual lexical
resources (e.g., BabelNet, Navigli and Ponzetto
2010), which makes it possible to construct lan-
guage and vision models that are applicable to
multiple languages. This opportunity is lost if lan-
guage and vision dataset are constructed in isola-
tion, instead of using existing linguistic resources.

6 Conclusions

In this paper, we have shown the evolution of
action recognition datasets and tasks from sim-
ple ad-hoc labels to the fine-grained annotation
of verb semantics. It is encouraging to see the
recent increase in datasets that deal with sense
ambiguity and annotate semantic roles, while us-
ing standard linguistic resources. One major re-
maining issue with existing datasets is their lim-
ited coverage, and the skewed distribution of verbs
or verb senses. Another challenge is the incon-
sistency in annotation schemes and task defini-
tions across datasets. For example Chao et al.
(2015) used WordNet senses as interaction labels,
while Gella et al. (2016) used the more coarse-
grained OntoNotes senses. Yatskar et al. (2016)
used FrameNet frames for semantic role annota-
tion, while Gupta and Malik (2015) used manually
curated roles. If we are to develop robust, domain
independent models, then we need to standardize
annotation schemes and use the same linguistic re-
sources across datasets.
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Abstract

There has been relatively little attention
to incorporating linguistic prior to neu-
ral machine translation. Much of the
previous work was further constrained to
considering linguistic prior on the source
side. In this paper, we propose a hybrid
model, called NMT+RNNG, that learns
to parse and translate by combining the
recurrent neural network grammar into
the attention-based neural machine trans-
lation. Our approach encourages the neu-
ral machine translation model to incorpo-
rate linguistic prior during training, and
lets it translate on its own afterward. Ex-
tensive experiments with four language
pairs show the effectiveness of the pro-
posed NMT+RNNG.

1 Introduction

Neural Machine Translation (NMT) has enjoyed
impressive success without relying on much, if
any, prior linguistic knowledge. Some of the most
recent studies have for instance demonstrated that
NMT systems work comparably to other systems
even when the source and target sentences are
given simply as flat sequences of characters (Lee
etal., 2016; Chung et al., 2016) or statistically, not
linguistically, motivated subword units (Sennrich
et al., 2016; Wu et al., 2016). Shi et al. (2016)
recently made an observation that the encoder of
NMT captures syntactic properties of a source sen-
tence automatically, indirectly suggesting that ex-
plicit linguistic prior may not be necessary.

On the other hand, there have only been a
couple of recent studies showing the potential
benefit of explicitly encoding the linguistic prior
into NMT. Sennrich and Haddow (2016) for in-
stance proposed to augment each source word with
its corresponding part-of-speech tag, lemmatized
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form and dependency label. Eriguchi et al. (2016)
instead replaced the sequential encoder with a
tree-based encoder which computes the represen-
tation of the source sentence following its parse
tree. Stahlberg et al. (2016) let the lattice from a
hierarchical phrase-based system guide the decod-
ing process of neural machine translation, which
results in two separate models rather than a single
end-to-end one. Despite the promising improve-
ments, these explicit approaches are limited in that
the trained translation model strictly requires the
availability of external tools during inference time.
More recently, researchers have proposed meth-
ods to incorporate target-side syntax into NMT
models. Alvarez-Melis and Jaakkola (2017) have
proposed a doubly-recurrent neural network that
can generate a tree-structured sentence, but its ef-
fectiveness in a full scale NMT task is yet to be
shown. Aharoni and Goldberg (2017) introduced
a method to serialize a parsed tree and to train the
serialized parsed sentences.

We propose to implicitly incorporate linguis-
tic prior based on the idea of multi-task learn-
ing (Caruana, 1998; Collobert et al., 2011). More
specifically, we design a hybrid decoder for NMT,
called NMT+RNNG!, that combines a usual con-
ditional language model and a recently pro-
posed recurrent neural network grammars (RN-
NGs, Dyer et al., 2016). This is done by plugging
in the conventional language model decoder in the
place of the buffer in RNNG, while sharing a sub-
set of parameters, such as word vectors, between
the language model and RNNG. We train this hy-
brid model to maximize both the log-probability of
a target sentence and the log-probability of a parse
action sequence. We use an external parser (An-
dor et al., 2016) to generate target parse actions,
but unlike the previous explicit approaches, we do
not need it during test time.

'0ur code is available at https://github.com/
tempra28/nmtrnng.
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We evaluate the proposed NMT+RNNG on four
language pairs ({JP, Cs, De, Ru}-En). We observe
significant improvements in terms of BLEU scores
on three out of four language pairs and RIBES
scores on all the language pairs.

2 Neural Machine Translation

Neural machine translation is a recently proposed
framework for building a machine translation sys-
tem based purely on neural networks. It is of-
ten built as an attention-based encoder-decoder
network (Cho et al.,, 2015) with two recurrent
networks—encoder and decoder—and an atten-
tion model. The encoder, which is often imple-
mented as a bidirectional recurrent network with
long short-term memory units (LSTM, Hochre-
iter and Schmidhuber, 1997) or gated recurrent
units (GRU, Cho et al., 2014), first reads a source
sentence represented as a sequence of words © =
(z1,x2,...,2N). The encoder returns a sequence
of hidden states h = (hy, ho, ..., hy). Each hid-
den state h; is a concatenation of those from the
forward and backward recurrent network: h; =

[ﬁi; %l} , where

(1)),
(ivz))-

Vi (x;) refers to the word vector of the i-th source
word.

The decoder is implemented as a conditional re-
current language model which models the target
sentence, or translation, as

> logp(y;ly<j, =),
j

17
<_

enc(

%
h; i 7enc z
— <

h; i f i+1s

log p(y|z) =

where y = (y1,...,yn ). Each of the conditional
probabilities in the r.h.s is computed by

p(y; = yly<j, ®) = softmax(W,'5;), (1)
5; = tanh(W¢[s;; ¢j]), (2)
85 = faee(8j-1, [Vy(yj-1); 8j-11), 3)

where fqec i a recurrent activation function, such
as LSTM or GRU, and W, is the output word vec-
tor of the word .

c¢j is a time-dependent context vector that is
computed by the attention model using the se-
quence h of hidden states from the encoder. The
attention model first compares the current hidden
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state s; against each of the hidden states and as-
signs a scalar score: 3;; = exp(h; Wys;) (Lu-
ong et al., 2015). These scores are then normal-
ized across the hidden states to sum to 1, that is
Z Bz . . The time-dependent context vector
is then a weighted-sum of the hidden states with
these attention weights: ¢; = >, o jh;

3 Recurrent Neural Network Grammars

az ?j

A recurrent neural network grammar (RNNG,
Dyer et al., 2016) is a probabilistic syntax-based
language model. Unlike a usual recurrent lan-
guage model (see, e.g., Mikolov et al., 2010), an
RNNG simultaneously models both tokens and
their tree-based composition. This is done by
having a (output) buffer, stack and action his-
tory, each of which is implemented as a stack
LSTM (sLSTM, Dyer et al., 2015). At each time
step, the action sLSTM predicts the next action
based on the (current) hidden states of the buffer,
stack and action sSLSTM. That is,

pla; = alacy) Wd facmm(h‘t"”‘f“:hi“‘“‘JL%C”““)7 4)
where W, is the vector of the action a. If the se-
lected action is shift, the word at the beginning of
the buffer is moved to the stack. When the re-
duce action is selected, the top-two words in the
stack are reduced to build a partial tree. Addi-
tionally, the action may be one of many possible
non-terminal symbols, in which case the predicted
non-terminal symbol is pushed to the stack.

The hidden states of the buffer, stack and action
sLSTM are correspondingly updated by

h?uffer _ StackLSTM(hg;gfer V. (yt_1))7 5)
h§k = StackLSTM (A, 1),
h?ction StaCkLSTM(h?(fgon Va(ai—1)),

where V,, and V,, are functions returning the target
word and action vectors. The input vector r; of the
stack sSLSTM is computed recursively by

ri = tanh(W, [rd; rP; Va(ay)]),

where 7% and P are the corresponding vectors
of the parent and dependent phrases, respec-
tively (Dyer et al., 2015). This process is iter-
ated until a complete parse tree is built. Note that
the original paper of RNNG (Dyer et al., 2016)
uses constituency trees, but we employ depen-
dency trees in this paper. Both types of trees are



represented as a sequence of the three types of ac-
tions in a transition-based parsing model.

When the complete sentence is provided, the
buffer simply summarizes the shifted words.
When the RNNG is used as a generator, the buffer
further generates the next word when the selected
action is shift. The latter can be done by replacing
the buffer with a recurrent language model, which
is the idea on which our proposal is based.

4 Learning to Parse and Translate

41 NMT+RNNG

Our main proposal in this paper is to hybridize the
decoder of the neural machine translation and the
RNNG. We continue from the earlier observation
that we can replace the buffer of RNNG to a recur-
rent language model that simultaneously summa-
rizes the shifted words as well as generates future
words. We replace the RNNG’s buffer with the
neural translation model’s decoder in two steps.

Construction First, we replace the hidden state
of the buffer h™" (in Eq. (5)) with the hidden
state of the decoder of the attention-based neural
machine translation from Eq. (3). As is clear from
those two equations, both the buffer SLSTM and
the translation decoder take as input the previous
hidden state (th‘Iffer and s;_1, respectively) and
the previously decoded word (or the previously
shifted word in the case of the RNNG’s buffer),
and returns its summary state. The only difference
is that the translation decoder additionally consid-
ers the state s;_1. Once the buffer of the RNNG
is replaced with the NMT decoder in our proposed
model, the NMT decoder is also under control of
the actions provided by the RNNG.? Second, we
let the next word prediction of the translation de-
coder as a generator of RNNG. In other words,
the generator of RNNG will output a word, when
asked by the shift action, according to the condi-
tional distribution defined by the translation de-
coder in Eq. (1). Once the buffer SLSTM is re-
placed with the neural translation decoder, the ac-
tion sSLSTM naturally takes as input the translation
decoder’s hidden state when computing the action
conditional distribution in Eq. (4). We call this hy-
brid model NMT+RNNG.

The j-th hidden state in Eq. (3) is calculated only when
the action (shift) is predicted by the RNNG. This is why our
proposed model can handle the sequences of words and ac-
tions which have different lengths.
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Learning and Inference After this integration,
our hybrid NMT+RNNG models the conditional
distribution over all possible pairs of transla-
tion and its parse given a source sentence, i.e.,
p(y,alx). Assuming the availability of parse
annotation in the target-side of a parallel cor-
pus, we train the whole model jointly to maxi-
mize E; 4 a)~data [108 P(y, @|z)]. In doing so, we
notice that there are two separate paths through
which the neural translation decoder receives er-
ror signal. First, the decoder is updated in or-
der to maximize the conditional probability of the
correct next word, which has already existed in
the original neural machine translation. Second,
the decoder is updated also to maximize the con-
ditional probability of the correct parsing action,
which is a novel learning signal introduced by the
proposed hybridization. Furthermore, the second
learning signal affects the encoder as well, encour-
aging the whole neural translation model to be
aware of the syntactic structure of the target lan-
guage. Later in the experiments, we show that this
additional learning signal is useful for translation,
even though we discard the RNNG (the stack and
action sLSTMs) in the inference time.

4.2 Knowledge Distillation for Parsing

A major challenge in training the proposed hybrid
model is that there is not a parallel corpus aug-
mented with gold-standard target-side parse, and
vice versa. In other words, we must either parse
the target-side sentences of an existing parallel
corpus or translate sentences with existing gold-
standard parses. As the target task of the proposed
model is translation, we start with a parallel cor-
pus and annotate the target-side sentences. It is
however costly to manually annotate any corpus
of reasonable size (Table 6 in Alonso et al., 2016).

We instead resort to noisy, but automated an-
notation using an existing parser. This approach
of automated annotation can be considered along
the line of recently proposed techniques of knowl-
edge distillation (Hinton et al., 2015) and distant
supervision (Mintz et al., 2009). In knowledge dis-
tillation, a teacher network is trained purely on a
training set with ground-truth annotations, and the
annotations predicted by this teacher are used to
train a student network, which is similar to our ap-
proach where the external parser could be thought
of as a teacher and the proposed hybrid network’s
RNNG as a student. On the other hand, what we



|| Train. | Dev. | Test | Voc. (src, 1gt, act)

Cs-En 134,453 | 2,656 | 2,999 | (33,867,27,347, 82)
De-En || 166,313 | 2,169 | 2,999 | (33,820, 30,684, 80)
Ru-En || 131,492 | 2,818 | 2,998 | (32,442,27,979, 82)
Jp-En 100,000 | 1,790 | 1,812 | (23,509, 28,591, 80)

Table 1: Statistics of parallel corpora.

propose here is a special case of distant supervi-
sion in that the external parser provides noisy an-
notations to otherwise an unlabeled training set.

Specifically, we use SyntaxNet, released by An-
dor et al. (2016), on a target sentence.’ We convert
a parse tree into a sequence of one of three tran-
sition actions (SHIFT, REDUCE-L, REDUCE-R).
We label each REDUCE action with a correspond-
ing dependency label and treat it as a more fine-
grained action.

S Experiments

5.1 Language Pairs and Corpora

We compare the proposed NMT+RNNG against
the baseline model on four different language
pairs—Jp-En, Cs-En, De-En and Ru-En. The ba-
sic statistics of the training data are presented in
Table 1. We mapped all the low-frequency words
to the unique symbol “UNK” and inserted a spe-
cial symbol “EOS” at the end of both source and
target sentences.

Ja We use the ASPEC corpus (“trainl.txt”) from
the WAT’ 16 Jp-En translation task. We tokenize
each Japanese sentence with KyZTea (Neubig et al.,
2011) and preprocess according to the recommen-
dations from WAT’16 (WAT, 2016). We use the
first 100K sentence pairs of length shorter than 50
for training. The vocabulary is constructed with
all the unique tokens that appear at least twice in
the training corpus. We use “dev.txt” and “test.txt”
provided by WAT’16 respectively as development
and test sets.

Cs, De and Ru We use News Commentary vS8.
We removed noisy metacharacters and used the to-
kenizer from Moses (Koehn et al., 2007) to build a
vocabulary of each language using unique tokens
that appear at least 6, 6 and 5 times respectively for
Cs, Ru and De. The target-side (English) vocab-
ulary was constructed with all the unique tokens

3When the target sentence is parsed as data preprocessing,
we use all the vocabularies in a corpus and do not cut off
any words. We use the plain SyntaxNet and do not train it
furthermore.
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appearing more than three times in each corpus.
We also excluded the sentence pairs which include
empty lines in either a source sentence or a target
sentence. We only use sentence pairs of length 50
or less for training. We use “newstest2015” and
“newstest2016” as development and test sets re-
spectively.

5.2 Models, Learning and Inference

In all our experiments, each recurrent network has
a single layer of LSTM units of 256 dimensions,
and the word vectors and the action vectors are
of 256 and 128 dimensions, respectively. To re-
duce computational overhead, we use BlackOut (Ji
et al., 2015) with 2000 negative samples and o =
0.4. When employing BlackOut, we shared the
negative samples of each target word in a sen-
tence in training time (Hashimoto and Tsuruoka,
2017), which is similar to the previous work (Zoph
et al., 2016). For the proposed NMT+RNNG, we
share the target word vectors between the decoder
(buffer) and the stack sSLSTM.

Each weight is initialized from the uniform dis-
tribution [—0.1,0.1]. The bias vectors and the
weights of the softmax and BlackOut are initial-
ized to be zero. The forget gate biases of LSTMs
and Stack-LSTMs are initialized to 1 as recom-
mended in Jozefowicz et al. (2015). We use
stochastic gradient descent with minibatches of
128 examples. The learning rate starts from 1.0,
and is halved each time the perplexity on the de-
velopment set increases. We clip the norm of the
gradient (Pascanu et al., 2012) with the thresh-
old set to 3.0 (2.0 for the baseline models on Ru-
En and Cs-En to avoid NaN and Inf). When the
perplexity of development data increased in train-
ing time, we halved the learning rate of stochastic
gradient descent and reloaded the previous model.
The RNNG’s stack computes the vector of a de-
pendency parse tree which consists of the gener-
ated target words by the buffer. Since the complete
parse tree has a “ROOT” node, the special token of
the end of a sentence (“EOS”) is considered as the
ROOT. We use beam search in the inference time,
with the beam width selected based on the devel-
opment set performance.

It took about 15 minutes per epoch and about 20
minutes respectively for the baseline and the pro-
posed model to train a full JP-EN parallel corpus
in our implementation.*

“We run all the experiments on multi-core CPUs (10



| De-En | Ru-En | Cs-En | Jp-En

BLEU
NMT 16.61 12.03 11.22 17.88
NMT+RNNG || 16.41 | 12.461 | 12.06" | 18.841
RIBES
NMT 73.75 | 69.56 | 69.59 | 71.27
NMT+RNNG || 75.037 | 71.047 | 70.397 | 72.257

Table 2: BLEU and RIBES scores by the baseline
and proposed models on the test set. We use the
bootstrap resampling method from Koehn (2004)
to compute the statistical significance. We use { to
mark those significant cases with p < 0.005.

Jp-En (Dev) | BLEU
NMT+RNNG | 18.60
w/o Buffer 18.02
w/o Action 17.94
w/o Stack 17.58
NMT 17.75

Table 3: Effect of each component in RNNG.

5.3 Results and Analysis

In Table 2, we report the translation qualities of
the tested models on all the four language pairs.
We report both BLEU (Papineni et al., 2002) and
RIBES (Isozaki et al.,, 2010). Except for De-
En, measured in BLEU, we observe the statis-
tically significant improvement by the proposed
NMT+RNNG over the baseline model. It is worth-
while to note that these significant improvements
have been achieved without any additional param-
eters nor computational overhead in the inference
time.

Ablation Since each component in RNNG may
be omitted, we ablate each component in the pro-
posed NMT+RNNG to verify their necessity.” As
shown in Table 3, we see that the best performance
could only be achieved when all the three compo-
nents were present. Removing the stack had the
most adverse effect, which was found to be the
case for parsing as well by Kuncoro et al. (2017).

Generated Sentences with Parsed Actions
The decoder part of our proposed model consists
of two components: the NMT decoder to gener-
threads on Intel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz)

> Since the buffer is the decoder, it is not possible to com-

pletely remove it. Instead we simply remove the dependency
of the action distribution on it.
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Source: EB REE S 120 KMERER Eh TWLWH W,
Reference: A transition temperature hasn't been realized over 120K .

The transition temperature has not been realized over 120 K (REC?OS

Figure 1: An example of translation and its depen-
dency relations obtained by our proposed model.

ate a translated sentence and the RNNG decoder
to predict its parsing actions. The proposed model
can therefore output a dependency structure along
with a translated sentence. Figure 1 shows an
example of JP-EN translation in the development
dataset and its dependency parse tree obtained by
the proposed model. The special symbol (“EOS”)
is treated as the root node (“ROOT”) of the parsed
tree. The translated sentence was generated by
using beam search, which is the same setting of
NMT+RNNG shown in Table 3. The parsing ac-
tions were obtained by greedy search. The re-
sulting dependency structure is mostly correct but
contains a few errors; for example, dependency re-
lation between “The” and “ transition” should not
be “pobj”.

6 Conclusion

We propose a hybrid model, to which we refer
as NMT+RNNG, that combines the decoder of an
attention-based neural translation model with the
RNNG. This model learns to parse and translate si-
multaneously, and training it encourages both the
encoder and decoder to better incorporate linguis-
tic priors. Our experiments confirmed its effec-
tiveness on four language pairs ({JP, Cs, De, Ru}-
En). The RNNG can in principle be trained with-
out ground-truth parses, and this would eliminate
the need of external parsers completely. We leave
the investigation into this possibility for future re-
search.
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Abstract

Natural language processing has increas-
ingly moved from modeling documents
and words toward studying the people be-
hind the language. This move to working
with data at the user or community level
has presented the field with different char-
acteristics of linguistic data. In this paper,
we empirically characterize various lexi-
cal distributions at different levels of anal-
ysis, showing that, while most features are
decidedly sparse and non-normal at the
message-level (as with traditional NLP),
they follow the central limit theorem to
become much more Log-normal or even
Normal at the user- and county-levels. Fi-
nally, we demonstrate that modeling lexi-
cal features for the correct level of analysis
leads to marked improvements in common
social scientific prediction tasks.

1 Introduction

NLP for studying people has grown rapidly as
more than one-third of the human population use
social media actively.! While traditional NLP
tasks (e.g. POS tagging, parsing, sentiment anal-
ysis) mostly work at the word, sentence, or doc-
ument level, the increased focus on social scien-
tific applications has shifted attention to new lev-
els of analysis (e.g. user-level and community-
level) (Koppel et al., 2009; Sarawgi et al., 2011;
Schwartz et al., 2013a; Coppersmith et al., 2014;
Flekova et al., 2016).

Figure 1 shows the distribution of two uni-
grams, ‘the’ and ‘1ove’ at three levels of analy-
sis. While both words have zero counts in most
messages, ‘the’ starts to look Normal across

'Social Insights; Global social media research summary
2017
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users, and both words are approximately Normal
at the county level. Methods performing optimally
at the document level may suffer at the user or
community level due to this shift in the distribu-
tion of lexical features.’

In this paper, we ask a fundamental statistical
question: How does the shift in unit-of-analysis
from document-level to user-or-community level
shift lexical distributions in social media?® The
central limit theorem suggests that count data is
better approximated by a Normal distribution as
one increases the number of events, or as one ag-
gregates more features (e.g. combining words us-
ing LDA topics or hand-built word sets). However,
we do not know how far towards a Normal these
new levels of analysis bring us.

Related work. The question we ask harks
back to work from pioneers in corpus-based
computational linguistics, including Shannon
(1948) who suggested that probabilistic distribu-
tions of ngrams could be used to solve a range
of communications problems, and Mosteller and
Wallace (1963) who found that a negative bino-
mial distribution seemed to model unigram usage
by authors of the Federalist Papers. Numerous
works have since continued the tradition of ex-
amining the distribution of lexical features. For
example, McCallum et al. (1998) compares the
results of probabilistic models based on multi-
variate Bernoulli with those based on multinomial
distributions for document classification. Jansche

2While the distribution of word frequencies (i.e. a Zipfian
distribution) is often discussed in NLP, it is important to note
that we are focused on the distribution of single features (e.g.
words) over documents, users, or communities.

3While other sources of corpora can also be aggregated
to the user- or community-level (e.g. newswire, books), we
believe the question of distributions is particularly important
in social media because it often contains very short posts and
a growing body of work in NLP for social science focuses on
social media.
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Figure 1: Histograms for unigrams “the” (a very frequent feature) and “love” (less frequent) at different levels of analysis:
message, user, and community (from left to right). The bars at zero are cut-off at the message and user levels to increase

readability of the remaining distribution.

(2003) extended this line of work, observing lex-
ical count data often display an extra probability
mass concentrated at zero and suggesting Zero-
Inflated negative binomial distributions can cap-
ture this phenomenon better and are easier to im-
plement than alternatives such as overdispersed bi-
nomial models. While these works are numerous,
none, to the best of our knowledge, have focused
on distributions across social media or at multiple
levels of analysis.

Contributions. Our study is perhaps unconven-
tional in modern computational linguistics due to
the elementary nature of our contributions, focus-
ing on understanding the empirical distributions
of lexical features in Twitter. First, we use zero-
inflated kernel density estimated plots to show
how distributions of different language features
(words, LDA topics, and hand-curated word sets)
vary with level of analysis (message, user, and
county). Second, we quantify which distributions
best describe the different feature types and anal-
ysis levels of social media. Finally, we show
the utility of such information, finding that us-
ing the appropriate model for each feature type
improves Naive Bayes classification results across
three common social scientific tasks: sarcasm de-
tection at the message-level, gender identification
at the user-level, and political ideology classifica-
tion at the community-level.

2 Methods

Examining data at three different levels of analy-
sis and across three different lexical feature types
(unigrams, data-driven topics, and manual lexica),
we seek to (1) visually characterize distributions,
(2) empirically test which distributions best fit the
data, and (3) evaluate classification models utiliz-
ing multiple distributions at each level. Unigrams
underlie all data where as each level of analysis
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and feature type represent a different degree of ag-
gregation and covariance structure.

Data preparation. We start with a set of about
two million Twitter posts and supplemental infor-
mation about the users: their ID, county, and gen-
der. The data was based on that of Volkova et al.
(2013), who provide tweet ids and gender, and
mapped to counties using the method of Schwartz
et al. (2013a). We limit our data to users who
have used at least 1000 words and counties that
have at least 30 users and a total word count of
5000. Applying these constraints, the final set of
data consists of 1,639,750 tweets (representing the
message-level) from 5,226 users in 420 different
counties (representing the community-level).

We consider three lexical features that are
commonly used in NLP for social science: I-
grams (the top 10,000 most common unigrams
found with happierFunTokenizing social media
tokenizer), 2000 LDA fropics downloaded from
Schwartz et al. (2013b)), and lexica (64 categories
from the linguistic inquiry and word count dictio-
nary (Pennebaker et al., 2007)). Note that the fea-
tures progress from most sparse (1grams) to least
sparse (lexica).

Distributions. Figure 2 shows the empirical dis-
tributions of different lexical features at differ-
ent levels of analysis. 500 features were sampled
from the top 20,000 unigrams #, 2000 social me-
dia LDA topics (Schwartz et al., 2013a), and all
64 categories from the LIWC lexica (Pennebaker
et al., 2007). To encode the variables continu-
ously we used relative frequencies for unigrams
and lexica (count of word or category divided by
count of all words), and probability of topics, cal-
culated from the posterior probabilities from the
LDA models. Each line in the kernel density plot

“In social media analyses, the top 20,000 features are of-
ten used (Schwartz and Ungar, 2015)
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Figure 2: Kernel Density Estimate (KDE) plots showing the distribution of 500 random features at different levels of analysis.
Each row represents a specific level of analysis (county, user, message) and each column represents a specific type of feature
(Lexicon, Topic, Unigram). The bar on the left of each plot represents the percentage of observations that are zero for each
feature where the shading represents the percent of features reaching the given threshold. As the bar gets darker it means more
features out of 500 are zero in that percentage of individuals. The right portion of each plot is based on standardized relative
frequencies of the variables (mean centered and divided by the standard deviation).

is semi-transparent such that an aggregate trend
across multiple features will emerge darkest. As
we move along a row ranging specific features
(unigrams) to generic features (lexicon), the em-
pirical distribution gradually changes from resem-
bling a “power law” (or binomial distribution with
low number of trials and probability of success) to
something more “Normal”. Similar shifts are also
observed as we move across levels of modeling.

We investigate whether the best-fitting distribu-
tions vary across the three levels of analysis and
three types of lexical features. We consider the
following candidate distributions to see how well
they fit each of these empirical distributions:

e Continuous Distributions: (a) Power-law,
(b), Log-normal and (c) Normal

e Discrete Distributions: (a) Bernoulli, (b)
Multinomial, (c) Poisson, and (d) Zero In-
flated Poisson

Since most of the distributions outlined above are
standard distributions, we only briefly describe the
zero-inflated variants which handle excess zero
counts. Zero-inflated models explicitly model the
idea that a distribution does not fully capture the
mass at 0 in real world data. They assume that the
data is generated from two components. The first
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component is governed by a Bernoulli distribution
that generates excess zeros, while the second com-
ponent generates counts, some of which also could
be zero (Jansche, 2003).

3 Evaluation

We evaluate the distributions we considered by
first characterizing the goodness of fit at different
levels of analyses and then by their predictive per-
formance on social media prediction tasks, both of
which we describe below.

3.1 Goodness of fit

Following the central limit theorem, we seek to de-
termine across the range levels of analysis and fea-
ture types, whether the distribution can be approx-
imated by a Normal. Focusing just on the non-zero
portions of data encoded as relative frequencies,
we quantify the fit of each candidate distribution
to the data.

We estimate the parameters for each distribu-
tion using MLE on a training data set (i.e. 80%
of data). Then, we evaluate their likelihoods of a
held-out test dataset, given the estimated param-
eters. Since we are trying to approximate the dis-
crete distribution with a continuous model, all data
were converted to relative frequencies. Finally, the
distribution under which the test data is most likely



Dist Message User County

lgram Topic Lex. | lgram Topic Lex. | lgram Topic Lex.
Power Law 71 10 0 4 0 0 7 0 0
Log-Normal 25 89 100 96 97 64 92 86 44
Normal 4 1 0 0 3 36 1 14 56

Table 1: Percentage of best-fitted distributions in each level of message, user, and county for different types of features such
as “Lexicons”, “Topics”, and “lgrams”. Note that the best-fitting distribution for each feature type is a function of the level of

analysis.

is chosen as the ’best fit” distribution. We repeat
this 100 times and pick the most likely distribution
over all these 100 independent runs.

Results. Table 1 shows the percentage of fea-
tures in each level that were best fit from an un-
derlying distribution of Normal, Log-Normal, or
Power Law. We see empirically that there is a
trend toward Normal approximation moving from
message to county level, as well as 1grams to lex-
ica. In fact, a majority of lexica at the county-level
were best approximated by a Normal distribution.

3.2 Predictive Power

In the previous section, we showed that the dis-
tribution of lexical features depends on the scale
of analysis considered (for example, the message
level or the user level). Here, we demonstrate
that predictive models which use these lexical fea-
tures as co-variates can leverage this information
to boost predictive performance. We consider
three predictive tasks using a generative predictive
model. The primary purpose of this evaluation is
not to characterize the best distribution at a level or
task, but to demonstrate that the choice of distribu-
tion assumed when modeling features significantly
affects the predictive performance.

Predictive Tasks : We consider the following
common predictive tasks and also outline details
of the datasets considered:

1. Sarcasm Detection (Message level): This
task consists of determining whether tweets
contain a sarcastic expression (Bamman and
Smith, 2015). The dataset consists of 16,833
messages with an average of 12 words per
message.

. Gender Identification (User level): This
task involves determining the gender of the
author utilizing a previously described Twit-
ter dataset (Volkova et al., 2013). This dataset
consists of 5,044 users each of which have
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at least a 1,000 tokens as is standard in user-
level analyses (Schwartz et al., 2013b).

. Ideology Classification (Community level):
We utilized county voting records from 2012
along with a dataset of tweets mapped to
counties. This data consists of 2,175 counties
with atleast 10,000 unigrams as is common in
community level analyses (Eichstaedt et al.,
2015).

We consider a Naive Bayes classifier (a gener-
ative model) which enables one to directly incor-
porate the inferred feature distribution at a partic-
ular level of analysis, the results of which we dis-
cuss in Table 2. Variable encoding for the clas-
sifiers varied from binary encoding of present or
not (Bernoulli), to counts (Poisson, Zero-inflated
Poisson), multivariate counts (Multinomial), and
continuous relative frequencies (Normal). All dis-
tributions have closed form MLE solutions ex-
cept for Zero-Inflated Poisson, in which case we
used LBFGS optimization to fit both of its param-
eters (Head and Zerner, 1985).

Results. We report macro Fl-score for each of
the underlying distributions in Table 2. For each
of the tasks, we used 80% of the data for train-
ing and evaluate on the held-out 20%. We observe
a similar pattern as that observed in the goodness
of fit setting, with a shift in the best performing
distribution from Bernoulli (which simply models
if a feature exists or not) toward something more
Gaussian (Poisson or Normal) as we move along
from message-level to county-level analysis and
from unigrams to lexica. Specifically note that at
higher levels of analysis (at user and county levels)
as the distribution of features becomes closer to
Normal, modeling features as Bernoulli is clearly
sub-optimal where as at the message level model-
ing unigrams as a Bernoulli is superior. These ob-
servations underscore the main insight that the dis-
tribution family used to model features can be con-



Feature Distribution Message (Sarcasm) User (Gender) County (Political Ideology)
Igram Topic Lex. | lgram Topic Lex. | lgram Topic Lex.
most frequent class .33 33 .33 31 31 31 42 42 42
Bernoulli 71 .62 .61 .68 .52 A48 .66 42 42
Multinomial .70 .63 .63 .66 54 .64 .60 74 1
Poisson .70 .59 .64 51 47 49 73 .60 73
Zerolnflated-Poisson 34 .64 .63 .50 47 49 75 74 73
Normal 57 47 .54 Sl .59 .65 .56 .78 70

Table 2: F1-Score of Naive Bayes classifiers using various distributions and levels of analysis across tasks of sarcasm detec-
tion, gender identification, and political ideology classification. Observe that predictive power is once again a function of the
distribution family used to model feature distribution and depends on level of analysis.

sidered a function of level of analysis and feature-
type considered and has a significant bearing on
predictive performance.

4 Conclusion

While computational linguistics has a long his-
tory of studying the distributions of lexical fea-
tures, social media and social scientific studies
have brought about a need to understand how these
change at multiple levels of analyses. Here, we
explored empirical distributions of different types
of linguistic features (unigrams, topics, lexica) in
three different levels of analysis in Twitter data
(message, user, and community). To show which
distribution can better describe features of differ-
ent levels, we approached the problem in three dif-
ferent ways: (1) visualization of empirical distri-
butions, (2) goodness-of-fit comparisons, and (3)
for predictive tasks.

We showed that the best-fit distribution depends
on feature-type (i.e. unigram versus lexica) and
the level of analysis (i.e. message-, user-, or
community-level). Following the central limit the-
orem, all user-level features were predominantly
Log-normal, while a power law best fit unigrams
at the message level and a Normal distribution
best approximated lexica at the community level.
Finally, we demonstrated that predictive perfor-
mance can also vary considerably by the level
of analysis and feature-type, following a similar
trend from Bernoulli distributions at the message-
level to Poisson or Normal at the community-level.
Our results underscore the significance of the level
of analysis for the ever-growing focus in NLP on
social scientific problems which seek to not only
better model words and documents but also the
people and communities generating them.
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Abstract

We present the first attempt at using se-
quence to sequence neural networks to
model text simplification (TS). Unlike the
previously proposed automated TS sys-
tems, our neural text simplification (NTS)
systems are able to simultaneously per-
form lexical simplification and content re-
duction. An extensive human evaluation
of the output has shown that NTS systems
achieve almost perfect grammaticality and
meaning preservation of output sentences
and higher level of simplification than the
state-of-the-art automated TS systems.

1 Introduction

Neural sequence to sequence models have been
successfully used in many applications (Graves,
2012), from speech and signal processing to text
processing or dialogue systems (Serban et al.,
2015). Neural machine translation (Cho et al.,
2014; Bahdanau et al., 2014) is a particular type
of sequence to sequence model that recently at-
tracted a lot of attention from industry (Wu et al.,
2016) and academia, especially due to the capa-
bility to obtain state-of-the-art results for various
translation tasks (Bojar et al., 2016). Unlike classi-
cal statistical machine translation (SMT) systems
(Koehn, 2010), neural networks are being trained
end-to-end, without the need to have external de-
coders, language models or phrase tables. The ar-
chitectures are relatively simpler and more flexi-
ble, making possible the use of character models
(Luong and Manning, 2016) or even training mul-
tilingual systems in one go (Firat et al., 2016).
Automated text simplification (ATS) systems
are meant to transform original texts into differ-

*Both authors have contributed equally to this work
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ent (simpler) variants which would be understood
by wider audiences and more successfully pro-
cessed by various NLP tools. In the last sev-
eral years, great attention has been given to ad-
dressing ATS as a monolingual machine transla-
tion problem translating from ‘original’ to ‘sim-
ple’ sentences. So far, attempts were made at stan-
dard phrase-based SMT (PBSMT) models (Spe-
cia, 2010; gtajner et al., 2015), PBSMT mod-
els with added phrasal deletion rules (Coster and
Kauchak, 2011) or reranking of the n-best out-
puts according to their dissimilarity to the output
(Wubben et al., 2012), tree-based translation mod-
els (Zhu et al., 2010; Paetzold and Specia, 2013),
and syntax-based MT with specially designed tun-
ing function (Xu et al., 2016). Recently, lexi-
cal simplification (L.S) was addressed by unsuper-
vised approaches leveraging word-embeddings,
with reported good success (Glavas and Stajner,
2015; Paetzold and Specia, 2016).

To the best of our knowledge, our work is the
first to address the applicability of neural sequence
to sequence models for ATS. We make use of
the recent advances in neural machine translation
(NMT) and adapt the existing architectures for our
specific task. We also perform an extensive human
evaluation to directly compare our systems with
the current state-of-the-art (supervised) MT-based
and unsupervised lexical simplification systems.

2 Neural Text Simplification (NTS)

We use the OpenNMT framework (Klein et al.,
2017) to train and build our architecture with
two LSTM layers (Hochreiter and Schmidhuber,
1997), hidden states of size 500 and 500 hidden
units, and a 0.3 dropout probability (Srivastava
et al., 2014). The vocabulary size is set to 50,000
and we train the model for 15 epochs with plain
SGD optimizer, and after epoch 8 we halve the
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learning rate. At the end of each epoch we save the
current state of the model and predict the perplex-
ity values of the models on the development set.
We employ early-stopping and select the model re-
sulted from the epoch with the best perplexity to
avoid over-fitting. The parameters are initialized
over uniform distribution with support [-0.1, 0.1].
Additionally, for the decoder we employ global at-
tention in combination with input feeding as de-
scribed by Luong et al. (2015). The architecture!
is depicted in Figure 1, with the input feeding ap-
proach represented only for the last hidden state of
the decoder.

Yt

Attention Layer

il

Ct

i
\
[« %t
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\

1

T

Encoder Decoder

Figure 1: Architecture of the neural simplification
model with global attention and input feeding.

For the attention layer, we compute a context
vector ¢; by using the information provided from
the hidden states of the source sentence and by
computing a weighted average with the alignment
weights a;. The new hidden state is obtained us-
ing a concatenation of the previous hidden state
and the context vector:

Ht = tanh W[Ct; ht]

The global alignment weights a; are being com-
puted with a softmax function over the general
scoring method for attention:

exp h? Washs
S o exphl Waghg

Input feeding is a process that sends the pre-
vious hidden state obtained using the alignment

a(s) =

The architecture configurations, data, and the pre-
trained models are released in https://github.com/
senisioi/NeuralTextSimplification
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method, to the input at the next step, presumably
making the model keep track of anterior align-
ment decisions. Luong et al. (2015) showed this
approach can increase the evaluation scores for
neural machine translation, while in our case, for
monolingual data, we believe it can be helpful to
create better alignments. Our approach does not
involve the use of character-based models (Sen-
nrich et al., 2015; Luong and Manning, 2016) to
handle out of vocabulary words and entities. In-
stead, we make use of alignment probabilities be-
tween the predictions and the original sentences to
retrieve the original words.

2.1 Word2vec Embeddings

Furthermore, we are interested to explore whether
large scale pre-trained embeddings can improve
text simplification models. Kauchak (2013) indi-
cates that combining normal data with simplified
data can increase the performance of ATS systems.
Therefore, we construct a secondary model (NTS-
w2v) using a combination of pre-trained word2vec
from Google News corpus (Mikolov et al., 2013a)
of size 300 and locally trained embeddings of
size 200. To ensure good representations of low-
frequency words, we use word2vec (Rehiifek and
Sojka, 2010; Mikolov et al., 2013b) to train skip-
gram with hierarchical softmax and we set a win-
dow of 10 words.

Following Garten et al. (2015) who showed that
simple concatenation can improve the word rep-
resentations, we construct two different sets of
embeddings for the encoder and for the decoder.
The former are constructed using the word2vec
trained on the original English texts combined
with Google News and the later (decoder) embed-
dings are built from word2vec trained on the sim-
plified version of the training data combined with
Google News. To merge the local and global em-
beddings, we concatenate the representations for
each word in the vocabulary, thus obtaining a new
representation of size 500. If a word is missing in
the global embeddings, we replace it with a sam-
ple from a Gaussian distribution with mean 0 and
standard deviation of 0.9. The remaining param-
eters are left unchanged from the previous model
description.

2.2 Prediction Ranking

To ensure the best predictions and the best simpli-
fied sentences at each step, we use beam search
to sample multiple outputs from the two systems



described previously (NTS and NTS-w2v). Beam
search works by generating the first £ hypotheses
at each step ordered by the log-likelihood of the
target sentence given the input sentence. By de-
fault, we use a beam size of 5 and take the first hy-
pothesis, but we also observe that higher beam size
and lower-ranked hypotheses can generate good
simplification results. Therefore, we generate the
first two candidate hypotheses for each beam size
from 5 to 12. We then attempt to find the best
beam size and hypothesis based on two metrics:
the traditional MT-evaluation metric, BLEU (Pa-
pineni et al., 2002; Bird et al., 2009) with NIST
smoothing (Bird et al., 2009), and SARI (Xu et al.,
2016), a recent text-simplification metric.

2.3 Dataset

To train our models, we use the publicly avail-
able dataset provided by Hwang et al. (2015)
based on manual and automatic alignments be-
tween standard English Wikipedia and Simple En-
glish Wikipedia (EW-SEW). We discard the un-
categorized matches, and use only good matches
and partial matches which were above the 0.45
threshold (Hwang et al., 2015), totaling to 280K
aligned sentences (around 150K full matches and
130K partial matches). It is one of the largest
freely available resources for text simplification,
and unlike the previously used EW-SEW cor-
pus® (Kauchak, 2013), which only contains full
matches (167K pairs), the newer dataset also con-
tains partial matches. Therefore, it is not only
larger, but it also allows for learning sentence
shortening (dropping irrelevant parts) transforma-
tions (see Table 3, Appendix A).

original simplified

locations 158,394 127,349
persons 161,808 127,742
organizations 130,679 101,239
misc 95,168 71,138
vocabulary 187,137 144,132
tokens 7,400,499 5,634,834

Table 1: The number of tokens and entities in the
corpus.

We use the Stanford NER system (Finkel et al.,
2005) to get an approximate number of locations,
persons, organizations and miscellaneous entities

http://www.cs.pomona.edu/~dkauchak/
simplification/

in the corpus. A brief analysis of the vocabulary is
rendered in Table 1.

The dataset we use contains an abundant
amount of named entities and consequently a large
amount of low frequency words, but the majority
of entities are not part of the model’s 50,000 words
vocabulary due to their small frequency. These
words are replaced with "UNK’ symbols during
training. At prediction time, we replace the un-
known words with the highest probability score
from the attention layer. We believe it is impor-
tant to ensure that the models learn good word
representations, either during the model training
or through word2vec, in order to accurately create
alignments between source and target sentences.

Given that in TS there is not only one best
simplification, and that the quality of simplifi-
cations in Simple English Wikipedia has been
disputed before (Amancio and Specia, 2014; Xu
et al., 2015), for tuning and testing we use the
dataset previously released by Xu et al. (2016),
which contains 2000 sentences for tuning and 359
for testing, each with eight simplification variants
obtained by eight Amazon Mechanical Turkers.’
The tune subset is also used as reference corpus
in combination with BLEU and SARI to select
the best beam size and hypothesis for prediction
reranking.

3 Evaluation

For the first 70 original sentences of the Xu et al.’s
(2016) test set* we perform three types of human
evaluation to assess the output of our best sys-
tems and three ATS systems of different architec-
tures: (1) the PBSMT system with reranking of
n-best outputs (Wubben et al., 2012), which rep-
resent the best PBSMT approach to ATS, trained
and tuned over the same datasets as our systems;
(2) the state-of-the-art SBMT system (Xu et al.,
2016) with modified tuning function (using SARI)
and using PPDB paraphrase database (Ganitke-
vitch et al., 2013);> and (3) one of the state-of-the-
art unsupervised lexical simplification (LS) sys-
tems that leverages word-embeddings (Glavas and

?None of the 359 test sentences was present in the datasets
we used for training and tuning.
*nttps://github.com/cocoxu/

simplification/
SFor the first two systems, we use publicly
available  output at: https://github.com/

cocoxu/simplification/tree/master/data/
systemoutputs



Stajner, 2015).°

We evaluate the output of all systems using
three types of human evaluation.

Correctness and Number of Changes. First,
we count the total number of changes made by
each system (7otal), counting the change of a
whole phrase (e.g. “become defunct” — “was
dissolved”) as one change. Those changes that
preserve the original meaning and grammatical-
ity of the sentence (assessed by two native English
speakers) and, at the same time, make the sentence
easier to understand (assessed by two non-native
fluent English speakers) are marked as Correct. In
the case of content reduction, we instructed the
annotators to count the deletion of each array of
consecutive words as one change and consider the
meaning unchanged if the main information of the
sentence was retained and unchanged. The sen-
tences for which the two annotators did not agree
were given to a third annotator to obtain the ma-
jority vote.

Grammaticality and Meaning Preservation.
Second, three native English speakers rate the
grammaticality (G) and meaning preservation (M)
of each (whole) sentence with at least one change
on a 1-5 Likert scale (1 — very bad; 5 — very good).
The obtained inter-annotator agreement (quadratic
Cohens kappa) was 0.78 for G and 0.63 for M.

Simplicity of sentences. Third, the three non-
native fluent English speakers were shown origi-
nal (reference) sentences and target (output) sen-
tences, one pair at the time, and asked whether the
target sentence is: +2 — much simpler; +1 — some-
what simpler; 0 — equally difficult; -1 — somewhat
more difficult; -2 — much more difficult, than the
reference sentence. The obtained inter-annotator
agreement (quadratic Cohens kappa) was 0.66.

While the correctness of changes takes into ac-
count the influence of each individual change on
grammaticality, meaning and simplicity of a sen-
tence, the Scores (G and M) and Rank (S) take into
account the mutual influence of all changes within
a sentence.

4 Results and Discussion

The results of the human evaluation (Table 2) re-
vealed that all NTS models achieve higher per-
centage of correct changes and more simplified
output than any of the state-of-the-art ATS systems

SFor the LightL$ system (Glava§ and Stajner, 2015) we
use the output of the original system provided by the authors.
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with different architectures (PBSMT-R, SBMT,
and LightL.S). We also notice that the best models
according to BLEU are obtained with hypothesis
1 and the maximum beam size for both models,
while the SARI re-ranker prefers hypothesis 2 and
beam size 5 for the first NTS and the maximum
beam size for the custom word embeddings model.

The NTS with custom word2vec embeddings
ranked with the text simplification specific met-
ric (SARI) obtained the highest total number of
changes among the neural systems, one of the
highest percentage of correct changes, the second
highest simplicity score, and solid grammaticality
and meaning preservation scores. An example of
the output of different systems is presented in Ta-
ble 4 (Appendix A).

The use of different metrics for ranking the NTS
predictions optimizes the output towards different
evaluation objectives: SARI leads to the highest
number of total changes, BLEU to the highest per-
centage of correct changes, and the default beam
scores to the best grammaticality (G) and meaning
preservation (M). In addition, custom composed
global and local word embeddings in combination
with SARI metric improve the default translation
system, given the joint scores for each evaluation
criterion.

Here is important to note that for ATS sys-
tems, the precision of the system (correctness of
changes, grammaticality, meaning preservation,
and simplicity of the output) is more important
than the recall (the total number of changes made).
The low recall would just leave the sentences sim-
ilar to their originals thus not improving much the
understanding or reading speed of the target users,
or not improving much the NLP systems in which
they are used as a pre-processing step. A low pre-
cision, on the other hand, would make texts even
more difficult to read and understand, and would
worsen the performances of the NLP systems in
which ATS is used as a pre-processing step.

5 Conclusions

We presented a first attempt at modelling sentence
simplification with a neural sequence to sequence
model. Our extensive human evaluation showed
that our NTS systems, if the output is ranked with
the right metric, can significantly’ outperform
the best phrase-based and syntax-based MT ap-
proaches, and unsupervised lexical ATS approach,

"Wilcoxon’s signed rank test, p < 0.001.



Changes Scores | Rank
Approach Total Correct| G M g SARI BLEU
NTS default (beam 5, hypothesis 1) 36 72.2% |4.92 4.31|+0.46|30.65 84.51
NTS SARI (beam 5, hypothesis 2) 72 51.6% |4.19 3.62|+0.38|37.25 80.69
NTS BLEU (beam 12, hypothesis 1) 44 T73.7% |4.77 4.15|+0.92|30.77 84.70
NTS-w2v default (beam 5, hypothesis 1) 31 54.8% |4.79 4.17|+0.21|31.11 87.50
NTS-w2v SARI (beam 12, hypothesis 2) 110 68.1% |4.53 3.83|+40.63|36.10 79.38
NTS-w2v BLEU (beam 12, hypothesis 1) 61 76.9% |4.67 4.00|+0.40|30.67 85.03
PBSMT-R (Wubben et al., 2012) 171 41.0% [3.10 2.71|—0.55|34.07 67.79
SBMT (SARI+PPDB) (Xu et al., 2016) 143 34.3% |4.28 3.57|40.03|38.59 73.62
LightLS (Unsupervised) (Glavas and Stajner, 2015) | 132 26.6% [4.47 2.67|—0.01|34.96 83.54

Table 2: Human evaluation results (the highest scores by each evaluation criterion are shown in bold).

by grammaticality, meaning preservation and sim-
plicity of the output sentences, the percentage of
correct transformations, while at the same time
achieving more than 1.5 changes per sentence, on
average. Furthermore, we discovered that NTS
systems are capable of correctly performing sig-
nificant content reduction, thus being the only TS
models proposed so far which can jointly perform
lexical simplification and content reduction.
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A Appendix - Data Sample and System Output

Match | Transformation Sentence pair
Full syntactic simplification; reorder- | “During the 13th century, gingerbread was brought to Swe-
ing of sentence constituents den by German immigrants.” and “German immigrants
brought it to Sweden during the 13th century.”
Full lexical paraphrasing “During the 13th century, gingerbread was brought to Swe-

den by German immigrants.” and “German immigrants
brought it to Sweden during the 13th century.”

Partial | strong paraphrasing “Gingerbread foods vary, ranging from a soft, moist loaf
cake to something close to a ginger biscuit.” and “Ginger-
bread is a word which describes different sweet food prod-
ucts from soft cakes to a ginger biscuit.”

Partial | adding explanations “Humidity is the amount of water vapor in the air.” and
“Humidity (adjective: humid) refers to water vapor in the
air, but not to liquid droplets in fog, clouds, or rain.”
Partial | sentence compression; dropping | “Falaj irrigation is an ancient system dating back thousands
irrelevant information of years and is used widely in Oman, the UAE, China, Iran
and other countries.” and “The ancient falaj system of irri-
gation is still in use in some areas.”

Table 3: Examples of full and partial matches from the EW—SEW dataset (Hwang et al., 2015).

System Output

NTS-w2v default Perry Saturn (with terri) defeated Eddie Guerrero (with
chyna) to win the WWF European Championship (8:10);
Saturn pinned Guerrero after a diving elbow drop.

NTS-w2v SARI Perry Saturn pinned Guerrero to win the WWF Euro-
pean Championship.

NTS-w2v BLEU Perry Saturn pinned Guerrero after a diving drop drop.

NTS default He (with terri) defeated Eddie Guerrero (with chyna) to

win the WWF European Championship (8:10); Saturn
pinned Guerrero after a diving elbow drop.

NTS BLEU/SARI He defeated Eddie Guerrero (with Chyna) to win the WWF
European Championship (8:10); Sat