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Message from the General Chair

Welcome to NAACL-HLT 2015 — at its 14" edition! Computational Linguistics has grown into one
of the most exciting and diverse research communities, with an ever increasing number of researchers,
many big and small companies, and a vibrant community of learners eager to get prepared to take on
some of the fun and exciting challenges in the field. This year’s NAACL-HLT conference is a testimony
to the vibrancy and vitality of this community.

Some of the highlights of this year’s program include two excellent invited speakers — Lillian Lee
from Cornell and Fei-fei Li from Stanford — who will talk about the exciting research going on at the
intersection of our field with social sciences and computer vision; many interesting paper presentations
on cutting-edge research in computational linguistics, culminating with three best paper awards that
will be presented in a plenary session during the last day of the conference; several excellent student-
authored papers and dissertation proposals as part of the student research workshop; many exciting
demos showing the latest in terms of developed systems available in our field; six tutorials on some of
the most up-and-coming research topics in computational linguistics; several workshops on diverse
topics ranging from multiword expressions and metaphors to clinical psychology and educational
applications, including thirteen (!) one-day workshops and SEMEVAL as a two-day workshop; the
fourth joint conference on lexical and computational semantics *SEM as a collocated conference; and,
last but not least: a country line dance lesson!

As with any event of this scale, it would have not been possible without the hard work of a wonderful
group of people. I would like to thank Priscilla Rasmussen for the zillions of bits and pieces that she
has been doing on an everyday basis, to make sure that every single logistical detail of the forthcoming
NAACL-HLT was ironed out. It is no overstatement to say that the success (and fun!) of this year’s
conference is in large part due to Priscilla.

I am also grateful to Hal Daumé III for getting us started on this “NAACL-HLT 2015" journey, and
being always willing to help with advice and information from his experience from previous years.
Lucy Vanderwende and Daniel Marcu have also graciously agreed to "pass the baton" conversations
that were very helpful and informative.

I was extremely fortunate to have the chance to work with the best committee ever: Joyce Chai and
Anoop Sarkar (program chairs); Cornelia Caragea and Bing Liu (workshop co-chairs); Yang Liu and
Thamar Solorio (tutorial co-chairs); Shibamouli Lahiri, Karen Mazidi and Alisa Zhila (student co-
chairs) and Diana Inkpen and Smaranda Muresan (faculty advisors) for the student research workshop;
Matt Gerber, Catherine Havasi, and Finley Lacatusu (demo co-chairs); Annie Louise (student volunteer
coordinator); Kevin Cohen (local sponsorship chair); Saif Mohammad (publicity chair); Matt Post
and Adam Lopez (publication co-chairs); Peter Ljunglof (website chair); Aurelia Bunescu (handbook
cover designer); Graeme Hirst and Joel Tetreault (treasurers); Asli Celikyilmaz and Julia Hockenmaier
(sponsorship co-chairs).

I am also grateful to our sponsors for their generous contributions, which made the conference possible:
A9, Baobab, Bloomberg, Digital Roots, Goldman Sachs, Google, IBM, Information Sciences Institute,
National Science Foundation, Nuance, SDL, University of Washington Computational Linguistics,
Yahoo Labs.
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Finally, my gratitude goes to everyone else who contributed to the success of the conference: area
chairs, workshop organizers, tutorial presenters, student mentors, and reviewers. And of course my
deepest thanks to you, the attendees: you are the life and spirit of this entire conference.

Here is to an enjoyable NAACL-HLT 2015, and many more exciting conferences to come!

Rada Mihalcea, University of Michigan
NAACL 2015 General Chair



Message from the Program Chairs

Welcome to the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics — Human Language Technologies or NAACL HLT 2015 for short.

This year, we received the largest number of submissions in the history of NAACL: a total of 714
submissions with 402 long paper submissions and 312 short papers submissions. From these, 117 long
papers (62 oral presentations and 55 poster presentations) and 69 short papers (24 oral presentations
and 45 poster presentations) were accepted to appear at the conference.

The submissions to NAACL HLT 2015 were assigned to 18 technical areas including a new topic area
called Language and Vision. This track was introduced with an intent to broaden research on natural
language processing that is situated in a rich visual and perceptual context. We received 16 submissions
for this area and seven of them will be presented at the conference.

For NAACL HLT 2015 we initiated a meta review process, where each paper received an analysis of
the merits of the paper from the area chair’s perspective that was based on the reviewer comments, the
reviewer discussion and the author rebuttal. We found the meta reviews very helpful in consolidating
the reviews and providing justifications for final decisions. As this was an experiment this year, the
meta reviews were not sent to the authors.

Based on comments from reviewers, nominations from area chairs, and rankings from the best paper
committee, three papers were selected to receive the best paper awards at the conference.

Continuing the tradition, NAACL HLT 2015 will feature 19 papers which were accepted for publication
in the Transactions of the Association for Computational Linguistics (TACL). The TACL papers were
split into 10 oral presentations and 9 poster presentatons.

We are very pleased to have two exciting keynote talks: one by Professor Lillian Lee (Cornell
University) and the other by Professor Fei-fei Li (Stanford University).

There are many people to thank for who have worked diligently to make NAACL HLT 2015 possible.
Thanks to the 32 area chairs for their hard work on recruiting reviewers, managing reviews, leading
discussions, and making recommendations. All the area chairs are listed in the Program Committee
section of the Front Matter. Thanks to Chris Callison-Burch, David Mimno, Sameer Pradhan, and
Philip Resnik for stepping in to serve as area co-chairs at the last minute when we were faced with an
unexpectedly large number of submissions in some tracks.

Following what was done in the last NAACL conference, we used the paper assignment tool developed
by Mark Dredze to assign papers to reviewers. Thanks to Mark Dredze and Jiang Guo for their hard
work on assigning papers to reviewers based on their preferences. We had to especially rely on this tool
this year because the distribution of submissions across areas was very different from past trends.

This program certainly would not be possible without the help of the 460 reviewers. Their names are
listed in the Program Committee section. In particular, 116 reviewers from this list were recognized by
the area chairs as best reviewers who have turned in exceptionally well-written and constructive reviews
and who have actively engaged in the post-rebuttal discussions. The names of the best reviewers are
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marked with * in the list of reviewers.

We are also indebted to the best paper award committee which consists of Claire Cardie, Daniel Gildea,
Daniel Marcu, and Fernando Pereira. Their time and effort in recommending the best paper awards is
much appreciated.

We also would like to thank Hal Daumé 111, Kristina Toutanova, and Lucy Vanderwende for generously
sharing their experience in organizing prior NAACL/ACL conferences and for their advice. We are
grateful for the guidance and the support of the NAACL president Hal Daumé III, and the NAACL
board. We also would like to thank the publication co-chairs Matt Post and Adam Lopez for putting
together the proceedings and the conference handbook; and Paolo Gai and Rich Gerber from Softconf
for always being responsive to our requests.

We would like to thank the ACL Business Manager Priscilla Rasmussen. She was our go fo person who
knew all details of the conference in and out. We are very grateful for her help.

Finally, this conference could not have happened without the efforts of the general chair, Rada Mihalcea.
She made sure the various sections of NAACL organization worked well together. Her monthly
newsletters informed all the organizers about what was being done by everyone else. We are very
thankful for her leadership in the organization of NAACL HLT 2015.

We hope you will enjoy NAACL HLT 2015!
@ L8 + pd& +iL *+ v'p
Trd L& HLLF YU @
NAACL HLT 2015 Program Co-Chairs

Joyce Chai, Michigan State University
Anoop Sarkar, Simon Fraser University
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Invited Talk: “Big data pragmatics!”, or, ‘“Putting the ACL in
computational social science”, or, if you think these title alternatives
could turn people on, turn people off, or otherwise have an effect, this
talk might be for you.

Lillian Lee

Cornell University

Abstract

What effect does language have on people?

You might say in response, "Who are you to discuss this problem?" and you would be right to do so;
this is a Major Question that science has been tackling for many years. But as a field, I think natural
language processing and computational linguistics have much to contribute to the conversation, and I
hope to encourage the community to further address these issues.

This talk will focus on the effect of phrasing, emphasizing aspects that go beyond just the selection of
one particular word over another. The issues we’ll consider include: Does the way in which something
is worded in and of itself have an effect on whether it is remembered or attracts attention, beyond its
content or context? Can we characterize how different sides in a debate frame their arguments, in a way
that goes beyond specific lexical choice (e.g., "pro-choice" vs. "pro-life")? The settings we’ll explore
range from movie quotes that achieve cultural prominence; to posts on Facebook, Wikipedia, Twitter,
and the arXiv; to framing in public discourse on the inclusion of genetically-modified organisms in
food.

Joint work with Lars Backstrom, Justin Cheng, Eunsol Choi, Cristian Danescu-Niculescu-Mizil, Jon
Kleinberg, Bo Pang, Jennifer Spindel, and Chenhao Tan.

Biography

Lillian Lee is a professor of computer science and of information science at Cornell University, and
the co-Editor-in-Chief, together with Michael Collins, of Transactions of the ACL. Her research in-
terests include natural language processing and computational social science. She is the recipient of
the inaugural Best Paper Award at HLT-NAACL 2004 (joint with Regina Barzilay), a citation in “Top
Picks: Technology Research Advances of 2004 by Technology Research News (also joint with Regina
Barzilay), and an Alfred P. Sloan Research Fellowship; and in 2013, she was named a Fellow of the
Association for the Advancement of Artificial Intelligence (AAAI). Her group’s work has received sev-
eral mentions in the popular press, including The New York Times, NPR’s All Things Considered, and
NBC'’s The Today Show, and one of her co-authored papers was publicly called “boring” by Youtubers
Rhett and Link, in a video viewed over 1.8 million times.
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Invited Talk: A Quest for Visual Intelligence in Computers
Fei-Fei Li

Stanford University

Abstract

More than half of the human brain is involved in visual processing. While it took mother nature bil-
lions of years to evolve and deliver us a remarkable human visual system, computer vision is one of
the youngest disciplines of Al, born with the goal of achieving one of the loftiest dreams of Al. The
central problem of computer vision is to turn millions of pixels of a single image into interpretable and
actionable concepts so that computers can understand pictures just as well as humans do, from objects,
to scenes, activities, events and beyond. Such technology will have a fundamental impact in almost
every aspect of our daily life and the society as a whole, ranging from e-commerce, image search and
indexing, assistive technology, autonomous driving, digital health and medicine, surveillance, national
security, robotics and beyond. In this talk, I will give an overview of what computer vision technology
is about and its brief history. I will then discuss some of the recent work from my lab towards large
scale object recognition and visual scene story telling. I will particularly emphasize on what we call
the "three pillars" of Al in our quest for visual intelligence: data, learning and knowledge. Each of
them is critical towards the final solution, yet dependent on the other. This talk draws upon a number
of projects ongoing at the Stanford Vision Lab.

Biography

Dr. Fei-Fei Li is an Associate Professor in the Computer Science Department at Stanford, and the
Director of the Stanford Artificial Intelligence Lab and the Stanford Vision Lab. Her research areas are
in machine learning, computer vision and cognitive and computational neuroscience, with an emphasis
on Big Data analysis. Dr. Fei-Fei Li has published more than 100 scientific articles in top-tier journals
and conferences, including Nature, PNAS, Journal of Neuroscience, CVPR, ICCV, NIPS, ECCYV, 1IJCV,
IEEE-PAMI, etc. Dr. Fei-Fei Li obtained her B.A. degree in physics from Princeton in 1999 with
High Honors, and her PhD degree in electrical engineering from California Institute of Technology
(Caltech) in 2005. She joined Stanford in 2009 as an assistant professor, and was promoted to associate
professor with tenure in 2012. Prior to that, she was on faculty at Princeton University (2007-2009) and
University of Illinois Urbana-Champaign (2005-2006). Dr. Fei-Fei Li is a speaker at TED2015 main
conference, a recipient of the 2014 IBM Faculty Fellow Award, 2011 Alfred Sloan Faculty Award,
2012 Yahoo Labs FREP award, 2009 NSF CAREER award, the 2006 Microsoft Research New Faculty
Fellowship and a number of Google Research awards. Work from Fei-Fei’s lab have been featured in a
number of popular press magazines and newspapers including New York Times, Wired Magazine, and
New Scientists.
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What’s Cookin’? Interpreting Cooking Videos using Text, Speech and Vision
Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nicholas Johnston, Andrew
Rabinovich and Kevin Murphy

Combining Language and Vision with a Multimodal Skip-gram Model
Angeliki Lazaridou, Nghia The Pham and Marco Baroni

Discriminative Unsupervised Alignment of Natural Language Instructions with
Corresponding Video Segments

Iftekhar Naim, Young C. Song, Qiguang Liu, Liang Huang, Henry Kautz, Jiebo Luo
and Daniel Gildea

Session 2C: NLP for Web, Social Media and Social Sciences (Long Papers)

TopicCheck: Interactive Alignment for Assessing Topic Model Stability
Jason Chuang, Margaret E. Roberts, Brandon M. Stewart, Rebecca Weiss, Dustin
Tingley, Justin Grimmer and Jeffrey Heer

Inferring latent attributes of Twitter users with label regularization
Ehsan Mohammady Ardehaly and Aron Culotta

A Neural Network Approach to Context-Sensitive Generation of Conversational Re-
sponses

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji,
Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao and Bill Dolan
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15:15-16:00

15:15-15:30

15:30-15:45

15:45-16:00

15:15-16:00

15:15-15:30

15:30-15:45

15:45-16:00

15:15-16:00

15:15-15:30

15:30-15:45

15:45-16:00

16:00-16:30

Session 3A: Generation and Summarization (Short Papers)

How to Make a Frenemy: Multitape FSTs for Portmanteau Generation
Aliya Deri and Kevin Knight

Aligning Sentences from Standard Wikipedia to Simple Wikipedia
William Hwang, Hannaneh Hajishirzi, Mari Ostendorf and Wei Wu

Inducing Lexical Style Properties for Paraphrase and Genre Differentiation
Ellie Pavlick and Ani Nenkova
Session 3B: Information Extraction and Question Answering (Short Papers)

Entity Linking for Spoken Language
Adrian Benton and Mark Dredze

Spinning Straw into Gold: Using Free Text to Train Monolingual Alignment Models
for Non-factoid Question Answering

Rebecca Sharp, Peter Jansen, Mihai Surdeanu and Peter Clark

Personalized Page Rank for Named Entity Disambiguation

Maria Pershina, Yifan He and Ralph Grishman

Session 3C: Machine Learning for NLP (Short Papers)

When and why are log-linear models self-normalizing?
Jacob Andreas and Dan Klein

Deep Multilingual Correlation for Improved Word Embeddings
Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel and Karen Livescu

Disfluency Detection with a Semi-Markov Model and Prosodic Features

James Ferguson, Greg Durrett and Dan Klein

Break
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16:30-18:00 One minute madness (Long + TACL papers)

Session P1A: 18:00-19:30 Poster session 1A: Long + TACL papers

Empty Category Detection With Joint Context-Label Embeddings
Xun Wang, Katsuhito Sudoh and Masaaki Nagata

Incrementally Tracking Reference in Human/Human Dialogue Using Linguistic and
Extra-Linguistic Information
Casey Kennington, Ryu Iida, Takenobu Tokunaga and David Schlangen

Digital Leafleting: Extracting Structured Data from Multimedia Online Flyers
Emilia Apostolova, Payam Pourashraf and Jeffrey Sack

Multi-Target Machine Translation with Multi-Synchronous Context-free Grammars
Graham Neubig, Philip Arthur and Kevin Duh

Sign constraints on feature weights improve a joint model of word segmentation and
phonology
Mark Johnson, Joe Pater, Robert Staubs and Emmanuel Dupoux

Semi-Supervised Word Sense Disambiguation Using Word Embeddings in General
and Specific Domains
Kaveh Taghipour and Hwee Tou Ng

Continuous Space Representations of Linguistic Typology and their Application to
Phylogenetic Inference
Yugo Murawaki

Interpreting Compound Noun Phrases Using Web Search Queries
Marius Pasca

Lexicon-Free Conversational Speech Recognition with Neural Networks
Andrew Maas, Ziang Xie, Dan Jurafsky and Andrew Ng

I Can Has Cheezburger? A Nonparanormal Approach to Combining Textual and
Visual Information for Predicting and Generating Popular Meme Descriptions

William Yang Wang and Miaomiao Wen

A Transition-based Algorithm for AMR Parsing
Chuan Wang, Nianwen Xue and Sameer Pradhan
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The Geometry of Statistical Machine Translation
Aurelien Waite and Bill Byrne

Data-driven sentence generation with non-isomorphic trees
Miguel Ballesteros, Bernd Bohnet, Simon Mille and Leo Wanner

Latent Domain Word Alignment for Heterogeneous Corpora
Hoang Cuong and Khalil Sima’an

Extracting Human Temporal Orientation from Facebook Language

H. Andrew Schwartz, Gregory Park, Maarten Sap, Evan Weingarten, Johannes
Eichstaedt, Margaret Kern, David Stillwell, Michal Kosinski, Jonah Berger, Mar-
tin Seligman and Lyle Ungar

An In-depth Analysis of the Effect of Text Normalization in Social Media
Tyler Baldwin and Yunyao Li

Using Summarization to Discover Argument Facets in Online ldealogical Dialog
Amita Misra, Pranav Anand, Jean E. Fox Tree and Marilyn Walker

Active Learning with Rationales for Text Classification
Manali Sharma, Di Zhuang and Mustafa Bilgic

Inferring Temporally-Anchored Spatial Knowledge from Semantic Roles
Eduardo Blanco and Alakananda Vempala

A Dynamic Programming Algorithm for Tree Trimming-based Text Summarization
Masaaki Nishino, Norihito Yasuda, Tsutomu Hirao, Shin-ichi Minato and Masaaki
Nagata

Modeling Word Meaning in Context with Substitute Vectors
Oren Melamud, Ido Dagan and Jacob Goldberger

Corpus-based discovery of semantic intensity scales
Chaitanya Shivade, Marie-Catherine de Marneffe, Eric Fosler-Lussier and Albert
M. Lai

Dialogue focus tracking for zero pronoun resolution
Sudha Rao, Allyson Ettinger, Hal Daumé III and Philip Resnik

Déja Image-Captions: A Corpus of Expressive Descriptions in Repetition
Jianfu Chen, Polina Kuznetsova, David Warren and Yejin Choi

XXXV
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Inferring Missing Entity Type Instances for Knowledge Base Completion: New
Dataset and Methods
Arvind Neelakantan and Ming-Wei Chang

Robust Morphological Tagging with Word Representations
Thomas Miiller and Hinrich Schuetze

English orthography is not "close to optimal"
Garrett Nicolai and Grzegorz Kondrak

LCCT: A Semi-supervised Model for Sentiment Classification
Min Yang, Wenting Tu, Ziyu Lu, Wenpeng Yin and Kam-Pui Chow

[TACL] Unsupervised Discovery of Biographical Structure from Text
David Bamman and Noah A. Smith

[TACL] 2-Slave Dual Decomposition for Generalized High Order CRFs
Xian Qian and Yang Liu

[TACL] Learning Strictly Local Subsequential Functions
Jane Chandlee, Remi Eyraud and Jeffrey Heinz

[TACL] Learning Constraints for Information Structure Analysis of Scientific Doc-
uments
Yufan Guo, Roi Reichart, and Anna Korhonen

Session P1B: 19:30-21:00 Poster session 1B: Long + TACL papers

Multiview LSA: Representation Learning via Generalized CCA
Pushpendre Rastogi, Benjamin Van Durme and Raman Arora

NASARI: a Novel Approach to a Semantically-Aware Representation of Items
José Camacho-Collados, Mohammad Taher Pilehvar and Roberto Navigli

Towards a standard evaluation method for grammatical error detection and correc-
tion

Mariano Felice and Ted Briscoe

Using Zero-Resource Spoken Term Discovery for Ranked Retrieval
Jerome White, Douglas Oard, Aren Jansen, Jiaul Paik and Rashmi Sankepally
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Constraint-Based Models of Lexical Borrowing
Yulia Tsvetkov, Waleed Ammar and Chris Dyer

Model Invertibility Regularization: Sequence Alignment With or Without Parallel
Data
Tomer Levinboim, Ashish Vaswani and David Chiang

Jointly Modeling Inter-Slot Relations by Random Walk on Knowledge Graphs for
Unsupervised Spoken Language Understanding
Yun-Nung Chen, William Yang Wang and Alexander Rudnicky

Expanding Paraphrase Lexicons by Exploiting Lexical Variants
Atsushi Fujita and Pierre Isabelle

Diamonds in the Rough: Event Extraction from Imperfect Microblog Data
Ander Intxaurrondo, Eneko Agirre, Oier Lopez de Lacalle and Mihai Surdeanu

Unsupervised Dependency Parsing: Let’s Use Supervised Parsers
Phong Le and Willem Zuidema

A Linear-Time Transition System for Crossing Interval Trees
Emily Pitler and Ryan McDonald

Unsupervised Multi-Domain Adaptation with Feature Embeddings
Yi Yang and Jacob Eisenstein

Ontologically Grounded Multi-sense Representation Learning for Semantic Vector
Space Models
Sujay Kumar Jauhar, Chris Dyer and Eduard Hovy

Subsentential Sentiment on a Shoestring: A Crosslingual Analysis of Compositional
Classification
Michael Haas and Yannick Versley

Cost Optimization in Crowdsourcing Translation: Low cost translations made even
cheaper
Mingkun Gao, Wei Xu and Chris Callison-Burch

Multitask Learning for Adaptive Quality Estimation of Automatically Transcribed
Utterances

José G. C. de Souza, Hamed Zamani, Matteo Negri, Marco Turchi and Falavigna
Daniele

Incorporating Word Correlation Knowledge into Topic Modeling
Pengtao Xie, Diyi Yang and Eric Xing
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The Unreasonable Effectiveness of Word Representations for Twitter Named Entity
Recognition
Colin Cherry and Hongyu Guo

Is Your Anchor Going Up or Down? Fast and Accurate Supervised Topic Models
Thang Nguyen, Jordan Boyd-Graber, Jeffrey Lund, Kevin Seppi and Eric Ringger

Grounded Semantic Parsing for Complex Knowledge Extraction
Ankur P. Parikh, Hoifung Poon and Kristina Toutanova

Sentiment after Translation: A Case-Study on Arabic Social Media Posts
Mohammad Salameh, Saif Mohammad and Svetlana Kiritchenko

Using External Resources and Joint Learning for Bigram Weighting in ILP-Based
Multi-Document Summarization
Chen Li, Yang Liu and Lin Zhao

Transforming Dependencies into Phrase Structures
Lingpeng Kong, Alexander M. Rush and Noah A. Smith

Improving the Inference of Implicit Discourse Relations via Classifying Explicit Dis-
course Connectives
Attapol Rutherford and Nianwen Xue

Solving Hard Coreference Problems
Haoruo Peng, Daniel Khashabi and Dan Roth

Pragmatic Neural Language Modelling in Machine Translation
Paul Baltescu and Phil Blunsom

Key Female Characters in Film Have More to Talk About Besides Men: Automating
the Bechdel Test
Apoorv Agarwal, Jiehan Zheng, Shruti Kamath, Sriramkumar Balasubramanian and
Shirin Ann Dey

[TACL] Dense Event Ordering with a Multi-Pass Architecture
Nathanael Chambers, Taylor Cassidy, Bill McDowell, and Steven Bethard

[TACL] Locally Non-Linear Learning for Statistical Machine Translation via Dis-
cretization and Structured Regularization

Jonathan H. Clark, Chris Dyer, and Alon Lavie

[TACL] SPRITE: Generalizing Topic Models with Structured Priors
Michael J. Paul and Mark Dredze
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[TACL] Reasoning about Quantities in Natural Language
Subhro Roy, Tim Vieira, and Dan Roth

[TACL] A sense-topic model for WSI with unsupervised data enrichment
Jing Wang, Mohit Bansal, Kevin Gimpel, Brian D. Ziebart, and Clement T. Yu
Tuesday, June 2, 2015

07:30-09:00 Registration and Breakfast

09:00-10:40 Session 4A: Dialogue and Spoken Language Processing (Long Papers)

09:00-09:25  Semantic Grounding in Dialogue for Complex Problem Solving
Xiaolong Li and Kristy Boyer

09:25-09:50  Learning Knowledge Graphs for Question Answering through Conversational Dia-
log
Ben Hixon, Peter Clark and Hannaneh Hajishirzi

09:50-10:15  Sentence segmentation of aphasic speech
Kathleen C. Fraser, Naama Ben-David, Graeme Hirst, Naida Graham and Elizabeth

Rochon

10:15-10:40  Semantic parsing of speech using grammars learned with weak supervision
Judith Gaspers, Philipp Cimiano and Britta Wrede
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Tuesday, June 2, 2015 (continued)

09:00-10:40

09:00-09:25

09:25-09:50

09:50-10:15

10:15-10:40

09:00-10:40

09:00-09:25

09:25-09:50

09:50-10:15

10:15-10:40

10:40-11:15

Session 4B: Machine Learning for NLP (Long Papers)

Early Gains Matter: A Case for Preferring Generative over Discriminative Crowd-
sourcing Models

Paul Felt, Kevin Black, Eric Ringger, Kevin Seppi and Robbie Haertel

Optimizing Multivariate Performance Measures for Learning Relation Extraction
Models

Gholamreza Haffari, Ajay Nagesh and Ganesh Ramakrishnan

Convolutional Neural Network for Paraphrase Identification
Wenpeng Yin and Hinrich Schiitze

Representation Learning Using Multi-Task Deep Neural Networks for Semantic
Classification and Information Retrieval
Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh and Ye-Yi Wang

Session 4C: Phonology, Morphology and Word Segmentation (Long Papers)

Inflection Generation as Discriminative String Transduction
Garrett Nicolai, Colin Cherry and Grzegorz Kondrak

Penalized Expectation Propagation for Graphical Models over Strings
Ryan Cotterell and Jason Eisner

Joint Generation of Transliterations from Multiple Representations
Lei Yao and Grzegorz Kondrak

Prosodic boundary information helps unsupervised word segmentation

Bogdan Ludusan, Gabriel Synnaeve and Emmanuel Dupoux

Break
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11:15-12:30

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

12:15-12:30

11:15-12:30

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

12:15-12:30

Session SA: Semantics (Short Papers)

So similar and yet incompatible: Toward the automated identification of semanti-
cally compatible words
German Kruszewski and Marco Baroni

Do Supervised Distributional Methods Really Learn Lexical Inference Relations?
Omer Levy, Steffen Remus, Chris Biemann and Ido Dagan

A Word Embedding Approach to Predicting the Compositionality of Multiword Ex-
pressions
Bahar Salehi, Paul Cook and Timothy Baldwin

Word Embedding-based Antonym Detection using Thesauri and Distributional In-
formation
Masataka Ono, Makoto Miwa and Yutaka Sasaki

A Comparison of Word Similarity Performance Using Explanatory and Non-
explanatory Texts
Lifeng Jin and William Schuler

Session 5B: Machine Translation (Short Papers)

Morphological Modeling for Machine Translation of English-Iraqi Arabic Spoken
Dialogs
Katrin Kirchhoff, Yik-Cheung Tam, Colleen Richey and Wen Wang

Continuous Adaptation to User Feedback for Statistical Machine Translation
Frédéric Blain, Fethi Bougares, Amir Hazem, Loic Barrault and Holger Schwenk

Normalized Word Embedding and Orthogonal Transform for Bilingual Word Trans-
lation

Chao Xing, Dong Wang, Chao Liu and Yiye Lin

Fast and Accurate Preordering for SMT using Neural Networks
Adria de Gispert, Gonzalo Iglesias and Bill Byrne

APRO: All-Pairs Ranking Optimization for MT Tuning
Markus Dreyer and Yuanzhe Dong
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11:15-12:30

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

12:15-12:30

12:30-14:00

14:00-15:15

14:00-14:25

14:25-14:50

14:50-15:15

Session SC: Morphology, Syntax, Multilinguality, and Applications (Short Pa-
pers)

Paradigm classification in supervised learning of morphology
Malin Ahlberg, Markus Forsberg and Mans Hulden

Shift-Reduce Constituency Parsing with Dynamic Programming and POS Tag Lat-
tice

Haitao Mi and Liang Huang

Unsupervised Code-Switching for Multilingual Historical Document Transcription
Dan Garrette, Hannah Alpert-Abrams, Taylor Berg-Kirkpatrick and Dan Klein

Matching Citation Text and Cited Spans in Biomedical Literature: a Search-
Oriented Approach

Arman Cohan, Luca Soldaini and Nazli Goharian

Effective Feature Integration for Automated Short Answer Scoring

Keisuke Sakaguchi, Michael Heilman and Nitin Madnani

Lunch

Session 6A: Generation and Summarization (Long Papers)

Socially-Informed Timeline Generation for Complex Events
Lu Wang, Claire Cardie and Galen Marchetti

Movie Script Summarization as Graph-based Scene Extraction
Philip John Gorinski and Mirella Lapata

Toward Abstractive Summarization Using Semantic Representations
Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh and Noah A. Smith

xliii



Tuesday, June 2, 2015 (continued)

14:00-15:15 Session 6B: Discourse and Coreference (Long Papers)

14:00-14:25  Encoding World Knowledge in the Evaluation of Local Coherence
Muyu Zhang, Vanessa Wei Feng, Bing Qin, Graeme Hirst, Ting Liu and Jingwen
Huang

14:25-14:50  Chinese Event Coreference Resolution: An Unsupervised Probabilistic Model Ri-
valing Supervised Resolvers
Chen Chen and Vincent Ng

14:50-15:15  Removing the Training Wheels: A Coreference Dataset that Entertains Humans and

Challenges Computers
Anupam Guha, Mohit Iyyer, Danny Bouman and Jordan Boyd-Graber

14:00-15:15 Session 6C: Information Extraction and Question Answering (Long Papers)

14:00-14:25  Injecting Logical Background Knowledge into Embeddings for Relation Extraction
Tim Rocktischel, Sameer Singh and Sebastian Riedel

14:25-14:50  Unsupervised Entity Linking with Abstract Meaning Representation
Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji and Kevin Knight

14:50-15:15  Idest: Learning a Distributed Representation for Event Patterns

Sebastian Krause, Enrique Alfonseca, Katja Filippova and Daniele Pighin

15:15-15:45 Break
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15:45-17:00

15:45-16:10

16:10-16:35

16:35-17:00

15:45-17:00

15:45-16:10

16:10-16:35

16:35-17:00

15:45-17:00

15:45-16:10

16:10-16:35

16:35-17:00

Session 7A: Semantics (Long + TACL Papers)

High-Order Low-Rank Tensors for Semantic Role Labeling
Tao Lei, Yuan Zhang, Lluis Marquez, Alessandro Moschitti and Regina Barzilay

[TACL] Large-scale Semantic Parsing without Question-Answer Pairs
Siva Reddy, Mirella Lapata, and Mark Steedman

[TACL] A Large Scale Evaluation of Distributional Semantic Models: Parameters,

Interactions and Model Selection
Gabriella Lapesa and Stefan Evert

Session 7B: Information Extraction and Question Answering (Long + TACL
Papers)

Lexical Event Ordering with an Edge-Factored Model
Omri Abend, Shay B. Cohen and Mark Steedman

[TACL] Entity disambiguation with web links
Andrew Chisholm and Ben Hachey

[TACL] A Joint Model for Entity Analysis: Coreference, Typing, and Linking
Greg Durrett and Dan Klein
Session 7C: Machine Translation (Long Papers)

Bag-of-Words Forced Decoding for Cross-Lingual Information Retrieval
Felix Hieber and Stefan Riezler

Accurate Evaluation of Segment-level Machine Translation Metrics
Yvette Graham, Timothy Baldwin and Nitika Mathur

Leveraging Small Multilingual Corpora for SMT Using Many Pivot Languages
Raj Dabre, Fabien Cromieres, Sadao Kurohashi and Pushpak Bhattacharyya
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Tuesday, June 2, 2015 (continued)

Session P2A: 17:00-18:30 Poster session 2A: Short papers

Why Read if You Can Scan? Trigger Scoping Strategy for Biographical Fact Ex-
traction
Dian Yu, Heng Ji, Sujian Li and Chin-Yew Lin

Lachmannian Archetype Reconstruction for Ancient Manuscript Corpora
Armin Hoenen

Distributed Representations of Words to Guide Bootstrapped Entity Classifiers
Sonal Gupta and Christopher D. Manning

Multi-Task Word Alignment Triangulation for Low-Resource Languages
Tomer Levinboim and David Chiang

Automatic cognate identification with gap-weighted string subsequences.
Taraka Rama

Short Text Understanding by Leveraging Knowledge into Topic Model
Shansong Yang, Weiming Lu, Dezhi Yang, Liang Yao and Baogang Wei

Unsupervised Most Frequent Sense Detection using Word Embeddings
Sudha Bhingardive, Dhirendra Singh, Rudramurthy V, Hanumant Redkar and Push-
pak Bhattacharyya

Chain Based RNN for Relation Classification
Javid Ebrahimi and Dejing Dou

LR Parsing for LCFRS
Laura Kallmeyer and Wolfgang Maier

Mining for unambiguous instances to adapt part-of-speech taggers to new domains
Dirk Hovy, Barbara Plank, Héctor Martinez Alonso and Anders Sggaard

Clustering Sentences with Density Peaks for Multi-document Summarization
Yang Zhang, Yunqing Xia, Yi Liu and Wenmin Wang

Development of the Multilingual Semantic Annotation System
Scott Piao, Francesca Bianchi, Carmen Dayrell, Angela D’Egidio and Paul Rayson
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Tuesday, June 2, 2015 (continued)

Unsupervised Sparse Vector Densification for Short Text Similarity
Yangqiu Song and Dan Roth

#WhylStayed, #WhylLeft: Microblogging to Make Sense of Domestic Abuse
Nicolas Schrading, Cecilia Ovesdotter Alm, Raymond Ptucha and Christopher
Homan

Morphological Word-Embeddings
Ryan Cotterell and Hinrich Schiitze

Recognizing Social Constructs from Textual Conversation

Somak Aditya, Chitta Baral, Nguyen Ha Vo, Joohyung Lee, Jieping Ye, Zaw Naung,
Barry Lumpkin, Jenny Hastings, Richard Scherl, Dawn M. Sweet and Daniela In-
clezan

Two/Too Simple Adaptations of Word2Vec for Syntax Problems
Wang Ling, Chris Dyer, Alan W Black and Isabel Trancoso

Estimating Numerical Attributes by Bringing Together Fragmentary Clues
Hiroya Takamura and Jun’ichi Tsujii

Unsupervised POS Induction with Word Embeddings
Chu-Cheng Lin, Waleed Ammar, Chris Dyer and Lori Levin

Improving Update Summarization via Supervised ILP and Sentence Reranking
Chen Li, Yang Liu and Lin Zhao

MPQA 3.0: An Entity/Event-Level Sentiment Corpus
Lingjia Deng and Janyce Wiebe

Everyone Likes Shopping! Multi-class Product Categorization for e-Commerce
Zornitsa Kozareva

GPU-Friendly Local Regression for Voice Conversion
Taylor Berg-Kirkpatrick and Dan Klein

x1vii



Tuesday, June 2, 2015 (continued)

Session P2B: 18:30-20:00 Poster session 2B: Short papers

Response-based Learning for Machine Translation of Open-domain Database
Queries
Carolin Haas and Stefan Riezler

Context-Dependent Automatic Response Generation Using Statistical Machine
Translation Techniques
Andrew Shin, Ryohei Sasano, Hiroya Takamura and Manabu Okumura

Multilingual Open Relation Extraction Using Cross-lingual Projection
Manaal Faruqui and Shankar Kumar

Learning to parse with IAA-weighted loss
Héctor Martinez Alonso, Barbara Plank, Arne Skjerholt and Anders Sggaard

Exploiting Text and Network Context for Geolocation of Social Media Users
Afshin Rahimi, Duy Vu, Trevor Cohn and Timothy Baldwin

Discriminative Phrase Embedding for Paraphrase Identification
Wenpeng Yin and Hinrich Schiitze

Combining Word Embeddings and Feature Embeddings for Fine-grained Relation
Extraction

Mo Yu, Matthew R. Gormley and Mark Dredze

CASSA: A Context-Aware Synonym Simplification Algorithm
Ricardo Baeza-Yates, Luz Rello and Julia Dembowski

Simple task-specific bilingual word embeddings
Stephan Gouws and Anders Sggaard

Sampling Techniques for Streaming Cross Document Coreference Resolution
Luke Shrimpton, Victor Lavrenko and Miles Osborne

On the Automatic Learning of Sentiment Lexicons
Aliaksei Severyn and Alessandro Moschitti

Large-Scale Native Language Identification with Cross-Corpus Evaluation
Shervin Malmasi and Mark Dras
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Unediting: Detecting Disfluencies Without Careful Transcripts
Victoria Zayats, Mari Ostendorf and Hannaneh Hajishirzi

Type-Driven Incremental Semantic Parsing with Polymorphism
Kai Zhao and Liang Huang

Template Kernels for Dependency Parsing
Hillel Taub-Tabib, Yoav Goldberg and Amir Globerson

Embedding a Semantic Network in a Word Space
Richard Johansson and Luis Nieto Pifia

Random Walks and Neural Network Language Models on Knowledge Bases
Josu Goikoetxea, Aitor Soroa and Eneko Agirre

Identification and Characterization of Newsworthy Verbs in World News
Benjamin Nye and Ani Nenkova

Enhancing Sumerian Lemmatization by Unsupervised Named-Entity Recognition
Yudong Liu, Clinton Burkhart, James Hearne and Liang Luo

Extracting Information about Medication Use from Veterinary Discussions
Haibo Ding and Ellen Riloff

Reserating the awesometastic: An automatic extension of the WordNet taxonomy
for novel terms

David Jurgens and Mohammad Taher Pilehvar

Cross-lingual Text Classification Using Topic-Dependent Word Probabilities
Daniel Andrade, Kunihiko Sadamasa, Akihiro Tamura and Masaaki Tsuchida
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Wednesday, June 3, 2015

07:30-09:00

09:00-10:10

10:10-10:40

10:40-11:55

10:40-11:05

11:05-11:30

11:30-11:55

10:40-11:55

10:40-11:05

11:05-11:30

11:30-11:55

Registration and Breakfast
Invited Talk: A Quest for Visual Intelligence in Computers
Fei-fei Li

Break

Session 8A: NLP for Web, Social Media and Social Sciences (Long + TACL
Papers)

Testing and Comparing Computational Approaches for Identifying the Language of
Framing in Political News
Eric Baumer, Elisha Elovic, Ying Qin, Francesca Polletta and Geri Gay

[TACL] Extracting Lexically Divergent Paraphrases from Twitter
Wei Xu, Alan Ritter, Chris Callison-Burch, William B. Dolan, and Yangfeng Ji

Echoes of Persuasion: The Effect of Euphony in Persuasive Communication
Marco Guerini, Gozde Ozbal and Carlo Strapparava

Session 8B: Language and Vision (Long + TACL Papers)

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond
Mooney and Kate Saenko

[TACL] A Bayesian Model of Grounded Color Semantics
Brian McMahan and Matthew Stone

Learning to Interpret and Describe Abstract Scenes
Luis Gilberto Mateos Ortiz, Clemens Wolff and Mirella Lapata



Wednesday, June 3, 2015 (continued)

10:40-11:55

10:40-11:05

11:05-11:30

11:30-11:55

11:55-13:00

13:00-14:00

14:00-15:15

14:00-14:25

14:25-14:50

14:50-15:15

Session 8C: Machine Translation (Long + TACL Papers)

A Comparison of Update Strategies for Large-Scale Maximum Expected BLEU
Training

Joern Wuebker, Sebastian Muehr, Patrick Lehnen, Stephan Peitz and Hermann Ney
[TACL] Gappy Pattern Matching on GPUs for On-Demand Extraction of Hierar-
chical Translation Grammars

Hua He, Jimmy Lin, and Adam Lopez

Learning Translation Models from Monolingual Continuous Representations

Kai Zhao, Hany Hassan and Michael Auli

Lunch

NAACL Business Meeting

Session 9A: Lexical Semantics and Sentiment Analysis (Long Papers)

A Corpus and Model Integrating Multiword Expressions and Supersenses
Nathan Schneider and Noah A. Smith

Good News or Bad News: Using Affect Control Theory to Analyze Readers’ Reac-
tion Towards News Articles
Areej Alhothali and Jesse Hoey

Do We Really Need Lexical Information? Towards a Top-down Approach to Senti-

ment Analysis of Product Reviews
Yulia Otmakhova and Hyopil Shin
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Abstract

We introduce a new approach to unsupervised
estimation of feature-rich semantic role la-
beling models. Our model consists of two
components: (1) an encoding component: a
semantic role labeling model which predicts
roles given a rich set of syntactic and lexi-
cal features; (2) a reconstruction component:
a tensor factorization model which relies on
roles to predict argument fillers. When the
components are estimated jointly to minimize
errors in argument reconstruction, the induced
roles largely correspond to roles defined in an-
notated resources. Our method performs on
par with most accurate role induction methods
on English and German, even though, unlike
these previous approaches, we do not incorpo-
rate any prior linguistic knowledge about the
languages.

1 Introduction

Shallow semantic representations, and semantic role
labels in particular, have a long history in linguis-
tics (Fillmore, 1968). More recently, with an emer-
gence of large annotated resources such as Prop-
Bank (Palmer et al., 2005) and FrameNet (Baker et
al., 1998), automatic semantic role labeling (SRL)
has attracted a lot of attention (Gildea and Jurafsky,
2002; Carreras and Marquez, 2005; Surdeanu et al.,
2008; Hajic et al., 2009; Das et al., 2010).

Semantic role representations encode the under-
lying predicate-argument structure of sentences, or,
more specifically, for every predicate in a sentence
they identify a set of arguments and associate each
argument with an underlying semantic role, such

as an agent (an initiator or doer of the action) or
a patient (an affected entity). Semantic roles have
many potential applications in NLP and have been
shown to benefit question answering (Shen and Lap-
ata, 2007; Kaisser and Webber, 2007), textual entail-
ment (Sammons et al., 2009), machine translation
(Wu and Fung, 2009; Liu and Gildea, 2010; Wu et
al., 2011; Gao and Vogel, 2011), and dialogue sys-
tems (Basili et al., 2009; van der Plas et al., 2009),
among others.

Most current statistical approaches to SRL are su-
pervised, requiring large quantities of human an-
notated data to estimate model parameters. How-
ever, such resources are expensive to create and only
available for a small number of languages. More-
over, when moved to a new domain (e.g., from news
corpora to blogs or biomedical texts), the perfor-
mance of these models tends to degrade substan-
tially (Pradhan et al., 2008). The scarcity of an-
notated data has motivated the research into unsu-
pervised learning of semantic representations (Swier
and Stevenson, 2004; Grenager and Manning, 2006;
Lang and Lapata, 2010; Lang and Lapata, 2011a;
Lang and Lapata, 2011b; Titov and Klementieyv,
2012a; Fiirstenau and Rambow, 2012; Garg and
Henderson, 2012). The existing methods have a
number of serious shortcomings. First, they make
very strong assumptions, for example, assuming that
arguments are conditionally independent of each
other given the predicate. Second, unlike state-of-
the-art supervised parsers, they rely on a very sim-
plistic set of features of a sentence. These fac-
tors lead to models being insufficiently expressive to
capture the syntax-semantics interface, inadequate
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handling of language ambiguity and, overall, in-
troduces a restrictive upper bound on their perfor-
mance. Moreover, these approaches are especially
problematic for languages with freer word order
than English, where richer features are necessary
to account for interactions between surface realiza-
tions, syntax and semantics. For example, the two
most accurate previous models (Titov and Klemen-
tiev, 2012a; Lang and Lapata, 2011a) both treat the
role induction task as clustering of argument signa-
tures: an argument signature encodes key syntactic
properties of an argument realization and consists of
a syntactic function of an argument along with ad-
ditional information such as an argument position
with respect to the predicate. Though it is possible
to design signatures which mostly map to a single
role, this set-up limits oracle performance even for
English, and can be quite restrictive for languages
with freer word order. These shortcomings are in-
herent limitations of the modeling frameworks used
in previous work (primarily generative modeling or
agglomerative clustering), and cannot be addressed
by simply incorporating more features or relaxing
some of the modeling assumptions.

In this work, we propose a method for effective
unsupervised estimation of feature-rich models of
semantic roles. We demonstrate that reconstruction-
error objectives, which have been shown to be effec-
tive primarily for training neural networks, are well
suited for inducing feature-rich log-linear models of
semantics. Our model consists of two components:
a log-linear feature-rich semantic role labeler and
a tensor-factorization model which captures inter-
action between semantic roles and argument fillers.
When estimated jointly on unlabeled data, roles in-
duced by the model mostly corresponds to roles de-
fined in existing resources by annotators.

Our method rivals the most accurate semantic
role induction methods on English and German
(Titov and Klementiev, 2012a; Lang and Lapata,
2011a). Importantly, no prior knowledge about
the languages was incorporated in our feature-rich
model, whereas the clustering counterparts relied
on language-specific argument signatures. These
languages-specific priors were crucial for their suc-
cess. For example, using English-specific argument
signatures for German with the Bayesian model of
Titov and Klementiev (2012a) results in a drop of

performance from clustering F1 of 80.9% to consid-
erably lower 78.3% (our model yields 81.4%). This
confirms the intuition that using richer features helps
to capture the syntax-semantics interface in multi-
lingual settings, reducing the need for language-
specific model engineering, as is highly desirable in
unsupervised learning.

The rest of the paper is structured as follows. Sec-
tion 2 begins with a definition of the semantic role
labeling task and discusses some specifics of the un-
supervised setting. In Section 3, we describe our ap-
proach, starting with a general motivation and pro-
ceeding to technical details of the model (Section
3.3) and the learning procedure (Section 3.4). Sec-
tion 4 provides both evaluation and analysis. Finally,
additional related work is presented in Section 5.

2 Task Definition

The SRL task involves prediction of predicate argu-
ment structure, i.e. both identification of arguments
and assignment of labels according to their under-
lying semantic role. For example, in the following
sentences:

(@) [agent Mary] opened |patiens the door].
(b) [patient The door] opened.

(©) [Patient The door| was opened [4gen: by Mary].

Mary always takes an agent role for the predicate
open, and door is always a patient.

In this work we focus on the labeling stage of
semantic role labeling. Identification, though an
important problem, can be tackled with heuris-
tics (Lang and Lapata, 2011a; Grenager and Man-
ning, 2006; de Marneffe et al., 2006), with unsuper-
vised techniques (Abend et al., 2009) or potentially
by using a supervised classifier trained on a small
amount of data.

3 Approach

At the core of our approach is a statistical model en-
coding an interdependence between a semantic role
structure and its realization in a sentence. In the un-
supervised learning setting, sentences, their syntac-
tic representations and argument positions (denoted
by z) are observable whereas the associated seman-
tic roles r are latent and need to be induced by the



model. The idea which underlines much of latent
variable modeling is that a good latent representa-
tion is the one which helps us to reconstruct z. In
practice, we are not interested in predicting z, as x
is observable, but rather interested in inducing ap-
propriate latent representations (i.e. 7). Thus, it
is crucial to design the model in such a way that
the good 7 (the one predictive of x) indeed encodes
roles, rather than some other form of abstraction.

In what follows, we will refer to roles using
their names, though, in the unsupervised setting, our
method, as any other latent variable model, will not
yield human-interpretable labels for them. We will
use the following sentence as a motivating example
in our discussion of the model:

[Agent The police] charged [patient the
demonstrators| [,strument With batons].

The model consists of two components. The first
component is responsible for prediction of argument
tuples based on roles and the predicate. In our exper-
iments, in this component, we represent arguments
as lemmas of their lexical heads (e.g., baton instead
of with batons). We also restrict ourselves to only
verbal predicates. Intuitively, we can think of pre-
dicting one argument at a time (see Figure 1(b)):
an argument (e.g., demonstrator in our example) is
predicted based on the predicate lemma (charge),
the role assigned to this argument (i.e. Patient)
and other role-argument pairs ((Agent, police) and
(Instrument, baton)). While learning to predict
arguments, the inference algorithm will search for
role assignments which simplify this prediction task
as much as possible. Our hypothesis is that these
assignments will correspond to roles accepted in lin-
guistic theories (or, more importantly, useful in prac-
tical applications). Why is this hypothesis plausi-
ble? Primarily because these semantic representa-
tions were introduced as an abstraction capturing the
essence of a situation (or a event). And the underly-
ing situation and participant roles in this situation
(rather than surface linguistic details like argument
order or syntactic functions) are precisely what im-
pose constraints on admissible argument tuples.

The reconstruction component is not the only part
of the model. Crucially, what we referred to above
as ‘searching for role assignments to simplify ar-
gument prediction’” would actually correspond to

learning another component: a semantic role labeler
which predicts roles relying on a rich set of sentence
features. These two components will be estimated
jointly in such a way as to minimize errors in recov-
ering arguments. The role labeler will be the end-
product of learning: it will be used to process new
sentences, and it will be compared to existing meth-
ods in our evaluation.

3.1 Shortcomings of generative modeling

The above paragraph can be regarded as our desider-
ata; now we discuss how to achieve them. The stan-
dard way to approach latent variable modeling is
to use the generative framework: that is to define
a family of joint models p(x, y|0) and estimate the
parameters 6 by, for example, maximizing the likeli-
hood. Generative models of semantics (Titov and
Klementiev, 2012a; Titov and Klementiev, 2011;
Modi et al., 2012; O’Connor, 2013; Kawahara et al.,
2014) necessarily make very strong independence
assumptions (e.g., arguments are conditionally inde-
pendent of each other given the predicate) and use
simplistic features of x and y. Thus, they cannot
meet the desiderata stated above. Importantly, they
are also much more simplistic in their assumptions
than state-of-the-art supervised role labelers (Erk
and Pado, 2006; Johansson and Nugues, 2008; Das
et al., 2010).

3.2 Reconstruction error minimization

Generative modeling is not the only way to learn la-
tent representations. One alternative, popular in the
neural network community, is to instead use autoen-
coders and optimize the reconstruction error (Hin-
ton, 1989; Vincent et al., 2008). In autoencoders,
a latent representation y (their hidden layer) is pre-
dicted from = by an encoding model and then this y
is used to recover & with a reconstruction model (see
Figure 1(a)). Parameters of the encoding and recon-
struction components are chosen so as to minimize
some form of the reconstruction error, for example,
the Euclidean distance A(x, Z) = ||x—Z||2. Though
currently popular only within the deep learning com-
munity, latent variable models other than neural net-
works can also be trained this way, moreover:

e the encoding and reconstruction models can be-
long to different model families;
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Figure 1: (a) An autoencoder from R™ to RP (typically p < m).

minimization framework.

o the reconstruction component may be focused
on recovering a part of x rather than the entire
x, and, in doing so, can rely not only on y but
on the remaining part of .

These observations are crucial as they allow us to
implement our desiderata. More specifically, the en-
coding model will be a feature-rich classifier which
predicts semantic roles for a sentence, and the re-
construction model is the model which predicts an
argument given its role, and given the rest of the ar-
guments and their roles. The idea of training linear
models by minimizing the reconstruction error was
previously explored by Daumé (2009) and very re-
cently by Ammar et al. (2014).

3.3 Modeling semantics within the
reconstruction-error framework

There are several possible ways to translate the ideas
above into a specific method, and we consider one
of the simplest instantiations. For simplicity, in the
discussion (but not in our experiments), we assume
that exactly one predicate is realized in each sen-
tence z. As we mentioned above, we focus only
on argument labeling: we assume that arguments
a = (ai,...,an), a; € A, are known, and only
their roles » = (r1,...,7n), r; € R need to be
induced. For the encoder (i.e. the semantic role la-
beler), we use a log-linear model:

plrle, w) o exp(w’ g(x, 7)),

where g(z,r) is a feature vector encoding interac-
tions between sentence x and the semantic role rep-

(b)

(b) Modeling roles within the reconstruction-error

resentation . Any model can be used here as long
as the posterior distributions of roles r; can be effi-
ciently computed or approximated (we will see why
in Section 3.4). In our experiments, we used a model
which factorizes over individual arguments (i.e. a set
of independent logistic regression classifiers).

The reconstruction component predicts an argu-
ment (e.g., the ith argument a;) given the seman-
tic roles r, the predicate v and other arguments
a_; = (ay,...,a;—1,0i41,...,ay) with a bilinear
softmax model:

p(ai|a’—i7 ’I’,’U,C,U) =

exp(u:{i C’g:,,i Z#icv,rj Ug)
Z(r,v,1) ’

ey

u, € R? (for every a € A) and C,,, € R¥*4 (for
every verb v and every role r € R) are model pa-
rameters, Z(r,v,4) is the partition function ensur-
ing that the probabilities sum to one. Intuitively,
embeddings u,, when learned from data, will en-
code semantic properties of an argument: for ex-
ample, embeddings for the words demonstrator and
protestor should be somewhere near each other in
R? space, and further away from that for the word
cat. The product C, ,u, is a k-dimensional vec-
tor encoding beliefs about other arguments based on
the argument-role pair (a,r). For example, seeing
the argument demonstrator in the Patient posi-
tion for the predicate charge, one would predict that
the Agent is perhaps the word police, and the role
Instrument is filled by the word baton or perhaps



(a water) cannon. On the contrary, if the Patient
is cat then the Agent is more likely to be dog than
police. In turn, the dot product (C,, ., U, )TC'WJ. Uq,
is large if these expectations are met for the argu-
ment pair (a;, a;), and small otherwise. Intuitively,
this objective corresponds to scoring argument tu-
ples according to

h(a,r,v,C,u) = ZUTC,TTZ
i#]

hinting at connections to (coupled) tensor and matrix
factorization methods (Nickel et al., 2011; Yilmaz
et al., 2011; Bordes et al., 2011; Riedel et al., 2013)
and distributional semantics (Mikolov et al., 2013;
Pennington et al., 2014). Note also that the recon-
struction model does not have access to any fea-
tures of the sentence (e.g., argument order or syn-
tax), forcing the roles to convey all the necessary
information.

This factorization can be thought of as a general-
ization of the notion of selection preferences. Selec-
tional preferences characterize the set of arguments
licensed for a given role of a given predicate: for ex-
ample, Agent for the predicate charge can be police
or dog but not table or idea. In our generalization,
we model soft restrictions imposed not only by the
role itself but also by other arguments and their as-
signment to roles.

In practice, we extend the model slightly: (1) we
introduce a word-specific bias (a scalar b, for ev-
ery a € A) in the argument prediction model (equa-
tion (1)); (2) we smooth the model by using a sum
of predicate-specific and cross-predicate projection
matrices (C, , + C,) instead of just C, ;..

vy Uays (2)

3.4 Learning

Parameters of both model components (w, u and C)
are learned jointly: the natural objective associated
with every sentence would be the following:

N
Zlogzp(ai’a—iarvvvc’ u)p(r|ﬂz7’w) (3)
=1 T

However optimizing this objective is not practical
in its exact form for two reasons: (1) marginaliza-
tion over = is exponential in the number of argu-
ments; (2) the partition function Z(r,v, ) requires
summation over the entire set of potential argument

lemmas. We use existing techniques to address both
challenges.

In order to deal with the first challenge, we use
a basic mean-field approximation. Namely, instead
of computing an expectation of p(a;|a_;, r,v,C,u)
under p(r|x,w), as in (3), we use the posterior dis-
tributions ;s = p(r; = s|x, w) and score the argu-
ment predictions as

exp (¢i(ai, a—;))
Z(p,v,1)

p(ai‘afia H,U,C,'U/) (4)

¢i(ai, a_

= Uy, Zﬂzs vs
X Z Zﬂjscv,s>uaja

i s
where p are the posteriors for all the arguments,
and ¢;(a,a_;) is the score associated with predict-
ing lemma a for the argument <.

In order to address the second problem, the com-
putation of Z(u,v,7), we use a negative sampling
technique (see, e.g., Mikolov et al. (2013)). More
specfically, we get rid of the softmax in equation (4)
and optimize the following sentence-level objective:

N
Zlogo di(ai,as))
=Y logo(gi(d,a))l, ()

a’'es

where S is a random sample of n elements from the
unigram distribution of lemmas, and ¢ is the logistic
sigmoid function.

Assuming that the posteriors g can be derived in
a closed form, the gradients of the objective (5) with
respect to parameters of both the encoding compo-
nent (w) and the reconstruction component (C, u
and b) can be computed using back propagation.
In our experiments, we used the AdaGrad algo-
rithm (Duchi et al., 2011) to perform the optimiza-
tion.

The learning algorithm is quite efficient, as the
reconstruction computation is bilinear, whereas the
computation of the posteriors p (and the computa-
tion of their gradients) from the semantic roler la-
beling component (encoder) is not much more ex-
pensive than discriminative supervised learning of



the role labeler. Moreover, the computations can
be sped up substantially by observing that the sum
> 1isCy s in expression (4) can be precomputed
for all ¢, and reused across predictions of different
arguments of the same predicate. At test time, only
the linear semantic role labeler is used, so the infer-
ence is straightforward.

4 Experiments

4.1 Data and evaluation metrics

We considered English and German in our experi-
ments. For each language, we replicated experimen-
tal set-ups used in previous work.

For English, we followed Lang and Lap-
ata (2010) and used the dependency version of Prop-
Bank (Palmer et al., 2005) released for the CoNLL
2008 shared task (Surdeanu et al., 2008). The
dataset is divided into three segments. As in the pre-
vious work on unsupervised role labeling, we used
the largest segment (the original CoNLL training set,
sections 2-21) both for evaluation and learning. This
is permissible as unsupervised models do not use
gold labels in training. The two small segments (sec-
tions 22 and 23) were used for model development.
In our experiments, we relied on gold standard syn-
tax and gold standard argument identification, as this
set-up allows us to evaluate against much of the pre-
vious work. We refer the reader to Lang and Lap-
ata (2010) for details of the experimental set-up.

There has not been much work on unsupervised
induction of roles for languages other than English,
perhaps primarily because of the above-mentioned
model limitations. For German, we replicate the
set-up considered in Titov and Klementiev (2012b).
They used the CoNLL 2009 version (Haji¢ et al.,
2009) of the SALSA corpus (Burchardt et al., 2006).
Instead of using syntactic parses provided in the
CoNLL dataset, they re-parsed it with the MALT
dependency parser (Nivre et al., 2004). Similarly,
rather than relying on gold standard annotations for
argument identification, they used a supervised clas-
sifier to predict argument positions. Details of the
preprocessing can be found in Titov and Klemen-
tiev (2012b).

As in most previous work on unsupervised SRL,
we evaluate our model using purity, collocation and
their harmonic mean F1. Purity (PU) measures the

average number of arguments with the same gold
role label in each cluster, collocation (CO) measures
to what extent a specific gold role is represented by
a single cluster. More formally:

1
PU = NijaﬂGj ayen

where if C; is the set of arguments in the ¢-th in-
duced cluster, G is the set of arguments in the jth
gold cluster, and N is the total number of arguments.
Similarly, for collocation:

1
co = szgx@ N Cj
J

We compute the aggregate PU, CO, and F1 scores
over all predicates in the same way as Lang and La-
pata (2010): we weight the scores for each predi-
cate by the number of times its arguments occur and
compute the weighted average.

4.2 Parameters and features

For the semantic role labeling (encoding) compo-
nent, we relied on 14 feature patterns used for ar-
gument labeling in a popular supervised role la-
beler (Johansson and Nugues, 2008). These patterns
include non-trivial syntactic features, such as a de-
pendency path between the target predicate and the
considered argument. The resulting feature space
is quite large (49,474 feature instantiations for our
English dataset) and arguably sufficient to accu-
rately capture syntax-semantics interface for most
languages. We refer the reader to the original publi-
cation for details (Johansson and Nugues, 2008: Ta-
ble 2). Importantly, the dimensionality of the fea-
ture space is very different from the one used typi-
cally in unsupervised SRL. In principle, any features
could be used here but we chose these 14 feature pat-
terns, as they all are fairly simple and generic. They
can also be easily extracted from any treebank. We
used the same feature patterns both for English and
German. However, there is little doubt that some
language-specific feature engineering and the use
of language-specific priors or constraints (e.g., pos-
terior regularization (Ganchev et al., 2010)) would
benefit the performance. Faithful to our goal of con-
structing the simplest possible feature-rich model,



we use logistic classifiers independently predicting
role distribution for every argument.

For the reconstruction component, both for En-
glish and German, we set the embedding dimension-
ality d, the projection dimensionality k£ and the num-
ber of negative samples n to 30, 15 and 20, respec-
tively. The model was not sensitive to the parameter
|R|, defining the number of roles as long it was large
enough (see Section 4.3 for more discussion). For
training, we used uniform random initialization and
AdaGrad (Duchi et al., 2011). Any model selections
(e.g., choosing the number of epochs) was done on
the basis of the respective held-out set.

4.3 Results
4.3.1 English

Table 1 summarizes the results of our method, as
well as those of alternative approaches and base-
lines.

Following (Lang and Lapata, 2010), we use a
baseline (SyntF) which simply clusters predicate ar-
guments according to the dependency relation to
their head. A separate cluster is allocated for each
of 20 most frequent relations in the dataset and an
additional cluster is used for all other relations. As
observed in the previous work (Lang and Lapata,
2011a), this is a hard baseline to beat.

We also compare with previous approaches: the
latent logistic classification model (Lang and La-
pata, 2010) (labeled LLogistic), the agglomerative
clustering method (Lang and Lapata, 2011a) (Ag-
glom), the graph partitioning approach (Lang and
Lapata, 2011b) (GraphPart), the global role order-
ing model (Garg and Henderson, 2012) (RoleOrder-
ing). We also report results of an improved ver-
sion of Agglom, recently reported by Lang and La-
pata (2014) (Agglom+). The strongest previous
model is Bayes: Bayes is the most accurate (‘cou-
pled’) version of the Bayesian model of Titov and
Klementiev (2012a), estimated from the CoNLL
dataset without relying on any external data. Titov
and Klementiev (2012a) also showed that using
Brown clusters induced from a large external cor-
pus resulted in an 0.5% improvement in F1 but that
version is not entirely comparable to other systems
induced solely from the CoNLL text.

Our model outperforms or performs on par with

PU CO F1

Our Model 79.7 86.2 82.8
Bayes 89.3 76.6 825
Agglom+ 87.9 75.6 813
RoleOrdering 83.5 78.5 80.9
Agglom 88.7 73.0 80.1
GraphPart 88.6 70.7 78.6
LLogistic 79.5 76.5 78.0
SyntF 81.6 77.5 795

Table 1: Results on English (PropBank / CoNLL 2008).

best previous models in terms of F1. Interestingly,
the purity and collocation balance is very different
for our model and for the rest of the systems. In
fact, our model induces at most 4-6 roles (even if
|R| is much larger). On the contrary, Bayes predicts
more than 30 roles for the majority of frequent pred-
icates (e.g., 43 roles for the predicate include or 35
for say). Though this tendency reduces the purity
scores for our model, this also means that our roles
are more human interpretable. For example, agents
and patients are clearly identifiable in the model pre-
dictions. Our model has similar purity to the syntac-
tic baseline but outperforms it vastly according to
the collocation metric, suggesting that we go sub-
stantially beyond recovering syntactic relations.

In additional experiments, we observed that our
model, in some regimes, starts to induce roles spe-
cific to individual verb senses or specific to groups of
semantically similar predicates. This suggests that
adding a latent variable capturing predicate senses
and conditioning the reconstruction component on
this variable may not only result in a more infor-
mative semantic representation (i.e. include verb
senses) but also improve the role induction perfor-
mance. We leave this exploration for future work.

4.3.2 German

For German, we replicate the experimental set-up
previously used by Titov and Klementiev (2012b).
As for English, we report results of the syntactic
baseline (SyntF). The results for all approaches are
presented in Table 2. We compare against Bayes
(De) — the Bayes model with argument signatures
specialized for German (as reported in Titov and
Klementiev (2012b)). We also consider the original



PU CO F1

Our Model 764 87.0 814
Bayes (De) 86.8 75.7 80.9
Bayes (En) 80.6 76.0 783
SyntF 83.1 79.3 81.2

Table 2: Results on German (SALSA / CoNLL 2009).

version of the Bayes model (denoted as Bayes (En)).

Recently, Lang and Lapata (2014) evaluated their
Agglom+ on a version of the same German SALSA
dataset. Their best result is F1 of 79.2%, however,
this score and our results are not directly compara-
ble. Instead of using the CoNLL dataset, they pro-
cessed the corpus themselves. They also relied on
syntactic features from a constituent parser whereas
we used dependency representations.

The overall picture for German closely resembles
the one for English. Our method achieves results
comparable to the best method evaluated in this set-
ting. Importantly, parameters and features of our
model for German and English are identical. On
the contrary, one can see that specialization of argu-
ment signatures was crucial for the Bayesian model.
Also, similarly to English, our method induces less
fine-grain sets of semantic roles but achieves much
higher collocation scores.

5 Additional Related Work

In recent years, unsupervised approaches to seman-
tic role induction have attracted considerable atten-
tion. However, there exist other ways to address
lack of coverage provided by existing semantically-
annotated resources.

One natural direction is semi-supervised role
labeling, where both annotated and unannotated
data is used to estimate a model. Previous semi-
supervised approaches to SRL can be mostly re-
garded as extensions to supervised learning by ei-
ther incorporating word features induced from un-
nannoted texts (Collobert and Weston, 2008; De-
schacht and Moens, 2009) or creating some form
of ‘surrogate’ supervision (He and Gildea, 2006;
Fiirstenau and Lapata, 2009). Benefits from using
unlabeled data were moderate, and more significant
for the harder SRL version, frame-semantic pars-
ing (Das and Smith, 2011).

Another important direction includes cross-
lingual approaches (Pado and Lapata, 2009; van der
Plas et al., 2011; Kozhevnikov and Titov, 2013)
which leverage resources from resource-rich lan-
guages, as well as parallel data, to produce anno-
tation or models for resource-poor languages. How-
ever, both translation shifts and noise in word align-
ments harm the performance of cross-lingual meth-
ods. Nevertheless, even joint unsupervised induc-
tion across languages appears to be beneficial (Titov
and Klementiev, 2012b).

Unsupervised learning has also been one of the
central paradigms for the closely-related area of
relation extraction (RE), where several techniques
have been proposed to cluster semantically similar
verbalizations of relations (Lin and Pantel, 2001;
Banko et al., 2007; Yao et al., 2011). Similarly to
SRL, unsupervised methods for RE mostly rely on
generative modeling and agglomerative clustering.

From the learning perspective, methods which use
the reconstruction-error objective to estimate linear
models (Ammar et al., 2014; Daumé III, 2009) are
certainly related. However, they do not consider
learning factorization models, and they also do not
deal with semantics. Tensor factorization methods
used in the context of modeling knoweldge bases
(e.g., (Bordes et al., 2011)) are also close in spirit.
However, they do not deal with inducing semantics
but rather factorize existing relations (i.e. rely on
semantics).

6 Conclusions and Discussion

This work introduces a method for inducing feature-
rich semantic role labelers from unannoated text. In
our approach, we view a semantic role representa-
tion as an encoding of a latent relation between a
predicate and a tuple of its arguments. We capture
this relation with a probabilistic tensor factorization
model. The factorization model (relying on seman-
tic roles) and a feature-rich model (predicting the
roles) are jointly estimated by optimizing an objec-
tive which favours accurate reconstruction of argu-
ments given the latent semantic representation (and
other arguments). Our estimation method yields a
semantic role labeler which achieves state-of-the-art
results both on English and German.

Unlike previous work on role induction, in our



approach, virtually any computationally tractable
structured model can be used as a role labeler, in-
cluding almost any semantic role labeler introduced
in the context of supervised SRL (see, e.g., CONLL
shared tasks (Carreras and Marquez, 2005; Sur-
deanu et al., 2008; Hajic et al., 2009)). This opens
interesting possibilities to extend our approach to
the semi-supervised setting. Previous unsupervised
SRL models make too strong assumption and use too
limited features to effectively exploit labeled data.
For our model, the reconstruction objective can be
easily combined with the likelihood objective, yield-
ing a potentially powerful semi-supervised method.
We leave this direction for future work.
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Abstract

We present a joint model for predicate argu-
ment alignment. We leverage multiple sources
of semantic information, including temporal
ordering constraints between events. These
are combined in a max-margin framework
to find a globally consistent view of entities
and events across multiple documents, which
leads to improvements over a very strong local
baseline.

1 Introduction

Natural language understanding (NLU) requires
analysis beyond the sentence-level. For example,
an entity may be mentioned multiple times in a dis-
course, participating in various events, where each
event may itself be referenced elsewhere in the
text. Traditionally the task of coreference resolution
has been defined as finding those entity mentions
within a single document that co-refer, while cross-
document coreference resolution considers a wider
discourse context across many documents, yet still
pertains strictly to entities.

Predicate argument alignment, or entity-event
cross-document coreference resolution, enlarges the
set of possible co-referent elements to include the
mentions of situations in which entities participate.
This expanded definition drives practitioners to-
wards a more complete model of NLU, where sys-
tems must not only consider who is mentioned, but
also what happened. However, despite the drive to-
wards an expanded notion of discourse, models typ-
ically are formulated with strong notions of local-
independence: viewing a multi-document task as
one limited to individual pairs of sentences. This
creates a mis-match between the goals of such work
— considering entire documents — with the systems —
consider individual sentences.
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In this work, we consider a system that takes a
document level view in considering coreference for
entities and predictions: the task of predicate ar-
gument linking. We treat this task as a global in-
ference problem, leveraging multiple sources of se-
mantic information identified at the document level.
Global inference for this problem is mostly unex-
plored, with the exception of Lee et al. (2012) (dis-
cussed in § 8). Especially novel here is the use of
document-level temporal constraints on events, rep-
resenting a next step forward on the path to full un-
derstanding.

Our approach avoids the pitfalls of local infer-
ence while still remaining fast and exact. We use
the pairwise features of a very strong predicate argu-
ment aligner (Wolfe et al., 2013) (competitive with
the state-of-the-art (Roth, 2014)), and add quadratic
factors that constrain local decisions based on global
document information. These global factors lead
to superior performance compared to the previous
state-of-the-art. We release both our code and data.!

2 Model

Consider the two sentences from the document pair
shown in Figure 1. These sentences describe the
same event, although with different details. The
source sentence has four predicates and four ar-
guments, while the target has three predicates and
three arguments. In this case, one of the predicates
from each sentence aligns, as do three of the argu-
ments. We also show additional information poten-
tially helpful to determining alignments: temporal
relations between the predicates. The goal of predi-
cate argument alignment is to assign these links in-
dicating coreferent predicates and arguments across
a document pair (Roth and Frank, 2012).

Previous work by Wolfe et al. (2013) formulated

'nttps://github.com/hltcoe/parma2

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 11-20,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics
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Temporal relation information is lifted into the global inference over alignments.

this as a binary classification problem: given a pair
of arguments or predicates, construct features and
score the pair, where scores above threshold indi-
cate links. A binary classification framework has ad-
vantages: it’s fast since individual decisions can be
made quickly, but it comes at the cost of global in-
formation across links. The result may be links that
conflict in their interpretation of the document. Fig-
ure 1 makes clear that jointly considering all links at
once can aid individual decisions, for example, by
including temporal ordering of predicates.

The global nature of this task is similar to word
alignment for machine translation (MT). Many sys-
tems consider alignment links between words indi-
vidually, selecting the best link for each word inde-
pendently of the other words in the sentence. Just as
with an independent linking strategy in predicate ar-
gument alignment, this can lead to inconsistencies in
the output. Lacoste-Julien et al. (2006) introduced a
model that jointly resolved word alignments based
on the introduction of quadratic variables, factors
that depend on two alignment decisions which char-
acterize patterns that span word-word links. Their
approach achieved improved results even in the pres-
ence of little training data.
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We present a global predicate argument alignment
model based on considering quadratic interactions
between alignment variables to captures patterns we
expect in coherent discourse. We introduce factors
which are comprised of a binary variable, multiple
quadratic constraints on that variable, and features
that determine the cost associated with that vari-
able in order to characterize the dependence between
alignment decisions.

While the mathematical framework we use is sim-
ilar to Lacoste-Julien et al. (2006), predicate argu-
ment alignment greatly differs from word alignment;
thus our joint factors are based on different sources
of regularity. Word alignment favors monotonic-
ity in word order, but this effect is very weak in
predicate argument alignment: aligned items can be
spread throughout a document, and are often nested,
gapped, or shuffled. Instead, we encode assump-
tions about consistency of temporal relations be-
tween coreferent events, coherence between predi-
cates and arguments that appear in both documents,
and fertility (to prevent over-alignment). We also
note that our setting has much less data than typical
word alignment tasks, as well as richer features that
utilize semantic resources.



Notation An alignment between an item indexed
by 7 in the source document and 7 in the target docu-
ment is represented by variable z;; € {0,1}, where
z;j = 1 indicates that items ¢ and j are aligned. In
some cases, we will explicitly indicate when the two
items are predicates as zf’j; an argument alignment
will be zj;. We represent all alignments for a docu-
ment pair as matrix z.

For clarity, we omit any variable representing
observed data when discussing feature functions;
alignment variables are endowed with this informa-
tion. For each pair of items we use “local” fea-
ture functions f(-) and corresponding parameters
w, which capture the similarity between two items
without the context of other alignments.

Sij =W - f(Zij) (l)

where s;; is the score of linking items ¢ and j.

Using only local features, our system would
greedily select alignments. To capture global as-
pects we add joint factors that capture effects be-
tween alignment variables. Each joint factor ¢ is
comprised of a constrained binary variable z4 asso-
ciated with features f(¢) that indicates when the fac-
tor is active. Together with parameters w these form
additional scores s for the objective:

5o = w-£(9) )

The full linear scoring function on alignments
sums over both local similarity and joint factors:

Z SijZij + Z SpZ¢- (3)
ij

ped

Lastly, it is convenient to describe the local fea-
ture functions and their corresponding alignment
variable as factors with no constraints, and we will
do so when describing the full score function.

3 Local Factors

Local factors encode features based on the men-
tion pair, which include a wide variety of simi-
larity measures, e.g. whether two headwords ap-
pear as synonyms in WordNet, gender agreement
based on possessive pronouns. We adopt the fea-
tures of Wolfe et al. (2013), a strong baseline system
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which doesn’t use global inference.? These features
are built on top of a variety of semantic resources
(PPDB (Ganitkevitch et al., 2013), WordNet (Miller,
1995), FrameNet (Baker et al., 1998)) and methods
for comparing mentions (tree edit distance (Yao et
al., 2013), string transducer (Andrews et al., 2012)).

4 Joint Factors

Our goal is to develop joint factors that improve over
the feature rich local factors baseline by considering
global information.

Fertility A common mistake when making inde-
pendent classification decisions is to align many
source items to a single target item. While each link
looks promising on its own, they clearly cannot all
be right. Empirically, the training set reveals that
many to one alignments are uncommon; thus many
to one predictions are likely errors. We add a fertility
factor for predicates and arguments, where fertility
is defined as the number of links to an item. Higher
fertilities are undesired and are thus penalized. For-
mally, for matrix z, the fertility of a row ¢ or column
7 is the sum of that row or column. We discuss fer-
tility in terms of rows below.

We include two types of fertility factors. First,
factor ¢rere; distinguishes between rows with at least
one link from those with none. For row ¢, we add one
instance of the linear factor ¢ge; With constraints

Z¢fert1 Z Zij vj (4)

The cost associated with zy, ., which we will re-
fer to as Sgert1, Will be incurred any time an item is
mentioned in both documents. For data sets with
many singletons, Sg;; more strongly penalizes non-
singleton rows, reflecting this pattern in the training
data. We make sgr; parametric, where the features
of the ¢rrr1 factor allow us to learn different weights
for predicates and arguments, as well as the size of
the row, i.e. number of items in the pairing.

The second fertility factory ¢gero considers items
with a fertility greater than one, penalizing items for
having too many links. Its binary variable has the

2Some features inspect the apparent predicate argument
structure, based on things like dependency parses, but the model
may not inspect more than one of its own decisions (joint fac-
tors) while scoring an alignment.



quadratic constraints:
Zgreny = ZijZik VI < o)

This factor penalizes rows that have fertility of at
least two, but does not distinguish beyond that. An
alternative would be to introduce a factor for every
pair of variables in a row, each with one constraint.
This would heavily penalize fertilities greater than
two. We found that the resulting quadratic program
took longer to solve and gave worse results.

Since documents have been processed to identify
in-document coreference chains, we do not expect
multiple arguments from a source document to align
to a single target item. For this reason, we expect
Orert2 for arguments to have a large negative weight.
In contrast, since predicates do not form chains, we
may have multiple source predicates for one target.

We note an important difference between our
fertility factor compared with Lacoste-Julien et al.
(2006). We parameterize fertility for only two cases
(1 and 2) whereas they consider fertility factors from
2 to D. We do not parameterize fertilities higher
than two because they are not common in our dataset
and come at a high computational cost.

The features f(¢) for both ¢per; and Grer2 are an
intercept feature (which always fires), indicator fea-
tures for whether this row corresponds to an argu-
ment or a predicate, and a discretized feature for how
many alignments are in this row.

Predicate Argument Structure We expect struc-
ture among links that involve a predicate and its as-
sociated arguments. Therefore, we add joint factors
that consider a predicate and its associated align-
ments: the predicate argument structure. We deter-
mine this structure from a dependency parse, though
the idea is general to any semantic binding, e.g.
FrameNet or Propbank style parses. Given a co-
herent discourse, there are several expected types of
patterns in the PAS; we add factors for these.

Predicate-centric We begin with a predicate-
centric factor, which views scores an alignment be-
tween predicates based on their arguments, i.e. the
two predicates share the same arguments. Ideally,
two predicates can only align when their arguments
are coreferent. However, in practice we may in-
correctly resolve argument links, or there may be
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implicit arguments that do not appear as syntactic
dependencies of the predicate trigger. Therefore,
we settle for a weaker condition, that there should
be some overlap in the arguments of two coreferent
predicates.

For every predicate alignment zfj, we add a factor
®psa Whose score spg, is a penalty for having no ar-
gument overlap; predicates share arguments (psa).
To constrain the variable of ¢p,, we add a quadratic
constraint that considers every possible pair of argu-
ment alignments that might overlap:

P(1— @ 6
S0, ® O
leargs(pj)

Zgpa = 2

where args(p;) finds the indices of all arguments
governed by the predicate p;.

Entity-centric We expect similar behavior from
arguments (entities). If an entity appears in two doc-
uments, it is likely that this entity will be mentioned
in the context of a common predicate, i.e. arguments
share predicates (asp). For a given argument align-
ment z; we add quadratic constraints so that zg,,
represents a penalty for two arguments not sharing a
single predicate:

p
max z @)
kepreds(a;) kl)
lepreds(aj)

2 = Z?j (1 —

where preds(a;) finds the indices of all predicates
that govern any mention of argument a;.

The features f(¢) for both psa and asp are an
intercept feature and a bucketed count of the size of
args(p;) x args(p;) or preds(a;) x preds(a;) respec-
tively.

Temporal Information Temporal ordering, in
contrast to textual ordering, can indicate when pred-
icates cannot align: we expect aligned predicates
in both documents to share the same temporal re-
lations. SemEval 2013 included a task on predict-
ing temporal relations between events (UzZaman et
al., 2013). Many systems produced partial rela-
tions of events in a document based on lexical as-
pect and tense, as well as discourse connectives like
“during” or “after”. We obtain temporal relations
with CAEVO, a state-of-the-art sieve-based system
(Chambers et al., 2014).



TimeML (Pustejovsky et al., 2003), the format for
specifying temporal relations, defines relations be-
tween predicates (e.g. immediately before and si-
multaneous), each with an inverse (e.g. immediately
after and simultaneous respectively). We will refer
to a relation as R and its inverse as R~'. Suppose
we had p, and p;, in the source document, p, and p,
in the target document, and p, R1py, pr Ropy. Given
this configuration the following alignments conflict
with the in-doc relations:

Zax ‘ 2hy ‘ Zay ‘ Zbr ‘ In-Doc Relations

* * 1 1 Ry =Ry

1 |1 |* |* |R =Ry’
where 1 means there is a link and * means there is
a link or no link (wildcard). The simplest example
that fits this pattern is: ‘a before b’, ‘x before y’, ‘a
corefers with y’, and ‘b corefers with x’ implies a
conflict.

We introduce a factor that penalizes these conflict-
ing configurations. In every instance where the pre-
dicted temporal relation for a pair of predicate align-
ments matches one of the conflict patterns above, we
add a factor using 2y,

Z¢temp Z Zay~bx
if po R1py, pz Ropy, R1 = Ro

Z Premp > Zax by

)
if poR1pp, paRopy, R1 = Ry

Thus sg,,, 1s the cost of disagreeing with the in-
doc temporal relations. This is a general technique
for incorporating relational information into coref-
erence decisions. It only requires specifying when
two relations are incompatible, e.g. spouseOf and
siblingOf are incompatible relations (in most
states). We leave this for future work.

Since CAEVO gives each relation prediction a
probability, we incorporate this into the feature by
indicating the probability of a conflict not arising:

f(¢temp) = log (1 - p(Rl)p(RZ) + 6) (9)

€ avoids large negative values since CAEVO proba-
bilities are not perfectly calibrated. We use ¢ = 0.1,
allowing feature values of at most —2.3.

Summary The objective is a linear function over
binary variables. There is a local similarity score
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def train(alignments) :

w = init_weights ()
working_set = set ()
while True:
x1 = solve_ILP (w, working_set)
c = most_violated_constraint (w, alignments)

working_set.add(c)
if hinge(c, w)
break

< xi:

def most_violated_constraint (w, alignments) :
delta_features = vector()
loss = 0
for z in alignments:
z_mv = make_ILP(z)
for phi in factors:
costs = dot (w, phi.features)
z_mv.add_terms (costs, phi.vars)
z_mv.add_constraints (phi.constraints)
solve_ILP (z_mv)
mu = (z.size + k) / (avg_z_size + k)
delta_features += mu * (f(z) - f(z_mv))
loss += mu x Delta(z, z_mv)
return Constraint (delta_features, loss)

def hinge(c, w):

return max (0, c.loss - dot (w, c.delta_features))

Figure 2: Learning algorithm (caching and ILP solver
not shown). The sum in each constraint is performed once
when finding the constraint, and implicitly thereafter.

coefficient on every alignment variable, and a joint
factor similarity score on every quadratic variable.
These quadratic variables are constrained by prod-
ucts of the original alignment variables. Decoding
an alignment requires solving this quadratically con-
strained integer program; in practice is can be solved
quickly without relations.

5 Inference

Learning We use the supervised structured SVM
formulation of Joachims et al. (2009). As is common
in structure prediction we use margin rescaling and
1 slack variable, with the structural SVM objective:

min|jwl|3 + C¢

st.&E>0

N N
E+D weflz) 2D we f(5)+ Az, 4)
i=1 i=1
Vi, € Z;
(10)
where Z; is the set of all possible alignments that
have the same shape as z;.



The score function for an alignment uses three
types of terms: weights, features, and alignment
variables. When we decode, we take the product
of the weights and the features to get the costs for
the ILP (e.g. sy = w - f(¢)). When we optimize our
SVM objective, we take the product of the alignment
variables and the features to get modified features
for the SVM:

F(2) =" 2t (zi5) + Y 26F(0)
i

ped

an

Since we cannot iterate over the exponentially
many margin constraints, we solve for this optimiza-
tion using the cutting-plane learning algorithm. This
algorithm repeatedly asks the “separation oracle” for
the most violated SVM constraint, which finds this
constraint by solving:

f(Z) + Az, % 12
argérlf{?tz%;w FG)+ Az %) (12)

subject to the constraints defined by the joint fac-
tors. When the separation oracle returns a constraint
that is not violated or is already in the working set,
then we have a guarantee that we solved the original
SVM problem with exponentially many constraints.
This is the most time-consuming aspect of learning,
but since the problem decomposes over document
alignments, we cache solutions on a per document
alignment basis. With caching, we only call the sep-
aration oracle around 100-300 times.

We implement the separation oracle using an ILP
solver, CPLEX,? due to complexity of the discrete
optimization problem: there are 2™" possible align-
ments for and m x n alignment grid. In practice this
is solved very efficiently, taking less than a third of
a second per document alignment on average. We
would like A to be F1, but we need a decomposable
loss to include it in a linear objective (Taskar et al.,
2003). Instead, we use Hamming loss as a surrogate,
as in Lacoste-Julien et al. (2006).

Our training data is heavily biased towards nega-
tive examples, performing poorly on F1 since preci-
sion and recall are unbalanced. We use an asym-
metric version of Hamming loss that incurs cpp
cost for predicting an alignment for two unaligned

http://www-01.1ibm.com/software/
commerce/optimization/cplex-optimizer/
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items and cgy for predicting no alignment for two
aligned items. We fixed cpp = 1 and tuned cpy €
{1,2,3,4} on dev data. Additionally we found it
useful to tune the scale of the loss function across
{%, 1,2,4}. Previous work, such as Joachims et al.
(2009), use a hand-chosen constant for the scale of
the Hamming loss, but we observe some sensitivity
in this parameter and choose to optimize it.

Decoding Following Wolfe et al. (2013), we tune
the threshold for classification 7 on dev data to max-
imize F1 (via linesearch). For SVMs 7 is typically
fixed at O: this is not necessarily good practice when
your training loss differs from test loss (Hamming
vs F1). In our case this extra parameter is worth al-
locating a portion of training data to enable tuning.
Tuning 7 addresses the same problem as using an
asymmetric Hamming loss, but we found that do-
ing both led to better results.* Since we are using a
global scoring function rather than a set of classifi-
cations, 7 is implemented as a test-time unary factor
on every alignment.

6 Experiments

Data We consider two datasets for evaluation. The
first is a cross-document entity and event corefer-
ence resolution dataset called the Extended Event
Coref Bank (EECB) created by Lee et al. (2012) and
based on a corpus from Bejan and Harabagiu (2010).
The dataset contains clusters of news articles taken
from Google News with annotations about corefer-
ence over entities and events. Following the proce-
dure of Wolfe et al. (2013), we select the first doc-
ument in every cluster and pair it with every other
document in the cluster.

The second dataset (RF) comes from Roth and
Frank (2012). The dataset contains pairs of news
articles that describe the same news story, and are
annotated for predicate links between the document
pairs. Due to the lack of annotated arguments, we
can only report predicate linking performance and
the psa and asp factors do not apply. Lastly, the
size of the RF data should be noted as it is much
smaller than EECB: the test set has 60 document
pairs and the dev set has 10 document pairs.

*Only tuning 7 performed almost as well as tuning 7 and
the Hamming loss, but not tuning 7 performed much worse than
only tuning the Hamming loss at train time.



Both datasets are annotated with parses and in-
document coreference labels provided by the toolset
of Napoles et al. (2012)° and are available with our
code release. Due to the small data size, we use k-
fold cross validation for both datasets. We choose
k = 10 for RF due to its very small size (more
folds give more training examples) and £ = 5 on
EECB to save computation time (amount of training
data in EECB is less of a concern). Hyperparam-
eters were chosen by hand using using cross vali-
dation on the EECB dataset using F1 as the crite-
ria (rather than Hamming). Figures report averages
across these folds.

Systems Following Roth and Frank (2012) and
Wolfe et al. (2013) we include a Lemma baseline
for identifying alignments which will align any two
predicates or arguments that have the same lemma-
tized head word.® The Local baseline uses the same
features as Wolfe et al., but none of our joint fac-
tors. In addition to running our joint model with all
factors, we measure the efficacy of each individual
factor by evaluating each with the local features.
For evaluation we use a generous version of F1
that is defined for alignment labels composed of
sure, G, and possible links, G, and the system’s
proposed links H (following Cohn et al. (2008),
Roth and Frank (2012) and Wolfe et al. (2013)).

_HNG,|

_HNG, _ 2PR
|H|

P — —
|G| P+R

Note that the EECB data does not have a sure and
possible distinction, so Gy = G, resulting in stan-
dard F1. In addition to F1, we separately measure
predicate and argument F1 to demonstrate where our
model makes the largest improvements.

We performed a one-sided paired-bootstrap test
where the null hypothesis was that the joint model
was no better than the Local baseline (described in
Koehn (2004)). Cases where p < 0.05 are bolded.

Shttps://github.com/cnap/anno-pipeline

The lemma baseline is obviously sensitive to the lemma-
tizer used. We used the Stanford CoreNLP lemmatizer (Man-
ning et al., 2014) and found it yielded slightly better results than
previously reported as the lemma baseline (Roth and Frank,
2012), so we used it for all systems to ensure fairness and that
the baseline is as strong as it could be.
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7 Results

Results for EECB and RF are reported in Table 7. As
previously reported, using just local factors (features
on pairs) improves over lemma baselines (Wolfe et
al., 2013). The joint factors make statistically sig-
nificant gains over local factors in almost all experi-
ments. Fertility factors provide the largest improve-
ments from any single constraint. A fertility penalty
actually allows the pairwise weights to be more op-
timistic in that they can predict more alignments
for reasonable pairs, allowing the fertility penalty to
ensure only the best is chosen. This penalty also
prevents the “garbage collecting” effect that arises
for instances that have rare features (Brown et al.,
1993).

Temporal constraints are relatively sparse, ap-
pearing just 2.8 times on average. Nevertheless,
it was very helpful across all experiments, though
only statistically significantly on the RF dataset.
This is one of the first results to demonstrate ben-
efits of temporal relations affecting an downstream
task. Perhaps surprisingly, these improvements re-
sult from a a temporal relation system that has rela-
tively poor absolute performance. Despite this, im-
provements are possibly due to the orthogonal na-
ture of temporal information; no other feature cap-
tures this signal. This suggests that future work on
temporal relation prediction may yield further im-
provements and deserves more attention as a useful
feature for semantic tasks in NLP.

The predicate-centric factors improved perfor-
mance significantly on both datasets. For the
predicate-centric factor, when a predicate was
aligned there is a 72.3% chance that there was
at least one argument aligned as well, compared
to only 14.1% of case of non-aligned predicates.
As mentioned before, the reason the former num-
ber isn’t 100% is primarily due to implicit argu-
ments and errors in argument identification. The
argument-centric features helped almost as much as
the predicate-centric version, but the improvements
were not significant on the EECB dataset. Run-
ning the same diagnostic as the predicate-centric
feature reveals similar support: in 57.1% of the cases
where an argument was aligned, at least one pred-
icate it partook in was aligned too, compared to
7.6% of cases for non-aligned arguments. Both the



EECB

Fl1 P R ArgFl | ArgP | ArgR || Pred F1 | Pred P | Pred R
Lemma 68.1 793 % | 59.6 || 61.7 79.1 % | 50.6 75.0 87.3% | 65.7
Local 73.0 75.8 70.5 || 67.7 76.3 60.8 78.7 81.4 76.2
+Fertility 77.1% | 839%* | 71.3 | 66.6 809 * | 56.6 82.8 * 87.4%* | 787 *
+Predicate-centric || 74.1* | 80.7* | 68.6 || 67.4 81.6* | 57.3 79.7 * 85.0% | 75.1
+Argument-centric || 73.7 81.2* | 67.5 | 66.8 83.0 * | 55.9 79.3 85.1*% | 743
+Temporal 73.7 782 % | 69.7 | 67.9 80.6 * | 58.7 79.0 82.1 76.1
+All Factors 77.5 * | 86.3 * | 70.3 | 65.8 83.1% | 545 83.7 * | 89.7 * | 784 %

RF

Pred F1 | Pred P | Pred R
Lemma 524 47.6 58.2 %
Local 58.1 63.5 53.6
+Fertility 60.0 574 62.4 * Figure 3: Cross validation results for EECB (above)
+Predicate-centric || NA NA NA (Lee et al.,, 2012) and RF (left) (Roth and Frank,
+Argument-centric || NA NA NA 2012). Statistically significant improvements from Lo-
+Temporal 59.0 57.4 60.6 * cal marked * (p < 0.05 using a one-sided paired-
+All factors 59.4 56.9 62.2 * bootstrap test) and best results are bolded.

predicate- and argument-centric improve similarly
across both predicates and arguments on EECB.

While each of the joint factors all improve over
the baselines on RF, the full model with all the joint
factors does not perform as well as with some fac-
tors excluded. Specifically, the fertility model per-
forms the best. We attribute this small gap to lack
of training data (RF only contains 64 training docu-
ment pairs in our experiments), as this is not a prob-
lem on the larger EECB dataset.

Additionally, the joint models seem to trade pre-
cision for recall on the RF dataset compared to the
Local baseline. Note that both models are tuned to
maximize F1, so this tells you more about the shape
of the ROC curve as opposed to either models’ abil-
ity to achieve either high precision or recall. Since
we don’t see this behavior on the EECB corpus, it is
more likely that this is a property of the data than the
model.

8 Related Work

The task of predicate argument linking was intro-
duced by Roth and Frank (2012), who used a graph
parameterized by a small number of semantic fea-
tures to express similarities between predicates and
used min-cuts to produce an alignment. This was
followed by Wolfe et al. (2013), who gave a locally-
independent, feature-rich log-linear model that uti-
lized many lexical semantic resources, similar to the
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sort employed in RTE challenges.

Lee et al. (2012) considered a similar problem
but sought to produce clusters of entities and events
rather than an alignment between two documents
with the goal of improving coreference resolution.
They used features which consider previous event
and entity coreference decisions to make future
coreference decisions in a greedy manner. This dif-
fers from our model which is built on non-greedy
joint inference, but much of the signal indicating
when two mentions corefer or are aligned is similar.

In the context of in-document coreference reso-
lution, Recasens et al. (2013) sought to overcome
the problem of opaque mentions’ by finding high-
precision paraphrases of entities by pivoting off
verbs mentioned in similar documents. We address
the issue of opaque mentions not by building a para-
phrase table, but by jointly reasoning about entities
that participate in coreferent events (c.f. §4); the ap-
proaches are complementary.

In this work we incorporate ordering information
of events. Though we consider it an upstream task,
there is a line of work trying to predict temporal rela-
tions between events (Pustejovsky et al., 2003; Mani
et al., 2006; Chambers et al., 2014). Our results in-
dicate this is a useful source of information, one of
the first results to show an improvement from this

7 A lexically disparate description of an entity.



type of system (Glavas and Snajder, 2013).

We utilize an ILP to improve upon a pipelined
system, similar to Roth and Yih (2004), but our work
differs in that we do not use piecewise-trained clas-
sifiers. Our local similarity scores are calibrated ac-
cording to a global objective by propagating the gra-
dient back from the loss to every parameter in the
model. When using piecewise training, local clas-
sifiers must focus more on recall (in the spirit of
Weiss and Taskar (2010)) than they would for an or-
dinary classification task with no global objective.
Our method trains classifiers jointly with a global
convex objective. While our training procedure re-
quires decoding an integer program, the parameters
we learn are globally optimal.

9 Conclusion

We presented a max-margin quadratic cost model
for predicate argument alignment, seeking to ex-
ploit discourse level semantic features to improve
on previous, locally independent approaches. Our
model includes factors that consider fertility of pred-
icates and arguments, the predicate argument struc-
ture present in coherent discourses, and soft con-
straints on predicate coreference determined by a
temporal relation classifier. We have shown that this
model significantly improves upon prior work which
uses extensive lexical resources but without the ben-
efit of joint inference. Additionally, this is one of the
first demonstrations of the benefits of temporal rela-
tion identification. Overall, this work demonstrates
the benefits of considering global document infor-
mation as part of natural language understanding.
Future work should extend the problem formu-
lation of predicate argument alignment to consider
incremental linking: starting with a pair of docu-
ments, perform linking, and then continue to add
in documents over time. This problem formula-
tion would capture the evolution of a breaking news
story, which closely matches the type of data (news
articles) considered in this work (EECB and RF
datasets). This formulation ties into existing work
on news summarization, topic detection and track-
ing, an multi-document NLU. This goes hand with
work on better intra-document relation prediction
methods, such as the temporal relation model used
in this work, to lead to better joint linking decisions.
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Abstract

Most recent unsupervised methods in vector
space semantics for assessing thematic fit (e.g.
Erk, 2007; Baroni and Lenci, 2010; Sayeed
and Demberg, 2014) create prototypical role-
fillers without performing word sense disam-
biguation. This leads to a kind of sparsity
problem: candidate role-fillers for different
senses of the verb end up being measured by
the same “yardstick”, the single prototypical
role-filler.

In this work, we use three different feature
spaces to construct robust unsupervised mod-
els of distributional semantics. We show that
correlation with human judgements on the-
matic fit estimates can be improved consis-
tently by clustering typical role-fillers and
then calculating similarities of candidate role-
fillers with these cluster centroids. The sug-
gested methods can be used in any vector
space model that constructs a prototype vec-
tor from a non-trivial set of typical vectors.

1 Introduction

Thematic fit estimations can be quite useful for
many NLP applications and also for cognitive mod-
els of human language processing difficulty, since
human processing difficulty is highly sensitive to
semantic plausibilities (Ehrlich and Rayner, 1981).
For example, we expect that after the word mash,
banana would be easier to process because it fits
well as the patient, or direct object, of mash, but
milk would be harder to process because it does not
fit well.
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A common method for estimating the thematic fit
between a verb and a proposed role filler involves
computing a centroid, or vector average, over the
most typical role fillers for that verb, and then cal-
culating the cosine similarity between this centroid
and the proposed role filler (Baroni and Lenci, 2010;
Blacoe and Lapata, 2012; Erk, 2012). For instance,
we use the cosine of the angle between the banana
vector and a vector average of the 20 nouns that,
according to training data, are most likely to be
mashed as a score for how well banana fits as the
patient of mash. Hopefully, the banana vector will
be closer to the centroid than milk, so banana will
have a higher cosine similarity to the centroid, and
thus a higher thematic fit score, than milk.

This conceptualization assumes that the most typ-
ical fillers for a verb-role will all be variants of a
single prototype, i.e. distributionally similar to each
other. However, such an assumption may not be
true for ambiguous verbs. A verb with many dif-
ferent senses may have typical fillers for each sense,
which fit relatively equally well, but are distribution-
ally very different from one another. This means that
the calculated prototypical filler will be a mixture
of the arguments that are typical role fillers for the
main senses of the verb. For example, consider the
verb serve, for which the 24 most typical preposi-
tional arguments related via the preposition with fall
into three different senses, as illustrated in Figure 1.

Supposing that the centroid occupies a part of the
vector space between two typical role fillers, but is
relatively far from any one of the typical role fillers
from which it was composed, as in Figure 1, none of
the original typical role fillers will achieve high the-

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 21-31,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



salad
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battalion

squadron
army

Verb serve, “with”-prepositional object

Figure 1: Illustration of TypeDM centroid for with-PP
arguments of the verb serve.

matic fit scores. Also, verbs will be “penalized” for
having many senses in that it will seem as though no
role filler fits as well as they do with unambiguous
verbs. This may produce inconsistent judgements
when comparing one verb that is highly polysemous
with a second, more restrictive verb whose mean-
ing overlaps with the most dominant meanings of
the first verb. For example, cut can be used in the
sense of “cutting costs,” which carries with it re-
strictions on instruments, locations, and so on that
somewhat overlap with eliminate as in “eliminating
costs.” Things that are plausible to be eliminated
are also plausible to be cut. But cut is also used in
the sense of “cutting a cake” or “cutting (editing) a
film.” Without taking word sense into account, costs
would be judged by the model as being less appro-
priate as a patient of cut than it should, and also its
score for filling the patient role of eliminate would
be infelicitously higher than its score for filling the
patient role of cut.

One possible solution to this problem would be
to do full word sense disambiguation on the re-
sources from which these vector spaces are con-
structed. Then, there would be separate entries in
the space for each meaning. This would however
increase the overall size of the vector space by a sig-
nificant factor and also cause an additional burden
on corpus construction and annotation, even if auto-
matic.

In this paper, we will approach the verb-role sense
problem by clustering the most typical role-filler
vectors and calculating the maximal cosine similar-
ity for a candidate role filler with respect to each
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cluster prototype vector. So, to estimate the the-
matic fit of salad as an item with which something
is served, in the vector space represented by Fig-
ure 1, we would use the cosine similarity with the
nearest cluster centroid, the cluster 1 centroid. For
a thematic fit task, the correlation between calcu-
lated estimates and human judgements can be ex-
pected to improve. In particular, good role fillers
that are very different from one another and belong
to different senses of a verb can all be assigned the-
matic fit scores as high as those of good role fillers
of monosemous verbs.

We will evaluate our system using three distribu-
tional spaces: TypeDM (Baroni and Lenci, 2010),
which is based on a syntactic dependency parser,
SDDM (Sayeed and Demberg, 2014), which uses
features obtained from the semantic role labeller
SENNA (Collobert et al., 2011), and SDDMX, a
novel extension of SDDM . This way, we can draw
conclusions about feature space-specific and feature
space-general trends.

The effects of clustering and choice of distri-
butional space will be evaluated against the Pado
(2007) and McRae et al. (1998) datasets of hu-
man judgements on thematic fit of agent and patient
roles, and the Ferretti et al. (2001) datasets of human
judgements on thematic fit of instrument and loca-
tion roles. These different roles are conceptually in-
teresting to compare, as instruments tend to be more
strongly constrained by verbs than locations.

2 Background and related work

2.1 Thematic fit

The fit of a filler of a thematic role can be character-
ized as a semantic constraint on what can fill poten-
tially available syntactic slots for a given predicate.
For example, not every noun can satisfy the agent
or patient roles of the typically transitive verb eat.
There must be a valid “eater” for the agent and a
valid “eatee” for the patient. Some nouns are simply
more plausible than others in these positions: lunch
is eaten, but rarely ever eats. But there can also be
optional role assignments: there are certain utensils
with which one is more or less likely to eat (i.e.,
appropriate instrument role-fillers) and even places
where one is more or less likely to eat (i.e., location
roles).



Verb Noun Semantic role Score
advise  doctor agent 6.8
advise  doctor patient 4.0
confuse baby  agent 3.7
confuse baby  patient 6.0
eat lunch  agent 1.1
eat lunch  patient 6.9
kill lion agent 2.7
kill lion patient 4.9
kill man agent 34
kill man patient 5.4

Table 1: Sample of judgements from Padé (2007).

In order to model thematic roles, we use the in-
sight that thematic fit correlates with human plau-
sibility judgements (Padé et al., 2009; Vandekerck-
hove et al., 2009). Therefore, we can use datasets
of human plausibility judgements to evaluate com-
putational thematic fit estimates. One such dataset
by Pad6 (2007) includes 18 verbs with up to 12 can-
didate nominal arguments and totals 414 verb-noun-
role triples. The words were chosen based on their
frequencies in the Penn Treebank and FrameNet.
Human participants were asked to rate the appropri-
ateness of given nouns as agents and as patients for
given verbs on a scale from 1 to 7. The judgements
were then averaged. We provide a small sample of
these judgements in Table 1.

We use three other datasets as well. Ferretti et al.
(2001) provide two datasets, one with 248 verb-
instrument pairs and one with 274 verb-location
pairs. Additionally, McRae et al. (1998) give a
dataset of 1444 more agent/patient judgements. We
write agent/patient as such because like Padé (2007),
the agent plausibility and patient plausibility are
given in the same dataset, albeit separately. Once
again, human participants were asked to rate the ap-
propriateness of given nouns as locations, instru-
ments, and agents/patients, respectively, of the verbs
in each dataset on a scale from 1 to 7. We will make
use of these in our evaluation in order to see how
well the models and algorithms we propose apply to
various thematic roles, not just the most commonly
tested and to-date most accurately estimated roles of
agent and patient.
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2.2 Distributional Semantics
2.2.1 Distributional Memory

Our semantic modeling technique comes from
Baroni and Lenci (2010), who developed an explic-
itly multifunctional, i.e. not tightly bound to a par-
ticular task, framework for recording distributional
information about linguistic co-occurrence. Distri-
butional Memory (DM) records frequency informa-
tion about links between words in a sentence as a
third order tensor, in which words or lemmata are
represented as two of the tensor axes and the syntac-
tic or semantic link between them is the third axis.

The following corpora were used to construct the
Baroni and Lenci (2010) version of DM:

e ukWaC, a corpus of about two billion words
collected by crawling the .uk web domain
(Ferraresi et al., 2008).

e WackyPedia, a snapshot selection of Wikipedia
articles.

e The British National Corpus (BNC), a 100-
million word corpus including documents such
as books and periodicals.

The sentences from these sources were first run
through MaltParser (Nivre et al., 2007). The
dependency links (e.g. SBJ, NMOD) were run
through a set of hand-crafted patterns to identify
higher-level lexicalized links (e.g. as-long-as,
in-a-kind-of). They then counted link type fre-
quencies, so that links that involve the same lexi-
cal item (e.g. long, kind, as in the lexicalized
links just mentioned) were collapsed into a single
link, and the number of surface form realizations
was used as the frequency count. All words were
lemmatized and stored with basic part of speech in-
formation.

All these counts were then adjusted by Local Mu-
tual Information (Baroni and Lenci, 2010), which is
given by

Oijk
Eiji

where ¢, j are words, k is the link between them,
O is the observed frequency, and E is the expected
frequency under independence. Tuples with nonpos-
itive LMI values were removed. They called this
tensor TypeDM .




2.2.2 DM Based on Semantic Role Labels

In order to create a competitor to the much
less manually pruned cousin of TypeDM named
DepDM, Sayeed and Demberg (2014) based SDDM
(short for SENNA-DepDM) on similar corpora but
used alternative features. Namely, this tensor was
built from ukWaC and BNC, but the features came
from a semantic role labelling (SRL) system called
SENNA (Collobert and Weston, 2007; Collobert
et al., 2011). SENNA uses a multi-layer neural net-
work architecture that learns in a sliding window
over token sequences working on raw text instead of
syntactic parses, as other semantic role labellers do
(Bohnet, 2010). SENNA extracts word features re-
lated to identity, capitalization, and suffix/tense (ap-
proximated by the last two characters of the word).
From these features, in a process similar to decod-
ing a conditional random field, the network derives
features related to verb position, part of speech, and
chunk membership.

SENNA was trained on PropBank and large
amounts of unlabelled data. It achieves a role la-
belling F-score of 75.49% (in this case, tested on
CoNNL 2005 data), which is slightly lower than
state of the art SRL systems which use parse trees
as input.

SDDM was built by running the sentences from
the input corpora through SENNA and using the role
labels as links between predicates and role-fillers.
Unlike TypeDM, SDDM required almost no fur-
ther processing; the raw frequency counts of triples
were used in the LMI calculation.

In this paper, we present SDDMX, an extended
version of the SDDM model'!. SDDMX contains
the same links as SDDM and also contains links be-
tween nouns that belong to the same predicate in-
stance, using the predicate as a link label. For exam-
ple, supposing that during training the system en-
countered the man eats a donut with a role link be-
tween man and eat and another role link between
donut and eat, then in SDDMX, a link was cre-
ated between man and donut. This link was labelled
with the verb lemma for the 400 most frequent verbs
(eat in our example), and vb otherwise.

Sayeed and Demberg (2014) found that although

"We provide SDDM and SDDMX at
http://rollen.mmci.uni-saarland.de/.
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NMOD vC PMOD
the donut was eaten by Bob
SBJ LGS

by Bob

ARGO

| the

donut | was | eaten |
ARG1l \%

Figure 2: The same sentence with MaltParser (above)
and SENNA (below) labels. Sayeed and Demberg (2014)
used a simplified approach similar to the head percola-
tion table of Magerman (1994) to find head nouns from
SENNA annotation.

SDDM is an arguably simpler DM model than
TypeDM , it performs nearly as well as Type DM on
a thematic fit estimation task using the Padé (2007)
and McRae et al. (1998) agent/patient datasets. They
also found that averaging the thematic fit scores
of SDDM with those of TypeDM outperforms
TypeDM alone and nearly reaches the performance
of a supervised model (Herdagdelen and Baroni,
2009). This suggests that TypeDM and SDDM
cover different aspects of the corpora on which
they were trained. Links generated by SENNA
may directly access semantic role features that
the MaltParser-based TypeDM must infer through
hand-crafted rules, such as tagging the subject as a
patient instead of an agent in passive-voice contexts.
Figure 2 illustrates the differences between the la-
belling approaches.

We make use of the SDDM, SDDMX, and
TypeDM tensors in our experiments to demonstrate
how our techniques improve performance in the-
matic fit modelling across different feature spaces.

2.2.3 Centroid-based thematic fit calculation in
DM

Investigating alternative ways to calculate the-
matic fit over the DM framework is a major goal of
this work, so we now describe the baseline process.

Baroni and Lenci (2010) used the following ap-
proach to estimate thematic fit on the Padé (2007)
agent/patient dataset: To assess the fit of a noun w;
in a role r for a verb wy, they construct a centroid
from the 20 highest-ranked fillers for r with ws se-
lected by LMI, using the relevant syntactic depen-
dency links, such as subject and object, instead of



thematic roles. To illustrate, in order to determine
how well workshop fits as a location for eat, they
would construct a centroid of other locations for eat
that appear in the DM, e.g. kitchen, restaurant, cafe-
teria up to 20.

Each of these top 20 represent a “slice” of the ten-
sor along one of the word axes. One such slice, cor-
responding to wi, is a matrix of links and words to
which wj is connected. This tensor slice is collapsed
into a vector whose components are word-link pairs.
This is the vector of w;.

All 20 such vectors are added up and the sum is
the centroid that represents, e.g., the typical loca-
tions of eat. Then a vector is constructed from the
slice of the tensor corresponding to workshop. The
thematic fit score is the cosine of the location cen-
troid of eat and the vector of workshop.

Accessing thematic roles in SDDM and
SDDMX is straightforward, as the links in these
models are PropBank roles. Agent is ARGO, patient
is ARG1, location is ARGM-LOC, and we use a
combination of ARGM—-MNR, ARG2, and ARG3 to
represent instruments, based on a translation of
the roles used by Ferretti et al. (2001). The role
mapping for TypeDM involves a combination of
sbj_tr and subj_intr (transitive and intran-
sitive subjects) for agents, obj for patients, the
prepositional links in, at, and on for locations,
and with for instruments.

2.3 Word Sense Disambiguation in
Distributional Models

While distributional models carry important infor-
mation about the relative frequencies of word us-
ages, and perhaps even phrase usages, they often
must collapse such usages into one representation.
For example, suppose within the domain of cooking
recipes, serve occurs in its food sense (see cluster
1 in Figure 1) 97% of the time. The other senses
will have negligible effect on the representation of
serve because their frequencies are so much lower.
But in a web crawl, the distribution is quite likely to
be more uniform, which means the senses will “split
the difference” in the representation and end up not
being that similar to any instance of serve.

Many systems work to alleviate this problem by
performing manipulations on words as they occur in
training corpora (e.g., Thater et al., 2011). Namely,
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the base vector for the potentially ambiguous word
is contextualized, as in scaled element-wise, by the
vectors of the neighboring words for that instance.
This is quite intuitive because if serve and cake oc-
cur next to each other, the chance that a non-food
sense of the word serve was intended would be ex-
tremely small, in fact much smaller than a corpus-
wide distribution would predict. These systems have
been effective at improving correlation with human
judgements for a verb-object composition model,
i.e. approximating a vector for serve cake given
a vector for serve and a vector for cake (Kartsak-
lis et al., 2014), and also reducing noise in simi-
larity scores for a nearest neighbor-based preposi-
tional phrase attachment disambiguator (Greenberg,
2014).

It remains a choice of the system whether to store
explicit senses separately, and relatedly, whether to
consult a knowledge base for the number of senses
for each word, or even for meaning representations
of those senses. Using a task-general knowledge
base, in addition to the inherent cost of building
one, is not particularly suited for our task because
the items to be disambiguated are verb-role pairs, as
opposed to just verbs, and usually such knowledge
bases do not handle individual thematic roles sepa-
rately. For instance, it may be optimal to analyze
serve as having three senses with respect to instru-
ments, two senses with respect to patients, and one
sense with respect to agents.

Assigning semantic categories to the slots of a
verb subcategorization frame harks back to work by
Resnik (1996) and Rooth et al. (1999). Resnik’s
work presupposes predefined noun classes obtained
from WordNet. Rooth et al. induced latent role-filler
classes via expectation maximization. Erk et al.
(2010) found that neither are good models of the-
matic fit. Padé et al. (2009) provided thematic fit
scores that take into account verb class using a su-
pervised model. In the vector space context, in-
ducing different vectors for multiple verb senses has
been investigated recently by Reisinger and Mooney
(2010), Huang et al. (2012), and Neelakantan et al.
(2014), although these were not focused on role-
fillers for verbs. Our contribution is to make use of a
large-scale, unsupervised vector space model to pro-
vide thematic fit scores after inducing implicit verb
sense classes relative to thematic role.



3 Methods

We begin our discussion of sense disambiguation for
thematic fit with the following insight: the baseline
(Centroid) method takes as input a set of typical
role-fillers, the highest-ranked ones according to the
DM, and returns a single prototype vector. How-
ever, if we allow the system to return a set of proto-
type vectors, then the framework gains the capacity
to handle multiple senses of the verb-role pair.

The first choice is how to handle the output. Now
instead of one cosine similarity, we would have a set
of cosines corresponding to the similarities between
the test role-filler and each prototype vector in the
set. But if we make the theoretical assumption that
each prototype corresponds to a sense, then roughly
only one should apply at a time. So, we choose to
use the one that is most relevant, i.e. similar, to the
test role-filler. Therefore, we use the maximum of
the cosine similarities as the thematic fit score.

3.1 One best or nearest

In the extreme case, we can just use the unaltered set
of highly-ranked role-fillers as our set of prototypes.
For example, if we query TypeDM for the top four
instrument-fillers of eat, we would retrieve spoon,
hand, bread, and sauce. Then, to assign a thematic
fit score for fork as an instrument-filler, we compute
the cosine similarities of (fork, spoon), (fork, hand),
(fork, bread), and (fork, sauce). The cosine simi-
larity of (fork, spoon) is the highest, so this cosine
determines the score. We refer to this method as
OneBest. Note that OneBest requires the calcu-
lation of a large number of cosines, which is a rel-
atively expensive operation given the sparse repre-
sentations of words in DM spaces.

The number of retrieved top role-fillers (n) ap-
pears to be the only parameter for OneBest. Yet,
this method poses a few theoretical questions. First,
there most likely should be an upper bound on the
number of role-fillers that the system can retrieve at
once. Mathematically, allowing the system to re-
trieve the entire relevant cross-section of the ten-
sor would be equivalent to reducing the thematic fit
evaluation task to a binary decision, i.e. whether the
verb-role has occurred with the test role-filler in the
training data. So, we would not be able to model any
graded effect on the fit of two seen role-fillers, even
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if one of them fits with the verb-role better than the
other. Also, psycholinguistically, it seems implausi-
ble that one must remember all of the times that one
has encountered a word in order to use it. Therefore,
we impose 50 as an arbitrary upper bound on n. We
also set a lower bound of 10 on n because values
smaller than this generated quite erratic sets of top
role-fillers.

Second, OneBest might return a cosine of 1.0 if
the DM retrieves the test role-filler itself as one of
the top role-fillers. This could unfairly help the cor-
relation between the cosines returned by the system
and human judgements because the good role-fillers
would all have the same cosine value, thus reducing
the effect of the cosine ratings produced for the more
distant (interesting) role-fillers. Therefore, we pro-
hibit our system from returning any cosines of 1.0.
The test role-filler thus achieves a high score by hav-
ing a closely related role-filler in the prototype set,
not by being present itself.

3.2 Clustering

In order to reduce noise from OneBest, we cluster
similar top role-fillers together, calculate centroids
for each cluster, and use these cluster centroids as
the prototype set. This way, the presence of an
anomalous vector in the centroid set has less effect.
We use the group average agglomerative clustering
package within NLTK (Bird et al., 2009). This algo-
rithm works by initializing each top role-filler in its
own cluster and iteratively combining the two most
similar clusters.

For the stopping criterion, which determines the
final number of clusters for the verb-role, we use the
Variance Ratio Criterion (V' RC') method (Calinski
and Harabasz, 1974). Let ¢ be the baseline centroid
of all top role-fillers retrieved, f be a top role-filler,
and cy be the cluster centroid of the cluster to which
f is assigned. Then, this method works by (a) calcu-
lating the V RC metric for each number of clusters
(k), given by

~ S5p

VRC(k) = 25/

SSw
n—=k

2

where we define

SSp = Zf(l — cos?(cy,¢)) 3)



and

SSw = Zf(l —cos®(f,cy)) (4)

and then (2) choosing the final number of clusters
such that

Wk = (VRCk+1 - VRCk> — (VRCk - VRCkfl)

®)

is minimized. Intuitively, this procedure is meant

to find the number of clusters for which adding

another cluster does not explain significantly more

variance in the data. Also, note that the V RC metric
is equivalent to the F-score in a one way ANOVA.

The main drawback of the V RC' method is that it
cannot evaluate fewer than three clusters, due to hav-
ing both a VRCy,1 and a V RC}_; term in Equa-
tion (5). However, as long as enough top role-fillers
are retrieved, it should not hurt the system. Equiva-
lently, we set V RCy and V RC equal to V RC. To
examine the effect of this choice, we evaluate two
clustering methods: 2Clusters, which chooses two
clusters for every verb-role, and kClusters, which
dynamically chooses a number of clusters between
3 and 10 based on the above criterion.

Once again, the system is prohibited from return-
ing a cosine of 1.0. This means that if the DM re-
trieves the test role-filler itself as one of the top role-
fillers, the system would skip comparing the test
role-filler against itself if it were in a singleton clus-
ter, but would not skip it if it were a member of a
cluster of size two or greater. The alternative to this
would have been removing the test role-filler before
clustering, but we saw these role-filler-specific par-
titions as a form of supervision.

3.3 Evaluation procedure

The Centroid, OneBest, 2Clusters, and kClusters
methods each determine their own prototype vector
set for a verb-role, and then return the maximum co-
sine similarity value for each test role-filler. Proto-
type sets are stored in a dictionary so they can be
reused. It is necessary to expand the sparse data
structure of each vector in order to efficiently com-
pute all of the necessary cosine similarities. Finally,
we calculate Spearman’s p values to measure the
correlations between these sets of thematic fit scores
and the four datasets of human judgements.
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Dataset SDDM(X) | TypeDM
Padé (2007) 98.6 100.0
McRae et al. (1998) 96.0 95.2
Ferretti et al. (2001) inst. 94.0 93.1
Ferretti et al. (2001) loc. 99.6 98.9

Table 2: Coverage (%) by dataset for each DM model.

0.40
1

Spearman's rho
0.30
1

0.20
1

Role—fillers retrieved (n)

Figure 3: Spearman’s p values for Ferretti et al. (2001)
instruments vs. the number of vectors retrieved.

For our main experiment, we always retrieve the
top 20 highest-ranked role-fillers for the verb-role
pair to compute the prototype set. This allows our
work to be more directly comparable with other im-
plementations. Also, choosing a value of n that
maximizes p would make this unsupervised system
more supervised. However, it is useful to know
how the number of top role-fillers retrieved affects
the correlation with human judgements, so as a
follow-up experiment, we evaluate versions of the
Centroid, OneBest, and kClusters methods, with
the SDDMX and TypeDM models, retrieving from
10 to 50 top role-fillers, against the Ferretti et al.
(2001) instruments dataset.

4 Results

In Table 2, we report the coverage percentages for
the DM models on each of the thematic fit datasets.
Note that since SDDM and SDDMX differ only in
the additional links added between existing pairs of
words, their coverages are the same.

Figure 3 shows the relationship between the num-
ber of vectors retrieved from the DM model and the
correlation of the system with human judgements.



| Padé (2007) agents [ McRae et al. (1998) agents || Ferretti et al. (2001) instruments

| SDDM | SDDMX [ TypeDM [ SDDM

| SDDMX | TypeDM || SDDM | SDDMX | TypeDM

Centroid 0.515 0.528 0.535 0.371 0.394 0.359 0.193 0.274 0.357
OneBest 0.321 0.324 0.464 0.375 0.376 0.431 0.274 0.336 0.394
2Clusters || 0.489 0.412 0.522 0.367 0.373 0.370 0.252 0.331 0.388
kClusters || 0.281 0.322 0.460 0.396 0.394 0.416 0.335 0.344 0.422

Padé (2007) patients McRae et al. (1998) patients Ferretti et al. (2001) locations
| SDDM [ SDDMX | TypeDM [ SDDM | SDDMX [ TypeDM [ SDDM | SDDMX | TypeDM
Centroid || 0.511 | 0.505 0.525 0.133 | 0.31 0.343 0.187 | 0248 0.230
OneBest || 0.447 | 0.467 0.509 0214 | 0233 0.307 0234 | 0276 0.244
2Clusters || 0526 [ 0.498 0.551 0.175 | 0.166 0.353 0294 | 0.249 0.235
kClusters | 0.401 | 0.428 0.555 0212 | 0227 0.350 0293 [ 0.326 0.289
All from Padé (2007) All from McRae et al. (1998) All datasets
| SDDM [ SDDMX | TypeDM [ SDDM | SDDMX [ TypeDM [ SDDM | SDDMX | TypeDM
Centroid || 0.512 | 0.521 0.530 0.237 | 0251 0.325 0.258 | 0.296 0.354
OneBest || 0385 | 0.395 0.482 0273 | 0.287 0.345 0275 | 0.304 0.359
2Clusters || 0.508 [ 0.458 0.532 0252 | 0.256 0.336 0.287 | 0.289 0.366
kClusters || 0343 | 0375 0.503 0287 | 0.294 0.359 0294 | 0317 0.385

Table 3: Spearman’s p for each method on each dataset and on all datasets together, using the 20 highest ranked words

per verb-role.

The first six sections of Table 3 give the Spear-
man’s p values for our four centroid set construction
methods evaluated against the four datasets of hu-
man judgements, organized by thematic role, all us-
ing the 20 highest-ranked words per verb-role. We
note that the p value for the Pad6 (2007) dataset us-
ing TypeDM and the Centroid method is slightly
higher than the value reported in Baroni and Lenci
(2010) due to correcting some transpositions in the
original file. Finally, the last three sections of Table
3 give the performance of each method on the two
whole agent/patient datasets (for comparison with
previous work), as well as on all datasets merged
together.

5 Discussion

While SDDM and SDDMX have marginally bet-
ter coverage than TypeDM, we do not expect that
this had an effect on our results. Figure 3 shows
that for the various numbers of vectors retrieved
from the DM models, kClusters consistently out-
performs OneBest, which consistently outperforms
Centroid on the Ferretti et al. (2001) instruments
dataset. So, using just a single centroid that is a mix-
ture of all possible good role-fillers for a verb leads
to problems due to conflating different word mean-

ings. But at the other extreme, we see how the p
values for the OneBest method peak (at n = 13 for
SDDMX and n = 34 for TypeDM) and then de-
crease instead of increasing monotonically. This is
because we disallowed cosines of 1.0 and because
as we increase the number of vectors retrieved, the
easier it becomes to be close to one of the prototype
vectors, regardless of thematic fit distinctions within
the prototype set.

For the model comparison, we see that while
TypeDM generally performs better than SDDMX
on instruments, clustering reduces the gap consider-
ably. Also SDDMX outperforms TypeDM for all
methods on locations as shown in Table 3. This dif-
ference suggests that locations appear in sufficiently
diverse syntactic configurations such that the hand-
crafted rules from TypeDM do not work well.

From the All datasets section of Table 3, we see
that both OneBest and kClusters improve the p val-
ues over the Centroid baseline for all three DM
models. This holds, too, for the individual instru-
ments and locations datasets. Also, the two cluster-
ing methods perform better than Centroid on Pad6
(2007) patients with all DM models and on McRae
et al. (1998) patients with TypeDM . The fact that
Centroid performs best on Pad6 (2007) agents con-
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firms previous analyses that have shown that the dis-
tribution of objects is more sensitive to verb sense
than subjects. kClusters outperforming OneBest
in a majority of cases suggests that clustering has
successfully smoothed the top role-fillers, thus cap-
turing sense-like patterns in the verb-roles.

As an example of the effect of the kClusters
method, we obtained the following top 20
instrument-fillers for the verb “eat” in 4 clusters us-
ing TypeDM:

e gusto, relish
o family, friend
e chopstick, finger, fork, hand, knife, spoon

e appetite, bread, butter, cheese, food, meal,
meat, mouth, rice, sauce

The V RC' method selected 7 to 9 clusters a little
more often than 3 to 6, which is perhaps more clus-
ters than the number of senses we could expect from
a task general knowledge base. We can see from this
example that the four clusters do not all correspond
to separate senses, but instead, they rather nicely
separate out noise from true instruments. Note that
since these role-fillers came from TypeDM , they ap-
peared as the object of “with,” as a proxy for finding
instruments. The true instruments ended up all in the
third cluster, which created a cluster centroid that is
less affected by noise and errors from the syntactic
or semantic parse. So, the higher number of senses
seems appropriate for this task and data.

We attribute the differences in results between
the Pad6 (2007) and McRae et al. (1998) datasets
to the differences in how these datasets were con-
structed. First, the Pad6 (2007) dataset contains only
frequent verbs and most, but not all, of the verb-
role pairs contain well-fitting and poorly-fitting role-
fillers. The latter point is especially important be-
cause if the range of human judgements is small
for a certain verb, then it is much more difficult to
achieve a large p value regardless of the general per-
formance level of the system. McRae et al. (1998),
however, selected role-fillers much more automat-
ically for their psycholinguistic study, so the data
points do not necessarily reflect a typical sample of
thematic role fitness decisions that occur in natu-
ralistic language samples. So, it makes sense that
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the McRae et al. (1998) p values are systematically
lower than those of Pad6 (2007). In fact, the Padé
(2007) p values approach the ceiling of 0.6 as ap-
proximated by the supervised system.

Lastly, the effect of clustering was larger on in-
struments and locations than on agents and patients.
A possible explanation is that instruments and lo-
cations are less-precisely defined thematic roles and
better explained by several subclasses, i.e. clusters.
In addition it could be that clustering helps to com-
bat SRL inconsistencies.

6 Conclusions and future work

We show that clustering verb-roles into “senses”
within a vector space framework achieves a higher
correlation with human judgements on thematic fit
over pure Centroid and OneBest methods. While
we demonstrated this using the Distributional Mem-
ory technique by Baroni and Lenci (2010), the
method will also be applicable to other vector space
models.

This task has also been useful for comparing
among DM models and the different thematic fit
datasets. In particular, we can qualitatively eval-
uate how reliable syntax can be for determining
the semantic notion of thematic fit, and the rela-
tive strength of human intuitions on verb-imposed
restrictions on the various roles (agent, patient, in-
strument, and location).

In future work, we can investigate more sophisti-
cated methods of vector clustering (such as expec-
tation maximization and non-negative matrix factor-
ization), interactions with verb and noun frequency,
and interactions with number of word senses from
a task-general knowledge-base such as WordNet. It
would be especially useful to evaluate this system
of a dataset of human judgements with verbs that
systematically vary in polysemy, as this would more
clearly expose the general trends we wish to model
computationally.
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Abstract

Vector Space Models (VSMs) of Semantics
are useful tools for exploring the semantics of
single words, and the composition of words
to make phrasal meaning. While many meth-
ods can estimate the meaning (i.e. vector) of
a phrase, few do so in an interpretable way.
We introduce a new method (CNNSE) that al-
lows word and phrase vectors to adapt to the
notion of composition. Our method learns a
VSM that is both tailored to support a chosen
semantic composition operation, and whose
resulting features have an intuitive interpreta-
tion. Interpretability allows for the exploration
of phrasal semantics, which we leverage to an-
alyze performance on a behavioral task.

1 Introduction

Vector Space Models (VSMs) are models of word
semantics typically built with word usage statistics
derived from corpora. VSMs have been shown to
closely match human judgements of semantics (for
an overview see Sahlgren (2006), Chapter 5), and
can be used to study semantic composition (Mitchell
and Lapata, 2010; Baroni and Zamparelli, 2010;
Socher et al., 2012; Turney, 2012).

Composition has been explored with different
types of composition functions (Mitchell and La-
pata, 2010; Mikolov et al., 2013; Dinu et al.,
2013) including higher order functions (such as ma-
trices) (Baroni and Zamparelli, 2010), and some
have considered which corpus-derived information
is most useful for semantic composition (Turney,
2012; Fyshe et al., 2013). Still, many VSMs act
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like a black box - it is unclear what VSM dimen-
sions represent (save for broad classes of corpus
statistic types) and what the application of a com-
position function to those dimensions entails. Neu-
ral network (NN) models are becoming increas-
ingly popular (Socher et al., 2012; Hashimoto et al.,
2014; Mikolov et al., 2013; Pennington et al., 2014),
and some model introspection has been attempted:
Levy and Goldberg (2014) examined connections
between layers, Mikolov et al. (2013) and Penning-
ton et al. (2014) explored how shifts in VSM space
encodes semantic relationships. Still, interpreting
NN VSM dimensions, or factors, remains elusive.
This paper introduces a new method, Composi-
tional Non-negative Sparse Embedding (CNNSE).
In contrast to many other VSMs, our method learns
an interpretable VSM that is tailored to suit the se-
mantic composition function. Such interpretability
allows for deeper exploration of semantic composi-
tion than previously possible. We will begin with an
overview of the CNNSE algorithm, and follow with
empirical results which show that CNNSE produces:

1. more interpretable dimensions than the typical
VSM,

2. composed representations that outperform pre-
vious methods on a phrase similarity task.

Compared to methods that do not consider composi-
tion when learning embeddings, CNNSE produces:

1. better approximations of phrasal semantics,
2. phrasal representations with dimensions that
more closely match phrase meaning.

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 32-41,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



2 Method

Typically, word usage statistics used to create a
VSM form a sparse matrix with many columns, too
unwieldy to be practical. Thus, most models use
some form of dimensionality reduction to compress
the full matrix. For example, Latent Semantic Anal-
ysis (LSA) (Deerwester et al., 1990) uses Singular
Value Decomposition (SVD) to create a compact
VSM. SVD often produces matrices where, for the
vast majority of the dimensions, it is difficult to in-
terpret what a high or low score entails for the se-
mantics of a given word. In addition, the SVD fac-
torization does not take into account the phrasal re-
lationships between the input words.

2.1 Non-negative Sparse Embeddings

Our method is inspired by Non-negative Sparse Em-
beddings (NNSEs) (Murphy et al., 2012). NNSE
promotes interpretability by including sparsity and
non-negativity constraints into a matrix factoriza-
tion algorithm. The result is a VSM with extremely
coherent dimensions, as quantified by a behavioral
task (Murphy et al., 2012). The output of NNSE
is a matrix with rows corresponding to words and
columns corresponding to latent dimensions.

To interpret a particular latent dimension, we can
examine the words with the highest numerical val-
ues in that dimension (i.e. identify rows with the
highest values for a particular column). Though the
representations in Table 1 were created with our new
method, CNNSE, we will use them to illustrate the
interpretability of both NNSE and CNNSE, as the
form of the learned representations is similar. One
of the dimensions in Table 1 has top scoring words
guidance, advice and assistance - words related to
help and support. We will refer to these word list
summaries as the dimension’s interpretable sum-
marization. To interpret the meaning of a particu-
lar word, we can select its highest scoring dimen-
sions (i.e. choose columns with maximum values
for a particular row). For example, the interpretable
summarizations for the top scoring dimensions of
the word military include both positions in the mil-
itary (e.g. commandos), and military groups (e.g.
paramilitary). More examples in Supplementary
Material (http://www.cs.cmu.edu/~fmri/
papers/naacl2015/).

NNSE is an algorithm which seeks a lower di-
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mensional representation for w words using the c-
dimensional corpus statistics in a matrix X € R**¢,
The solution is two matrices: A € R%*¢ that is
sparse, non-negative, and represents word semantics
in an (-dimensional latent space, and D € R*¢:
the encoding of corpus statistics in the latent space.
NNSE minimizes the following objective:

1

(D

st: D;, DI, <1,v1<i<v )
Aijj 20, 1<i<w, 1<5</ 3)
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where A; ; indicates the entry at the 7th row and jth
column of matrix A, and A; . indicates the ith row
of the matrix. The L; constraint encourages sparsity
in A; \; is a hyperparameter. Equation 2 constrains
D to eliminate solutions where the elements of A
are made arbitrarily small by making the norm of D
arbitrarily large. Equation 3 ensures that A is non-
negative. Together, A and D factor the original cor-
pus statistics matrix X to minimize reconstruction
error. One may tune ¢ and A to vary the sparsity of
the final solution.

Murphy et al. (2012) solved this system of con-
straints using the Online Dictionary Learning algo-
rithm described in Mairal et al. (2010). Though
Equations 1-3 represent a non-convex system, when
solving for A with D fixed (and vice versa) the loss
function is convex. Mairal et al. break the prob-
lem into two alternating optimization steps (solv-
ing for A and D) and find the system converges
to a stationary solution. The solution for A is
found with a LARS implementation for lasso regres-
sion (Efron et al., 2004); D is found via gradient de-
scent. Though the final solution may not be globally
optimal, this method is capable of handling large
amounts of data and has been shown to produce use-
ful solutions in practice (Mairal et al., 2010; Murphy
et al., 2012).

2.2 Compositional NNSE

We add an additional constraint to the NNSE loss
function that allows us to learn a latent representa-
tion that respects the notion of semantic composi-
tion. As we will see, this change to the loss function
has a huge effect on the learned latent space. Just as



Table 1: CNNSE interpretable summarizations for the top 3 dimensions of an adjective, noun and adjective-

noun phrase.

military aid

military aid (observed)

servicemen, commandos,
military intelligence

guidance, advice, assistance

servicemen, commandos,
military intelligence

guerrilla, paramilitary, anti-terrorist

mentoring, tutoring, internships

guidance, advice, assistance

conglomerate, giants, conglomerates

award, awards, honors

compliments, congratulations, replies

the L regularizer can have a large impact on spar-
sity, our composition constraint represents a consid-
erable change in composition compatibility.

Consider a phrase p made up of words ¢ and j. In
the most general setting, the following composition
constraint could be applied to the rows of matrix A
corresponding to p, ¢ and j:

Ay = (A AGy) 4)

where f is some composition function. The com-
position function constrains the space of learned la-
tent representations A € R™* to be those solutions
that are compatible with the composition function
defined by f. Incorporating f into Equation 1 we
have:

w
. 1 2
aij%%n ; §HXZ»1 —A;. X DH + )\1HA“H1+
A
5 2 A = F(Au A)" ©)
phrase p,
p=(4,5)
Where each phrase p is comprised of words (3, j)
and () represents all parameters of f to be optimized.
We have added a squared loss term for composition,
and a new regularization parameter \. to weight
the importance of respecting composition. We call
this new formulation Compositional Non-Negative
Sparse Embeddings (CNNSE). Some examples of
the interpretable representations learned by CNNSE
for adjectives, nouns and phrases appear in Table 1.

There are many choices for f: addition, multi-
plication, dilation, etc. (Mitchell and Lapata, 2010).
Here we choose f to be weighted addition because it
has has been shown to work well for adjective noun
composition (Mitchell and Lapata, 2010; Dinu et al.,
2013; Hashimoto et al., 2014), and because it lends
itself well to optimization. Weighted addition is:

F(AG, Agy) = @l + BAG (6)
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This choice of f requires that we simultaneously op-
timize for A, D, o and 3. However, « and 3 are sim-
ply constant scaling factors for the vectors in A cor-
responding to adjectives and nouns. For adjective-
noun composition, the optimization of « and 3 can
be absorbed by the optimization of A. For models
that include noun-noun composition, if « and § are
assumed to be absorbed by the optimization of A,
this is equivalent to setting o = (3.

We can further simplify the loss function by con-
structing a matrix B that imposes the composition
by addition constraint. B is constructed so that for
each phrase p = (4,7): By = 1, Bpy) = —a,
and B, ;) = — (3. For our models, we use o = 3 =
0.5, which serves to average the single word repre-
sentations. The matrix B allows us to reformulate
the loss function from Eq 5:

1 A
argain 31X — AD|f3+ 4], + 5154

(N

where F' indicates the Frobenius norm. B acts as a
selector matrix, subtracting from the latent represen-
tation of the phrase the average latent representation
of the phrase’s constituent words.

We now have a loss function that is the sum of
several convex functions of A: squared reconstruc-
tion loss for A, Ly regularization and the composi-
tion constraint. This sum of sub-functions is the for-
mat required for the alternating direction method of
multipliers (ADMM) (Boyd, 2010). ADMM substi-
tutes a dummy variable z for A in the sub-functions:

1 2 A 2
axgmin 3 — AD[3+ A, + 5
3

and, in addition to constraints in Eq 2 and 3, incor-
porates constraints A = z; and A = z. to ensure

3 dummy variables match A. ADMM uses an aug-



mented Lagrangian to incorporate and relax these
new constraints. We optimize for A4, z; and z. sep-
arately, update the dual variables and repeat until
convergence (see Supplementary material for La-
grangian form, solutions and updates). We modi-
fied code for ADMM, which is available online’.
ADMM is used when solving for A in the Online
Dictionary Learning algorithm, solving for D re-
mains unchanged from the NNSE implementation
(see Algorithms 1 and 2 in Supplementary Material).

We use the weighted addition composition func-
tion because it performed well for adjective-noun
composition in previous work (Mitchell and Lap-
ata, 2010; Dinu et al., 2013; Hashimoto et al., 2014),
maintains the convexity of the loss function, and is
easy to optimize. In contrast, an element-wise mul-
tiplication, dilation or higher-order matrix compo-
sition function will lead to a non-convex optimiza-
tion problem which cannot be solved using ADMM.
Though not explored here, we hypothesize that A
could be molded to respect many different compo-
sition functions. However, if the chosen composi-
tion function does not maintain convexity, finding a
suitable solution for A may prove challenging. We
also hypothesize that even if the chosen composi-
tion function is not the “true” composition function
(whatever that may be), the fact that A can change
to suit the composition function may compensate for
this mismatch. This has the flavor of variational in-
ference for Bayesian methods: an approximation in
place of an intractable problem often yields better
results with limited data, in less time.

3 Data and Experiments

We use the semantic vectors made available by
Fyshe et al. (2013), which were compiled from a 16
billion word subset of ClueWeb(09 (Callan and Hoy,
2009). We used the 1000 dependency SVD dimen-
sions, which were shown to perform well for compo-
sition tasks. Dependency features are tuples consist-
ing of two POS tagged words and their dependency
relationship in a sentence; the feature value is the
pointwise positive mutual information (PPMI) for
the tuple. The dataset is comprised of 54,454 words
and phrases. We randomly split the approximately
14,000 adjective noun phrases into a train (2/3) and

"http://www.stanford.edu/~boyd/papers/
admm/
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Table 2: Median rank, mean reciprocal rank (MRR)
and percentage of test phrases ranked perfectly (i.e.
first in a sorted list of approx. 4,600 test phrases)
for four methods of estimating the test phrase vec-
tors. w.addgyp is weighted addition of SVD vectors,
w.addnnsg is weighted addition of NNSE vectors.

Model Med. Rank | MRR | Perfect
w.addsvp 99.89 3526 | 20%
w.addnNsE 99.80 28.17 16%
Lexfunc 99.65 28.96 | 20%
CNNSE 99.91 40.65 | 26%

test (1/3) set. From the test set we removed 200 ran-
domly selected phrases as a development set for pa-
rameter tuning. We did not lexically split the train
and test sets, so many words appearing in training
phrases also appear in test phrases. For this reason
we cannot make specific claims about the generaliz-
ability of our methods to unseen words.

NNSE has one parameter to tune (A1); CNNSE
has two: A; and A.. In general, these methods are
not overly sensitive to parameter tuning, and search-
ing over orders of magnitude will suffice. We found
the optimal settings for NNSE were A; = 0.05, and
for CNNSE A\; = 0.05,A. = 0.5. Too large \;
leads to overly sparse solutions, too small reduces
interpretability. We set £ = 1000 for both NNSE
and CNNSE and altered sparsity by tuning only A;.

3.1 Phrase Vector Estimation

To test the ability of each model to estimate phrase
semantics we trained models on the training set, and
used the learned model and the composition function
to estimate vectors of held out phrases. We sort the
vectors for the test phrases, Xyes:, by their cosine
distance to the predicted phrase vector X (p:)-

We report two measures of accuracy. The first is
median rank accuracy. Rank accuracy is: 100 x (1 —
+), where r is the position of the correct phrase
in the sorted list of test phrases, and P = |Xyest|
(the number of test phrases). The second measure
is mean reciprocal rank (MRR), which is often used
to evaluate information retrieval tasks (Kantor and
Voorhees, 2000). MRR is

100 x (

(=) ©)

P

ol =
S |

=1



For both rank accuracy and MRR, a perfect score is
100. However, MRR places more emphasis on rank-
ing items close to the top of the list, and less on dif-
ferences in ranking lower in the list. For example,
if the correct phrase is always ranked 2, 50 or 100
out of list of 4600, median rank accuracy would be
99.95, 98.91 or 97.83. In contrast, MRR would be
50, 2 or 1. Note that rank accuracy and reciprocal
rank produce identical orderings of methods. That
is, whatever method performs best in terms of rank
accuracy will also perform best in terms of recip-
rocal rank. MRR simply allows us to discriminate
between very accurate models. As we will see, the
rank accuracy of all models is very high (> 99%),
approaching the rank accuracy ceiling.

3.1.1 Estimation Methods

We will compare to two other previously
studied composition methods: weighted addition
(w.addgsyp), and lexfunc (Baroni and Zamparelli,
2010). Weighted addition finds «, (3 to optimize

(X(p,:) - (aX(i,:) + ﬁ)((j,:)))2

Note that this optimization is performed over the
SVD matrix X, rather than on A. To estimate X
for a new phrase p = (4, j) we compute

Xpy) = aX(ip) + BX(p
Lexfunc finds an adjective-specific matrix M; that
solves
Xpyy = MiX(j

for all phrases p = (3, j) for adjective i. We solved
each adjective-specific problem with Matlab’s par-
tial least squares implementation, which uses the
SIMPLS algorithm (Dejong, 1993). To estimate X
for a new phrase p = (i, j) we compute

Xy = MiX

We also optimized the weighted addition compo-
sition function over NNSE vectors, which we call
w.addnnsg.  After optimizing « and 3 using the
training set, we compose the latent word vectors to
estimate the held out phrase:

Apsy = adiy) + 04,
For CNNSE, as in the loss function, « = 6 = 0.5

so that the average of the word vectors approximates 5
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the phrase.

A(p,:) =0.5x (A(%) + A(ﬁ))

Crucially, w.addnnsg estimates «, 3 after learning
the latent space A, whereas CNNSE simultaneously
learns the latent space A, while taking the compo-
sition function into account. Once we have an esti-
mate A(p,:) we can use the NNSE and CNNSE solu-
tions for D to estimate the corpus statistics X.

X (

~

) = A D

p’:

Results for the four methods appear in Table 2.
Median rank accuracies were all within half a per-
centage point of each other. However, MRR shows
a striking difference in performance. CNNSE has
MRR of 40.64, more than 5 points higher than the
second highest MRR score belonging to w.addsyp
(35.26). CNNSE ranks the correct phrase in the
first position for 26% of phrases, compared to 20%
for w.addgyp. Lexfunc ranks the correct phrase
first for 20% of the test phrases, w.addynsg 16%.
So, while all models perform quite well in terms
of rank accuracy, when we use the more discrim-
inative MRR, CNNSE is the clear winner. Note
that the performance of w.addynsg is much lower
than CNNSE. Incorporating a composition con-
straint into the learning algorithm has produced a la-
tent space that surpasses all methods tested for this
task.

We were surprised to find that lexfunc performed
relatively poorly in our experiments. Dinu et al.
(2013) used simple unregularized regression to es-
timate M. We also replicated that formulation, and
found phrase ranking to be worse when compared
to the Partial Least Squares method described in Ba-
roni and Zamparelli (2010). In addition, Baroni and
Zamparelli use 300 SVD dimensions to estimate M.
We found that, for our dataset, using all 1000 dimen-
sions performed slightly better.

We hypothesize that our difference in perfor-
mance could be due to the difference in input cor-
pus statistics (in particular the thresholding of infre-
quent words and phrases), or due to the fact that we
did not specifically create the training and tests sets
to evenly distribute the phrases for each adjective.
If an adjective ¢ appears only in phrases in the test
set, lexfunc cannot estimate M; using training data
(a hindrance not present for other methods, which



require only that the adjective appear in the train-
ing data). To compensate for this possibly unfair
train/test split, the results in Table 2 are calculated
over only those adjectives which could be estimated
using the training set.

Though the results reported here are not as high
as previously reported, lexfunc was found to be
only slightly better than w.addgyp for adjective noun
composition (Dinu et al., 2013). CNNSE outper-
forms w.addsyp by a large margin, so even if Lex-
func could be tuned to perform at previous levels on
this dataset, CNNSE would likely still dominate.

3.1.2 Phrase Estimation Errors

None of the models explored here are perfect.
Even the top scoring model, CNNSE, only identi-
fies the correct phrase for 26% of the test phrases.
When a model makes a “mistake”, it is possible that
the top-ranked phrase is a synonym of, or closely
related to, the actual phrase. To evaluate mistakes,
we chose test phrases for which all 4 models are in-
correct and produce a different top ranked phrase
(likely these are the most difficult phrases to es-
timate). We then asked Mechanical Turk (Mturk
http://mturk.com) users to evaluate the mis-
takes. We presented the 4 mistakenly top-ranked
phrases to Mturk users, who were asked to choose
the one phrase most related to the actual test phrase.

We randomly selected 200 such phrases and asked
5 Mturk users to evaluate each, paying $0.01 per an-
swer. We report here the results for questions where
a majority (3) of users chose the same answer (82%
of questions). For all Mturk experiments described
in this paper, a screen shot of the question appears in
the Supplementary Material.

Table 3 shows the Mturk evaluation of model mis-
takes. CNNSE and lexfunc make the most reason-
able mistakes, having their top-ranked phrase cho-
sen as the most related phrase 35.4% and 31.7% of
the time, respectively. This makes us slightly more
comfortable with our phrase estimation results (Ta-
ble 2); though lexfunc does not reliably predict the
correct phrase, it often chooses a close approxima-
tion. The mistakes from CNNSE are chosen slightly
more often than lexfunc, indicating that CNNSE
also has the ability to reliably predict the correct
phrase, or a phrase deemed more related than those
chosen by other methods.
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Table 3: A comparison of mistakes in phrase rank-
ing across 4 composition methods. To evaluate mis-
takes, we chose phrases for which all 4 models rank
a different (incorrect) phrase first. Mturk users were
asked to identify the phrase that was semantically
closest to the target phrase.

Predicted phrase deemed
Model closest match to actual phrase
w.addSVD 21.3%
w.addNNSE 11.6%
Lexfunc 31.7%
CNNSE 35.4%

3.2 Interpretability

Though our improvement in MRR for phrase vec-
tor estimation is compelling, we seek to explore the
meaning encoded in the word space features. We
turn now to the interpretation of phrasal semantics
and semantic composition.

3.2.1 Interpretability of Latent Dimensions

Due to the sparsity and non-negativity constraints,
NNSE produces dimensions with very coherent se-
mantic groupings (Murphy et al., 2012). Murphy
et al. used an intruder task to quantify the inter-
pretability of semantic dimensions. The intruder
task presents a human user with a list of words, and
they are to choose the one word that does not belong
in the list (Chang et al., 2009). For example, from
the list (red, green, desk, pink, purple, blue), it is
clear to see that the word “desk” does not belong in
the list of colors.

To create questions for the intruder task, we se-
lected the top 5 scoring words in a particular di-
mension, as well as a low scoring word from that
same dimension such that the low scoring word is
also in the top 10th percentile of another dimen-
sion. Like the word “desk” in the example above,
this low scoring word is called the intruder, and the
human subject’s task is to select the intruder from a
shuffled list of 6 words. Five Mturk users answered
each question, each paid $0.01 per answer. If Mturk
users identify a high percentage of intruders, this in-
dicates that the latent representation groups words in
a human-interpretable way. We chose 100 questions
for each of the NNSE, CNNSE and SVD represen-
tations. Because the output of lexfunc is the SVD



Table 4: Quantifying the interpretability of learned
semantic representations via the intruder task. In-
truders detected: % of questions for which the ma-
jority response was the intruder. Mturk agreement:
the % of questions for which a majority of users
chose the same response.

Method | Intruders Detected | Mturk Agreement
SVD 17.6% 74%
NNSE 86.2% 94%

CNNSE 88.9% 90%

representation X, SVD interpretability is a proxy for
lexfunc interpretability.

Results for the intruder task appear in Table 4.
Consistent with previous studies, NNSE provides a
much more interpretable latent representation than
SVD. We find that the additional composition con-
straint used in CNNSE has maintained the inter-
pretability of the learned latent space. Because in-
truders detected is higher for CNNSE, but agreement
amongst Mturk users is higher for NNSE, we con-
sider the interpretability results for the two methods
to be equivalent. Note that SVD interpretability is
close to chance (1/6 = 16.7%).

3.2.2 Coherence of Phrase Representations

The dimensions of NNSE and CNNSE are com-
parably interpretable. But, has the composition con-
straint in CNNSE resulted in better phrasal repre-
sentations? To test this, we randomly selected 200
phrases, and then identified the top scoring dimen-
sion for each phrase in both the NNSE and CNNSE
models. We presented Mturk users with the inter-
pretable summarizations for these top scoring di-
mensions. Users were asked to select the list of
words (interpretable summarization) most closely
related to the target phrase. Mturk users could
also select that neither list was related, or that the
lists were equally related to the target phrase. We
paid $0.01 per answer and had 5 users answer each
question. In Table 5 we report results for phrases
where the majority of users selected the same an-
swer (78% questions). CNNSE phrasal represen-
tations are found to be much more consistent, re-
ceiving a positive evaluation almost twice as often
as NNSE.

Together, these results show that CNNSE repre-
sentations maintain the interpretability of NNSE di-
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Table 5: Comparing the coherence of phrase rep-
resentations from CNNSE and NNSE. Mturk users
were shown the interpretable summarization for the
top scoring dimension of target phrases. Represen-
tations from CNNSE and NNSE were shown side by
side and users were asked to choose the list (summa-
rization) most related to the phrase, or that the lists
were equally good or bad.

Model representation deemed
Model most consistent with phrase
CNNSE 54.5%
NNSE 29.5%
Both 4.5%
Neither 11.5%

mensions, while improving the coherence of phrase
representations.

3.3 Evaluation on Behavioral Data

We now compare the performance of various com-
position methods on an adjective-noun phrase sim-
ilarity dataset (Mitchell and Lapata, 2010). This
dataset is comprised of 108 adjective-noun phrase
pairs split into high, medium and low similarity
groups. Similarity scores from 18 human subjects
are averaged to create one similarity score per phrase
pair. We then compute the cosine similarity between
the composed phrasal representations of each phrase
pair under each compositional model. As in Mitchell
and Lapata (2010), we report the correlation of the
cosine similarity measures to the behavioral scores.
We withheld 12 of the 108 questions for parame-
ter tuning, four randomly selected from each of the
high, medium and low similarity groups.

Table 6 shows the correlation of each model’s
similarity scores to behavioral similarity scores.
Again, Lexfunc performs poorly. This is proba-
bly attributable to the fact that there are, on aver-
age, only 39 phrases available for training each ad-
jective in the dataset, whereas the original Lexfunc
study had at least 50 per adjective (Baroni and Zam-
parelli, 2010). CNNSE is the top performer, fol-
lowed closely by weighted addition. Interestingly,
weighted NNSE correlation is lower than CNNSE
by nearly 0.15, which shows the value of allowing
the learned latent space to conform to the desired
composition function.



3.3.1 Interpretability and Phrase Similarity

CNNSE has the additional advantage of inter-
pretability. To illustrate, we created a web page
to explore the dataset under the CNNSE model.
The page http://www.cs.cmu.edu/~fmri/
papers/naacl2015/cnnse_mitchell_
lapata_all.html displays phrase pairs sorted
by average similarity score. For each phrase
in the pair we show a summary of the CNNSE
composed phrase meaning. The scores of the 10
top dimensions are displayed in descending order.
Each dimension is described by its interpretable
summarization. As one scrolls down the page, the
similarity scores increase, and the number of dimen-
sions shared between the phrase pairs (highlighted
in red) increases. Some phrase pairs with high
similarity scores share no top scoring dimensions.
Because we can interpret the dimensions, we can
begin to understand how the CNNSE model is
failing, and how it might be improved.

For example, the phrase pair judged most similar
by the human subjects, but that shares none of the
top 10 dimensions in common, is “large number”
and “great majority” (behavioral similarity score
5.61/7). Upon exploration of CNNSE phrasal repre-
sentations, we see that the representation for “great
majority” suffers from the multiple word senses of
majority. Majority is often used in political settings
to describe the party or group with larger member-
ship. We see that the top scoring dimension for
“great majority” has top scoring words ‘“candidacy,
candidate, caucus”, a politically-themed dimension.
Though the CNNSE representation is not incorrect
for the word, the common theme between the two
test phrases is not political.

The second highest scoring dimension for “large
number” is “First name, address, complete address”.
Here we see another case of the collision of multiple
word senses, as this dimension is related to identify-
ing numbers, rather than the quantity-related sense
of number. While it is satisfying that the word senses
for majority and number have been separated out
into different dimensions for each word, it is clear
that both the composition and similarity functions
used for this task are not gracefully handling multi-
ple word senses. To address this issue, we could par-
tition the dimensions of A into sense-related groups
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Table 6: Correlation of phrase similarity judgements
(Mitchell and Lapata, 2010) to pairwise distances in
several adjective-noun composition models.

Correlation to

Model behavioral data
w.addsvyp 0.5377
W.addNNSE 0.4469
Lexfunc 0.1347
CNNSE 0.5923

and use the maximally correlated groups to score
phrase pairs. CNNSE interpretability allows us to
perform these analyses, and will also allow us to it-
erate and improve future compositional models.

4 Conclusion

We explored a new method to create an interpretable
VSMs that respects the notion of semantic compo-
sition. We found that our technique for incorporat-
ing phrasal relationship constraints produced a VSM
that is more consistent with observed phrasal repre-
sentations and with behavioral data.

We found that, compared to NNSE, human eval-
uators judged CNNSE phrasal representations to be
a better match to phrase meaning. We leveraged this
improved interpretability to explore composition in
the context of a previously published compositional
task. We note that the collision of word senses of-
ten hinders performance on the behavioral data from
Mitchell and Lapata (2010).

More generally, we have shown that incorporat-
ing constraints to represent the task of interest can
improve a model’s performance on that task. Ad-
ditionally, incorporating such constraints into an in-
terpretable model allows for a deeper exploration of
performance in the context of evaluation tasks.
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Abstract

In this paper, we introduce a new approach
for joint segmentation, POS tagging and de-
pendency parsing. While joint modeling of
these tasks addresses the issue of error prop-
agation inherent in traditional pipeline archi-
tectures, it also complicates the inference task.
Past research has addressed this challenge by
placing constraints on the scoring function.
In contrast, we propose an approach that can
handle arbitrarily complex scoring functions.
Specifically, we employ a randomized greedy
algorithm that jointly predicts segmentations,
POS tags and dependency trees. Moreover,
this architecture readily handles different seg-
mentation tasks, such as morphological seg-
mentation for Arabic and word segmentation
for Chinese. The joint model outperforms the
state-of-the-art systems on three datasets, ob-
taining 2.1% TedEval absolute gain against
the best published results in the 2013 SPMRL
shared task.!

1 Introduction

Parsing accuracy is greatly impacted by the qual-
ity of preprocessing steps such as tagging and word
segmentation. Li et al. (2011) report that the dif-
ference between using the gold POS tags and us-
ing the automatic counterparts reaches about 6% in
dependency accuracy. Prior research has demon-
strated that joint prediction alleviates error propaga-
tion inherent in pipeline architectures, where mis-
takes cascade from one task to the next (Bohnet et

"The source code is available at https://github.
com/yuanzh/SegParser.
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al., 2013; Tratz, 2013; Hatori et al., 2012; Zhang
et al., 2014a). However, jointly modeling all the
processing tasks inevitably increases inference com-
plexity. Prior work addressed this challenge by in-
troducing constraints on scoring functions to keep
inference tractable (Qian and Liu, 2012).

In this paper, we propose a method for joint pre-
diction that imposes no constraints on the scoring
function. The method is able to handle high-order
and global features for each individual task (e.g.,
parsing), as well as features that capture interactions
between tasks. The algorithm achieves this flexibil-
ity by operating over full assignments that specify
segmentation, POS tags and dependency tree, mov-
ing from one complete configuration to another.

Our approach is based on the randomized greedy
algorithm from our earlier dependency parsing sys-
tem (Zhang et al., 2014b). We extend this algorithm
to jointly predict the segmentation and the POS tags
in addition to the dependency parse. The search
space for the algorithm is a combination of parse
trees and lattices that encode alternative morpho-
logical and POS analyses. The inference algorithm
greedily searches over this space, iteratively mak-
ing local modifications to POS tags and dependency
trees. To overcome local optima, we employ multi-
ple restarts.

This simple, yet powerful approach can be eas-
ily applied to a range of joint prediction tasks. In
prior work, joint models have been designed for a
specific language. For instance, joint models for
Chinese are designed with word segmentation in
mind (Hatori et al., 2012), while algorithms for pro-
cessing Semitic languages are tailored for morpho-

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 42-52,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



logical analysis (Tratz, 2013; Goldberg and Elhadad,
2011). In contrast, we show that our algorithm
can be effortlessly applied to all these distinct lan-
guages. Language-specific characteristics drive the
lattice construction and the feature selection, while
the learning and inference methods are language-
agnostic.

We evaluate our model on three datasets: SPMRL
(Modern Standard Arabic), classical Arabic and
CTBS5 (Chinese). Our model consistently outper-
forms state-of-the-art systems designed for these
languages. We obtain a 2.1% TedEval gain against
the best published results in the 2013 SPMRL shared
task (Seddah et al., 2013). The joint model results
in significant gains against its pipeline counterpart,
yielding 2.4% absolute F-score increase in depen-
dency parsing on the same dataset. Our analysis re-
veals that most of this gain comes from the improved
prediction on OOV words.

2 Related Work

Joint Segmentation, POS tagging and Syntactic
Parsing It has been widely recognized that joint
prediction is an appealing alternative for pipeline ar-
chitectures (Goldberg and Tsarfaty, 2008; Hatori et
al., 2012; Habash and Rambow, 2005; Gahbiche-
Braham et al., 2012; Zhang and Clark, 2008; Bohnet
and Nivre, 2012). These approaches have been par-
ticularly prominent for languages with difficult pre-
processing, such as morphologically rich languages
(e.g., Arabic and Hebrew) and languages that re-
quire word segmentation (e.g., Chinese). For the for-
mer, joint prediction models typically rely on a lat-
tice structure to represent alternative morphological
analyses (Goldberg and Tsarfaty, 2008; Tratz, 2013;
Cohen and Smith, 2007). For instance, transition-
based models intertwine operations on the lattice
with operations on a dependency tree. Other joint
architectures are more decoupled: in Goldberg and
Tsarfaty (2008), a lattice is used to derive the best
morphological analysis for each part-of-speech al-
ternative, which is in turn provided to the pars-
ing algorithm. In both cases, tractable inference is
achieved by limiting the representation power of the
scoring function. Our model also uses a lattice to
encode alternative analyses. However, we employ
this structure in a different way. The model samples
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the full path from the lattice, which corresponds to
a valid segmentation and POS tagging assignment.
Then the model improves the path and the corre-
sponding tree via a hill-climbing strategy. This ar-
chitecture allows us to incorporate arbitrary features
for segmentation, POS tagging and parsing.

In joint prediction models for Chinese, lattice
structures are not typically used. Commonly these
models are formulated in a transition-based frame-
work at the character level (Zhang and Clark, 2008;
Zhang et al., 2014a; Wang and Xue, 2014). While
this formulation can handle a large space of possible
word segmentations, it can only capture features that
are instantiated based on the stack and queue status.
Our approach offers two advantages over prior work:
(1) we can incorporate arbitrary features for word
segmentation and parsing; (2) we demonstrate that
a lattice-based approach commonly used for other
languages can be effectively utilized for Chinese.

Randomized Greedy Inference Our prior work
has demonstrated that a simple randomized greedy
approach delivers near optimal dependency pars-
ing (Zhang et al., 2014b). Our analysis explains
this performance with the particular properties of the
search space in dependency parsing. We show how
to apply this strategy to a more challenging infer-
ence task and demonstrate that a randomized greedy
algorithm achieves excellent performance in a sig-
nificantly larger search space.

3 Randomized Greedy System for Joint
Prediction

In this section, we introduce our model for joint mor-
phological segmentation, tagging and parsing. Our
description will first assume that word boundaries
are provided (e.g., the case of Arabic). Later, we
will describe how this model can be applied to a
joint prediction task that involves word segmenta-
tion (e.g., Chinese).

3.1 Notation

Let z = {$z}l§1 be a sentence of length |x| that
consists of tokens ;. We use s = {sl}lzx:ll to de-
note a segmentation of all the tokens in sentence x,
and s; = {s;; }ljsjl to denote a segmentation of the
token x;, where s; ; is the jth morpheme of the to-
ken ;. Similarly, we use ¢, ¢; and ¢; ; for the POS



x; = wkAn
s, =w+kAnc S;
S =w

LieTii= {C,PRT}

Figure 1: Example lattice structures for the Arabic
token “wkAn”. It has two candidate segmentations:
w+kAn or w+k+An. The first segmentation consists
of two morphemes. The first morpheme w has two
candidate POS.

tags for each sentence, token and morpheme. We
use y to denote a dependency tree over morphemes,
and y; ; to denote the head of morpheme s; ;. Dur-
ing training, the algorithm is provided with tuples
that specify ground truth values for all the variables
D= {(z,5,4,9)}.

We also assume access to a morphological ana-
lyzer and a POS tagger that provide candidate anal-
yses. Specifically, for each token x;, the algorithm is
provided with candidate segmentations S;, and can-
didate POS tags 7; and 7; ;. These alternative anal-
yses are captured in the lattice structure (see Fig-
ure 1 for an example). Finally, we use ) to denote
the set of all valid dependency trees defined over
morphemes.

3.2 Decoding

We parameterize the scoring function as

SCOT@(.Q?,S,t,y) :9-f($,s,t,y) (1)

where 0 is the parameter vector and f(x,s,t,y) is
the feature vector associated with the sentence and
all variables.

The goal of decoding is to find a set of valid val-
ues for (s,t,y) € S x T x )Y that maximizes the
score defined in Eq. 1. Our randomized greedy al-
gorithm finds a high scoring assignment for (s, ¢, y)
via a hill-climbing process with multiple random
restarts. (Section 3.3 describes how the parameters
0 are learned.)

Figure 2 shows the framework of our random-
ized greedy algorithm. First, we draw a full path
from the lattice structure in two steps: (1) sampling
a morphological segmentation s from S; (2) sam-
pling POS tags t for each morpheme. Next, we
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sample a dependency tree y from the parse space.
Based on this random starting point, we iteratively
hill-climb ¢ and y in a bottom-up order.> In our
earlier work (Zhang et al., 2014b), we showed this
strategy guarantees that we can climb to any target
tree in a finite number of steps. We repeat the sam-
pling and the hill-climbing processes above until we
do not find a better solution for K iterations. We
introduce the details of this process below.

SampleSeg and SamplePOS: Given a sentence
x, we first draw segmentations s and POS tags ¢(¥)
from the first-order distribution using the current
learned parameter values. For segmentation, first-
order features only depend on each token x; and its
morphemes s; ;. Similarly, for POS, first-order fea-
tures are defined based on s; ; and ¢; ;. The sam-
pling process is straightforward due to the fact that
the candidate sets |S;| and |7; ;| are both small. We
can enumerate and compute the probabilities propor-
tional to the exponential of the first-order scores as
follows.?

p(si) ocexp{0 - f(z,s:)}
p(tij) ocexp{f - f(z,s4,ti5)}

SampleTree: Given a random sample of the seg-
mentations s and the POS tags ¢(?), we draw a ran-
dom tree y(?) from the first-order distribution using
Wilson’s algorithm (Wilson, 1996).4

2

HillClimbPOS: After sampling the initial values
5,6 and y©), the hill-climbing algorithm improves
the solution via locally greedy changes. The hill-
climbing algorithm iterates between improving the
POS tags and the dependency tree. For POS tagging,
it updates each ; ; in a bottom-up order as follows

3

tij < argmax score(, s,t; j,t_(; ), )
ti,;€7i,;

where ¢_; ;) are the rest of the POS tags when we
update ¢; ;.

2We do not hill-climb segmentation, or else we have to
jointly find the optimal ¢ and y, and the resulting computational
cost is too high.

3We notice that the distribution becomes significantly
sharper after training for several epochs. Therefore, we also
smooth the distribution by multiplying the score with a scaling
factor.

*We also smooth the distribution in the same way as in seg-
mentation and POS tagging.



Input: parameter 6, sentence
Output: segmentations s, POS tags ¢ and depen-
dency tree y

s «— SampleSeg(z)

t©) — SamplePos(z, s)

YO — SampleTree(z, s, t)

k=0

repeat
tk+D) — HillClimbPOS (z, 5, %), (k)
yt) — HillClimbTree(x, s, t(k+1) y(k))
k—k+1

until no change in this iteration

return (s, tF) (%))

YRR W

_.
e

Figure 2: The hill-climbing algorithm with random
initializations. Details of the sampling and hill-
climbing functions in Line 1-3 and 6-7 are provided
in Section 3.2.

HillClimbTree: We improve the dependency tree
y via a similar hill-climbing process. Specifically,
we greedily update the head y; ; of each morpheme
in a bottom-up order as follows

“)

Yi,j « argmax score(z, s,t, Yi j, Y—(ij))
Yi,j€Vi.j

where ); ; is the set of candidate heads such that
changing y; ; to any candidate does not violate the
tree constraint.

3.3 Training

We learn the parameters # in a max-margin frame-
work, using on-line updates. For each update, we
need to compute the segmentations, POS tags and
the tree that maximize the cost-augmented score:

(3,t,9) = argmax {0-f(z,s,t,y)+Err(s,t,y)}
s€SteT yey
5)

where Err(s,t,y) is the number of errors of (s, ¢, y)
against the ground truth (3, £, ). The parameters are
then updated to guide the selection against the vio-
lation. This is done via standard passive-aggressive
updates (Crammer et al., 2006).

3.4 Adapting to Chinese Joint Prediction

In this section we describe how the proposed model
can be adapted to languages that do not delineate
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Figure 3: Example lattice structures for the Chi-
nese sentence “HrEHIL T — A+ =HH” (Xin-
hua Press at Beijing reports on February 13th). The
token #H1£ 4t has two candidate segmentations: T
eHt or e + .

words with spaces, and thus require word segmen-
tation. The main difference lies in the construction
of the lattice structure. We employ a state-of-the-art
word segmenter to produce candidate word bound-
aries. We consider boundaries common across all
the top-k candidates as true word boundaries. The
remaining tokens (i.e., strings between these bound-
aries) are treated as words to be further segmented
and labeled with POS tags. Figure 3 shows an ex-
ample of the Chinese word lattice structure we con-
struct. Once the lattice is constructed, the joint pre-
diction model is applied as described above.

4 Features

Segmentation Features For both Arabic and Chi-
nese, each segmentation is represented by its score
from the preprocessing system, and by the corre-
sponding morphemes (or words in Chinese). Fol-
lowing previous work (Zhang and Clark, 2010), we
also add character-based features for Chinese word
segmentation, including the first and the last charac-
ters in the word, and the length of the word.

POS Tag Features Table 1 summarizes the POS
tag features employed by the model. First, we
use the feature templates proposed in our previ-
ous work on Arabic joint parsing and POS correc-
tion (Zhang et al., 2014c). In addition, we incor-
porate character-based features specifically designed
for Chinese. These features are mainly inspired by
previous transition-based models on Chinese joint
POS tagging and word segmentation (Zhang and
Clark, 2010).

Dependency Parsing Features The feature tem-
plates for dependency parsing are mainly drawn
from our previous work (Zhang et al., 2014b). Fig-
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Table 1: POS tag feature templates. tg and wq de-
notes the POS tag and the word at the current posi-
tion. t_, and ¢, denote left and right context tags,
and similarly for words. s(-) denotes the score of
the POS tag produced by the preprocessing tagger.
The last row shows the “Character”-based features
for Chinese. pre;(-) and pre,(-) denote the word
prefixes with one and two characters respectively.
suf(-) and suf,(-) denote the word suffixes simi-
larly. ¢,(-) denotes the n-th character in the word.
len(-) denotes the length of the word, capped at 5 if
longer.

arc consecutive sibling grandparent

- 20 T T

grand-sibling

NN TN

h m s ¢ g8 h m s

tri-siblings

Figure 4: First- to third-order dependency parsing
features.

ure 4 shows the first- to third-order feature templates
that we use in our model. We also use global fea-
tures to capture the adjacent conjuncts agreement in
a coordination structure, and the valency patterns for
each POS category. Note that most dependency fea-
tures are implicitly cross-task in that they include
POS tag and segmentation information. For exam-
ple, the standard feature involves the POS tags of the
words on both ends of the arc.

S Experimental Setup

5.1 Datasets

‘We evaluate our model on two Arabic datasets and
one Chinese dataset. For the first Arabic dataset,
we use the dataset used in the Statistical Parsing of
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Dataset SPMRL Classical CTBS
Language Arabic  Arabic Chinese

Train #sent 144k 154k  17.5k
#token 451k 573k 442k

Dev. #sent 1.8k - 348
#token | 56.9k - 6.6k

Test. #sent 1.8k 163 348
#ttoken | 55.6k 7.9k 8.0k

Table 2: Statistics of datasets.

Morphologically Rich Languages (SPMRL) Shared
Task 2013 (Seddah et al., 2013).> We follow the
official split for training, development and testing
set. We use the core set of 12 POS categories pro-
vided by Marton et al. (2013). In the second Ara-
bic dataset, the training set is a dependency con-
version of the Arabic Treebank, which primarily in-
cludes Modern Standard Arabic (MSA) text. How-
ever, we test on a new corpus, which consists of
classical Arabic text obtained from the Comprehen-
sive Islamic Library (CIS).% A native Arabic speaker
with background in computational linguistics anno-
tated the morphological segmentation and POS tags.
This corpus is an excellent testbed for a joint model
because classical Arabic may use rather different vo-
cabulary from MSA, while their syntactic grammars
are very similar to each other. Therefore incorporat-
ing syntactic information should be particularly ben-
eficial to morphological segmentation and POS tag-
ging. For Chinese, we use the Chinese Penn Tree-
bank 5.0 (CTBS) and follow the split in previous
work (Zhang and Clark, 2010).

Table 2 summarizes the statistics of the datasets.
For the SPMRL test set, we follow the common
practice which limits the sentence lengths up to
70 (Seddah et al., 2013). For classical Arabic and
Chinese, we evaluate on all the test sentences.

5.2 Generating Lattice Structures

In this section we introduce the methodology for
constructing candidate sets for segmentation and

SThis dataset is originally provided by the LDC (Maamouri
et al.,, 2004), specifically its SPMRL 2013 dependency in-
stance, derived from the Columbia Catib Treebank (Habash and
Roth, 2009; Habash et al., 2009) and extended according to the
SPMRL 2013 extension scheme (Seddah et al., 2013).

SThis classical Arabic dataset is publicly available at ht tp:
//farasa.qcri.org/



MADA analysis

Word Emlyp
Emly/NOUN+p/NSUFF, gen:f/num:s/per:na
Emly/ ADJ+p/NSUFF, gen:f/num:s/per:na
EmI/NOUN+y/NSUFF+p/PRON, gen:m/num:d/per:na

Lattice structure

p/NSUFF

Emly/NOUN
gen:f/num:s/per:na

Emly/ADJ
p/PRON
Eml/NOUN

y/NSUFF gen:m/num:d/per:na

Figure 5: Example MADA analysis for the word
Emlyp and the corresponding lattice structure.

POS tagging. Table 3 provides statistics on the gen-
erated candidate sets.

SPMRL 2013 Following Marton et al. (2013), we
use the MADA system to generate candidate mor-
phological analyses and POS tags. For each token
in the sentence, MADA provides a list of possible
morphological analyses and POS tags, each associ-
ated with a score. The score of each segmentation or
POS tag equals the highest score of the MADA anal-
ysis in which it appears. In addition, we associate
each segmentation with MADA analyses on gender,
number and person. Figure 5 shows an example of
MADA output for the token Emlyp and the corre-
sponding lattice structure.

Classical Arabic We construct the lattice for this
corpus in a similar fashion to the SPMRL dataset
with two main departures. First, we use the Ara-
bic morphological analyzer developed by Darwish
et al. (2014) because MADA is primarily trained for
MSA and performs poorly on classical Arabic. Sec-
ond, we implement a CRF-based morpheme-level
POS tagger and generate the POS tag candidates for
each morpheme based on their marginal probabili-
ties, truncated by a probability threshold.

CTB5 We first re-train the Stanford Chinese word
segmenter on CTBS and generate a top-10 list for
each sentence.” We treat the word boundaries shared
across all the 10 candidates as the confident ones,

"We use 10-fold cross validation to avoid overfitting on the
training set.
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Dataset Seg POS

F1 | Oracle |Avg. |S;|| F1 |Avg. |7, ;|
SPMRL | 99.4 | 99.8 1.23 | 96.9 1.71
Classical| 924 | 97.0 1.16 | 824 3.01
CTB5 953 | 99.0 122 | 914 2.02

Table 3: Quality of the lattice structures on each
dataset. For SPMRL and CTBS5, we show the statis-
tics on the development sets. For classical Arabic,
we directly show the statistics on the testing set be-
cause the development set is not available.

and construct the lattice as described in Section 3.4.
Our model then focuses on disambiguating the rest
of the word boundaries in the candidates. To gen-
erate POS candidates, we apply a CRF-based tag-
ger with Chinese-specific features used in previous
work (Hatori et al., 2011).

5.3 Evaluation Measures

Following standard practice in previous work (Ha-
tori et al., 2012; Zhang et al., 2014a), we use F-
score as the evaluation metric for segmentation, POS
tagging and dependency parsing. We report the
morpheme-level F-score for Arabic and the word-
level F-score for Chinese. In addition, we use TedE-
val (Tsarfaty et al., 2012) to evaluate the joint pre-
diction on the SPMRL dataset, because TedEval
score is the only evaluation metric used in the of-
ficial report. We directly use the evaluation tools
provided on the SPMRL official website.

5.4 Baselines

State-of-the-Art Systems For the SPMRL
dataset, we directly compare with Bjorkelund et al.
(2013).  This system achieves the best TedEval
score in the track of dependency parsing with
predicted information and we directly republish
the official result. We also compute the F-score of
this system on each task using our own evaluation
script.” For the CTBS dataset, we directly compare
to the arc-eager system by Zhang et al. (2014a),
which slightly outperforms the arc-standard system
by Hatori et al. (2012).

8http://www.spmrl.org/spmrl2013-sharedtask.html

F-score evaluation for Arabic is not straightforward due to
the stem changes in the morphological analysis. Therefore, the
comparison of F-scores is only approximate.



Model SPMRL Classical Arabic CTB5

Seg POS Dep TedEval | Seg POS Seg POS Dep
Pipeline 99.18 9576 84.79 92.86 | 9237 8240 | 9745 9342 79.46
Joint 99.52 9743 87.23 93.87 | 9435 8444 | 98.04 9447 82.01
Best Published | 96.42 91.66 82.41 91.74 - - 97.76  94.36 81.70

Table 4: Segmentation, POS tagging and unlabeled attachment dependency F-scores (%) and TedEval score
(%) on different datasets. The first line denotes the performance by the pipeline variation of our model.
The second row shows the results by our joint model. “Best Published” includes the best reported re-
sults: Bjorkelund et al. (2013) for the SPMRL 2013 shared task and Zhang et al. (2014a) for the CTBS
dataset. Note that the POS F-scores are not directly comparable because Bjorkelund et al. (2013) use a

different POS tagset from us.

4
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Figure 6: Absolute F-score (%) improvement of the joint model over the pipeline counterpart on seen and

out-of-vocabulary (OOV) words.

System Variants We also compare against a
pipeline variation of our model. In our pipeline
model, we predict segmentations and POS tags by
the same system that we use to generate candidates.
The subsequent standard parsing model then oper-
ates on the predicted segmentations and POS tags.

5.5 Experimental Details

Following our earlier work (Zhang et al., 2014b), we
train a first-order classifier to prune the dependency
tree space.'? Following common practice, we aver-
age parameters over all iterations after training with
passive-aggressive online learning algorithm (Cram-
mer et al., 2006; Collins, 2002). We use the same
adaptive random restart strategy as in our earlier
work (Zhang et al., 2014b) and set ' = 300. In ad-
dition, we also apply an aggressive early-stop strat-
egy during training for efficiency. If we have found
a violation against the ground truth during the first
50 iterations, we immediately stop and update the

10We set the probability threshold to 0.05 and limit the num-

ber of candidate heads up to 20, which gives a 99.5% pruning
recall on both the SPMRL and the CTBS5 development sets.
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parameters based on the current violation. The rea-
soning behind this early-stop strategy is that weaker
violations for some training sentences are already
sufficient for separable training sets (Huang et al.,
2012).

6 Results

Comparison to State-of-the-art Systems Table 4
summarizes the performance of our model and the
best published results for the SPMRL and the CTB5
datasets.!’  On both datasets, our system outper-
forms the baselines. On the SPMRL 2013 shared
task, our approach yields a 2.1% TedEval score gain
over the top performing system (Bjorkelund et al.,
2013). We also improve the segmentation and de-
pendency F-scores by 3.1% and 4.8% respectively.
Note that the POS F-scores are not directly com-
parable because Bjorkelund et al. (2013) use a dif-
ferent POS tagset from us. On the CTBS dataset,
we outperform the state-of-the-art with respect to all

""'We are not aware of any published results on the Classical
Arabic Dataset.
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Figure 7: Performance with different sizes of the
candidate sets on the SPMRL dataset. The graph
shows the TedEval and F-scores when considering
the best k£ analyses by MADA, and the variation is
achieved by changing k.
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Figure 8: The normalized score of the output tree as
the function of the number of restarts. We normalize
scores of each sentence by the highest score among
3,000 restarts for this sentence. We show the curve
up to 1,000 restarts because it reaches convergence
after 500 restarts.

tasks: segmentation (0.3%), tagging (0.1%), and de-
pendency parsing (0.3%).'2

Impact of the Joint Prediction As Table 4 shows,
our joint prediction model consistently outperforms
the corresponding pipeline model in all three tasks.
This observation is consistent with findings in pre-
vious work (Hatori et al., 2012; Tratz, 2013). We
also observe that gains are higher (2%) on the clas-
sical Arabic dataset, which demonstrates that joint
prediction is particularly helpful in bridging the gap
between MSA and classical Arabic.

12Zhang et al. (2014a) improve the dependency F-score to
82.14% by adding manually annotated intra-word dependency

information. Even without such gold word structure annota-
tions, our model still achieves a comparable result.

49

Dataset Seg POS Dep
Seen OOV | Seen OOV | Seen OOV
SPMRL | 48.4 278 | 447 150 | 159 175
Classical | 13.8 34.8 42 172 - -
CTB5S 20.3 257 | 142 199 | 13.0 15.6

Table 5: F-score error reductions (%) of the joint
model over the pipeline counterpart on seen and
OOV words.

Figure 6 shows the break of the improvement
based on seen and out-of-vocabulary (OOV) words.
As expected, across all languages OOV words bene-
fit more from the joint prediction, as they constitute
a common source of error propagation in a pipeline
model. The extent of improvement depends on the
underlying accuracy of the preprocessing for seg-
mentation and POS tagging on OOV words. For
instance, we observe a higher gain (7%) on Chinese
OOV words which have a 61.5% accuracy when pro-
cessed by the original stand-along POS tagger. On
the SPMRL dataset, the gain on OOV words is lower
(3%), while preprocessing accuracy is higher (82%).
Their error reductions on OOV words are neverthe-
less close to each other. Table 5 summarizes the re-
sults on F-score error reduction.

We also observe that the error reductions of OOV
words/morphemes on the Chinese and the Classi-
cal Arabic dataset are larger than that of the in-
vocabulary counterparts (e.g. 26% vs. 20% on Chi-
nese word segmentation). However, we have the op-
posite observation on the segmentation and POS tag-
ging on the SPMRL dataset (28% vs. 48%). This
can be explained by analyzing the oracle perfor-
mance in which we select the best solution from pos-
sible candidates. The oracle error reduction of OOV
morphemes in the SPMRL dataset is relatively low
(44%), compared to the 61% oracle error reduction
of OOV morphemes in the Classical Arabic dataset.

Impact of the Number of Alternative Analyses
In Figure 7, we plot the performance on the SPMRL
dataset as a function of the number k¥ of MADA
analyses that we use to construct the candidate sets.
For low k, increasing the number of analyses im-
proves performance across all evaluation metrics.
However, the performance converges at around k =
15.
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Figure 9: Cumulative distribution function (CDF)
for the number of local optima versus the score of
these local optima obtained from each restart, on the
SPMRL dataset. The score captures the difference
between a local optimum and the best one among
3,000 restarts.

Convergence Properties To assess the quality
of the approximation obtained by the randomized
greedy inference, we would like to compare it
against the optimal solution. Following our earlier
work (Zhang et al., 2014b), we use the highest score
among 3,000 restarts for each sentence as a proxy for
the optimal solution. Figure 8 shows the normalized
score of the retrieved solution as a function of the
number of restarts. We observe that most sentences
converge quickly.!? Specifically, more than 97%
of the sentences converge within first 300 restarts.
Since for the vast majority of cases our system con-
verges fast, we achieve a comparable speed to that
of other state-of-the-art joint systems. For example,
our model achieves high performance on Chinese at
about 0.5 sentences per second. The speed is about
the same as that of the transition-based system (Ha-
tori et al., 2012) with beam size 64, the setting that
achieved best accuracy in their work.

Quality of Local Optima Figure 9 shows the cu-
mulative distribution function (CDF) for the num-
ber of local optima versus the score of these local
optima obtained from each restart. More specifi-
cally, the score captures the difference between a lo-
cal optimum and the maximal score among 3,000
restarts. We can see that most of the local op-
tima reached by hill-climbing have scores close to

13 As expected, we also observe that convergence is slower
when comparing to standard dependency parsing with a simi-
lar randomized greedy algorithm (Zhang et al., 2014b), because
joint prediction results in a harder inference problem.
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the maximum. For instance, about 30% of the lo-
cal optima are identical to the best solution, namely
SCOTemar — SCOT€ocal = 0.

7 Conclusions

In this paper, we propose a general randomized
greedy algorithm for joint segmentation, POS tag-
ging and dependency parsing. On both Arabic and
Chinese, our model achieves improvement on the
three tasks over state-of-the-art systems and pipeline
variants of our system. In particular, we demonstrate
that OOV words benefits more from the power of
joint prediction. Finally, our experimental results
show that increasing candidate sizes improves per-
formance across all evaluation metrics.
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Abstract

Incremental parsers have potential advantages
for applications like language modeling for
machine translation and speech recognition.
We describe a new algorithm for incremental
transition-based Combinatory  Categorial
Grammar parsing. As English CCGbank
derivations are mostly right branching and
non-incremental, we design our algorithm
based on the dependencies resolved rather
than the derivation. We introduce two new ac-
tions in the shift-reduce paradigm based on the
idea of ‘revealing’ (Pareschi and Steedman,
1987) the required information during pars-
ing. On the standard CCGbank test data, our
algorithm achieved improvements of 0.88%
in labeled and 2.0% in unlabeled F-score over
a greedy non-incremental shift-reduce parser.

1 Introduction

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is an efficiently parseable, yet lin-
guistically expressive grammar formalism. In
addition to predicate-argument structure, CCG
elegantly captures the unbounded dependencies
found in grammatical constructions like relativiza-
tion, coordination etc. Awvailability of the English
CCGbank (Hockenmaier and Steedman, 2007) has
enabled the creation of several robust and accurate
wide-coverage CCG parsers (Hockenmaier and
Steedman, 2002; Clark and Curran, 2007; Zhang
and Clark, 2011). While the majority of CCG
parsers use chart-based approaches (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007), there
has been some work on developing shift-reduce

53

parsers for CCG (Zhang and Clark, 2011; Xu et al.,
2014). Most of these parsers model normal-form
CCG derivations (Eisner, 1996), which are mostly
right-branching trees : hence are not incremental
in nature. The dependency models of Clark and
Curran (2007) and Xu et al. (2014) model depen-
dencies rather than derivations, but do not guarantee
incremental analyses.

Besides being cognitively plausible (Marslen-
Wilson, 1973), incremental parsing is more useful
than non-incremental parsing for some applications.
For example, an incremental analysis is required
for integrating syntactic and semantic information
into language modeling for statistical machine
translation (SMT) and automatic speech recognition
(ASR) (Roark, 2001; Wang and Harper, 2003).

This paper develops a new incremental shift-
reduce algorithm for parsing CCG by building a
dependency graph in addition to the CCG derivation
as a representation. The dependencies in the graph
are extracted from the CCG derivation. A node can
have multiple parents, and hence we construct a
dependency graph rather than a tree. Two new ac-
tions are introduced in the shift-reduce paradigm for
“revealing” (Pareschi and Steedman, 1987) unbuilt
structure during parsing. We build the dependency
graph in parallel to the incremental CCG derivation
and use this graph for revealing, via these two
new actions. On the standard CCGbank test data,
our algorithm achieves improvements of 0.88% in
labeled F-score and 2.0% in unlabeled F-score over
a greedy non-incremental shift-reduce algorithm.
As our algorithm does not model derivations, but
rather models transitions, we do not need a treebank
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Figure 1: Normal form CCG derivation.

of incremental CCG derivations and can train on the
dependencies in the existing treebank. Our approach
can therefore be adapted to other languages with
dependency treebanks, since CCG lexical categories
can be easily extracted from dependency treebanks
(Cakici, 2005; Ambati et al., 2013).

The rest of the paper is arranged as follows.
Section 2 gives a brief introduction to related
work in the areas of CCG parsing and incremental
parsing. In section 3, we describe our incremental
shift-reduce parsing algorithm. Details about the
experiments, evaluation metrices and analysis of the
results are in section 4. We conclude with possible
future directions in section 5.

2 Related Work

In this section, we first give a brief introduction to
various available CCG parsers. Then we describe
approaches towards incremental and greedy parsing.

2.1 CCG Parsers

There has been a significant amount of work on
developing chart-based parsers for CCG. Both
generative (Hockenmaier and Steedman, 2002) and
discriminative (Clark et al., 2002; Clark and Curran,
2007; Auli and Lopez, 2011; Lewis and Steedman,
2014) models have been developed. As these parsers
employ a bottom-up chart-parsing strategy and use
normal-form CCGbank derivations which are right-
branching, they are not incremental in nature. In an
SVO (Subject-Verb-Object) language, these parsers
first attach the object to the verb and then the subject.

Two major works in shift-reduce CCG parsing
with accuracies competitive with the widely used
Clark and Curran (2007) parser (C&C) are Zhang
and Clark (2011) and Xu et al. (2014). Zhang and
Clark (2011) used a global linear model trained
discriminatively with the averaged perceptron
(Collins, 2002) and beam search for their shift-
reduce CCG parser. Xu et al. (2014) developed a
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dependency model for shift-reduce CCG parsing
using a dynamic oracle technique. Unlike the chart
parsers, both these parsers can produce fragmentary
analyses when a complete spanning analysis is not
found. Both these shift-reduce parsers are more
incremental than standard chart based parsers.
But, as they employ an arc-standard (Yamada and
Matsumoto, 2003) shift-reduce strategy on CCG-
bank, given an SVO language, these parsers are not
guaranteed to attach the subject before the object.

2.2 Incremental Parsers

A strictly incremental parser is one which computes
the relationship between words as soon as they
are encountered in the input. Shift-reduce CCG
parsers rely either on CCGbank derivations (Zhang
and Clark, 2011) which are non-incremental, or
on dependencies (Xu et al., 2014) which could be
incremental in simple cases, but do not guarantee
incrementality. Hassan et al. (2009) developed a
semi-incremental CCG parser by transforming the
English CCGbank into left branching derivation
trees. The strictly incremental version performed
with very low accuracy but a semi-incremental
version gave a balance between incrementality and
accuracy. There is also some work on incremental
parsing using grammar formalisms other than CCG
like phrase structure grammar (Collins and Roark,
2004) and tree substitution grammar (Sangati and
Keller, 2013).

2.3 Greedy Parsers

There has been a significant amount of work on
greedy shift-reduce dependency parsing. The Malt
parser (Nivre et al., 2007) is one of the earliest
parsers based on this paradigm. Goldberg and
Nivre (2012) improved learning for greedy parsers
by using dynamic oracles rather than a single static
transition sequence as the oracle. In all the standard
shift-reduce parsers, when two trees combine, only
the top node (root) of each tree participates in the
action. Sartorio et al. (2013) introduced a technique
where in addition to the root node, nodes on the right
and left periphery respectively are also available for
attachment in the parsing process. A non-monotonic
parsing strategy was introduced by Honnibal et
al. (2013), where an action taken during the parsing
process is revised based on future context.
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Figure 2: Nonlnc - Sequence of actions with parser configuration and the corresponding dependency graph.

Though the performance of these greedy parsers
is less accurate than related parsers using a beam
(Zhang and Nivre, 2011), greedy parsers are inter-
esting as they are very fast and are practically use-
ful in large-scale applications such as parsing the
web and online machine translation or speech recog-
nition. In this work, we develop a new greedy
transition-based algorithm for incremental CCG
parsing, which is more incremental than Zhang and
Clark (2011) and Xu et al. (2014) and more accu-
rate than Hassan et al. (2009). Our algorithm is not
strictly incremental as we only produce derivations
which are compatible with the Strict Competence
Hypothesis (Steedman, 2000) (details in §3.2.3).

3 Algorithms

We first describe the Zhang and Clark (2011) style
shift-reduce algorithm for CCG parsing. Then we
explain our incremental algorithm based on the “re-
vealing” technique for shift-reduce CCG parsing.

3.1 Non Incremental Algorithm (Nonlnc)

This is our baseline algorithm and is similar to
Zhang and Clark (2011)’s algorithm (henceforth
Nonlnc). It consists of an input buffer and a stack
and has four major parsing actions.

o Shift - X (S) : Pushes a word from the input
buffer to the stack and assigns a CCG category
X. This action performs category disambigua-
tion as well, as X can be any of the categories
assigned by a supertagger.

e Reduce Left - X (RL) : Pops the top two nodes
from the stack, combines them into a new node
and pushes it back onto the stack with a cate-
gory X. This corresponds to binary rules in the
CCGbank (e.g. CCG combinators like function
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application, composition etc., and punctuation
rules). In this action the right node is the head
and hence the left node is reduced.

e Reduce Right - X (RR) : This action is similar
to the RL (Reduce Left -X) action, except that
in this action the right node is reduced since the
left node is the head.

e Unary - X (U) : Pops the top node from the
stack, converts it into a new node with category
X and pushes it back on the stack. The head
remains the same in this action. This action
corresponds to unary rules in the CCGbank
(unary type-changing and type-raising rules).

Figure 1 shows a normal-form CCG derivation
for an example sentence ‘John likes mangoes from
India madly’. Figure 2 shows the sequence of steps
using the Nonlnc algorithm for parsing the sentence.
For simplicity and space reasons, unary productions
leading to NP are not described. From step 1
through step 5, the first five words in the sentence
(John, likes, mangoes, from, India) are shifted with
corresponding categories using shift actions (S).
In step 6, (NP\NP) /NP:from and NP:India
are combined using the Reduce-Right (RR) action
to form NP\NP:from which is combined with
NP :mangoes in step 7 to form NP:mangoes.
Step 8 combines (S\NP)/NP:likes with
NP :mangoes to form S\NP: 1ikes using RR ac-
tion. Then the next word ‘madly’ is shifted in step 9,
which is then combined with S\NP : 1ikes in step
10. In step 11, NP:John and S\NP:1likes are
combined using Reduce-Left (RL) action leading to
S:1likes. The parsing process terminates at this
step as there are no more tokens in the input buffer
and as there is only a single node left in the stack.
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Figure 3: RevInc - Sequence of actions with parser configuration and the corresponding dependency graph.

We use indexed CCG categories (Clark et al.,
2002) and obtain the CCG dependencies after every
action to build the dependency graph in parallel
to the CCG derivation. This is similar to Xu et
al. (2014) but differs from Zhang and Clark (2011),
who extract the dependencies at the end after ob-
taining a derivation for the entire sentence. Figure
2 also shows the dependency graph generated and
the arc labels give the step ID after which the
dependency is generated.

3.2 Revealing based Incremental Algorithm
(RevInc)

The Nonlnc algorithm described above is not incre-
mental because it relies purely on the mostly right-
branching CCG derivation. In our example sentence,
the verb (likes) combines with the subject (John)
only at the end (step ID = 11) after all the remain-
ing words in the sentence are processed, making
the parse non-incremental. In this section we de-
scribe a new incremental algorithm based on a ‘re-
vealing’ technique (Pareschi and Steedman, 1987)
which tries to build the most incremental derivation.

3.2.1 Revealing

Pareschi and Steedman (1987)’s original version
of revealing was defined in terms of (implicitly
higher-order) unification. It was based on the fol-
lowing observation. If we think of categories as
terms in a logic programming language, then while
we usually think of CCG combinatory rules like the
following as applying with the two categories on the
left X/Y and Y as inputs, say instantiated as S/ NP
and NP, to define the category X on the right as
S, in fact instantiating any two of those categories
defines the third.

X)Y YV = X
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For example, if we define X and X/Y as S and
S/NP, we clearly define Y as NP. They pro-
posed to use unification-based revealing to recover
unbuilt constituents in from the result of overly-
greedy incremental parsing. A related second-
order matching-based mechanism was used by
(Kwiatkowski et al., 2010) to decompose logical
forms for semantic parser induction.

The present incremental parser uses a related
revealing technique confined to the right periphery.
Using CCG combinators and rules like type-raising
followed by forward composition, we combine
nodes in the stack if there is a dependency between
them. However, this can create problems for the
newly shifted node as its dependent might already
have been reduced. For instance, if the object
‘mangoes’ is reduced after it is shifted to the stack,
then it won’t be available for the preposition phrase
(PP) ‘from India’ (of course, this goes for more
complex NPs as well). We have to extract ‘man-
goes’, which is hidden in the derivation, so as to
make the correct attachment to the PP. This is where
revealing comes into play. Mangoes is ‘revealed’
so that it is available to attach to the PP following
it, although it has already been reduced. To handle
this, in addition to the four actions of the Nonlnc
algorithm, we introduce two new actions: Left
Reveal (LRev) and Right Reveal (RRev). For this,
after every action, in addition to updating the stack
we also keep track of the dependencies resolved
and update the dependency graph accordingly'. In
other words, we build the dependency graph for the

"Xu et al. (2014) also obtain CCG dependencies after every
action. But they don’t have a dependency graph which is up-
dated based on the CCG derivation and used in the CCG parsing
(in our case for LRev and RRev actions).
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Figure 4: RRev and LRev actions.

sentence in parallel to the CCG derivation. As these
dependencies are extracted from the CCG deriva-
tion, a node can have multiple parents and hence we
construct a dependency graph rather than a tree.

e Left Reveal (LRev) : Pop the top two nodes in
the stack (left, right). Identify the left node’s
child with a subject dependency. Abstract over
this child node and split the category of left
node into two categories. Combine the nodes
using CCG combinators accordingly. VP mod-
ifiers like VP coordination require this action.

e Right Reveal (RRev) : Pop the top two nodes
in the stack (left, right). Check the right
periphery of the left node in the dependency
graph, extract all the nodes with compatible
CCG categories and identify all the possible
nodes that the right node can combine with.
Abstract over this node (e.g. object), split the
category into two categories accordingly and
combine the nodes using CCG combinators.
Constructions like NP coordination, and PP
attachment require this action.

3.2.2 Worked Example

Figure 3 shows the sequence of steps for the ex-
ample sentence described above. In steps 1 and
2, the first two words in the sentence: ‘John’ and
‘likes’, are shifted from the input buffer to the stack.
In addition to standard CCG combinators of appli-
cation and composition, we also use type-raising
followed by forward composition”. In step 3, the
category of the left node ‘John’, NP, is type-raised
to S/ (S\NP) which is then combined with the
category of right node ‘likes’, (S\NP) /NP, using
forward composition operator to yield the category
S/NP. This step also updates the dependency graph
with an edge between ‘John’ and ‘likes’, where
‘likes’ is the parent and ‘John’ is the child. The

2Type-raising followed by forward composition is treated as
a single step. Without this, after type-raising, the parser has to

check all possible actions before applying forward composition,
making it slower.
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next word ‘mangoes’ is shifted in step 4 and com-
bined with S/NP : 1ikes in step 5 using RR action
yielding S: 1ikes. After this step, the dependency
graph will have ‘likes’ as the root, with ‘John’ and
‘mangoes’ as its children. In this way, as our algo-
rithm tries to be more incremental, both subject and
object arguments are resolved as soon as the corre-
sponding tokens are shifted to the stack.

In steps 6 and 7, the next two words ‘from’
and ‘India’ are shifted to the stack. Step 8 com-
bines (NP\NP) /NP:from and NP:India using
RR action to form NP\NP:from. Now, we ap-
ply the RRev action in step 9 to correctly attach
‘from’ to ‘mangoes’. In RRev we first check the
right periphery and identify a possible node to be
attached, ‘mangoes’, which is the object argument
of the verb ‘likes’. We abstract over this object and
split the category in the following manner: If X is
the category of the left node and Y\Y is the cate-
gory of the right node, then X is split into X/Y and
Y with corresponding heads. The head of the left
node will be the head of X/Y, and the dependency
graph helps in identifying the correct head for Y.
Now, Y and Y\Y can be combined using the back-
ward application rule to form Y, which can be com-
bined with X/Y to form X back. In our example
sentence, S: 1ikes is splitinto S/NP:1likes and
NP :mangoes. NP:mangoes is combined with
NP\NP : from to form NP :mangoes, which in re-
turn combines with S/NP:1ikes and forms back
S:1likes. Figure 4(a) sketches this process. This
action also updates the dependency graph with a de-
pendency between ‘mangoes’ and ‘from’.

The next word ‘madly’ is shifted in step 10,
after which the stack has two nodes S:1ikes and
(S\NP) \ (S\NP) :madly. We apply the LRev
action to combine these two nodes. We abstract over
the subject of the left node, ‘likes’, and split the cat-
egory. Here, S:1likes is split into NP : John and
S\NP:1likes. S\NP:likes is combined with
(S\NP) \ (S\NP) :madly to form S\NP:likes,



which in return combines with NP : John and forms
back S:1ikes. The dependency graph is updated
with a dependency between ‘likes’ and ‘madly’.
Note that the final output is a standard CCG tree.
Figure 4(b) shows this LRev action.

3.2.3 Analysis

Our incremental algorithm uses a combination
of the CCG derivation and a dependency graph
that helps to ‘reveal’ unbuilt structure in the CCG
derivation by identifying heads of the revealed
categories. For example in Figure-4a, in RRev
action, S:1ikes is split into S/NP:1likes and
NP :mangoes. The splitting of categories is deter-
ministic but the right periphery of the dependency
graph helps in identifying the head, which is ‘man-
goes’. The theoretical idea of ‘revealing’ is from
Pareschi and Steedman (1987), but they used only a
toy grammar without a model or empirical results.
Checking the right periphery is similar to Sartorio et
al. (2013) and abstracting over the left or right argu-
ment is similar to Dalrymple et al. (1991). Currently,
we abstract only over arguments. Adding a new
action to abstract over the verb as well will make our
algorithm handle ellipses in the sentences like ‘John
likes mangoes and Mary too’ similar to Dalrymple
et al. (1991) but we leave that for future work.

Our system is monotonic in the sense that the set
of dependency relationships grows monotonically
during the parsing process. Our algorithm gives
derivations almost as incremental as Hassan et
al. (2009) but without changing the lexical cate-
gories and without backtracking. The only change
we made to the CCGbank is making the main verb
the head of the auxiliary rather than the reverse as in
CCGbank derivations. In the right derivational trees
of CCGbank, the main verb is the head for its right
side arguments and the auxiliary verb is the head for
the left side arguments in the derivation. Not chang-
ing the head rule would make our algorithm use the
costly reveal actions significantly more, which we
avoid by changing the head direction. 3% of the
total dependencies are affected by this modification.

Though our algorithm can be completely incre-
mental, we currently compromise incrementality in
the following cases:

(a) no dependency between the nodes in the stack
(b) unary type-changing and non-standard binary
rules
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(c) adjuncts like VP modifiers and coordinate con-
structions like VP, sentential coordination.

We find empirically that extending incrementality
to cover these cases actually reduces parsing perfor-
mance significantly. It also violates the Strict Com-
petence Hypothesis (SCH) (Steedman, 2000), which
argues on evolutionary and developmental grounds
that the parser can only build constituents that are ty-
pable by the competence grammar. We explored the
adjunct case of attaching only the preposition first
rather than creating a complete prepositional phrase
and then attaching it to correct parent. In our exam-
ple sentence, this would be the case of attaching the
preposition ‘from’ to its parent using RRev and then
combining the NP ‘India’ accordingly as opposed to
creating the preposition phrase ‘from India’ first and
then using RRev action to attach it to the correct
parent. Though the former is more incremental, it
is inconsistent with the SCH. The latter analysis
is consistent with strict competence and also gave
better parsing performance while compromising in-
crementality only slightly. The empirical impact of
these differing degrees of incrementality on extrin-
sic evaluation of our algorithm in terms of language
modeling for SMT or ASR is left for future work.

Using our incremental algorithm, we converted
the CCGbank derivations into a sequence of shift-
reduce actions. We could convert around 98% of the
derivations, which is the coverage of our algorithm,
recovering around 99% dependencies. Problematic
cases are mainly the ones which involve non-
standard binary rules, and punctuations with lexical
CCG categories other than ‘conj’, used as a conjunc-
tion, or ¢, which is treated as a punctuation mark.

4 Experiments and Results

We re-implemented Zhang and Clark (2011)’s
model for our experiments. We used their global
linear model trained with the averaged perceptron
(Collins, 2002). We applied the early-update strat-
egy of Collins and Roark (2004) while training. In
this strategy, when we don’t use a beam, decoding is
stopped when the predicted action is different from
the gold action and weights are updated accordingly.
We use the feature set of Zhang and Clark (2011)
(Z&C) for the NonlInc algorithm. This feature set
comprises of features over the top four nodes in the



stack and the next four words in the input buffer.
Complete details of the feature set can be found in
their paper. For our own model, RevInc, in addition
to these features used for Nonlnc, we also provide
features based on the right periphery of top node
in the stack. For nodes in the right periphery, we
provide uni-gram and bi-gram features based on the
node’s CCG category. For example, if SO is the node
on the top of the stack, B1 is the bottom most node in
the right periphery, and c represent the node’s CCG
category, then Blc, and B1cSOc are the uni-gram
and bi-gram features respectively.

Unlike Z&C, we do not use a beam for our ex-
periments, although we use a beam of 16 for com-
parison of our results with their parser. The lat-
ter gives competitive results with the state-of-the-
art CCG parsers. Z&C and Xu et al. (2014), use
C&C’s generate script and unification mecha-
nism respectively to extract dependencies for eval-
uation. C&C’s grammar doesn’t cover all the lex-
ical categories and binary rules in the CCGbank.
To avoid this, we adapted Hockenmaier’s scripts
used for extracting dependencies from the CCGbank
derivations. These are the two major divergences in
our re-implementation from Z&C.

4.1 Data and Settings

We use standard CCGbank training (sections 02 —
21), development (section 00) and testing (section
23) splits for our experiments. All sentences in
the training set are used to train Nonlnc. But for
Revlnc, we used 98% of the training set (the cover-
age of our algorithm). We use automatic POS-tags
and lexical CCG categories assigned using the
C&C POS tagger and supertagger respectively for
development and test data. For training data, these
tags are assigned using ten-way jackknifing. Also,
for lexical CCG categories, we use a multitagger
which assigns k-best supertags to a word rather than
1-best supertagging (Clark and Curran, 2004). The
number of supertags assigned to a word depends
on a (3 parameter. Unlike Z&C, the default value of
[ gave us better results rather than decreasing the
value. Not using a beam could be the reason for this.

Following Z&C and Xu et al. (2014), during
training, we also provide the gold CCG lexical
category to the list of CCG lexical categories for a
word if it is not assigned by the supertagger.
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4.2 Connectedness and Waiting Time

Before evaluating the performance of our algorithm,
we introduce two measures of incrementality:
connectedness and waiting time. In a shift-reduce
parser, a derivation is fully connected when all the
nodes in the stack are connected leading to only
one node in the stack at any point of time. We
measure the average number of nodes in the stack
before shifting a new token from input buffer to
the stack, which we call as connectedness. For
a fully connected incremental parser like Hassan
et al. (2009), connectedness would be one. As
our Revlnc algorithm is not fully connected, this
number will be greater than one. For example, in
a noun phrase ‘the big book’, when ‘the’ and ‘big’
are in the stack, as there is no dependency between
these two words, our algorithm doesn’t combine
these two nodes resulting in having two nodes in the
stack®. Second column in Table 1 gives this number
for both Nonlnc and RevInc algorithms. Though our
algorithm is not fully connected, connectedness of
our algorithm is significantly lower than the NonInc
algorithm as our algorithm is more incremental.

l Algorithm [ Connectedness [ Waiting Time ‘

4.62 2.98
2.15 0.69

Nonlnc
Revinc

Table 1: Connectedness and waiting time.

We define waiting time as the number of nodes
that need to be shifted to the stack before a de-
pendency between any two nodes in the stack is
resolved. In our example sentence, there is a de-
pendency between ‘John’ and ‘likes’. For Nonlnc,
this dependency is resolved only after all the four
remaining words in the sentence are shifted. In other
words, it has to wait for four more words before
this dependency is resolved and hence the waiting
time is four. Whereas, in our RevInc algorithm,
this dependency is resolved immediately, without
waiting for more words to be shifted, and hence
the waiting time is zero. The third column in Table
1 gives the waiting time for both the algorithms.
Since we compromised incrementality in cases like
coordination, waiting time for our RevInc algorithm
is not zero but it is significantly lower than the

3This is a case where the dependencies are not true to the
CCG grammar, and make our algorithm less incremental than
SCH would allow.



’ Algorithm

| UP | UR | UF | LP | LR | LF | CatAcc.

Nonlnc (beam=1) | 92.57 | 82.60 | 87.30 || 85.12 | 75.96 | 80.28 91.10
RevInc (beam=1) | 91.62 | 85.94 | 88.69 | 83.42 | 78.25 | 80.75 90.87
Nonlnc (beam=16) | 92.71 | 89.66 | 91.16 || 85.78 | 82.96 | 84.35 92.51
2&C (beam=16)* - - 87.15 | 82.95 | 85.00 92.77

Table 2: Performance on the development data. *: These results are from the Z&C paper.

Nonlnc algorithm and hence more incremental.
This property is likely to be crucial for future
applications in ASR and SMT language modeling.

4.3 Results and Analysis

We trained the perceptron for both Nonlnc and
RevInc algorithms using the CCGbank training data
for 30 iterations, and the models which gave best
results on development data are directly used for test
data. Table 2 gives the unlabeled precision (UP), re-
call (UR), F-score (UF) and labeled precision (LP),
recall (LR), F-score (LF) results of both Nonlnc and
RevInc approaches on the development data. Last
column in the table gives the category accuracy. We
used the modified CCGbank for all experiments,
including Nonlnc, for consistent comparisons.
For Nonlnc, the modification decreased unlabeled
F-score by 0.45%, without a major difference in
labeled F-score.

Our incremental algorithm gives 1.39% and
0.47% improvements over the Nonlnc algorithm
in unlabeled and labeled F-scores respectively. For
both unlabeled and labeled scores, precision of
Revlnc is slightly lower than Nonlnc but the recall
of RevInc is much higher than Nonlnc resulting in
a better F-score for Revinc. As Nonlnc is not incre-
mental and as it uses more context to the right while
making a decision, it makes more precise actions.
But, on the other hand, if a node is reduced, it is not
available for future actions. This is not a problem
for our RevInc algorithm which is the reason for
higher recall. For example, in the example sentence,
‘John likes mangoes from India madly’, if the object
‘mangoes’ is reduced after it got shifted to the stack,
then in case of Nonlnc, the preposition phrase ‘from
India’ can never be attached to ‘mangoes’. But,
RevInc makes the correct attachment using RRev
action. Category accuracy of Nonlnc is better than
RevlInc, since Nonlnc can use more context before
taking a complex action and is less prone to error
propagation compared to RevInc.
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To compare these results in the perspective of
Z&C’s parser we also trained our Nonlnc parser
with a beam size of 16 similar to Z&C. The second
last row in Table 2 (Nonlnc (beam=16)) shows
these results and the last row presents the results
from their paper. Results with our implementation
of Z&C are 0.65% lower than the published results,
possibly due to the modification made in the head
rule, and other minor differences like the supertag-
ger beta value. Unlabeled and labeled F-scores of
our RevInc parser are lower than these numbers.
But, given that our RevInc parser doesn’t use any
beam, these margins are reasonable.

We also analyzed the label-wise scores of
both Nonlnc and RevInc. In general, Nonlnc is
better in precision and RevInc is better in recall.
In the case of verbal arguments ( (S\NP) /NP)
and verbal modifiers ((S\NP)\ (S\NP)), the
F-score of RevInc is better than that of Nonlnc.
But Nonlnc performed better than RevInc in
the case of preposition phrase (PP) attachments
((NP\NP) /NP, ((S\NP)\ (S\NP)) /NP). More
context is required for better PP attachment which
is provided by the fact that Nonlnc has a context
of several unreduced types for the model to work
with, whereas RevInc has fewer. Whereas actions
like LRev are required to correctly attach the verbal
modifiers (‘madly’) if the subject argument (‘John’)
of the verb (‘likes’) is reduced early. Table 3 gives
the results of these CCG lexical categories.

Category Revinc | Nonlnc
(NP\NP)/NP 81.36 83.21
(NP\NP)/NP 78.66 82.94
((S\NP)\(S\NP))/NP | 65.09 66.98
((S\NP)\(S\NP))/NP | 62.69 65.89
((S[dcl]\NP)/NP 78.96 78.29
((S[dcl]\NP)/NP 76.71 75.22
(S\NP)\(S\NP) 80.49 76.90

Table 3: Label-wise F-score of RevInc and Nonlnc
parsers (both with beam=1). Argument slots in the
relation are in bold.



’ Algorithm

| UP | UR | UF | LP | LR | LF | CatAcc.

Nonlnc (beam=1) | 92.45 | 82.16 | 87.00 || 85.59 | 76.06 | 80.55 91.39
RevInc (beam=1) 91.83 | 86.35 | 89.00 || 84.02 | 79.00 | 81.43 91.17
Nonlnc (beam=16) | 92.68 | 89.57 | 91.10 || 86.20 | 83.32 | 84.74 92.70
7.&C (beam=16)* - - 87.43 | 83.61 | 85.48 93.12
Hassan et al. 09* - - 86.31 - - - -

Table 4: Performance on the test data. *: These results are from their paper.

We also analyzed the performance of the greedy
(beam=1) Nonlnc and RevInc parsers in terms of
parsing speed (excluding pos tagger and supertag-
ger time). Nonlnc and Revinc parse 110 and 125
sentences/second respectively. Despite the complex-
ity of the revealing actions, RevInc is faster than
the Nonlnc. Significant amount of parsing time is
spent on the feature extraction step. Features from
top four nodes in the stack and their children are ex-
tracted for both the algorithms. Since the average
connectedness of RevInc and NonInc are 4.62 and
2.15 respectively, on average, all four nodes in the
stack are processed for Nonlnc and only two nodes
are processed for Revinc. Because of this there is
significant reduction in the feature extraction step
for RevInc compared to Nonlnc. Also, the complex
LRev and RRev actions only constituted 5% of the
total actions in the parsing process.

Table 4 presents the results of our approaches on
test data. Our incremental algorithm, RevInc, gives
2.0% and 0.88% improvements over Nonlnc in un-
labeled and labeled F-scores respectively on the test
data. Results of Revinc without a beam are rea-
sonably close to the results of Z&C which uses a
beam of 16. We compare our results with Incre-
mental+Lookahead model of Hassan et al. (2009).
They reported 86.31% unlabeled F-score on test
data which is 2.69% lower. Note that these F-
scores are not directly comparable since Hassan
et al. (2009) use simplified lexicalized CCG cate-
gories. Our evaluation is based on CCG dependen-
cies which are different from dependencies in the de-
pendency grammar. Hence, we can’t directly com-
pare our results with dependency parsers like Zhang
and Nivre (2011) and Honnibal et al. (2013).

5 Conclusion and Future Plan

We have designed and implemented a new incre-
mental shift-reduce algorithm based on a version of
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revealing for parsing CCG (Pareschi and Steedman,
1987). On the standard CCGbank test data, our
algorithm achieved improvements of 0.88% and
2.0% in labeled and unlabeled F-scores respectively
over the baseline non-incremental shift-reduce
algorithm. We achieved this without changing any
CCG lexical categories and only changing a single
head rule of making the main verb rather than the
auxiliary verb the head. Our algorithm models
transitions rather than incremental derivations, and
hence we don’t need an incremental CCGbank. Our
approach can therefore be adapted to languages
with dependency treebanks, since CCG lexical
categories can be easily extracted from dependency
treebanks (Cakici, 2005; Ambati et al., 2013). We
also designed new measures of incrementality and
showed that our algorithm is more incremental than
the standard shift-reduce CCG parsing algorithm.

We expect to improve our current model in a
number of ways. Providing information about lex-
ical category probabilities (Auli and Lopez, 2011)
assigned by the supertagger can be useful during
parsing. We would like to explore the limited use of
a beam to handle lexical ambiguity by only keeping
analyses derived from distinct lexical categories in
the beam. Following Xu et al. (2014), we also plan
to explore a dynamic oracle strategy. Ultimately,
we intend to evaluate the impact of our incremental
parser extrinsically in terms of language modeling
for SMT or ASR.
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Abstract

Parsing full-fledged predicate-argument struc-
tures in a deep syntax framework requires
graphs to be predicted. Using the DeepBank
(Flickinger et al., 2012) and the Predicate-
Argument Structure treebank (Miyao and Tsu-
jii, 2005) as a test field, we show how
transition-based parsers, extended to handle
connected graphs, benefit from the use of
topologically different syntactic features such
as dependencies, tree fragments, spines or
syntactic paths, bringing a much needed con-
text to the parsing models, improving notably
over long distance dependencies and elided
coordinate structures. By confirming this pos-
itive impact on an accurate 2nd-order graph-
based parser (Martins and Almeida, 2014), we
establish a new state-of-the-art on these data
sets.

1 Introduction

For the majority of the state-of-the-art parsers that
routinely reach ninety percent performance plateau
in capturing tree structures, the question of what next
crucially arises. Indeed, it has long been thought
that the bottleneck preventing the advent of accu-
rate syntax-to-semantic interfaces lies in the qual-
ity of the preceding phase of analysis: the better the
parse, the better the output. The truth is that most
of the structures used to train current parsing mod-
els are degraded versions of a more informative data
set: the Wall Street journal section of the Penn tree-
bank (PTB, (Marcus et al., 1993)) which is often
stripped of its richer set of annotations (i.e. traces
and functional labels are removed), while, for rea-
sons of efficiency and availability, projective depen-
dency trees are often given preference over richer
graph structures (Nivre and Nilsson, 2005; Sagae
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and Tsujii, 2008). This led to the emergence of sur-
face syntax-based parsers (Charniak, 2000; Nivre,
2003; Petrov et al., 2006) whose output cannot by
themselves be used to extract full-fledged predicate-
argument structures. For example, control verb con-
structions, it-cleft structures, argument sharing in el-
lipsis coordination, etc. are among the phenomena
requiring a graph to be properly accounted for. The
dichotomy between what can usually be parsed with
high accuracy and what lies in the deeper syntac-
tic description has initiated a line of research de-
voted to closing the gap between surface syntax and
richer structures. For most of the previous decade,
the term deep syntax was used for rich parsing mod-
els built upon enriched versions of a constituency
treebank, either with added HPSG or LFG annota-
tion or CCG (almost) full rewrites (Miyao and Tsu-
jii, 2005; Cahill et al., 2004; Hockenmaier, 2003).
Its use now spreads by misnomer to models that pro-
vide more abstract structures, capable of generaliz-
ing classical functional labels to more semantic (in a
logical view) arguments, potentially capable of neu-
tralizing diathesis distinctions and of providing ac-
curate predicate-argument structures. Although the
building of syntax-to-semantic interface seems inex-
tricably linked to an efficient parsing stage, inspira-
tional works on semantic role labelling (Toutanova
et al., 2005) and more recently on broad coverage
semantic parsing (Du et al., 2014) that provide state-
of-the-art results without relying on surface syntax,
lead us to question the usefulness of syntactic parses
for predicate-argument structure parsing.

In this study, we investigate the impact of syn-
tactic features on a transition-based graph parser
by testing on two treebanks. We take advantage
of the recent release for the SemEval 2014 shared
task on semantic dependency parsing, by Oepen et

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 64-74,
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al. (2014) of two semantic-based treebanks, derived
from two HPSG resources, the DeepBank (DM,
(Flickinger et al., 2012)) and the Enju’s predicate ar-
gument structure (PAS, (Miyao and Tsujii, 2005)),
to investigate the impact of syntactic features on
a transition-based graph parser. Our results show
that surface syntactic features significantly improve
the parsing of predicate-argument structures. More
specifically, we show that adding syntactic context
improves the recognition of long distance dependen-
cies and elliptical constructions. We finally discuss
the usefulness of our approach, when applied on a
second-order model based on dual decomposition
(Martins and Almeida, 2014), showing that our use
of syntactic features enhances this model accuracy
and provides state-of-the-art performance.

2 Deep Syntax and Underspecified
Semantic Corpora

DeepBank Corpus Semantic dependency graphs
in the DM Corpus are the result of a two-step simpli-
fication of the underspecified logical-form meaning
representations, based on Minimal Recursion Se-
mantic (MRS, (Copestake et al., 1995; Copestake
et al., 2005)), derived from the manually annotated
DeepBank treebank (Flickinger et al., 2012). First,
Oepen and Lgnning (2006) define a conversion from
original MRS formulae to variable-free Elementary
Dependency Structures (EDS), which (a) maps each
predication in the MRS logical-form meaning rep-
resentation to a node in a dependency graph and (b)
transforms argument relations represented by shared
logical variables into directed dependency links be-
tween graph nodes. Then, in a second conversion
step, the EDS graphs are further reduced into strict
bi-lexical form, i.e. a set of directed, binary depen-
dency relations holding exclusively between lexical
units (Ivanova et al., 2012). Even though both con-
version steps are, by design, lossy, DM semantic de-
pendency graphs present a true subset of the infor-
mation encoded in the full, original MRS data set.

Predicate-Argument Structure Corpus Enju
Predicate-Argument Structures (PAS Corpus) are
derived from the automatic HPSG-style annotation
of the Penn Treebank (Miyao and Tsujii, 2004)
that was primarily used for the development of the
Enju parsing system (Miyao and Tsujii, 2005). The
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PAS data set is an extraction of predicate-argument
structures from the Enju HPSG treebank and con-
tains word-to-word semantic dependencies. Each
dependency type is made of two elements: a coarse
part-of-speech of the head predicate dependent (e.g.
verb and adjective), and the argument (e.g. ARG1
and ARG2).

Although both are derived from HSPG resources
(a hand-crafted grammar for DM, a treebank-based
one for PAS), they differ in their core linguistic
choices (functional heads vs lexical heads, coordi-
nation scheme, efc.) leading to different views of
the predicate argument structure for the same sen-
tence (Ivanova et al., 2012). Thus, even though both
corpora may appear to contain a similar number of
dependency labels, as shown in Table 1, their anno-
tation schemes depict a deeply divergent linguistic
reality exposed by two very different distributions.
In DM, 9 labels account for almost 95% of all de-
pendencies whereas a label set twice as large cov-
ers the same percentage for PAS, as shown in Ta-
ble 2. Furthermore, semantically empty elements
are widespread in the DeepBank (around 21.5%),
compared to a low rate of 4.3% in PAS. In other
words, the latter is somewhat more dense and con-
sequently more syntactic. This is due to the fact that
PAS integrates markers for infinitives, auxiliaries,
and most punctuation marks into its graphs, whereas
DM considers them as semantically void. DM cor-
pus is clearly heading toward more semantic analy-
sis while the PAS corpus aims at providing a more
abstract deep syntax analysis than regular surface
syntax trees. Both treebanks are used in their bi-
lexical dependency formats.

DM CORPUS PAS CORPUS
TRAIN DEvV TRAIN DEV
# SENTENCES 32,389 1,614 32,389 1,614
# TOKENS 742,736 36,810 742,736 36,810
% VOID TOKENS 21.63 21.58 4.30 4.25
# PLANAR GRAPHS 18,855 972 17,477 953
# NON PLANAR 13,534 642 14,912 661
# EDGES 559,975 27,779 723,445 35,573
% CROSSING EDGES 4.24 4.05 5.69 4.46
LABEL SET 52 36 43 40

Table 1: DM and PAS treebank properties



DM LABELS % PAS LABELS %
ARG1 37.89 adj_ARG1 13.46
ARG2 23.08 noun_ARG1 9.54
compound 11.01 prep_ARG2 9.51
BV 10.39 prep_ARG1 9.37
root 5.77 verb_ARG2 9.34
poss 2.23 verb_ARG1 9.23
-and-c 2.02 det_ARG1 9.13
loc 1.38 punct_ARGI 5.23
ARG3 1.21 root 4.48
times 0.87 aux-ARG2 3.06
mwe 0.85 aux-ARG1 3.05
appos 0.72 coord-ARG2 2.35
conj 0.57 coord-ARG1 2.35
neg 0.47 comp-ARG1 1.85
subord 0.43 conj-ARG1 1.20
-or-c 0.31 poss-ARG2 0.89
-but-c 0.20 poss-ARG1 0.85
total 94.98 total 94.89

Table 2: Breakdown of Label Statistics.
Cell values in italics not counted in the DM total.

3 Transition-based Graphs Parsing
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Figure 1: Set of transitions for dependency graphs.

Shift-reduce transition-based parsers essentially
rely on configurations formed of a stack and a buffer,
with stack transitions used to move from a configu-
ration to the next one, until reaching a final config-
uration. Following Kiibler et al. (2009), we define
a configuration by ¢ = (o, 3,.A) where o denotes a
stack of words w;, 3 a buffer of words, and A a set
of dependency arcs of the form (w;, r, w;), with w;
the head, w; the dependent, and r a label in some
set R. As shown in Figure 1, besides the usual shift
and reduce transitions (IR & rR) of the arc-standard
strategy, we introduced the new left and right attach
(1A & rA) transitions for adding new dependencies
(while keeping the dependent on the stack) and a
pop0 transition to remove a word from the stack af-
ter attachment of its dependents. All the transitions
that add an edge must also satisfy the condition that
the newly created edge does not introduce a cycle or
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Wordo'l y02,03 Lemmao—l 102,03 POSUl y02,03
Wordg, s, Lemmag, s, POSg, 6,85
1eftPOS;, o rightPOS . leftLabel,, o,
rightLabel, ., a dis di4

Table 3: Baseline features for the parser.
Xoi, . ..,0; stands for Xoy, ..., Xo;j.

multiple edges between the same pair of nodes. It is
to be noted that the pop0 action may also be used to
remove words with no heads.

We base our work on the the DAG parser of
Sagae and Tsujii (2008) (henceforth S&T) which
we extended with the set of actions displayed above
(Figure 1) to cope with partially connected planar
graphs, and we gave it the ability to take advantage
of an extended set of features. Finally, for efficiency
reasons (memory consumption and speed), we re-
placed the original Maxent model with an averaged
structured perceptron (Freund and Schapire, 1999;
Collins, 2002).

4 Feature Design

4.1 Baseline Features

We define Wordg, (resp. Lemmag, and POSg,) as
the word (resp. lemma and part-of-speech) at posi-
tion ¢ in the queue. The same goes for o;, which
is the position 7 in the stack. Let d; ; be the dis-
tance between Word,,, and Wordaj. We also define
d; ;» the distance between Wordg, and Word,;. In
addition, we define 1leftPOS,, (resp. leftLabel,,) the
part-of-speech (resp. the label if any) of the word
immediately to the left of o;, and the same goes for
rightPOS ;- (resp. rightLabel, ). Finally, a is the
previous action predicted by the parser. Table 3 lists
our baseline features. Xo;, 0, 0}, means that we use
Xo;, Xoj, Xoy, as unigram features as well as bi-
gram and trigram features.

4.2 Syntactic Features

We combined the previous features with different
types of syntactic features (constituents and depen-
dencies), our intuition being that syntax and se-
mantic are interdependent, and that syntactic fea-
tures should therefore help predicate-argument pars-
ing. In fact, we considered that the low density
of syntactic information (compared to regular de-
pendency treebanks) would be counterbalanced by



adding more context. We considered the following
pieces of information in particular.

Head Path

Spine N w4
ZNP / \ vP 5 )

/ N\ VAN
D N \% PP
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Figure 2: Schema of Syntactic Features

Constituent Tree Fragments These consist of
fragments of syntactic trees predicted by the Petrov
et al. (2006) parser in a 10-way jackknife setting.
They can be used as enhanced POS or as features.

Spinal Elementary Trees A full set of parses
was reconstructed from the tree fragments using a
slightly tweaked version of the CONLL 2009 shared
task processing tools (Haji¢ et al., 2009). We then
extracted a spine grammar (Seddah, 2010) using the
head percolation table of the Bikel (2002) parser,
slightly modified to avoid certain determiners being
marked as heads in certain configurations. The re-
sulting spines were assigned in a deterministic way
(red part in Figure 2).

Predicted MATE Dependency Labels These con-
sist of the dependency labels predicted by the MATE
parser (Bohnet, 2010), trained on a Stanford surface
dependency version of the Penn Treebank. We com-
bined the labels with a distance § = ¢t — h where ¢
is the token position and A the head position (brown
labels and § in Figure 2). In addition, we expanded
these features with the part-of-speech of the head of
a given token (HPOS). The idea is to evaluate the
informativeness of more abstract syntactic features
since a <LABEL,HPOS> pair can be seen as general-
izing many constituent subtrees.
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Constituent Head Paths. Inspired by Bjorkelund
et al. (2013), we used MATE dependencies to ex-
tract the shortest path between a token and its lex-
ical head and included the path length w (in terms
of traversed nodes) as a feature (blue part in Fig-
ure 2). The global idea is to use the phrase-based
features to provide different kinds of syntactic con-
text and the dependency-based features to provide
generalisations over the functional label governing
a token. The spines are seen as deterministic su-
pertags, bringing a vertical context.

We report, in Table 4, the counts for each syntac-
tic feature on each set.

TREE FRAG.  MATE LABELS+d  SPINES TREES  HEAD PATHS
TRAIN 648 1305 637 27,670
DEV 272 742 265 3,320
TEST 273 731 268 2,389

Table 4: Syntactic features statistics (Counts).

S Experiments

Experimental Setup Both DM and PAS tree-
banks consist of texts from the PTB and which were
either automatically derived from the original anno-
tations or annotated with a hand-crafted grammar
(see above). We use them in their bi-lexical depen-
dency format, aligned at the token level as provided
by Oepen et al. (2014)!. The following split is used:
sections 00-19 for training, 20 for the dev. set and 21
for test?. All predicted parses are evaluated against
the gold standard with labeled precision, recall and
f-measure metrics.

Results Our experiments are based on the evalua-
tion of the combinations of the 4 main types of syn-
tactic features described in section 4: tree fragments
(BKY), predicted mate dependencies (BN) and their
extension with POS heads (BN(HPOS)), spinal ele-
mentary trees (SPINES) and head paths (PATHS).
The results are shown in Tables 5 and 6. All im-
provements from the baseline are significant with a
p-value p < 0.05. There was no significant differ-
ence of the same p value between our two best mod-

!This alignment entailed the removal of all unparsed sen-
tences.

>We used the same unusual split as in (Oepen et al., 2014)
to be able to conduct meaningful comparisons with others.



els for each of the treebanks. 3

As expected from the rapid overview of our
datasets exposed earlier in section 2, the use of each
single feature alone increases the performance over
the baseline by 0.5 points for the BN feature in DM
to 1.44 for PATHS, and by 1.10 for the SPINES to
1.85 for the PATHS features in PAS. Looking at the
conjunction of two classes in the DM table, it seems
that dependency-based features benefit from the ex-
tra context brought by constituents features, reach-
ing an increase of 2.21 points for BKY+BN(HPOS).
Interestingly, the maximum gain is brought by the
addition of topologically different phrase-based fea-
tures such as SPINES (+2.80, inherently vertical) or
BKY (+2.76, often wider) to the previous best. Re-
garding PAS, similar trends can be observed, al-
though the gains are more distributed. As opposed
to DM where the conjunction of more features led
to inferior results, here using a four-features class
provides the second best improvement (ALL(HPOS)
= BKY+BN(HPOS)+SPINES+PATHS), +2.82) while
removing the SPINES slightly increases the score
(+2.92). In fact, adding too many features to the
model slightly degrades our scores, at least with re-
gard to DM which has a larger label set than PAS.

Results show that syntactic information improves
our parser performances. As each feature represents
one unique piece of information, they benefit from
being combined in order to provide more structural
information.

6 Results Analysis

Following Mcdonald and Nivre (2007), we con-
ducted an error analysis based on the two best mod-
els and the baseline for each corpus. As shown in
section 5, syntactic features greatly improve seman-
tic parsing. However, it is interesting to explore
more precisely what kind of syntactic information
boosts or penalizes our predictions. We consider,
among other factors, the impact in terms of distance
between the head and the dependent (edge length)
and the labels. We also explore several linguistic
phenomena well known to be difficult to recover.

3We tested the statistical significance between our best
models and the baseline with the paired bootstrap test (Berg-
Kirkpatrick et al., 2012).
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DM Corpus (dev. set) LP LR LF
BASELINE 83.66 80.33 81.97

BN 84.12 8091 8248 +0.51
BKY 85.10 81.70 83.36  +1.39
SPINES 84.72 81.31 8298 +1.01
PATHS 85.15 81.74 83.41 +1.44
BN(HPOS) 85.63 82.19 8388 +191
BKY+SPINES 85.41 81.88 83.61 +1.64
SPINES+PATHS 8549 82.01 83.71 +1.74
BKY+BN 85.47 82.08 83.74 +1.77
BKY+PATHS 8570 82.22 8392 +1.95
BN(HPOS)+SPINES 8594 8248 84.17 +2.20
BKY+BN(HPOS) 8596 8246 84.18 +2.21
BN(HPOS)+PATHS 8597 8259 8425 +2.28
BN+SPINES 86.05 82.55 84.26 +2.29
BN+PATHS 86.05 82.64 84.31 +2.34
BKY+SPINES+PATHS 85.64 8223 8390 +1.93
BKY+BN+SPINES 85.88 82.50 84.16 +2.19
BKY+BN(HPOS)+SPINES 86.38 82.81 84.56 +2.59
BN(HPOS)+SPINES+PATHS 86.28 8291 84.56 +2.59
BKY+BN(HPOS)+PATHS 86.49 8294 84.68 +2.71
BKY+BN+PATHS 86.55 8298 84.73 +2.76
BN+SPINES+PATHS 86.59 83.02 84.77 +2.80
ALL 85.73 8227 8396 +1.99
ALL(HPOS) 86.13 82.64 8435 +2.38

Table 5: Best results and gains on DM corpus.

PAS Corpus (dev. set) LP LR LF
BASELINE 86.95 83.45 85.17

SPINES 88.15 84.47 8627 +1.10
BN 88.21 8477 86.46 +1.29
BN(HPOS) 88.55 85.00 86.74 +1.57
BKY 88.63 8497 86.76 +1.59
PATHS 88.85 8524 87.01 +1.84
BKY+SPINES 88.84 8520 8698  +1.81
SPINES+PATHS 89.04 8545 87.21 +2.04
BN(HPOS)+SPINES 89.18 8549 8730 +2.13
BN(HPOS)+PATHS 89.17 85.62 87.36 +2.19
BN+PATHS 89.32 8574 8749 +2.32
BKY+PATHS 89.44 8572 87.54 +2.37
BKY+BN 89.30 85.87 87.55 +2.38
BN+SPINES 89.48 85.81 87.60 +2.43
BKY+BN(HPOS) 8949 8580 87.61 +2.44
BKY+SPINES+PATHS 89.35 8554 8740 +2.23
BKY+BN+SPINES 89.56 86.02 87.75 +2.58
BN(HPOS)+SPINES+PATHS 89.76  86.15 87.92 +2.75
BN+SPINES+PATHS 89.88 86.13 8796 +2.79
BKY+BN+PATHS 89.82 86.20 87.97 +2.80
BKY+BN(HPOS)+PATHS 89.93 86.32 88.09 +2.92
ALL 89.70 86.11 87.87 +2.70
ALL(HPOS) 8991 86.14 8799 +2.82

Table 6: Best results and gains on PAS.

6.1 Breakdown by Labels

In Figures 3(a) and 4(a), we detail the scores for the
five most frequent labels.
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Figure 3: Error analysis on DM (dev. set).

As observed in the charts, the scores are higher for
the most frequent labels on both corpora, especially
when dealing with verbal arguments. There are also
two interesting cases for DM: the predictions of
_and_c and ARG3 edges show an improvement by
at least 5 points (Figures 3(b) & 4(b)), showing that
the recovery of coordination structures and the dis-
ambiguation of less frequent or more distant argu-
ments is achieved by adding non-local features.

6.2 Length Factor

Longer sentences are notoriously difficult to parse
for most parsing models. Figures 3(c) and 4(c) show
the Fi-measure of our models with respect to sen-
tence length (in bins of size 10: 1-10, 11-20, etc.)
for the DM and PAS corpora.

It is worth noting that we greatly improve the
scores for longer sentences. The use of paths and
of the output of a graph-based parser (Bohnet, 2010)
favors the capture of complex dependencies and en-
hances the learning of these constructions for our
local transition-based parser. However, we also ob-
serve that the features are not able to completely stop
the loss of F;-score for longer sentences. The slopes
of the curves in the different charts show the same
trend: the longer the sentence, the lower the score.

6.3 Linguistic Factors

We now center our analysis on long-distance depen-
dencies (LDDs), by focusing our attention on edges
length, i.e. the distance between two words linked
by an edge. We will then concentrate on subject el-
lipsis, in a treatment of LDDs more similar to the
linguistic definition of Cahill et al. (2004).
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Long-distance Dependencies (LDDs) For many
systems, LDDs are difficult to recover because they
are generally under-represented in the training cor-
pus and the constructions involved in LDDs often re-
quire deep linguistic knowledge to be recovered. In
Figure 7, we report the distribution of long-distance
dependencies by bins of size 5 up to 40. They only
account for 15% of all the dependencies in both
corpora. The longest dependencies consist of the
first and second arguments of the verb as well as
coordination links. In the case of elided coordina-
tion structures, we have long-distance dependencies
when two coordinated verbs share the same first or
second argument, which explains the distribution of
lengths.

BINs  5-10 11-15 16-20 21-25 26-40
DM 2907 734 329 141 92
PAS 3705 1007 408 175 127

Table 7: Number of LDDs edges (dev. set).

As outlined in Figures 3(d) and 4(d), we can see
that without structural information such as spines,
surfacic dependencies or paths, the longest depen-
dencies have low F;-scores. When using these fea-
tures, our models tend to perform better, with a gain
of up to 25 points for high-dependency lengths (bins
between 16-20 and 21-25).

In Table 8, we show the global improvement when
considering edge lengths between 5 and 40. For
both corpora, the improvement is the same (around
9 points), showing that structural information is the
key to better predictions. Looking into this im-
provement more closely, we found that PATHS com-
bined with BN tend to be crucial, whereas SPINES
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may sometimes penalize the models. Even though,
BN+SPINES+PATHS is the best model for DM, a
spine is only a partial projection which lacks attach-
ment information. Spines alone only therefore pro-
vide a local context and are unable to cope well with
LDDs.

Coordination Structures We now focus on struc-
tures with subject ellipsis. We extracted them by
using a simple graph pattern, i.e. two verbs with a
shared ARG and a coordination dependency.

Our best models’ scores are displayed in Tables 9.
Once again, our models improve the Fj score, but
not in the same proportion. DM considers the con-
junction as a semantically empty word and attaches
an edge _and_c between the two verbs to mark the
coordination. Consequently this edge is more dif-
ficult to predict, because it is less informative, our
baseline model relying on tokens, lemmas and POS.

We note that the difference in the number of eval-
uated dependencies in both corpora comes from an
annotation scheme divergence between PAS and
DM regarding subject ellipsis. DM opts for coordi-
nate structures with a chain of dependencies rooted
at the first conjunct, the coordinating conjunctions
being therefore semantically empty. In PAS, the fi-
nal coordinating conjunction and each coordinating
conjunction is a two-place predicate, taking left and
right conjuncts as its arguments.

The gain of 6.30 points for DM (Table 9(a),
resp. +3 for PAS) indicates that, when an annota-
tion scheme is designed to have many semantically
empty words, using syntactic information tends to
enhance the parser accuracy. This gives a clear in-
sight into what type of information is required to
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parse semantic graphs: the greater the distance be-
tween the head and the dependent, the larger the con-
text needed to disambiguate the attachments.

6.4 Ruling out the Structural Factor Bias

It may argued that the
improvement we no-

PAS DM

ticed could stem from
) Overlap +2.87 +2.67
a potentially strong Rest 4270 4274

overlap between sur-
face trees and predicate-argument structures, both
in terms of edges and labels. In fact, the conversion
from surfacic parses into predicate-argument struc-
tures requires a large amount of edges relabeling
(for instance, when nsubj is relabeled to ARGI).
We tested this hypothesis by computing the number
of common edges between MATE predictions and
DM and PAS. The overlap corresponds to about
22% of all edges in PAS and 27% in DM. Although
important, it does not represent the majority of
dependencies in our corpora, because most of edges
are not present in surface predictions. We evaluated
the improvement of the overlap as well as for the
rest. Results show that our best models perform
roughly the same on both sets. Interestingly, as
opposed to PAS’s model, DM’s model performs
better on the non-overlap part. This suggests that the
use of PTB-based features is somehow not optimal
when applied on a none PTB-based treebank, such
as DM which comes from a handcrafted grammar.

7 Discussion

Our point was to prove that providing more syntac-
tic context, in the form of phrased-based tree frag-
ments and surface dependencies, helps transition-



LP LR LF

BASELINE 5495 42.53 47095
BN+SPINES+PATHS 64.23 50.55 56.57 +8.62
BKY+BN+PATHS 64.88 50.90 57.05 +9.10
(a) DM Corpus (dev. set).

LP LR LF
BASELINE 66.62 50.17 57.23
ALL(HPOS) 74.03 5758 6478 +7.55
BKY+BN(HPOS)+PATHS 74.62 5895 6586 +8.73

(b) PAS Corpus (dev. set).

Table 8: Long-distance dependencies eval. (dev sets).

based parsers to predict predicate-argument struc-
tures, especially for LDDs. Yet, compared to state-
of-the-art systems, our results built on the S&T
parser score lower than the top performers (Table
10).

However, we are currently extending a more ad-
vanced lattice-aware transition-based parser (DSR)
with beams (Villemonte De La Clergerie, 2013)
that takes advantage of cutting-edge techniques (dy-
namic programming, averaged perceptron with early
updates, etc. following (Goldberg et al., 2013;
Huang et al., 2012)) #, which proves effective by
reaching the state-of-the-art on PAS, outperforming
Thomson et al. (2014) and second to the model of
Martins and Almeida (2014). >

The point here is that using the same syntactic fea-
tures as our base system exhibits the same improve-
ment over a now much stronger baseline. We can
conjecture that the ambiguities added by the relative
scarcity of the deep annotations is efficiently han-
dled by a more complete exploration of the search
space, made possible by beam optimization.

We can also wonder whether the lower improve-
ment brought to DM parsing by the PTB-based syn-
tactic features does not come from the fact that the
DM corpus and the PTB have divergent annotation

“It uses a different set of transitions, notably pop actions in-
stead of left and right reduce, and a swap that allow limited
amount of non-planarity. Such a set raises issues with beams
(several paths leading to a same item, final items reached with
paths of various lengths, ... ), overcome by adding a "noop’ ac-
tion only applied on final items to balance path lengths.

>Leaving aside the multiple (19) ensemble models of Du et
al. (2014), because of the impracticability of the approach.
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LP LR LF

BASELINE 90.00 48.57 63.09
BN+SPINES+PATHS 96.02 53.65 68.84 +5.85
BKY+BN+PATHS 96.07 5429 69.37 +6.28
(a) on DM (dev. set, 315 dependencies).
LP LR LF
BASELINE 97.51 6148 7541
ALL(HPOS) 97.86 64.78 7796 +2.55
BKY+BN(HPOS)+PATHS 98.57 65.09 7841 +3.00
(b) on PAS (dev. set, 636 dependencies).
Table 9: Shared subjects coordinations eval. (dev

sets).

schemes. In that aspect, PTB syntactic features may
add some noise to the learning process, because they
give more weight to conflicting decisions that led to
correct structures in one but not in the other scheme.

By using features which, to a certain extent, (i)
extend the domain of locality available at a given
node and (ii) generalize some structural and func-
tional contexts otherwise unavailable, we tried to
overcome the main issue of transition-based parsers:
they remain local in the sense that they lack a global
view of the whole sentence.

Impact Beyond Transition-based Parser Of
course, it can be argued that improving over a some-
what weak baseline is of limited interest. Our point
was to investigate how the direct parsing of rela-
tively sparse graph structures would benefit from
the inclusion of more context via the use of topo-
logically different syntactic pieces of information.
However in that work, we mostly focused on tran-
sition based-parsing, which raises the question of
the impact of our feature-set on a much more pow-
erful and state-of-the-art model such as the TUR-
BOSEMANTICPARSER developed by Martins and
Almeida (2014).

To this end, we extended the T.PARSER so that it
could cope with our syntactic features and studied
the interaction of our best feature set with second
order features (i.e. grand-parents and co-parents).
Results in Table 11 show that the gain brought by
adding syntactic features (+2.14 on DM over the
baseline) is higher than the sole use of second or-
der ones (+1.09). Furthermore, the gain brought by



PAS DM

(T.PARSER-+features, this paper) 92.11  89.70
(Duetal., 2014) 92.04 89.40

(Martins and Almeida, 2014) 91.76  89.16
(DSR, this paper) 90.13  85.66

(Thomson et al., 2014)  89.63  83.97

(S&T, this paper) 87.5 83.84

(DSR, this paper, no feat) 87.02 83.91
(S&T, this paper, no feat) 84.18 81.17

Table 10: Comparison with the State-of-the-Art.

the second-order features is reduced by half when
used jointly with our feature set (+1.09 vs +0.57 with
them). However, although we could assess that the
need of second order models is thus alleviated, the
conjunction of both types of features still improves
the parser performance by an overall gain of 1.62
points on DM (1.18 on PAS), suggesting that both
feature sets contribute to different types of “struc-
tures”. In short, the use of syntactic features is also
relevant with a strong baseline, as they provide a
global view to graph-based models, establishing a
new state-of-the-art on these corpora.

-SYNT. FEAT.  +SYNT. FEAT. 6
DM, baseline 86.99 89.13 +2.14
+grandparent 87.66 89.43 +1.77
+co-parents 88.08 89.7 +1.62
PAS, baseline 89.73 91.68 +1.95
+grandparent 90.15 91.92 +1.77
+co-parents 90.93 92.11 +1.18

Table 11: LF Results for T.PARSER (test set).
Baseline = arc-factored + siblings

Related Work A growing interest for semantic
parsing has emerged over the past few years, with
the availability of resources such as PropBank and
NomBank (Palmer et al., 2005; Meyers et al., 2004)
built on top of the Penn Treebank. The shal-
low semantic annotations they provide were among
the targets of successful shared tasks on seman-
tic role labeling (Surdeanu et al., 2008; Carreras
and Marquez, 2005). Actually, the conjoint use of
such annotations with surface syntax dependencies
bears some resemblance with predicate-argument
structure parsing like we presented here. However,
they diverge in that Propbank/Nombank annotations
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do not form connected graphs by themselves, as
they only cover argument identification and nominal
predicates. The range of phenomena they describe is
also limited, compared to a full predicate-argument
analysis as provided by DM and PAS (Oepen et al.,
2014). More importantly, as pointed out by Yi et al.
(2007), being verb-specific, Propbank’s roles do not
generalize well beyond the ARGO argument (i.e. the
subject/agent role) leading to inconsistencies.
However, the advent of such semantic-based re-
sources have ignited a fruitful line of research, of
which the use of heterogeneous sources of infor-
mation to boost parsing performance has been in-
vestigated over the past decade (Chen and Rambow,
2003; Tsuruoka et al., 2004) with a strong regain of
interest raised by the work of Moschitti et al. (2008),
Henderson et al. (2008), Sagae (2009).

8 Conclusion

We described the use and combination of several
kinds of syntactic features to improve predicate-
argument parsing. To do so, we tested our ap-
proach of injecting surface-syntax features by tho-
roughly evaluating their impact on one transition-
based graph parser, then validating on two more ef-
ficient parsers, over two deep syntax and semantic
treebanks. Results of the syntax-enhanced semantic
parsers exhibit a constant improvement, regardless
of the annotation scheme and the parser used.

The question is now to establish whether will this be
verified in other semantic data sets? From the pars-
ing of deep syntax treebanks a la Meaning Text The-
ory (Ballesteros et al., 2014), to Framenet semantic
parsing (Das et al., 2014) or data-driven approaches
closer to ours (Flanigan et al., 2014), it is difficult to
know which models will predominate from this bub-
bling field and what kind of semantic data sets will
benefit the most from syntax.
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Abstract

Text documents of varying nature (e.g., sum-
mary documents written by analysts or pub-
lished, scientific papers) often cite others as
a means of providing evidence to support a
claim, attributing credit, or referring the reader
to related work. We address the problem
of predicting a document’s cited sources by
introducing a novel, discriminative approach
which combines a content-based generative
model (LDA) with author-based features. Fur-
ther, our classifier is able to learn the im-
portance and quality of each topic within our
corpus — which can be useful beyond this
task — and preliminary results suggest its met-
ric is competitive with other standard met-
rics (Topic Coherence). Our flagship system,
Logit-Expanded, provides state-of-the-art per-
formance on the largest corpus ever used for
this task.

1 Introduction

The amount of digital documents (both online and
offline) continues to grow greatly for several rea-
sons, including the eagerness of users to gener-
ate content (e.g., social media, Web 2.0) and the
decrease in digital storage costs. Many different
types of documents link to or cite other documents
(e.g., websites, analyst summary reports, academic
research papers), and they do so for various rea-
sons: to provide evidence, attribute credit, refer the
reader to related work, etc. Given the plethora of
documents, it can be highly useful to have a sys-
tem which can automatically predict relevant cita-
tions, for this could (1) aid authors in citing rele-
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vant, useful sources which they may otherwise not
know about; and (2) aid readers in finding useful
documents which otherwise might not have been
discovered, due to the documents’ being unpopu-
lar or poorly cited by many authors. Specifically,
we are interested in citation prediction — that is, we
aim to predict which sources each report document
cites. We define a report as any document that cites
another document in our corpus, and a source as a
document that is cited by at least one report. Natu-
rally, many documents within a corpus can be both
a report and a source. Note, we occasionally refer
to linking a report and source, which is synonymous
with saying the report cites the source.

Citation prediction can be viewed as a special
case of the more general, heavily-researched area
of link prediction. In fact, past research mentioned
in Section 2 refers to this exact task as both cifa-
tion prediction and link prediction. However, link
prediction is a commonly used phrase which may
be used to describe other problems not concerning
documents and citation prediction. In these general
cases, a link may be relatively abstract and repre-
sent any particular relationship between other ob-
jects (such as users’ interests or interactions). Tra-
ditionally, popular techniques for link prediction
and recommendation systems have included feature-
based classification, matrix factorization, and other
collaborative filtering approaches — all of which typ-
ically use meta-data features (e.g., names and in-
terests) as opposed to modelling complete content
such as full text documents (Sarwar et al., 2001;
Al Hasan and Zaki, 2011). However, starting with
Hofmann and Cohn’s (2001) seminal work on ci-
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tation prediction (PHITS), along with Erosheva et.
al.’s (2004) work (LinkLLDA), content-based mod-
elling approaches have extensively used generative
models — while largely ignoring meta-data features
which collaborative filtering approaches often use —
thus creating somewhat of a dichotomy between two
approaches towards the same problem. We demon-
strate that combining (1) a simple, yet effective,
generative approach to modelling content with (2)
author-based features into a discriminative classifier
can improve performance. We show state-of-the-
art performance on the largest corpus for this task.
Finally, our classifier learns the importance of each
topic within our corpus, which can be useful beyond
this task.

In the next section, we describe related research.
In Section 3 we describe our models and motivations
for them. In Section 4 we detail our experiments, in-
cluding data and results, and compare our work to
the current state-of-the-art system. We finally con-
clude in Section 5.

2 Related Work

Hofmann and Cohn’s (2001) PHITS seminal work
on citation prediction included a system that was
based on probabilistic latent semantic analysis
(PLSA) (Hofmann, 1999). Specifically, they ex-
tended PLSA by representing each distinct link to
a document as a separate word token — as shown in
Equation 1 and represented by s;. (Note: Table 1
displays common notation that is used consistently
throughout this paper.) PHITS assumes both the
links and words are generated from the same global
topic distributions, and like PLSA, a topic distribu-
tion is inferred for each document in the corpus.

K
P(wld;) ZP wilzi) P(2|d;),
ey

K
P(s1|d;) ZP s1|2x) P(z1]d;)

=1
Later, Erosheva et. al.’s (2004) system replaced
PLSA with LDA as the fundamental generative pro-
cess; thus, the topic distributions were assumed to
be sampled from a Dirichlet prior, as depicted in
the plate notation of Figure 1. We will refer to this
model as it is commonly referred, LinkLDA, and it
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Figure 1: Plate notation of LinkLDA

is the closest model to our baseline approach (later
introduced as LDA-Bayes).

Others have researched several variants of this
LDA-inspired approach, paving the field with
promising, generative models. For example, Link-
PLSA-LDA is the same as LinkLDA but it treats
the generation of the source documents as a separate
process inferred by PLSA (Nallapati et al., 2008).
Related, Cite-LDA and Cite-PLSA-LDA (Kataria et
al., 2010) extend LinkLDA and Link-PLSA-LDA,
respectively, by asserting that the existence of a link
between a report and source is influenced by the
context of where the citation link occurs within the
report document. Note, the authors supplemented
corpora to include context that surrounds each cita-
tion; however, there is currently no freely-available,
widely-used corpus which allows one to discern
where citations appear within each report. There-
fore, few systems rely on citation context.

TopicBlock (Ho et al., 2012) models citation pre-
diction with a hierarchical topic model but only uses
the first 200 words of each document’s abstract. To



our knowledge, Topic-Link-LDA (Liu et al., 2009)
is the only research which includes both author in-
formation and document content into a generative
model in order to predict citations. Topic-Link-
LDA estimates the probability of linking a report-
source pair according to the similarity between the
documents’ (1) author communities and (2) topic
distributions — these two latent groups are linearly
combined and weighted, and like the aforemen-
tioned systems, are inferred by a generative process.
PMTLM (Zhu et al., 2013) is reported as the cur-
rent state-of-the-art system. In short, it is equivalent
to PLSA but extended by having a variable associ-
ated with each document, which represents that doc-
ument’s propensity to form a link.

As mentioned, although Collaborative Filtering
has been used towards citation prediction (McNee
et al., 2002), there is little research which includes
features based on the entire content (i.e., docu-
ments). Very recently, (Wilson et al., 2014) used
topic modelling to help predict movie recommenda-
tions. Specifically, one feature into their system was
the KL-divergence between candidate items’ topic
distributions, but applying this towards citation pre-
diction has yet to be done. Most similar to our
work, (Bethard and Jurafsky, 2010) used a classifier
to predict citations, based on meta-data features and
compressed topic information (e.g., one feature is
the cosine similarity between a report-source pair’s
topic distribution). As explained in Section 4, we
expand the topic information into a vector of length
K, which not only improves performance but yields
an estimate of the most important, “quality” topics.
Further, our system also uses our LDA-Bayes base-
line as a feature, which by itself yields excellent re-
sults compared to other systems on our large cor-
pus. Notably, Bethard and Jurafsky’s system (2010)
also differs from ours in that (1) their system has
an iterative process that alternates between retriev-
ing candidate source documents and learning model
weights by training a supervised classifier; and (2)
they only assume access to the content of the ab-
stract, not the entire documents. Nonetheless, we
use their system’s most useful features to construct a
comparable system (which we name WSIC — “Who
Should I Cite”), which we describe in more detail in
Section 3.3 and show results for in Section 4.3.
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3 New Models
3.1 LDA-Bayes

For a baseline system, we first implemented
LDA (Blei et al., 2003) topic modelling and ran it
on our entire corpus. However, unlike past systems,
after our model was trained, we performed citation
prediction (i.e., P(s|r)) according to Equation 2.
Notice, although LDA does not explicitly estimate
P(s|z), we can approximate it via Bayes Rule, and
we consequently call our baseline LDA-Bayes. Do-
ing so allows us to include the prior probability of
the given source being cited (i.e., P(s)), accord-
ing to the maximum-likelihood estimate seen during
training.

K
P(slr) =Y P(s|zk)P(zklr),
k (zils)P(s) ”
P(zj|s)P(s
whete PUI%) = S Py 1) P)

Of the past research which uses generative mod-
els for citation prediction, we believe LinkLDA is
the only other system in which a source’s prior cita-
tion probability plays any role in training the model.
Specifically, in LinkLLDA, the prediction metric is
identical to ours in that the topics are marginalized
over topics (Equation 3). It differs, however, in that
their model directly infers P(s|zy), for it treats each
citation link as a word token. Although this does
not explicitly factor in each source’s prior probabil-
ity of being cited, it is implicitly influenced by such,
for the sources which are more heavily cited during
training will tend to have a higher probability of be-
ing generated from topics.

K
P(s|r) = P(s|zk) P(z[r), 3)
k

Note: the other generative models mentioned in
Section 2, after inference, predict citations by sam-
pling from a random variable (typically a Bernoulli
or Poisson distribution) which has been conditioned
on the topic distributions.

3.2 Logit-Expanded

In attempt to combine the effectiveness of LDA
in generating useful topics with the ability of dis-



Table 2: A randomly chosen report and its predicted
sources, per LDA-Bayes, illustrating that a report and
predicted source may be contextually similar but that

their titles may have few words in common.
Report: Japanese Dependency Structure Analysis Based On Support Vector Machines (2000)
Cited Year
Source?

- Source Name
Position

1996 | A Maximum Entropy Approach To Natural Language Processing

1 .
Natural Language Processing

2 1993 Building A Large Annotated Corpus
Of English: The Penn Treebank
3 1996 A Maximum Entropy Model For Part-Of-Speech Tagging
4 1994 A Syntactic Analysis Method Of Long Japanese
Sentences Based On The Detection Of Conjunctive Structures

5 1992 Class-Based N-Gram Models Of Natural Language
m 1996 Three New Probabilistic Models For

Dependency Parsing: An Exploration
12 2000 Introduction To The CoNLL-2000

Shared Task: Chunking
13 1995 A Model-Theoretic Coreference Scoring Scheme
14 1988 A Stochastic Parts Program And Noun
Phrase Parser For Unrestricted Text
v 1999 Japanese Dependency Structure Analysis

Based On Maximum Entropy Models

criminative classifiers to learn important features
for classification, we use logistic regression with
a linear kernel. Specifically, we train using L2-
regularization, which during test time allows us to
get a probability estimate for each queried vector
(i.e., a report-source pair).

The details of the training and testing data are pro-
vided in Section 4.2. However, it is important to un-
derstand that each training and testing instance cor-
responds to a distinct report-source document pair
and is represented as a single fixed-length vector.
The vector is comprised of the following features,
which our experiments illustrate are useful for deter-
mining if there exists a link between the associated
report and source:

3.2.1 Topic/Content-Based Features

* LDA-Bayes: Our baseline system showed
strong results by itself, so we include its pre-
dictions as a feature (that is, P(s|r)).

» Topics: LDA-Bayes ranks report-source pairs
by marginalizing over all topics (see Equation
2); however, we assert that not all topics are
equally important. Allowing each topic to be
represented as its own feature, while keeping
the value based on the report-source’s relation-
ship for that topic (i.e., the absolute value of
the difference), can potentially allow the lo-
gistic regression to learn both (1) the impor-
tance for report-source pairs to be generally
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similar across most topics and (2) the rela-
tive importance of each topic. For all of our
experiments (including LDA-Bayes) we used
125 topics to model the corpus; thus, this fea-
ture becomes expanded to 125 individual in-
dices within our vector, which is why we name
this system Logit-Expanded. Namely, Vi €
K, let feature f; = |6, — 0s,].

3.2.2 Meta-data Features

* Report Author Previously Cited Source?:
We believe authors have a tendency to cite doc-
uments they have cited in the past

* Report Author Previously Cited a Source
Author?: Authors also have a tendency to
“subscribe” to certain authors and are more fa-
miliar with particular people’s works, and thus
cite those papers more often.

 Prior Citation Probability: A distinguishing
feature of our LDA-Bayes model is that it fac-
tors in the prior probability of a source being
cited, based on the maximum likelihood esti-
mate from the training data. So, we explicitly
include this as a feature.

* Number of Overlapping Authors: Authors
have a tendency to cite their co-authors, in part
because their co-authors’ past work has an in-
creased chance of being relevant.

* Number of Years between Report and
Source: Authors tend to cite more recent pa-
pers.

* Title Similarity between Report and Source:
As shown in Table 2, some sources erroneously
returned by our baseline system could have
been discarded had we judged them by how
dissimilar their titles are from the report’s title.
In Table 2’s example, the one correct source to
find (within ~12,000) was returned at position
15 and has many words in common with the re-
port (namely, “Japanese Dependency Structure
Analysis Based On” appears in the titles of both
the report and correctly predicted source).



3.3 WSIC (Who Should I Cite?)

In attempt to compare our systems against Bethard
and Jurafsky’s system (2010), we implemented the
features they concluded to be most useful for re-
trieval, and like our Logit-Expanded system, used
logistic regression as the mechanism for learning
citation prediction. Instead of using only the text
from the abstracts, like in their research, to make
the comparison more fair we used text from the en-
tire documents — just like we did for the rest of our
systems. Specifically, adhering to their naming con-
vention, the features from their system that we used
are: citation-count, venue-citation-count, author-
citation-count, author-h-index, age (# years between
report and source), terms-citing, topics, authors,
authors-cited-article, and authors-cited-author.

4 Experiments

4.1 Corpora

The past research mentioned in Section 2 primarily
makes use of three corpora: Cora, CiteSeer, and We-
bKB. As shown in Table 3, these corpora are rela-
tively small with ~3,000 documents, an average of
less than three links per document, and a modest
number of unique word types.

We wanted to use a corpus which was larger, pro-
vided the complete text of the original documents,
and included meta-data such as author information.
Thus, we used the ACL Anthology (Radev et al.,
2013) (the December 2013 release), which provides
author and year information for each paper, and the
corpus details are listed in Table 3. For the task of
citation prediction, we are the first to use full content
information from a corpus this large.

4.2 Training/Testing Data

The research listed in Section 2 commonly uses 90%
of all positive links (i.e., a distinct report-to-source
instance) for training purposes and 10% for testing.
LDA-based topic modelling approaches, which are
standard for this task, require that at testing time
each report and candidate source has already been
observed during training. This is because at test time
the topic distribution for each document must have
already been inferred. Additionally, it is common to
make the assumption that the corpus is split into a
bipartite graph: a priori we know which documents
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are reports and which are sources, with most being
both. At testing time, one then predicts sources from
the large set of candidate sources, all of which were
seen at some point during training (as either a report
or a source document).

We follow suit with the past research and ran-
domly split the ACL Anthology’s report-to-source
links (citations) into 90% for training and 10% for
testing, with the requirement that every candidate
source document during testing was seen during
training as either a report or a source — ensuring
we have a topic distribution for each document. On
average, each report has 6.8 sources, meaning typ-
ically at test time each report has just a few (e.g.,
1-5) sources which we hope to predict from our
12,265 candidate sources. For all of our exper-
iments, the systems (e.g., LDA-Bayes, LinkL.DA,
Logit-Expanded, etc) were evaluated on the exact
same randomly chosen split of training/testing data.

As for training Logit-Expanded, naturally there
are vastly more negative examples (i.e., no link be-
tween the given report-source pair) than positive ex-
amples; most sources are not cited for a given re-
port. This represents a large class-imbalance prob-
lem, which could make it difficult for the classifier to
learn our task. Consequently, we downsampled the
negative examples. Specifically, for each report, we
included all positive examples (the cited sources),
and for each positive example, we included 5 ran-
domly selected negative examples (sources). Note,
for testing our system, we still need to evaluate ev-
ery possible candidate report-source pair — that is
~12,265 candidate sources per tested report.

Table 3: Report-to-Source Citation Prediction Corpora

Cora CiteSeer WebKB ACL
# docs 2,708 3,312 3,453 17,298
# links 5,429 4,608 1,733 106,992
vocab size 1,433 3,703 24,182 137,885
# authors - - - 14,407
4.3 Results

4.3.1 Report-To-Source Citation Prediction

First, we tested our LDA-Bayes baseline system
and compared it to LinkLDA and PMTLM (Zhu et
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Figure 2: Average Recall Performance across all Reports
from a 1,000 document subset of the ACL Anthology

al., 2013) — the current state-of-the-art system. Due
to the slow running time of PMTLM, we restricted
our preliminary experiment to just 1,000 documents
of the ACL Anthology, and Figure 2 shows the av-
erage recall performance across all reports. Surpris-
ingly, PMTLM performed worst. Note: the authors
of PMTLM compared their system to LinkLDA for
a different task (predicting research area) but did not
compare to LinkLDA during their analysis of cita-
tion prediction performance. Thus, it was not previ-
ously asserted that PMTLM would outperform Lin-
kLDA.

As we can see, LDA-Bayes, despite being simple,
performs well. As mentioned, LDA-Bayes explicitly
captures the prior probability of each source being
cited (via maximum-likelihood estimate), whereas
LinkLDA and PMTLM approximates this during in-
ference. We believe this contributes towards the per-
formance differences.

It was expected that when run on the entire ACL
corpus, WSIC and our Logic-Expanded systems
would have sufficient data to learn authors’ citing
preferences and would outperform the other genera-
tive models. As shown in Figure 3 and 4, our flag-
ship Logit-Expanded system greatly outperformed
all other systems, while our baseline LDA-Bayes
continued to offer strong results. Note, the full re-
call performance results include returning 12,265
sources, but we only show the performance for re-
turning the first 200 returned sources. Further, Ta-
ble 4 shows the same experimental results but for
the performance when returning just the first 50 pre-
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Figure 3: Average Recall Performance across all reports
from the full ACL Anthology

dicted sources per report.

Table 4: Performance of each system, averaged across all
reports while returning the top 50 predicted sources for
each. 125 topics were used for every system.

recall | precision | fscore
Logit-Expanded .647 016 .031
LDA-Bayes 496 012 .024
WSIC 442 011 021
LinkLDA 431 011 .021
LDA-Bayes (uniform prior) | .309 .007 .014

Again, we further see how effective it is to have
a model influenced by a source’s prior probabil-
ity, for when we change LDA-Bayes such that
P(SourceCited) is uniform for all sources, perfor-
mance falls greatly — represented as LDA (uniform
prior).

We analyzed the benefits of each feature of Logit-
Expanded in 2 ways: (1) starting with the full-
feature set experiment (whose results we showed),
we evaluate each feature by running an experiment
whereby the said feature is removed; and (2) start-
ing with our LDA-Bayes baseline as the only fea-
ture for our Logit-Expanded system, we evaluate
each feature by running an experiment whereby the
said feature is paired with LDA-Bayes as the only
two features used. For both of these approaches,
we measure performance by looking at recall, pre-
cision, and f-score when returning the first 50 pre-
dicted sources. The results are shown in Table 5;
technique (1) is shown in column removal, and (2)
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Figure 4: Recall vs Precision Performance across all Re-
ports from the full ACL Anthology. Logit-Expanded’s
slight blips at recall = 0.25, 0.33, and 0.5 is due to the
truth set having many reports with only 4, 3, or 2 golden
sources, respectively.

is in column addage.

Table 5 reveals insightful results: it is clear that
LDA-Bayes is a strong baseline and useful feature to
include in our system, for removing it from our fea-
ture list causes performance to decrease more than
removing any other feature. PrevCitedSource and
Topics Expanded are the second and third strongest
features, respectively. We suspect that PrevCit-
edSource was a good feature because our corpus
was sufficiently large; had our corpus been much
smaller, there might not have been enough data for
this feature to provide any benefit. Next, Title Simi-
larity and # Shared Authors were comparably good
features. PrevCitedAuthor and # Years Between
were the worst features, as we see negligible perfor-
mance difference when we (1) pair either with LDA-
Bayes, or (2) remove either from our full feature list.
An explanation for the former feature’s poor per-
formance could be that authors vary in (1) how of-
ten they repeatedly cite authors, and most likely (2)
many authors have small publication histories within
training, so it might be unwise to base prediction
on this limited information. Last, it is worth not-
ing that when we pair Topics Expanded with LDA-
Bayes, that alone is not enough to give the best
performance from a pair. An explanation is that it
dominates the system with too much content-based
(i.e., topic) information, overshadowing the prior-

81

citation-probability that plays a role in LDA-Bayes.
Supporting this idea, we see the biggest performance
increase when we pair LDA-Bayes with the PrevCit-
edSource feature — a non-topic-based feature, which
provides the system with a different type of data to
leverage.

Table 5: Analysis of each feature used in Logit-
Expanded. Results based on the first 50 sources returned,
averaged over all reports. Our Starting Point* system
listed within the “Addage” columns used LDA-Bayes as
the only feature. Our Starting Point™* system within the
“Removal” columns used every feature.

Addage Removal
recall | precision | fscore | recall | precision | fscore
Starting Point* 496 012 024 | .647 016 .031
LDA-Bayes - - - 583 014 028
Topics Expanded | .564 014 027 | .606 015 028
PrevCitedSource | .581 014 028 | .599 014 028
PrevCitedAuthor | .484 .012 023 | .641 .016 .030
# Shared Authors | .543 .013 026 | .636 .015 .029
Prior Prob. Cited | .501 .012 023 | .639 .015 .030
Title Similarity S13 .012 023 | .623 .015 .029
# Years Between | .498 .012 023 | .645 .016 .030

Additionally, when using only the metadata fea-
tures (i.e., not LDA-Bayes or Topics-Expanded),
performance for returning 50 sources averaged
0.403, 0.010, and 0.019 for recall, precision, and
fscore, respectively — demonstrating that the meta-
data features alone do not yield strong results but
that they complement the LDA-Bayes and Topics-
Expanded features.

4.3.2 Topic Importance

Although Report-to-Source citation prediction
was our primary objective, our feature representa-
tion of topics allows logistic regression to appropri-
ately learn which fopics are most useful for predict-
ing citations. In turn, these topics are arguably the
most cohesive; thus, our system, as a byproduct, pro-
vides a metric for measuring the “quality” of each
topic. Namely, the weight associated with each topic
feature indicates the topic’s importance — the lower
the weight the better.

Table 6 shows our system’s ranking of the most
important topics, signified by “Logit-weight.” We
did not prompt humans to evaluate the quality of the
topics, so in attempt to offer a comparison, we also
rank each topic according to two popular metrics:
Pointwise Mutual Information (PMI) and Topic Co-
herence (TC) (Mimno et al., 2011). For a topic k,



let V(*) represent the top M words for K; where
V) = (vl(k) (k)) and D(v) represents the doc-
ument frequency of word type v. Then, PMI(k)
is defined by Equation 4 and T'C'(k) is defined by
Equation 5.

In Table 6, we see that our most useful topic
(Topic 49) concerns vision research, and since our
corpus is heavily filled with research concerning
(non-vision-related) natural language processing, it
makes sense for this topic to be highly important for
predicting citations. Similarly, we see the other top-
ranking topics all represent a well-defined, subfield
of natural language processing research, including
parsing, text generation, and Japanese-English ma-
chine translation.

) f: mzl ) 0y
PMI(k;V log
=i i)
4
M m—1 (k) V(k))
Clks V) =3 "% log ’(k)l) (5)
m=2 [=1 m

Table 7 shows the worst 5 topics according to
Logit-Expanded. Topic 96 concerns Wikipedia as
a corpus, which naturally encompasses many areas
of research, and as we would expect, the mention of
such is probably a poor indicator for predicting ci-
tations. Topic 77 concerns artifacts from the OCR-
rendering of our corpus, which offers no meaning-
ful information. In general, the worst-ranking topics
concern words that span many documents and do not
represent cohesive, well-defined areas of research.
Additionally, in both Table 6 and 7 we see that
Pointwise Mutual Information (PMI) disagrees quite
a bit with our Logit-Expanded’s ranking, and from
this initial result, it appears Logit-Expanded’s rank-
ing might be a better metric than PMI — at least in
terms of quantifying relevance towards documents
being related and linked via a citation.

This cursory, qualitative critique of the met-
rics warrants more research, ideally with human-
evaluation. However, one can see how these met-
rics differ: TC and PMI are both entirely concerned
with just the co-occurrence of terms, normalized by
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the general popularity of the said terms. There-
fore, words could highly co-occur together but oth-
erwise represent nothing special about the corpus at
large. On the other hand, Logit-Expanded’s rank-
ing is mainly concerned with quantifying how well
each topic represents discriminatively useful content
within a document.

Table 6: The highest quality topics (out of 125), sorted
according to Logit-Expanded’s estimate. Topics are also
ranked according to Pointwise Mutual Information (PMI)
and Topic Coherence (TC).

Logit’s | PMI
Rank | Rank Rdnk

1 116 103 -5.50 49

Logit

Weight Topic #

Top Words

image, visual, multimodal, images, spatial, gesture,
objects, object, video, scene, instructions, pointing
grammar, parsing, grammars, left, derivation,
terminal, nonterminal, items, free, string,

item, derivations, cfg

generation, generator, generated, realization,
content, planning, choice, nlg, surface, generate
noun, nouns, phrases, adjectives, adjective,
compound, verb, head, compounds, preposition
japanese, ga, expressions, wo, accuracy, bunsetsu,
ni, dictionary, wa, kanji, noun, expression

2 33 44 -4.76 25

3 68 37 -4.71 65

4 49 27 -4.28 32

5 107 61 -4.24 0

Table 7: The lowest quality topics (out of 125), sorted
by Logit-Expanded’s estimate. Topics are also ranked
according to Pointwise Mutual Information (PMI) and
Topic Coherence (TC).

Logit’s | PMI

Logit

Rank | Rank Rank Weight | ToPic # Top Words
121 13 110 145 % wikipedia, links, link, zr.n‘rcles, article, tnle,
page, anchor, pages, wiki, category, attributes
122 83 122 -1.20 77 x1,x2, cl, 2, p2, al, pl, a2, rl, 11, xf, fi

annotation, agreement, annotated, annotators,
annotator, scheme, inter, annotate, gold, kappa
selection, learning, active, selected, random,
confidence, sample, sampling, cost, size, select
region, location, texts, city, regions, weather,
locations, map, place, geographic, country

123 42 36 -1.09 91

124 10 34 -0.75 43

125 65 115 -0.33 30

5 Conclusions

We have provided a strong baseline, LDA-Bayes,
which when run on the largest corpus for this task,
offers compelling performance. We have demon-
strated that modelling the prior probability of each
candidate source being cited is simple yet impor-
tant, for it allows all of our systems to outperform
the previous state-of-the-art — our large corpus helps
towards making this a useful feature, too.

Our biggest contribution is our new system,
Logit-Expanded, which combines both the effective-
ness of the generative model LDA with the power
of logistic regression to discriminately learn impor-
tant features for classification. By representing each
topic as its own feature, while still modelling the re-



lationship between the candidate report-source pair,
we allow our system to learn (1) that having simi-
lar topic distributions between reports and sources
is indicative of a link, and (2) which topics are most
important for predicting a link. Because we used a
linear kernel, we are able to discern exactly how im-
portant it ranks each topic. A cursory, qualitative
assessment of its metric shows promising and com-
petitive performance with that of Pointwise Mutual
Information and Topic Coherence.
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Abstract

In this paper, we apply a weakly-supervised
learning approach for slot tagging using con-
ditional random fields by exploiting web
search click logs. We extend the constrained
lattice training of Tickstrom et al. (2013) to
non-linear conditional random fields in which
latent variables mediate between observations
and labels. When combined with a novel
initialization scheme that leverages unlabeled
data, we show that our method gives signifi-
cant improvement over strong supervised and
weakly-supervised baselines.

1 Introduction

A key problem in natural language processing
(NLP) is to effectively utilize large amounts of unla-
beled and partially labeled data in situations where
little or no annotations are available for a task of
interest. Many recent work tackled this problem
mostly in the context of part-of-speech (POS) tag-
ging by transferring POS tags from a supervised lan-
guage via automatic alignment and/or constructing
tag dictionaries from the web (Das and Petrov, 2011;
Liet al., 2012; Tackstrom et al., 2013).

In this work, we attack this problem in the con-
text of slot tagging, where the goal is to find correct
semantic segmentation of a given query, which is an
important task for information extraction and natu-
ral language understanding. For instance, answering
the question “when is the new bill murray movie re-
lease date?” requires recognizing and labeling key
phrases: e.g., “bill murray” as actor and “movie”
asmedia type.
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The standard approach to slot tagging involves
training a sequence model such as a conditional ran-
dom field (CRF) on manually annotated data. An
obvious limitation of this approach is that it relies
on fully labeled data, which is both difficult to adapt
and changing tasks and schemas. Certain films,
songs, and books become more or less popular over
time, and the performance of models trained on out-
dated data will degrade. If not updated, models
trained on live data feeds such as movies, songs and
books become obsolete over time and their accuracy
will degrade. In order to achieve high accuracy con-
tinuously data and even model schemas have to be
refreshed on a regular basis.

To remedy this limitation, we propose a weakly
supervised framework that utilizes the information
available in web click logs. A web click log is a
mapping from a user query to URL link. For ex-
ample, users issuing queries about movies tend to
click on links from the IMDB.com or rottentoma-
toes.com, which provide rich structured data for en-
tities such as title of the movie (“The Matrix”), the
director (“The Wachowski Brothers”), and the re-
lease date (“1999"). Web click logs present an op-
portunity to learn semantic tagging models from
large-scale and naturally occurring user interaction
data (Volkova et al., 2013).

While some previous works (Li et al., 2009) have
applied a similar strategy to incorporate click logs
in slot tagging, they do not employ recent advances
in machine learning to effectively leverage the in-
complete annotations. In this paper, we pursue and
extend learning from partially labeled sequences, in
particular the approach of Téackstrom et al. (2013).

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 84-92,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



Instead of projecting labels from a high-resource to
a low-resource languages via parallel text and word
alignment, we project annotations from structured
data found in click logs. This can be seen as a bene-
fit since typically a much larger volume of click log
data is available than parallel text for low-resource
languages.

We also extend the constrained lattice training
method of Tackstrom et al. (2013) from linear CRFs
to non-linear CRFs. We propose a perceptron train-
ing method for hidden unit CRFs (Maaten et al.,
2011) that allows us to train with partially labeled
sequences. We show that combined with a novel pre-
training methodology that leverages large quantities
of unlabeled data, this training method achieves sig-
nificant improvements over several strong baselines.

2 Model definitions and training methods

In this section, we describe the two sequence mod-
els in our experiments: a conditional random field
(CRF) of Lafferty et al. (2001) and a hidden unit
CRF (HUCRF) of Maaten et al. (2011). Note that
since we only have partially labeled sequences, we
need a technique to learn from incomplete data. For
a CRF, we follow a variant of the training method
of Tackstrom et al. (2013). In addition, we make
a novel extension of their method to train a HU-
CREF from partially labeled sequences. The result-
ing perceptron-style algorithm (Figure 2) is simple
but effective. Furthermore, we propose an initializa-
tion scheme that naturally leverages unlabeled data
for training a HUCRF.

2.1 Partially Observed CRF

A first-order CRF parametrized by § € R? de-
fines a conditional probability of a label sequence
Y = ¥y1...Yn given an observation sequence x =
T1...T, as follows:

exp(6 ®(z,y))
y’ey(g;) exp(eT‘I)(x, y/))

po(ylz) = 5

where )(z) is the set of all possible label se-
quences for = and ®(r,y) € R? is a global fea-
ture function that decomposes into local feature
functions ®(z,y) = >0, #(x,j,yj-1,y;) by the
first-order Markovian assumption. Given fully la-
beled sequences { ("), y()) 1N | the standard train-
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ing method is to find # that maximizes the log like-
lihood of the label sequences under the model with
lo-regularization:

N
* i), A
0" = argmax | logpy(y”|z"") — 7 [|6]]*

OcR? i=1

Unfortunately, in our problem we do not have fully
labeled sequences. Instead, for each token z; in se-
quence 7 . ..x, we have the following two sources
of label information:

e A set of allowed label types Y(x;). (Label dic-
tionary)

e A label y; transferred from a source data. (Op-
tional: transferred label)

Tackstrom et al. (2013) propose a different objec-
tive that allows training a CRF in this scenario. To
this end, they define a constrained lattice Y (x,q) =
V(z1,91) X ... x Y(xn, ¥n) Where at each position
7 a set of allowed label types is given as:

{g;}
Y(z;)

- if y; is given

V(i 9;) = { othérwigse

In addition to these existing constraints, we intro-
duce constraints on the label structure. In our seg-
mentation problem, labels are structured (e.g., some
label types cannot follow certain others). We can
easily incorporate this restriction by disallowing in-
valid label types as a post-processing step of the
form:

V(j,75) — V(xj,5;) N V(xj-1,Gj-1)

where Y(x;_1,7;—1) is the set of valid label types
that can follow Y (z;_1, Jj—1).

Téckstrom et al. (2013) define a conditional prob-
ability over label lattices for a given observation se-
quence z:

po(V(@.G)le) = Y poelyle)

yeYV(,9)

Given a label dictionary )(z;) for every token type
z; and training sequences {(z(), 7))} where
7 is (possibly non-existent) transferred labels for



CRF

Hidden Unit CRF

Figure 1: Illustration of CRFs and hidden unit CRFs

2 and, the new training method is to find  that
maximizes the log likelihood of the label lattices:

N
0* = argmaleogpe(y(%’(i),ﬂ(i))@(n) - & H9H2
QERd i=1 2

Since this objective is non-convex, we find a local
optimum with a gradient-based algorithm. The gra-
dient of this objective at each example (z(), ()
takes an intuitive form:

9 D
1 (@) @)y _ 2 2
= po(ylz)® (), y)

yeY(z(),g)

- po(ylz)@ (21, y) — A0
yey(z®)

This is the same as the standard CRF training except
the first term where the gold features ®(z(), y(*)
are replaced by the expected value of features in the
constrained lattice Y (¥, ).

2.2 Partially Observed HUCRF

While effective, a CRF is still a linear model. To see
if we can benefit from nonlinearity, we use a HU-
CRF (Maaten et al., 2011): a CRF that introduces a
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layer of binary-valued hidden units 2 = 27 ... 2, €
{0, 1} for each pair of label sequence y = y1 ... yn
and observation sequence z = x7 ... x,. A HUCRF
parametrized by # € R? and v € RY defines a joint
probability of y and z conditioned on x as follows:

P (Y, 2|z) =
exp(07 ®(z, 2) + 7" U(z,9))

ZZ’G{O,I}” eXp(@T(I)({L‘, Z/) + VT\IJ(zIa y/))
y' €Y (x,2")

where Y(z,z) is the set of all possible label se-
quences for x and 2z, and ®(z,z) € R? and
U(z,y) € R? are global feature functions that de-
compose into local feature functions:

O(z,2) = Z o(, j, 25)
j=1

\IJ(Z’ y) = Z¢(ZJ7 Yj—1, yj)

J=1

In other words, it forces the interaction between
the observations and the labels at each position j to
go through a latent variable z;: see Figure 1 for il-
lustration. Then the probability of labels y is given
by marginalizing over the hidden units,

p@,'y(y‘x): Z pgﬁ(y,z|x)

z€{0,1}n

As in restricted Boltzmann machines (Larochelle
and Bengio, 2008), hidden units are conditionally
independent given observations and labels. This al-
lows for efficient inference with HUCRFs despite
their richness (see Maaten et al. (2011) for details).

2.2.1 Training with partially labeled sequences

We extend the perceptron training method of Maaten
etal. (2011) to train a HUCREF from partially labeled
sequences. This can be viewed as a modification of
the constrained lattice training method of Tackstrom
et al. (2013) for HUCREF:s.

A sketch of our training algorithm is shown in
Figure 2. At each example, we predict the most
likely label sequence with the current parameters. If
this sequence does not violate the given constrained
lattice, we make no updates. If it does, we pre-
dict the most likely label sequence within the con-



Input: constrained lattices {(z("), )} N, step size n
Output: HUCRF parameters © := {6,~}

1. Initialize © randomly.

2. Repeatedly selecti € {1... N} at random:
(2) ¥* « argmax,cy ) po (y|z®)
(b) Ify* & Y(z, gD):

ioyT — argmax,cy o 5o po(ylz®)
ii. Make parameter updates:

9 +
0 41 x 5 (vl 1)

p@(y*,quw))

where the following hidden units are com-
puted in closed-form (see Gelfand et al.
(2010)):

2T := argmax pe (2|2, y)

z* := argmax pe (2|2, y*)
z

Figure 2: A sketch of the perceptron training algorithm
for a partially observed hidden unit CRF.

strained lattice. We treat this as the gold label se-
quence, and perform the perceptron updates accord-
ingly (Gelfand et al., 2010). Even though this train-
ing algorithm is quite simple, we demonstrate its ef-
fectiveness in our experiments.

2.2.2 Initialization from unlabeled data

Rather than initializing the model parameters ran-
domly, we propose an effective initialization scheme
(in a similar spirit to the pre-training methods in neu-
ral networks) that naturally leverages unlabeled data.

First, we cluster observation types in unlabeled
data and treat the clusters as labels. Then we train
a fully supervised HUCREF on this clustered data to
learn parameters 6 for the interaction between obser-
vations and hidden units ®(z, z) and +y for the inter-
action between hidden units and labels ®(z, y). Fi-
nally, for task/domain specific training, we discard
~ and use the learned 6 to initialize the algorithm in
Figure 2. We hypothesize that if the clusters are non-
trivially correlated to the actual labels, we can cap-
ture the interaction between observations and hidden
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units in a meaningful way.

3 Mining Click Log Data

We propose using search click logs which consist
of queries and their corresponding web documents.
Clicks are an implicit signal for related entities and
information in the searched document. In this work,
we will assume that the web document is structured
and generated from an underlying database. Due
to the structured nature of the web, this is not an
unrealistic assumption (see Adamic and Huberman
(2002) for discussion). Such structural regularities
make obtaining annotated queries for learning a se-
mantic slot tagger almost cost-free.

As an illustration of how to project annotation,
consider Figure 3, where we present an example
taken from queries about video games. In the fig-
ure, the user queries are connected to a structured
document via a click log, and then the document is
parsed and stored in a structured format. Then anno-
tation types are projected to linked queries through
structural alignment. In the following subsections
we describe each step in our log mining approach in
detail.

3.1 Click Logs

Web search engines keep a record of search queries,
clicked document and URLs which reveal the user
behavior. Such records are proven to be useful in
improving the quality of web search. We focus on
utilizing query-to-URL click logs that are essentially
a mapping from queries to structured web docu-
ments. In this work, we use a year’s worth of query
logs (from July 2013 to June 2014) at a commercial
search engine. We applied a simple URL normaliza-
tion procedure to our log data including trimming
and removal of prefixes, e.g. “www”.

3.2 Parsing Structured Web Document

A simple wrapper induction algorithm described in
Kushmerick (1997) is applied for parsing web docu-
ments. Although it involves manually engineering a
rule-based parser and is therefore website-specific, a
single wrapper often generates large amounts of data
for large structured websites, for example IMDB.
Furthermore, it is very scalable to large quantities of
data, and the cost of writing such a rule-based sys-
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Figure 3: An example illustrating annotation projection via click-log and wrapper induction.

tem is typically much lower than the annotation cost
of queries.

Figure 4 shows the statistics of parsed web docu-
ments on 24 domains with approximately 500 tem-
plate rules. One of the chosen domains in our ex-
periment, Music, has over 130 million documents
parsed by our approach.

3.3 Annotation Projection via Structural
Alignment

We now turn to the annotation projection step where
structural alignment is used to transfer type annota-
tion from structured data to queries. Note that this is
different from the word-based or phrase-based align-
ment scenario in machine translation since we need
to align a word sequence to a type-value pair.

Let us assume that we are given the user query as
a word sequence, w = wi, Wy, ..., w, and a set of
structured data, s = {s1,S2,...,Sm}, where s; is
a pair of slot-type and value. We define a measure-
ment of dissimilarity between word tokens and slots,
dist(w;, sj) = 1 — sim(wj, sj) where sim(-,-) is
cosine similarity over character trigrams of w; and
sj. Next we construct a n-by-n score matrix S of
which element is max; dist(wy ¢, s;) meaning that
a score of the most similar type-value s; and a seg-
ment {¢'...t} where 1 < ¢ < ¢t < n. Finally,
given this approximate score matrix S, we use a dy-
namic programming algorithm to find the optimal
segments to minimize the objective function:

T(t) = rtpirtlT(t’)S(t’, t).

Our approach results in a large amount of high-
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quality partially-labeled data: 314K, 1.2M, and
1.1M queries for the Game, Movie and Music do-
main, respectively.

4 Experiments

To test the effectiveness of our approach, we per-
form experiments on a suite of three entertainment
domains for slot tagging: queries about movies, mu-
sic, and games. For each domain, we have two types
of data: engineered data and log data. Engineered
data is a set of synthetic queries to mimic the be-
havior of users. This data is created during devel-
opment at which time no log data is available. Log
data is a set of queries created by actual users us-
ing deployed spoken dialogue systems: thus it is di-
rectly transcribed from users’ voice commands with
automatic speech recognition (ASR). In general we
found log data to be fairly noisy, containing many
ASR and grammatical errors, whereas engineered
data consisted of clean, well-formed text.

Not surprisingly, synthetic queries in engineered
data are not necessarily representative of real queries
in log data since it is difficult to accurately simu-
late what users’ queries will be before a fully func-
tioning system is available and real user data can
be gathered. Hence this setting can greatly benefit
from weakly-supervised learning methods such as
ours since it is critical to learn from new incoming
log data. We use search engine log data to project
lattice constraints for weakly supervised learning.

In this setup, a user issues a natural language
query to retrieve movies, music titles, games and/or
information there of. For instance, a user could say
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Figure 4: Statistics of structured web documents. The vertical axis shows the number of documents (in millions); the

horizontal axis shows the web domain types.

“play the latest batman movie” or “find beyonce’s
music”. Our slot sequence tagger is trained with
variants of CRF using lexical features, gazetteers,
Brown clusters and context words. The domains
consist of 35 slot types for movies, 25 for music and
24 for games. Slot types correspond to both named
entities (e.g., game name, music title, movie name)
as well as more general categories (genre, media
type, description). Table 1 shows the size of the
datasets used in our experiments.

’ Domains ‘ Training ‘ Test ‘

games 32017 | 5508
movies 48173 7074
music 46377 8890

Table 1: Labeled data set size for games, movies and mu-
sic domains partitioned into training and test set.

Domains Engineered‘ Log ‘ Diff. ‘

games 89.63 68.58 | 21.05
movies 88.67 74.21 | 14.45
music 88.77 37.13 | 51.64
AVG. 89.02 59.97 | 29.05

Table 2: The difference in F1 performance of CRF mod-
els trained only on engineered data but tested on both en-
gineered and log data.

&9

4.1 Discrepancy between Engineered Data and
Log Data

To empirically highlight the need for learning from
real user queries, we first train a standard CRF on
the (fully labeled) engineered data and test it on the
log data. We have manually annotated some log data
for evaluation purposes. For features in the CRF, we
use n-grams, gazetteer, and clusters. The clusters
were induced from a large body of unlabeled data
which consist of log data and click log data. Table 2
shows the F1 scores in this experiment. They indi-
cate that a model fully supervised with engineered
data performs very poorly on log data. The differ-
ence between the scores within engineered data and
the scores in log data is very large (29.05 absolute
F1).

4.2 Experiments with CRF Variants

Our main contribution is to leverage search log data
to improve slot tagging in spoken dialogue systems.
In this section, we assume that we have no log data
in training slot taggers.!

For parameter estimation, both CRFs and
POCRFs employ L-BFGS, while POHUCREF uses

'In practice, this assumption is not necessarily true because
a deployed system can benefit from actual user logs. However,
this controlled setting allows us to show the benefits of employ-
ing web search click log data.



Domains ‘ games ‘ music ‘ movies ‘ AVG. ‘ ’ Domain ‘ CRF ‘ HUCRF | HUCRF+
CRF 74.21 | 37.13 | 68.58 | 59.97 alarm 91.79 | 91.79 91.96
POCRF 77.23 | 4455 | 76.89 | 66.22 calendar 87.60 | 87.65 88.21
POHCRF | 7893 | 46.81 | 76.46 | 67.40 communication | 91.84 | 92.49 92.80
POHCRF+ | 79.28 | 47.35 | 78.33 | 68.32 note 87.72 | 88.48 88.72
) ondevice 89.37 | 90.14 90.64
3;?:d3():n;l:il§sFtle§e;£0f(r)r;a3;eaOf variants of CRF across places 38.02 38.64 88.99
' reminder 87.72 | 89.21 89.72
weather 96.93 | 97.38 97.63
average perceptron. We did not see a significant dif- AVG. 90.12 | 90.75 91.08

ference between perceptron and LBFGS in accuracy,
but perceptron is faster and thus favorable for train-
ing complex HUCRF models. We used 100 as the
maximum iteration count and 1.0 for the L2 regular-
ization parameter. The number of hidden variables
per token is set to 300. The same features described
in the previous section are used here.

We perform experiments with the following CRF
variants (see Section 2):

e CRF: A fully supervised linear-chain CRF
trained with manually labeled engineered sam-
ples.

e POCRF: A npartially observed CRF of
Téackstrom et al. (2013) trained with both
manually labeled engineered samples and click
logs.

e POHUCREF: A partially observed hidden unit
CREF (Figure 2) trained with both manually la-
beled engineered samples and click logs.

o POHUCRF+: POHUCRF with pre-training.

Table 3 summarizes the performance of these
CREF variants. All results were tested on log data
only. A standard CRF without click log data yields
59.97% of F1 on average. By using click log data,
POCREF consistently improves F1 scores across do-
mains, resulting into 66.22% F1 measure. Our
model POHUCRF achieves extra gains on games
and music, achieving 67.4% F1 measure on aver-
age. Finally, the pre-training approach yields signif-
icant additional gains across all domains, achieving
68.32% average performance. Overall we achieve
a relative error reduction of about 21% over vanilla
CREFs.
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Table 4: Performance comparison between HUCRF and
HUCREF with pre-training.

4.3 Weakly-Supervised Learning without
Projected Annotations via Pre-Training

We also present experiments within Cortana per-
sonal assistant domain where the click log data is
not available. The amount of training data we used
was from 50K to 100K across different domains and
the test data was from 5k to 10k. In addition, the
unlabeled log data were used and their amount was
from 100k to 200k.

In this scenario, we have access to both engi-
neered and log data to train a model. However, we
do not have access to web search click log data. The
goal of these experiments is to show the effective-
ness of the HUCRF and pre-training method in the
absence of weakly supervised labels projected via
click logs. Table 4 shows a series of experiments on
eight domains.

For all domains other than alarm, using non-linear
CRF (HUCREF) improve performance from 90.12%
t0 90.75% on average. Initializing HUCRF with pre-
training (HUCRF+) boosts the performance up to
91.08%, corresponding to a 10% decrease in error
relative to a original CRF. Notably in the weather
and reminder domains, we have relative error re-
duction of 23 and 16%, respectively. We speculate
that pretraining is helpful because it provides bet-
ter initialization for training HUCREF: initialization
is important since the training objective of HUCRF
is non-convex.

In general, we find that HUCRF delivers better
performance than standard CRF: when the training
procedure is initialized with pretraining (HUCRF+),
it improves further.



5 Related Work

Previous works have explored weakly supervised
slot tagging using aligned labels from a database as
constraints. Wu and Weld (2007) train a CRF on
heuristically annotated Wikipedia articles with rela-
tions mentioned in their structured infobox data. Li
et al. (2009) applied a similar strategy incorporating
structured data projected through click-log data as
both heuristic labels and additional features. Knowl-
edge graphs and search logs have been also consid-
ered as extra resources (Liu et al., 2013; El-Kahky et
al., 2014; Anastasakos et al., 2014; Sarikaya et al.,
2014; Marin et al., 2014).

Distant supervision methods (Mintz et al., 2009;
Riedel et al., 2010; Surdeanu et al., 2012; Agichtein
and Gravano, 2000) learn to extract relations from
text using weak supervision from related structured
data sources such as Freebase or Wikipedia. These
approaches rely on named entity recognition as a
pre-processing step to identify text spans corre-
sponding to candidate slot values. In contrast, our
approach jointly segments and predicts slots.

Works on weakly supervised POS tagging are
also closely related to ours (Toutanova and Johnson,
2007; Haghighi and Klein, 2006). Tackstrom et al.
(2013) investigate weakly supervised POS tagging
in low-resource languages, combining dictionary
constraints and labels projected across languages via
parallel corpora and automatic alignment. Our work
can be seen as an extension of their approach to the
structured-data projection setup presented by Li et
al. (2009). A notable component of our extension is
that we introduce a training algorithm for learning a
hidden unit CRF of Maaten et al. (2011) from par-
tially labeled sequences. This model has a set of bi-
nary latent variables that introduce non-linearity by
mediating between observations and labels.

6 Conclusions

In this paper, we applied weakly-supervised learn-
ing approach for slot tagging, projecting annota-
tions from structured data to user queries by lever-
aging click log data. We extended the Tackstrom
et al. (2013) model to nonlinear CRFs by introduc-
ing latent variables and applying a novel pre-training
methodology. The proposed techniques provide an
effective way to leverage incomplete and ambiguous

91

annotations from large amounts of naturally occur-
ring click log data. All of our improvements taken
together result in a 21% error reduction over vanilla
CREFs trained on engineered data used during system
development.
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Abstract

Character n-grams have been identified as
the most successful feature in both single-
domain and cross-domain Authorship Attribu-
tion (AA), but the reasons for their discrimina-
tive value were not fully understood. We iden-
tify subgroups of character n-grams that corre-
spond to linguistic aspects commonly claimed
to be covered by these features: morpho-
syntax, thematic content and style. We evaluate
the predictiveness of each of these groups in
two AA settings: a single domain setting and
a cross-domain setting where multiple topics
are present. We demonstrate that character n-
grams that capture information about affixes
and punctuation account for almost all of the
power of character n-grams as features. Our
study contributes new insights into the use of
n-grams for future AA work and other classifi-
cation tasks.

1 Introduction

Authorship Attribution (AA) tackles the problem of
determining who, among a set of authors, wrote the
document at hand. AA has relevant applications rang-
ing from plagiarism detection (Stamatatos, 2011) to
Forensic Linguistics, such as identifying authorship
of threatening emails or malicious code. Applied ar-
eas such as law and journalism can also benefit from
authorship attribution, where identifying the true au-
thor of a piece of text (such as a ransom note) may
help save lives or catch the offenders.

We know from state of the art research in AA that
the length of the documents and the number of po-
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tential candidate authors have an important effect on
the accuracy of AA approaches (Moore, 2001; Luy-
ckx and Daelemans, 2008; Luyckx and Daelemans,
2010). We can also point out the most common fea-
tures that have been used successfully in AA work,
including: bag-of-words (Madigan et al., 2005; Sta-
matatos, 2006), stylistic features (Zheng et al., 2006;
Stamatatos et al., 2000), and word and character level
n-grams (Kjell et al., 1994; Keselj et al., 2003; Peng
et al., 2003; Juola, 2006).

The utility of bag-of-words features is well under-
stood: they effectively capture correlations between
authors and topics (Madigan et al., 2005; Kaster et al.,
2005). The discriminative value of these features is
thus directly related to the level of content divergence
among authors and among train and test sets.

The utility of stylistic features is also well under-
stood: they model author preferences for the use
of punctuation marks, emoticons, white spaces, and
other traces of writing style. Such preferences are
less influenced by topic, and directly reflect some of
the unique writing patterns of an author.

Character n-grams are the single most successful
feature in authorship attribution (Koppel et al., 2009;
Frantzeskou et al., 2007; Koppel et al., 2011), but the
reason for their success is not well understood. One
hypothesis is that character n-grams carry a little bit
of everything: lexical content, syntactic content, and
even style by means of punctuation and white spaces
(Koppel et al., 2011). While this argument seems
plausible, it falls short of a rigorous explanation.

In this paper, we investigate what in the make-up

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 93-102,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



of these small units of text makes them so power-
ful. Our goal is two-fold: on the one hand we want
to have a principled understanding of character n-
grams that will inform their use as features for AA
and other tasks; on the other hand we want to make
AA approaches more accessible to non-experts so
that, for example, they could be acceptable pieces of
evidence in criminal cases.
The research questions we aim to answer are:

* Are all character n-grams equally important?
For example, are the prefix of ‘there’, the suffix
of ‘breathe’ and the whole word ‘the’ all equiv-
alent? More generally, are character n-grams
that capture morpho-syntactic information, the-
matic information and style information equally
important?

* Are the character n-grams that are most impor-
tant for single-domain settings also the most
important for cross-domain settings? Which
character n-grams are more like bag-of-words
features (which tend to track topics), and which
are more like stylistic features (which tend to
track authors)?

* Do different classifiers agree on the importance
of the different types of character n-grams? Are
some character n-grams consistently the best
regardless of the learning algorithm?

* Are some types of character n-grams irrelevant
in AA tasks? Are there categories of character
n-grams that we can exclude and get similar
(or better) performance than using all n-grams?
If there are, are they the same for both single-
domain and cross-domain AA settings?

Our study shows that using the default bag-of-
words representation of char n-grams results in col-
lapsing sequences of characters that correspond to
different linguistic aspects, and that this yields subop-
timal prediction performance. We further show that
we can boost accuracy by loosing some categories of
n-grams. Char n-grams closely related to thematic
content can be completely removed without loss of
accuracy, even in cases where the train and test sets
have the same topics represented, a counter-intuitive
argument. Given the wide spread use of char n-grams
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in text classification tasks, our findings have signifi-
cant implications for future work in related areas.

2 Categories of Character /NV-grams

To answer our research questions and explore the
value of character n-grams in authorship attribution,
we propose to separate character n-grams into ten dis-
tinct categories. Unlike previous AA work where all
character n-grams were combined into a single bag-
of-n-grams, we evaluate each category separately
to understand its behavior and effectiveness in AA
tasks. These categories are related to the three linguis-
tic aspects hypothesized to be represented by char-
acter n-grams: morpho-syntax (as represented by
affix-like n-grams), thematic content (as represented
by word-like n-grams) and style (as represented by
punctuation-based n-grams). We refer to these three
aspects as super categories (SC).

The following sections describe the different types
of n-grams. We use the sentence in Table 1 as a
running example for the classes and in Table 2 we
show the resulting n-grams in that sentence. For ease
of understanding, we replace spaces in n-grams with
underscores ().

The actors wanted to see if the pact seemed like an
old-fashioned one.

Table 1: Example sentence to demonstrate the selection
of different n-gram categories.

2.1 Affix n-grams

Character n-grams are generally too short to repre-
sent any deep syntax, but some of them can reflect
morphology to some degree. In particular, we con-
sider the following affix-like features by looking at
n-grams that begin or end a word:

prefix A character n-gram that covers the first n
characters of a word that is at least n + 1 charac-
ters long.

suffix A character n-gram that covers the last n char-
acters of a word that is at least n + 1 characters
long.

space-prefix A character n-gram that begins with a
space.



SC|Category Character n-grams
prefix act wan pac see lik fas
suffix ors ted act med ike ned
o - -
& ey 20 Sl
he. rs_ ed. to. ee_ if. ct_ ke_
space-suffix
an_
whole-word | The see the old one
B | mid-word ct.o .tor ant nte eem eme ash shi
g io ion one
multi-word 152 SV dt os ei ft epts
dl no do
v |beg-punct |-fa
g |mid-punct |d-f
=~ end-punct |1d- ne.

Table 2: Example of the n-gram categories (n = 3) for the
sentence in Table 1. The first column represents the super
category (SC). The n-grams that appear in more than one
category are in bold.

space-suffix A character n-gram that ends with a
space.

2.2 Word n-grams

While character n-grams are often too short to cap-
ture entire words, some types can capture partial
words and other word-relevant tokens. We consider
the following such features:

whole-word A character n-gram that covers all char-
acters of a word that is exactly n characters long.

mid-word A character n-gram that covers n charac-
ters of a word that is at least n + 2 characters
long, and that covers neither the first nor the last
character of the word.

multi-word N-grams that span multiple words,
identified by the presence of a space in the mid-
dle of the n-gram.

2.3 Punctuation n-grams

The main stylistic choices that character n-grams can
capture are the author’s preferences for particular
patterns of punctuation. The following features char-
acterize punctuation by its location in the n-gram.

beg-punct A character n-gram whose first character
is punctuation, but middle characters are not.
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mid-punct A character n-gram with at least one
punctuation character that is neither the first
nor the last character.

end-punct A character n-gram whose last character
is punctuation, but middle characters are not.

The above ten categories are intended to be dis-
joint, so that a character n-gram belongs to exactly
one of the categories. For n-grams that contain both
spaces and punctuation, we first categorize by punc-
tuation and then by spaces. For example, ‘e,_’ is
assigned to the mid-punct category, not the space-
suffix category.

We have observed that in our data almost 80% of
the n-grams in the punct-beg and punct-mid cate-
gories contain a space. This tight coupling of punc-
tuation and spaces is due to the rules of English or-
thography: most punctuation marks require a space
following them. The 20% of n-grams that have punc-
tuation but no spaces correspond mostly to the ex-
ceptions to this rule: quotation marks, mid-word hy-
phens, etc. An interesting experiment for future work
would be to split out these two types of punctuation
into separate feature categories.

3 Datasets

We consider two corpora, a single-domain corpus,
where there is only one topic that all authors are
writing about, and a multi-domain corpus, where
there are multiple different topics. The latter allows
us to test the generalization of AA models, by testing
them on a different topic from that used for training.

The first collection is the CCAT topic class, a sub-
set of the Reuters Corpus Volume 1 (Lewis et al.,
2004). Although this collection was not gathered
for the goal of doing authorship attribution studies,
previous work has reported results for AA with 10
and 50 authors (Stamatatos, 2008; Plakias and Sta-
matatos, 2008; Escalante et al., 2011). We refer to
these as CCAT_10 and CCAT_50, respectively. Both
CCAT_10 and CCAT_50 belong to CCAT category
(about corporate/industrial news) and are balanced
across authors, with 100 documents sampled for each
author. Manual inspection of the dataset revealed
that some of the authors in this collection consis-
tently used signatures at the end of documents. Also,
we noticed some writers use quotations a lot. Con-



Corpus | #authors #docs . #sentences | #words
/author/topic /doc /doc
CCAT_10 10 100 19 425
CCAT_50 50 100 19 415
Guardianl 13 13 53 1034
Guardian2 13 65 10 207

Table 3: Some statistics about the datasets.

sidering these parts of text for measuring the fre-
quencies of character n-grams is not a good idea
because signatures provide direct clues about the au-
thorship of document and quotations do not reflect
the author’s writing style. Therefore, to clean up the
CCAT collection, we preprocessed it to remove sig-
natures and quotations from each document. Since
the CCAT collection contains documents belonging
to only corporate/industrial topic category, this will
be our single-domain collection.

The other collection consists of texts published
in The Guardian daily newspaper written by 13 au-
thors in four different topics (Stamatatos, 2013). This
dataset contains opinion articles on the topics: World,
U.K., Society, and Politics. Following prior work,
to make the collection balanced across authors, we
choose at most ten documents per author for each of
the four topics. We refer to this corpus as Guardian].
We also consider a variation of this corpus that makes
it more challenging but that more closely matches
realistic scenarios of forensic investigation that deal
with short texts such as tweets, SMS, and emails.
We chunk each of the documents by sentence bound-
aries into five new short documents. We refer to this
corpus as Guardian2.

Table 3 shows some of the statistics of the CCAT
and Guardian corpora and Table 4 presents some of
the top character n-grams for each category (taken
from an author in the Guardian data, but the top n-
grams look qualitatively similar for other authors).

4 Experimental Settings

We performed various experiments using different
categories of character n-grams. We chose n=3 since
our preliminary experiments found character 3-grams
to be more effective than other higher level character
n-grams. For each category, we considered only
those 3-grams that occur at least five times in the
training documents.

The performance of different authorship attribu-
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SC | Category N-grams
prefix tha the wit con hav
E | suffix ing hat ion ent ers
S <
® | space-prefix | th _of _to _an _in
space-suffix |he_ of. to_ ed. ng_
~ | whole-word | the and for was not
é mid-word tio ati iti men ent
multi-word |et sa tt st nt
v |beg-punct |..T ’s. ,t ,a .1
§ |mid-punct [s,_ e_ s._ es y’s
2
end-punct |es, on. on, es. e,

Table 4: Top character 3-grams in each category for author
’Catherine Bennet’ in the cross-domain training data.

tion models was measured in terms of accuracy. In
the single-domain CCAT experiments, accuracy was
measured using the train/test partition of prior work.
In the cross-domain Guardian experiments, accuracy
was measured by considering all 12 possible pairings
of the 4 topics, treating one topic as training data and
the other as testing data, and averaging accuracy over
these 12 scenarios. This ensured that in the cross-
domain experiments, the topics of the training data
were always different from that of the test data.

We trained support vector machine (SVM) clas-
sifiers using the Weka implementation (Witten and
Frank, 2005) with default parameters. We also ran
some comparative experiments with the Weka im-
plementation of naive Bayes classifiers and the Lib-
SVM implementation of SVMs. In the results below,
when performance of a single classifier is presented,
it is the result of Weka’s SVM, which generally gave
the best performance. When performance of other
classifiers are presented, the classifiers are explicitly
indicated.

5 Experimental Results and Evaluation

In this section, we present various results on author-
ship attribution tasks using both single as well as
cross-domain datasets. We will explore character n-
grams in depth and try to understand why they are so
effective in discriminating authors.

5.1 Which n-gram Categories are Most

Author-Discriminative?

After breaking character n-grams into ten disjoint cat-
egories, we empirically illustrate what categories are



affix word punct
Dataset | prefix | suffix | space-prefix | space-suffix || multi-word | whole-word | mid-word || beg-punct | mid-punct | end-punct
CCAT_10| 74.6 | 71.0 71.2 66.0 65.8 48.0 70.0 60.2 35.4 56.2
CCAT.50 | 61.9 | 59.6 57.0 51.0 51.2 354 61.0 39.7 12.4 36.5

(a) Single Domain

affix word punct
Dataset | prefix | suffix | space-prefix | space-suffix || multi-word | whole-word | mid-word || beg-punct | mid-punct | end-punct
Guardianl | 41.6 | 36.7 419 38.1 322 38.1 37.8 43.5 46.1 37.3
Guardian2 | 31.0 | 26.9 29.7 27.0 23.2 26.8 27.2 33.6 33.5 24.5

(b) Cross-Domain

Table 5: Accuracy of AA classifiers trained on each of the character n-gram categories. The top four accuracies for

each dataset are in bold.

Single Domain (CCAT)

101 " cearo |
g| |—= CCATS50 |
6 - -
4 [ |
2 [ |

1 ! ! ! ! ! ! ! ! !
prefix suffix space- space- multi- whole- mid- beg- mid- end-
prefix suffix word word word punct punct punct
Cross Domain (Guardian)
7 I I T T |

10 —— Guardian1
8| |—=— Guardian2 |
6 [ |
4 | 4.5 B

3.2
2 [ |
| | | | | | | | | |
prefix suffix space- space- multi- whole- mid- beg- mid- end-
prefix suffix word word word punct punct punct

Figure 1: Average rank of the performance of each n-gram category on the single-domain CCAT tasks (top) and the

cross-domain Guardian tasks (bottom).

most discriminative. Table 5 shows the accuracy of
each type of n-gram for each of the different corpora.

Table 5(a) shows that the top four categories for
single-domain AA are: prefix, suffix, space-prefix,
and mid-word. These four categories have the best
performance on both CCAT_10 and CCAT_50. In
contrast, Table 5(b) shows that the top four categories
for cross-domain AA are: prefix, space-prefix, beg-
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punct, and mid-punct.

For both single-domain and cross-domain AA, pre-
fix and space-prefix are strong features, and are gen-
erally better than the suffix features, perhaps because
authors have more control over prefixes in English,
while suffixes are often obligatory for grammatical
reasons. For cross-domain AA, beg-punct and mid-
punct are the top features, likely because an author’s



use of punctuation is consistent even when the topic
changes. For single-domain AA, mid-word was also
a good feature, probably because it captured lexical
information that correlates with authors’ preferences
towards writing about specific topics.

Figure 1 shows an alternate view of these results,
graphing the rank of each n-gram type. For com-
puting the rank, the accuracies of the ten different
n-gram type classifiers are sorted in decreasing or-
der and ranked from 1 to 10 respectively with ties
getting the same rank. For the Guardian corpora,
the average rank of each n-gram category was com-
puted by averaging its rank across the 12 possible
test/train cross-domain combinations. In both of the
single-domain CCAT corpora, the classifier based on
prefix n-grams had the top accuracy (rank 1), and
the classifier based on mid-punct had the worst accu-
racy (rank 10). In both of the cross-domain Guardian
corpora, on the other hand, mid-punct was among
the top-ranked n-gram categories. This suggests that
punctuation features generalize the best across topic,
but if AA is more of a topic classification task (as
in the single-domain CCAT corpora), then punctua-
tion adds little over other features that more directly
capture the topic.

Since our cross-domain datasets are small, we
performed a small number of planned comparisons
using a two-tailed t-test over the accuracies on the
Guardian] and Guardian2 corpora. We found that in
both corpora, the best punctuation category (punct-
mid) is better than the best word category (whole-
word) with p < 0.001. In the Guardian2 corpus, the
best affix category (space-prefix) is also better than
the best word category (whole-word) with p < 0.05,
but this does not hold in the Guardianl corpus
(p = 0.14). Also, we observed that in both Guardian1
and Guardian?2 datasets, both punct-mid and space-
prefix are better than multi-word (p < 0.01).

Overall, we see that affix n-grams are generally
effective in both single-domain and cross-domain
settings, punctuation n-grams are effective in cross-
domain settings, and mid-word is the only effective
word n-gram, and only in the single-domain setting.

5.2 Do Different Classifiers Agree on the
Importance of Different n-gram Types?

The previous experiments have shown, for example,
that prefix n-grams are universally predictive in AA
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Comparison CCAT | Guardian
Weka SVM vs LibSVM 0.93 0.81
Weka SVM vs Naive Bayes | 0.73 0.57
LibSVM vs Naive Bayes 0.77 0.44

Table 6: Spearman’s rank correlation coefficient (p) for
each pair of classifiers on the single-domain (CCAT) and
cross-domain (Guardian) settings.

tasks, that mid-word n-grams are good predictors in
single-domain settings, and that beg-punct n-grams
are good predictors in cross-domain settings. But
are these facts about the n-gram types themselves,
or are these results only true for the specific SVM
classifiers we trained?

To see whether certain types of n-grams are funda-
mentally good or bad, regardless of the classifier, we
compare performance of the different n-gram types
for three classifiers: Weka SVM classifiers (as used
in our other experiments), LibSVM classifiers and
Weka’s naive Bayes classifiers'. Figure 2 shows the
n-gram category rankings for all these classifiers” for
both the single-domain CCAT and the cross-domain
Guardian settings.

Across the different classifiers, the pattern of fea-
ture rankings are similar. Table 6 shows the Spear-
man’s rank correlation coefficient (p) for the per-n-
gram-type accuracies of each pair of classifiers. We
observe fairly high correlations, with p above 0.70
for all single-domain pairings, and between 0.44 and
0.81 for cross-domain pairings.

As in Section 5.1, prefix and space-prefix are
among the most predictive n-gram types. In the
single-domain settings, we again see that suffix and
mid-word are also highly predictive, while in the
cross-domain settings, we again see that beg-punct
and mid-punct are highly predictive. These results all
confirm that some types of n-grams are fundamen-
tally more predictive than others, and our results are
not specific to the particular type of classifier used.

"Weka SVM and LibSVM are both support vector machine
classifiers, but Weka uses Platt’s sequential minimal optimization
algorithm while LibSVM uses working set selection with sec-
ond order information. The result is that they achieve different
performance on our AA tasks.

2We also tried a decision tree classifier, C4.5 (J48) from
WEKA, and it produced similar patterns (not shown).
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Figure 2: Average rank of the performance of each n-gram category across different types of classifiers on the
single-domain CCAT task (top) and the cross-domain Guardian task (bottom).

5.3 Are Some Character N-grams Irrelevant?

In the previous sections, we have seen that some
types of character n-grams are more predictive than
others - affix n-grams performed well in both single
domain and cross-domain settings and punctuation
n-grams performed well in cross-domain settings.
In general, word n-grams were not as predictive as
other types of n-grams (with the one exception be-
ing mid-word n-grams in the single domain setting).
Given this poor performance of word n-grams, a
natural question is: could we exclude these features
entirely and achieve similar performance?

Our goal then is to compare a model trained on
affix n-grams and punct n-grams against a model
trained on “all” n-grams. We consider two definitions
of “all”:

all-untyped The traditional approach to extracting
n-grams where n-gram types are ignored (e.g.,
‘the’ as a whole word is no different from ‘the’
in the middle of a word)
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all-typed The approach discussed in this paper,
where n-grams of different types are dis-
tinguished (equivalent to the set of all af-
fix+punct+word n-grams).

We compare these models trained on all the n-grams
to our affix+punct model.

Table 7 shows this analysis. For either definition
of “all”, the model that discards all word features
achieves performance as high or higher than the
model with all of the features, and does so with only
about two thirds of the features. This is not too sur-
prising in the cross-domain Guardian tasks, where
the word n-grams were among the worst features.
On the single-domain CCAT tasks this result is more
surprising, since we have discarded the mid-word
n-grams, which was one of the best single-domain
n-gram types. This indicates that whatever informa-
tion mid-word is capturing it is also being captured
in other ways via affix and punct n-grams. Of all
1024 possible combinations of features, we tried a



all-untyped | all-typed | affix+punct
Dataset Acc] N |Acc| N |Acc| N
CCAT_10 |77.8| 8245|77.2| 9715|78.8 | 5474
CCAT 50 [69.2|14461|69.1|17062|69.3 | 9966
Guardianl |55.6 | 5689|53.6| 6966 | 57.0 | 3822
Guardian2 | 459 | 5687|45.6| 6965 |48.0 | 3820

Table 7: Results of excluding word n-grams, compared
to using all n-grams, either in the traditional approach
(untyped n-grams) or in the approach of this paper (typed
n-grams). Accuracy (Acc) and the number of features
(N in italics) are reported for each classifier. The best
accuracy for each dataset is in bold.

number of different combinations and were unable to
identify one that outperformed affix+punct. Overall,
this experiment gives compelling evidence that affix
and punct n-grams are more important than word
n-grams.

6 Analysis

We did a manual exploration of our datasets. In
our cross-domain dataset, the character 3-gram ‘sti’
shows up as both prefix and mid-word. All 13 authors
use ‘sti’ frequently as a mid-word n-gram in words
such as institution, existing, justice, and distinction.
For example:

* The government’s story is that the existing war-
heads might be deteriorating.

* For all the justice of many of his accusations,
the result is occasionally as dreadful as his title
suggests.

But only six authors use ‘sti’ as a prefix, in examples
like:

* Their mission was to convince tourists that
Britain was still open for business.

* There aren’t even any dead people on it, since
by the very act of being dead and still famous,
they assert their long-term impact.

Thus ‘sti’ as a prefix is predictive of authorship even
though ‘sti” as a mid-word n-gram is not. Notably, un-
der the traditional untyped bag-of-n-grams approach,
both versions of ‘sti’ would have been treated the
same, and this discriminative power would have been
lost.
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To use old-fashioned language, she is motherly - a
plump, rosy-cheeked woman of Kent, whom nature
seemed to have created to raise children.

se old-fa
plump, rosy-ch
secmed to have cr

ed la ge, she is mo ly-a
ed woman of Kent, whom re
ed to raise chi ren

Table 8: Example sentence showing the opacity of each
character. Darkness of character is determined by the
number of categories it belongs to (lowest=lighter, high-
est=darkest color). Categories in word are discarded.

As already demonstrated in Section 5 that af-
fix+punct features perform better than using all the
features, we would like to use an example from our
dataset to visualize the text when features in SC word
are discarded. Out of seven categories in affix and
punct, we computed in how many of them each char-
acter belongs to, three being the maximum possible
value. Therefore, we show each character with differ-
ent opacity level depending on number of categories
it belongs to: zero will get white color (word related
n-grams), one will get 33% black, two will get 67%
black, and three will get 100% black. In Table 8,
we show an example sentence before (first row of
Table 8) and after (second row of Table 8) showing
the opacity level of each character. It is clear that
the darkest characters are those around the punctua-
tion characters and those around spaces are second
darkest, while the lightest (with 0% darkness) are the
ones in the middle of long words. This gives us an
idea about the characters in a text that are important
for AA tasks.

7 Discussion

Various hypotheses have been put forth to explain the
“black magic” (Kestemont, 2014) behind the success
of character n-gram features in authorship attribution.
Kestemont (2014) conjectured that their utility was
in capturing function words and morphology. Koppel
et al. (2009) suggested that they were capturing topic
information in single domain settings, and style and
syntactic information in cross-domain settings. Our
study provides empirical evidence for testing these
claims. We did indeed find that the ability of char-
acter n-grams to capture morphology is useful, as
reflected in the high prediction performance of af-



fix n-grams in both single-domain and cross-domain
settings. And we found that word n-grams (captur-
ing topic information) were useful in single domain
settings, while puct n-grams (capturing style infor-
mation) were useful in cross-domain settings. We
further found that word n-grams are unnecessary,
even in single-domain settings. Models based only
on affix and punct n-grams performed as well as
models with all n-grams regardless of whether it was
a single-domain or cross-domain authorship attribu-
tion task.

Our findings on the value of selecting n-grams ac-
cording to the linguistic aspect they represent may
also be beneficial in other classification tasks where
character n-grams are commonly used. Promising
tasks are those related to the stylistic analysis of texts,
such as native language identification, document sim-
ilarity and plagiarism detection.

Morphologically speaking, English is a poor lan-
guage. The fact that we identified significant differ-
ences in performance by selecting n-gram categories
that are related to affixation in this poorly inflected
language suggests that we may find even larger dif-
ferences in performance in morphologically richer
languages. We leave this research question for future
work.
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Abstract

Convolutional neural network (CNN) is a neu-
ral network that can make use of the inter-
nal structure of data such as the 2D structure
of image data. This paper studies CNN on
text categorization to exploit the 1D structure
(namely, word order) of text data for accurate
prediction. Instead of using low-dimensional
word vectors as input as is often done, we
directly apply CNN to high-dimensional text
data, which leads to directly learning embed-
ding of small text regions for use in classifi-
cation. In addition to a straightforward adap-
tation of CNN from image to text, a sim-
ple but new variation which employs bag-of-
word conversion in the convolution layer is
proposed. An extension to combine multiple
convolution layers is also explored for higher
accuracy. The experiments demonstrate the
effectiveness of our approach in comparison
with state-of-the-art methods.

1 Introduction

Text categorization is the task of automatically as-
signing pre-defined categories to documents writ-
ten in natural languages. Several types of text cat-
egorization have been studied, each of which deals
with different types of documents and categories,
such as topic categorization to detect discussed top-
ics (e.g., sports, politics), spam detection (Sahami et
al., 1998), and sentiment classification (Pang et al.,
2002; Pang and Lee, 2008; Maas et al., 2011) to de-
termine the sentiment typically in product or movie
reviews. A standard approach to text categorization
is to represent documents by bag-of-word vectors,
namely, vectors that indicate which words appear in
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the documents but do not preserve word order, and
use classification models such as SVM.

It has been noted that loss of word order caused
by bag-of-word vectors (bow vectors) is particularly
problematic on sentiment classification. A simple
remedy is to use word bi-grams in addition to uni-
grams (Blitzer et al., 2007; Glorot et al., 2011; Wang
and Manning, 2012). However, use of word n-grams
with n > 1 on text categorization in general is not
always effective; e.g., on topic categorization, sim-
ply adding phrases or n-grams is not effective (see,
e.g., references in (Tan et al., 2002)).

To benefit from word order on text categoriza-
tion, we take a different approach, which employs
convolutional neural networks (CNN) (LeCun et al.,
1986). CNN is a neural network that can make use
of the internal structure of data such as the 2D struc-
ture of image data through convolution layers, where
each computation unit responds to a small region of
input data (e.g., a small square of a large image).
We apply CNN to text categorization to make use of
the ID structure (word order) of document data so
that each unit in the convolution layer responds to a
small region of a document (a sequence of words).

CNN has been very successful on image clas-
sification; see e.g., the winning solutions of Im-
ageNet Large Scale Visual Recognition Challenge
(Krizhevsky et al., 2012; Szegedy et al., 2014; Rus-
sakovsky et al., 2014).

On text, since the work on token-level applica-
tions (e.g., POS tagging) by Collobert et al. (2011),
CNN has been used in systems for entity search, sen-
tence modeling, word embedding learning, product
feature mining, and so on (Xu and Sarikaya, 2013;
Gao et al., 2014; Shen et al., 2014; Kalchbrenner et
al., 2014; Xu et al., 2014; Tang et al., 2014; Weston

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 103-112,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



et al., 2014; Kim, 2014). Notably, in many of these
CNN studies on text, the first layer of the network
converts words in sentences to word vectors by ta-
ble lookup. The word vectors are either trained as
part of CNN training, or fixed to those learned by
some other method (e.g., word2vec (Mikolov et al.,
2013)) from an additional large corpus. The latter is
a form of semi-supervised learning, which we study
elsewhere. We are interested in the effectiveness
of CNN itself without aid of additional resources;
therefore, word vectors should be trained as part of
network training if word vector lookup is to be done.

A question arises, however, whether word vector
lookup in a purely supervised setting is really useful
for text categorization. The essence of convolution
layers is to convert text regions of a fixed size (e.g.,
“am so happy” with size 3) to feature vectors, as de-
scribed later. In that sense, a word vector learning
layer is a special (and unusual) case of convolution
layer with region size one. Why is size one appro-
priate if bi-grams are more discriminating than uni-
grams? Hence, we take a different approach. We di-
rectly apply CNN to high-dimensional one-hot vec-
tors; i.e., we directly learn embedding' of text re-
gions without going through word embedding learn-
ing. This approach is made possible by solving the
computational issue’ through efficient handling of
high-dimensional sparse data on GPU, and it turned
out to have the merits of improving accuracy with
fast training/prediction and simplifying the system
(fewer hyper-parameters to tune). Our CNN code
for text is publicly available on the internet’.

We study the effectiveness of CNN on text cate-
gorization and explain why CNN is suitable for the
task. Two types of CNN are tested: seq-CNN is a
straightforward adaptation of CNN from image to
text, and bow-CNN is a simple but new variation of
CNN that employs bag-of-word conversion in the
convolution layer. The experiments show that seq-
CNN outperforms bow-CNN on sentiment classi-

"'We use the term ‘embedding’ loosely to mean a structure-
preserving function, in particular, a function that generates low-
dimensional features that preserve the predictive structure.

2CNN implemented for image would not handle sparse data
efficiently, and without efficient handling of sparse data, convo-
lution over high-dimensional one-hot vectors would be compu-
tationally infeasible.

3riejohmson .com/cnn_download.html
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Figure 1: Convolutional neural network.

Figure 2: Convolution layer for image. Each computation
unit (oval) computes a non-linear function o (W -r¢(x) +b) of
a small region r(x) of input image x, where weight matrix W
and bias vector b are shared by all the units in the same layer.

fication, vice versa on topic classification, and the
winner generally outperforms the conventional bag-
of-n-gram vector-based methods, as well as previ-
ous CNN models for text which are more complex.
In particular, to our knowledge, this is the first work
that has successfully used word order to improve
topic classification performance. A simple exten-
sion that combines multiple convolution layers (thus
combining multiple types of text region embedding)
leads to further improvement. Through empirical
analysis, we will show that CNN can make effec-
tive use of high-order n-grams when conventional
methods fail.

2 CNN for document classification

We first review CNN applied to image data and then
discuss the application of CNN to document classi-
fication tasks to introduce seq-CNN and bow-CNN.

2.1 Preliminary: CNN for image

CNN is a feed-forward neural network with convo-
lution layers interleaved with pooling layers, as il-
lustrated in Figure 1, where the top layer performs
classification using the features generated by the lay-
ers below. A convolution layer consists of several
computation units, each of which takes as input a
region vector that represents a small region of the
input image and applies a non-linear function to it.
Typically, the region vector is a concatenation of
pixels in the region, which would be, for example,



75-dimensional if the region is 5 x 5 and the number
of channels is three (red, green, and blue). Concep-
tually, computation units are placed over the input
image so that the entire image is collectively cov-
ered, as illustrated in Figure 2. The region stride
(distance between the region centers) is often set to
a small value such as 1 so that regions overlap with
each other, though the stride in Figure 2 is set larger
than the region size for illustration.

A distinguishing feature of convolution layers
is weight sharing. Given input X, a unit associ-
ated with the /-th region computes o(W - ry(x) +
b), where ry;(x) is a region vector representing
the region of x at location ¢, and o is a pre-
defined component-wise non-linear activation func-
tion, (e.g., applying o(x) = max(z,0) to each vec-
tor component). The matrix of weights W and the
vector of biases b are learned through training, and
they are shared by the computation units in the same
layer. This weight sharing enables learning useful
features irrespective of their location, while preserv-
ing the location where the useful features appeared.

We regard the output of a convolution layer as an
‘image’ so that the output of each computation unit
is considered to be a ‘pixel’ of m channels where
m is the number of weight vectors (i.e., the number
of rows of W) or the number of neurons. In other
words, a convolution layer converts image regions
to m-dim vectors, and the locations of the regions
are inherited through this conversion.

The output image of the convolution layer is
passed to a pooling layer, which essentially shrinks
the image by merging neighboring pixels, so that
higher layers can deal with more abstract/global in-
formation. A pooling layer consists of pooling units,
each of which is associated with a small region
of the image. Commonly-used merging methods
are average-pooling and max-pooling, which respec-
tively compute the channel-wise average/maximum
of each region.

2.2 CNN for text

Now we consider application of CNN to text data.
Suppose that we are given a document D =
(w1, wa, .. .) with vocabulary V. CNN requires vec-
tor representation of data that preserves internal lo-
cations (word order in this case) as input. A straight-
forward representation would be to treat each word
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as a pixel, treat D as if it were an image of |D| x 1
pixels with | V| channels, and to represent each pixel
(i.e., each word) as a |V/|-dimensional one-hot vec-
tor*. As a running toy example, suppose that vocab-
ulary V' = { “don’t”, “hate”, “I”, “it”, “love” } and
we associate the words with dimensions of vector
in alphabetical order (as shown), and that document
D=“T love it”. Then, we have a document vector:

x=1[00100[00001/00010]" .

2.2.1 seq-CNN for text

As in the convolution layer for image, we repre-
sent each region (which each computation unit re-
sponds to) by a concatenation of the pixels, which
makes p|V'|-dimensional region vectors where p is
the region size fixed in advance. For example, on
the example document vector x above, with p = 2
and stride 1, we would have two regions “I love” and
“love it” represented by the following vectors:

0 ]don't 0 Jdon’t
0 hate 0 hate
1 I 0 I
0 it 0 it
0 love 1 | love
ro(x) = | — ri(x)=| —
0 |don't 0 |[don’t
0 hate 0 | hate
0 I 0 I
0 it 1 it
| 1 |love | 0 | love

The rest is the same as image; the text region vec-
tors are converted to feature vectors, i.e., the con-
volution layer learns to embed text regions into low-
dimensional vector space. We call a neural net with
a convolution layer with this region representation
seq-CNN (‘seq’ for keeping sequences of words) to
distinguish it from bow-CNN, described next.

2.2.2 bow-CNN for text

A potential problem of seq-CNN however, is that
unlike image data with 3 RGB channels, the number
of ‘channels’ |V| (size of vocabulary) may be very
large (e.g., 100K), which could make each region
vector ry(x) very high-dimensional if the region size

4 Alternatively, one could use bag-of-letter-n-gram vectors
as in (Shen et al., 2014; Gao et al., 2014) to cope with out-of-
vocabulary words and typos.



p is large. Since the dimensionality of region vec-
tors determines the dimensionality of weight vec-
tors, having high-dimensional region vectors means
more parameters to learn. If p|V| is too large, the
model becomes too complex (w.r.t. the amount of
training data available) and/or training becomes un-
affordably expensive even with efficient handling of
sparse data; therefore, one has to lower the dimen-
sionality by lowering the vocabulary size |V'| and/or
the region size p, which may or may not be desir-
able, depending on the nature of the task.

An alternative we provide is to perform bag-
of-word conversion to make region vectors |V|-
dimensional instead of p|V'|-dimensional; e.g., the
example region vectors above would be converted
to:

0 ]don’t 0 ]don’t

0 | hate 0 | hate
rox)=1 1| I ri(x)=10 I

0 it 1 it

1 | love 1 | love

With this representation, we have fewer param-
eters to learn. Essentially, the expressiveness
of bow-convolution (which loses word order only
within small regions) is somewhere between seq-
convolution and bow vectors.

2.2.3 Pooling for text

Whereas the size of images is fixed in image ap-
plications, documents are naturally variable-sized,
and therefore, with a fixed stride, the output of a con-
volution layer is also variable-sized as shown in Fig-
ure 3. Given the variable-sized output of the convo-
lution layer, standard pooling for image (which uses
a fixed pooling region size and a fixed stride) would
produce variable-sized output, which can be passed
to another convolution layer. To produce fixed-sized
output, which is required by the fully-connected top
layer®, we fix the number of pooling units and dy-
namically determine the pooling region size on each
data point so that the entire data is covered without
overlapping.

In the previous CNN work on text, pooling is
typically max-pooling over the entire data (i.e., one

>In this work, the top layer is fully-connected (i.e., each neu-
ron responds to the entire data) as in CNN for image. Alterna-
tively, the top layer could be convolutional so that it can receive
variable-sized input, but such CNN would be more complex.

106

love This| lsnt what] I expectedJ'

()
Figure 3: Convolution layer for Varlable-sized text.

pooling unit associated with the whole text). The dy-
namic k-max pooling of (Kalchbrenner et al., 2014)
for sentence modeling extends it to take the k largest
values where £ is a function of the sentence length,
but it is again over the entire data, and the operation
is limited to max-pooling. Our pooling differs in that
it is a natural extension of standard pooling for im-
age, in which not only max-pooling but other types
can be applied. With multiple pooling units associ-
ated with different regions, the top layer can receive
locational information (e.g., if there are two pooling
units, the features from the first half and last half of
a document are distinguished). This turned out to be
useful (along with average-pooling) on topic classi-
fication, as shown later.

2.3 CNN vs. bag-of-n-grams

Traditional methods represent each document en-
tirely with one bag-of-n-gram vector and then ap-
ply a classifier model such as SVM. However, since
high-order n-grams are susceptible to data sparsity,
use of a large n such as 20 is not only infeasible
but also ineffective. Also note that a bag-of-n-gram
represents each n-gram by a one-hot vector and ig-
nores the fact that some n-grams share constituent
words. By contrast, CNN internally learns embed-
ding of text regions (given the consituent words as
input) useful for the intended task. Consequently,
a large n such as 20 can be used especially with the
bow-convolution layer, which turned out to be useful
on topic classification. A neuron trained to assign a
large value to, e.g., “I love” (and a small value to “I
hate”) is likely to assign a large value to “we love”
(and a small value to “we hate”) as well, even though
“we love” was never seen during training. We will
confirm these points empirically later.

2.4 Extension: parallel CNN

We have described CNN with the simplest network
architecture that has one pair of convolution and
pooling layers. While this can be extended in sev-
eral ways (e.g., with deeper layers), in our experi-
ments, we explored parallel CNN, which has two or
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Figure 4: CNN with two convolution layers in parallel.

more convolution layers in parallel®, as illustrated in
Figure 4. The idea is to learn multiple types of em-
bedding of small text regions so that they can com-
plement each other to improve model accuracy. In
this architecture, multiple convolution-pooling pairs
with different region sizes (and possibly different re-
gion vector representations) are given one-hot vec-
tors as input and produce feature vectors for each
region; the top layer takes the concatenation of the
produced feature vectors as input.

3 Experiments

We experimented with CNN on two tasks, topic clas-
sification and sentiment classification. Detailed in-
formation for reproducing the results is available on
the internet along with our code.

3.1 CNN

We fixed the activation function to rectifier o(x) =
max(z,0) and minimized square loss with Lo reg-
ularization by stochastic gradient descent (SGD).
We only used the 30K words that appeared most
frequently in the training set; thus, for example, in
seq-CNN with region size 3, a region vector is 90K
dimensional. Out-of-vocabulary words were repre-
sented by a zero vector. On bow-CNN, to speed up
computation, we used variable region stride so that a
larger stride was taken where repetition’ of the same
region vectors can be avoided by doing so. Padding®
size was fixed to p — 1 where p is the region size.

SSimilar architectures have been used for image. Kim
(2014) used it for text, but it was on top of a word vector con-
version layer.

"For example, if we slide a window of size 3 over “* * foo
* *” where “*” is out of vocabulary, a bag of “foo” will be
repeated three times with stride fixed to 1.

8 As is commonly done, to the beginning and the end of each
document, special words that are treated as unknown words
(and converted to zero vectors instead of one-hot vectors) were
added as ‘padding’. The purpose is to equally treat the words at
the edge and words in the middle.
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We used two techniques commonly used with
CNN on image, which typically led to small per-
formance improvements. One is dropout (Hinton
et al., 2012) optionally applied to the input to the
top layer. The other is response normalization as in
(Krizhevsky et al., 2012), which in our case scales
the output of the pooling layer z at each location by
multiplying (1 + |z|?)~1/2.

3.2 Baseline methods

For comparison, we tested SVM with the linear ker-
nel and fully-connected neural networks (see e.g.,
Bishop (1995)) with bag-of-n-gram vectors as in-
put. To experiment with fully-connected neural nets,
as in CNN, we minimized square loss with Ly reg-
ularization and optional dropout by SGD, and ac-
tivation was fixed to rectifier. To generate bag-of-
n-gram vectors, on topic classification, we first set
each component to log(z + 1) where z is the word
frequency in the document and then scaled them to
unit vectors, which we found always improved per-
formance over raw frequency. On sentiment classi-
fication, as is often done, we generated binary vec-
tors and scaled them to unit vectors. We tested three
types of bag-of-n-gram: bowl with n € {1}, bow2
with n € {1,2}, and bow3 with n € {1,2,3};
that is, bow1 is the traditional bow vectors, and with
bow3, each component of the vectors corresponds to
either uni-gram, bi-gram, or tri-gram of words.
We used SVMlight” for the SVM experiments.

NB-LM We also tested NB-LM, which first ap-
peared (but without performance report'® ) as NB-
SVM in WM12 (Wang and Manning, 2012) and
later with a small modification produced perfor-
mance that exceeds state-of-the-art supervised meth-
ods on IMDB (which we experimented with) in
MMRB14 (Mesnil et al., 2014). We experimented
with the MMRBI14 version, which generates bi-
nary bag-of-n-gram vectors, multiplies the com-
ponent for each n-gram f; with log(P(f;|Y =
1)/P(fi]Y = —1)) (NB-weight) where the prob-
abilities are estimated using the training data,
and does logistic regression training. We used
MMRB14’s software!! with a modification so that

http://svmlight.joachims.org/

10WM12 instead reported the performance of an ensemble of

NB and SVM as it performed better.
"https://github.com/mesnilgr/nbsvm



the regularization parameter can be tuned on devel-
opment data.

3.3 Model selection

For all the methods, the hyper-parameters such
as net configurations and regularization parameters
were chosen based on the performance on the devel-
opment data (held-out portion of the training data),
and using the chosen hyper-parameters, the models
were re-trained using all the training data.

3.4 Data, tasks, and data preprocessing

IMDB: movie reviews The IMDB dataset (Maas
et al., 2011) is a benchmark dataset for sentiment
classification. The task is to determine if the movie
reviews are positive or negative. Both the training
and test sets consist of 25K reviews. For preprocess-
ing, we tokenized the text so that emoticons such as
“:-)” are treated as tokens and converted all the char-
acters to lower case.

Elec: electronics product reviews Elec consists
of electronic product reviews. It is part of a large
Amazon review dataset (McAuley and Leskovec,
2013). We chose electronics as it seemed to be very
different from movies. Following the generation of
IMDB (Maas et al., 2011), we chose the training set
and the test set so that one half of each set consists
of positive reviews and the other half is negative, re-
garding rating 1 and 2 as negative and 4 and 5 as
positive, and that the reviewed products are disjoint
between the training set and test set. Note that to
extract text from the original data, we only used the
text section, and we did not use the summary sec-
tion. This way, we obtained a test set of 25K reviews
(same as IMDB) and training sets of various sizes.
The training and test sets are available on the inter-
net!2. Data preprocessing was the same as IMDB.

RCV1: topic categorization RCV1 is a corpus
of Reuters news articles as described in LYRL04
(Lewis et al., 2004). RCV1 has 103 topic categories
in a hierarchy, and one document may be associated
with more than one topic. Performance on this task
(multi-label categorization) is known to be sensitive
to thresholding strategies, which are algorithms ad-
ditional to the models we would like to test. There-
fore, we also experimented with single-label cate-

lzriejohnson .com/cnn_data.html
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label #train #test #class
Table 2 | single | 15,564 49,838 55
Fig. 6 | single | varies 49,838 55
Table 4 | multi | 23,149 | 781,265 103

Table 1: RCV1 data summary.

gorization to assign one of 55 second-level topics
to each document to directly evaluate models. For
this task, we used the documents from a one-month
period as the test set and generated various sizes of
training sets from the documents with earlier dates.
Data sizes are shown in Table 1. As in LYRL04, we
used the concatenation of the headline and text ele-
ments. Data preprocessing was the same as IMDB
except that we used the stopword list provided by
LYRLO04 and regarded numbers as stopwords.

3.5 Performance results

Table 2 shows the error rates of CNN in comparison
with the baseline methods. The first thing to note
is that on all the datasets, the best-performing CNN
outperforms the baseline methods, which demon-
strates the effectiveness of our approach.

To look into the details, let us first focus on CNN
with one convolution layer (seq- and bow-CNN in
the table). On sentiment classification (IMDB and
Elec), the configuration chosen by model selection
was: region size 3, stride 1, 1000 weight vectors, and
max-pooling with one pooling unit, for both types
of CNN; seq-CNN outperforms bow-CNN, as well
as all the baseline methods except for one. Note
that with a small region size and max-pooling, if a
review contains a short phrase that conveys strong
sentiment (e.g., “A great movie!”), the review could
receive a high score irrespective of the rest of the re-
view. It is sensible that this type of configuration is
effective on sentiment classification.

By contrast, on topic categorization (RCV1), the
configuration chosen for bow-CNN by model selec-
tion was: region size 20, variable-stride>2, average-
pooling with 10 pooling units, and 1000 weight vec-
tors, which is very different from sentiment classifi-
cation. This is presumably because on topic clas-
sification, a larger context would be more predic-
tive than short fragments (— larger region size),
the entire document matters (— the effectiveness of
average-pooling), and the location of predictive text
also matters (— multiple pooling units). The last



point may be because news documents tend to have
crucial sentences (as well as the headline) at the be-
ginning. On this task, while both seq and bow-CNN
outperform the baseline methods, bow-CNN outper-
forms seq-CNN, which indicates that in this setting
the merit of having fewer parameters is larger than
the benefit of keeping word order in each region.

Now we turn to parallel CNN. On IMDB, seq2-
CNN, which has two seq-convolution layers (region
size 2 and 3; 1000 neurons each; followed by one
unit of max-pooling each), outperforms seq-CNN.
With more neurons (3000 neurons each; Table 3) it
further exceeds the best-performing baseline, which
is also the best previous supervised result. We pre-
sume the effectiveness of seq2-CNN indicates that
the length of predictive text regions is variable.

The best performance 7.67 on IMDB was ob-
tained by ‘seq2-bown-CNN’, equipped with three
layers in parallel: two seq-convolution layers (1000
neurons each) as in seq2-CNN above and one layer
(20 neurons) that regards the entire document as one
region and represents the region (document) by a
bag-of-n-gram vector (bow3) as input to the compu-
tation unit; in particular, we generated bow3 vectors
by multiplying the NB-weights with binary vectors,
motivated by the good performance of NB-LM. This
third layer is a bow-convolution layer!? with one re-
gion of variable size that takes one-hot vectors with
n-gram vocabulary as input to learn document em-
bedding. The seq2-bown-CNN for Elec in the ta-
ble is the same except that the regions sizes of seq-
convolution layers are 3 and 4. On both datasets,
performance is improved over seq2-CNN. The re-
sults suggest that what can be learned through these
three layers are distinct enough to complement each
other. The effectiveness of the third layer indicates
that not only short word sequences but also global
context in a large window may be useful on this task;
thus, inclusion of a bow-convolution layer with n-
gram vocabulary with a large fixed region size might
be even more effective, providing more focused con-
text, but we did not pursue it in this work.

Baseline methods Comparing the baseline meth-
ods with each other, on sentiment classification, re-
ducing the vocabulary to the most frequent n-grams

1t can also be regarded as a fully-connected layer that takes
bow3 vectors as input.
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methods IMDB | Elec | RCV1
SVM bow3 (30K) 10.14 | 9.16 | 10.68
SVM bow1 (all) 11.36 | 11.71 | 10.76
SVM bow?2 (all) 9.74 | 9.05 | 10.59
SVM bow3 (all) 942 | 871 | 10.69
NN bow?3 (all) 9.17 | 8.48 | 10.67
NB-LM bow3 (all) 813 | 8.11 | 13.97
bow-CNN 8.66 | 8.39 9.33
seq-CNN 839 | 7.64 9.96
seq2-CNN 8.04 | 7.48 -

seq2-bown-CNN 7.67 | 7.14 -

Table 2: Error rate (%) comparison with bag-of-n-gram-
based methods. Sentiment classification on IMDB and
Elec (25K training documents) and 55-way topic cate-
gorization on RCV1 (16K training documents). ‘(30K)’
indicates that the 30K most frequent n-grams were used,
and ‘(all)’ indicates that all the n-grams (up to SM) were
used. CNN used the 30K most frequent words.

SVM bow?2 [WM12] 10.84 -
WRRBM-+bow [DAL12] 10.77 -
NB+SVM bow2 [WM12] 8.78 ensemble
NB-LM bow3 [MMRB14] | 8.13 -
Paragraph vectors [LM14] 7.46 | unlabeled data
seq2-CNN (3K x2) [Ours] 7.94 -
seq2-bown-CNN [Ours] 7.67 -

Table 3: Error rate (%) comparison with previous best
methods on IMDB.

notably hurt performance (also observed on NB-LM
and NN) even though some reduction is a common
practice. Error rates were clearly improved by ad-
dition of bi- and tri-grams. By contrast, on topic
categorization, bi-grams only slightly improved ac-
curacy, and reduction of vocabulary did not hurt per-
formance. NB-LM is very strong on IMDB and
poor on RCV1,; its effectiveness appears to be data-
dependent, as also observed by WM12.

Comparison with state-of-the-art results As
shown in Table 3, the previous best supervised result
on IMDB is 8.13 by NB-LM with bow3 (MMRB14),
and our best error rate 7.67 is better by nearly 0.5%.
(Le and Mikolov, 2014) reports 7.46 with the semi-
supervised method that learns low-dimensional vec-
tor representations of documents from unlabeled
data. Their result is not directly comparable with our
supervised results due to use of additional resource.
Nevertheless, our best result rivals their result.

We tested bow-CNN on the multi-label topic
categorization task on RCV1 to compare with



models micro-F | macro-F
LYRLO04’s best SVM 81.6 60.7
bow-CNN 84.0 64.8

Table 4: RCV1 micro-averaged and macro-averaged F-
measure results on multi-label task with LYRLO04 split.

LYRLO04. We used the same thresholding strategy as
LYRLO4. As shown in Table 4, bow-CNN outper-
forms LYRLO04’s best results even though our data
preprocessing is much simpler (no stemming and no
tf-idf weighting).

Previous CNN We focus on the sentence classifi-
cation studies due to its relation to text categoriza-
tion. Kim (2014) studied fine-tuning of pre-trained
word vectors to produce input to parallel CNN. He
reported that performance was poor when word vec-
tors were trained as part of CNN training (i.e., no ad-
ditional method/corpus). On our tasks, we were also
unable to outperform the baselines with this type of
model. Also, with our approach, a system is sim-
pler with one fewer layer — no need to tune the di-
mensionality of word vectors or meta-parameters for
word vector learning.

Kalchbrenner et al. (2014) proposed complex
modifications of CNN for sentence modeling. No-
tably, given word vectors € R, their convolution
with m feature maps produces for each region a ma-
trix € R4 (instead of a vector € R™ as in stan-
dard CNN). Using the provided code, we found that
their model is too resource-demanding for our tasks.
On IMDB and Elec'* the best error rates we ob-
tained by training with various configurations that
fit in memory for 24 hours each on GPU (cf. Fig 5)
were 10.13 and 9.37, respectively, which is no bet-
ter than SVM bow2. Since excellent performances
were reported on short sentence classification, we
presume that their model is optimized for short sen-
tences, but not for text categorization in general.

Performance dependency CNN training is
known to be expensive, compared with, e.g., linear
models — linear SVM with bow3 on IMDB only
takes 9 minutes using SVMlIight (single-core) on a
high-end Intel CPU. Nevertheless, with our code on
GPU, CNN training only takes minutes (to a few
hours) on these datasets shown in Figure 5.

“We could not train adequate models on RCV1 on either
Tesla K20 or M2070 due to memory shortage.
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Finally, the results with training sets of various
sizes on Elec and RCV1 are shown in Figure 6.

3.6 Why is CNN effective?

In this section we explain the effectiveness of CNN
through looking into what it learns from training.

First, for comparison, we show the n-grams that
SVM with bow3 found to be the most predictive;
i.e., the following n-grams were assigned the 10
largest weights by SVM with binary features on Elec
for the negative and positive class, respectively:

e poor, useless, returned, not worth, return, worse,
disappointed, terrible, worst, horrible

e great, excellent, perfect, love, easy, amazing, awe-
some, no problems, perfectly, beat

Note that, even though SVM was also given bi- and
tri-grams, the top 10 features chosen by SVM with
binary features are mostly uni-grams; furthermore,
the top 100 features (50 for each class) include 28
bi-grams but only four tri-grams. This means that,
with the given size of training data, SVM still heav-
ily counts on uni-grams, which could be ambiguous,
and cannot fully take advantage of higher-order n-
grams. By contrast, NB-weights tend to promote n-
grams with a larger n; the 100 features that were as-
signed the largest NB-weights are 7 uni-, 33 bi-, and
60 tri-grams. However, as seen above, NB-weights
do not always lead to the best performance.



N1 | completely useless ., return policy .

N2 | it won’t even, but doesn’t work

N3 | product is defective, very disappointing !
N4 | is totally unacceptable, is so bad

NS5 | was very poor, it has failed

P1 | works perfectly !, love this product

P2 | very pleased !, super easy to, i am pleased
P3 | ’m so happy, it works perfect, is awesome !
P4 | highly recommend it, highly recommended !
P5 | am extremely satisfied, is super fast

Table 5: Examples of predictive text regions in the train-
ing set.

In Table 5, we show some of text regions learned
by seq-CNN to be predictive on Elec. This net has
one convolution layer with region size 3 and 1000
neurons; thus, embedding by the convolution layer
produces a 1000-dim vector for each region, which
(after pooling) serves as features in the top layer
where weights are assigned to the 1000 vector com-
ponents. In the table, Ni/P: indicates the component
that received the i-th highest weight in the top layer
for the negative/positive class, respectively. The ta-
ble shows the text regions (in the training set) whose
embedded vectors have a large value in the corre-
sponding component, i.e., predictive text regions.

Note that the embedded vectors for the text re-
gions listed in the same row are close to each other
as they have a large value in the same component.
That is, Table 5 also shows that the proximity of
the embedded vectors tends to reflect the proximity
in terms of the relations to the target classes (pos-
itive/negative sentiment). This is the effect of em-
bedding, which helps classification by the top layer.

With the bag-of-n-gram representation, only the
n-grams that appear in the training data can partici-
pate in prediction. By contrast, one strength of CNN
is that n-grams (or text regions of size n) can con-
tribute to accurate prediction even if they did not
appear in the training data, as long as (some of)
their constituent words did, because input of embed-
ding is the constituent words of the region. To see
this point, in Table 6 we show the text regions from
the test set, which did not appear in the training
data, either entirely or partially as bi-grams, and yet
whose embedded features have large values in the
heavily-weighted (predictive) component thus con-
tributing to the prediction. There are many more of
these, and we only show a small part of them that
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were unacceptably bad, is abysmally bad, were uni-
versally poor, was hugely disappointed, was enor-
mously disappointed, is monumentally frustrating,
are endlessly frustrating

best concept ever, best ideas ever, best hub ever,
am wholly satisfied, am entirely satisfied, am in-
credicbly satisfied, 'm overall impressed, am aw-
fully pleased, am exceptionally pleased, 'm entirely
happy, are acoustically good, is blindingly fast,

Table 6: Examples of text regions that contribute to
prediction. They are from the fest set, and they did not
appear in the training set, either entirely or partially as
bi-grams.

fit certain patterns. One noticeable pattern is (be-
verb, adverb, sentiment adjective) such as “am en-
tirely satisfied” and ‘““m overall impressed”. These
adjectives alone could be ambiguous as they may be
negated. To know that the writer is indeed “satis-
fied”, we need to see the sequence “am satisfied”,
but the insertion of adverb such as “entirely” is very
common. “best X ever’ is another pattern that a dis-
criminating pair of words are not adjacent to each
other. These patterns require tri-grams for disam-
biguation, and seq-CNN successfully makes use of
them even though the exact tri-grams were not seen
during training, as a result of learning, e.g., “am X
satisfied” with non-negative X (e.g., “am very satis-
fied”, “am so satisfied”) to be predictive of the pos-
itive class through training. That is, CNN can ef-
fectively use word order when bag-of-n-gram-based
approaches fail.

4 Conclusion

This paper showed that CNN provides an alternative
mechanism for effective use of word order for text
categorization through direct embedding of small
text regions, different from the traditional bag-of-n-
gram approach or word-vector CNN. With the paral-
lel CNN framework, several types of embedding can
be learned and combined so that they can comple-
ment each other for higher accuracy. State-of-the-art
performances on sentiment classification and topic
classification were achieved using this approach.
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Abstract

Syntactic linearization algorithms take a bag
of input words and a set of optional con-
straints, and construct an output sentence and
its syntactic derivation simultaneously. The
search problem is NP-hard, and the current
best results are achieved by bottom-up best-
first search. One drawback of the method
is low efficiency; and there is no theoretical
guarantee that a full sentence can be found
within bounded time. We propose an alter-
native algorithm that constructs output struc-
tures from left to right using beam-search. The
algorithm is based on incremental parsing al-
gorithms. We extend the transition system so
that word ordering is performed in addition to
syntactic parsing, resulting in a linearization
system that runs in guaranteed quadratic time.
In standard evaluations, our system runs an or-
der of magnitude faster than a state-of-the-art
baseline using best-first search, with improved
accuracies.

1 Introduction

Linearization is the task of ordering a bag of words
into a grammatical and fluent sentence. Syntax-
based linearization algorithms generate a sentence
along with its syntactic structure. Depending on how
much syntactic information is available as inputs, re-
cent work on syntactic linearization can be classified
into free word ordering (Wan et al., 2009; Zhang et
al., 2012; de Gispert et al., 2014), which orders a
bag of words without syntactic constraints, full tree
linearization (He et al., 2009; Bohnet et al., 2010;
Song et al., 2014), which orders a bag of words
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Initial State ([1,[1...n],0)
Final State ([111,4)
Induction Rules:
(0, i8], A)
SHIFT (o11l.5.4)
([olj i, 8,A)
FEAE ol 5, AU (G = 1)
RIGHTARC §[U] .8, 4)

(lolg], 8, AU{j — i})

Figure 1: The arc-standard parsing algorithm.

given a full-spanning syntactic tree, and partial tree
linearization (Zhang, 2013), which orders a bag of
words given some syntactic relations between them
as partial constraints.

The search space for syntactic linearization is
huge. Even with a full syntax tree being available as
constraints, permutation of nodes on each level is an
NP-hard problem. As a result, heuristic search has
been adopted by most previous work, and the best
results have been achieved by a time-constrained
best-first search framework (White, 2004a; White
and Rajkumar, 2009; Zhang and Clark, 2011b; Song
et al., 2014). Though empirically highly accurate,
one drawback of this approach is that there is no
asymptotic upper bound on the time complexity of
finding the first full sentence. As a result, it can take
5-10 seconds to process a sentence, and sometimes
fail to yield a full sentence at timeout. This issue is
more severe for larger bags of words, and makes the
algorithms practically less useful.

We study the effect of an alternative learning
and search framework for the linearization prob-

Human Language Technologies: The 2015 Annual Conference of the North American Chapter of the ACL, pages 113-122,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics
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Figure 2: Example dependency tree.

lem, which has a theoretical upper bound on the
time complexity, and always yields a full sentence in
quadratic time. Our method is inspired by the con-
nection between syntactic linearization and syntactic
parsing: both build a syntactic tree over a sentence,
with the former performing word ordering in addi-
tion to derivation construction. As a result, syntac-
tic linearization can be treated as a generalized form
of parsing, for which there is no input word order,
and therefore extensions to parsing algorithms can
be used to perform linearization.

For syntactic parsing, the algorithm of Zhang and
Nivre (2011) gives competitive accuracies under lin-
ear complexity. Compared with parsers that use dy-
namic programming (McDonald and Pereira, 2006;
Koo and Collins, 2010), the efficient beam-search
system is more suitable for the NP-hard lineariza-
tion task. We extend the parser of Zhang and Nivre
(2011), so that word ordering is performed in addi-
tion to syntactic tree construction. Experimental re-
sults show that the transition-based linearization sys-
tem runs an order of magnitude faster than a state-of-
the-art best-first baseline, with improved accuracies
in standard evaluation. Our linearizer is publicly
available under GPL at http://sourceforge.
net/projects/zgen/.

2 Transition-Based Parsing

The task of dependency parsing is to find a depen-
dency tree given an input sentence. Figure 2 shows
an example dependency tree, which consists of de-
pendency arcs that represent syntactic relations be-
tween pairs of words. A transition-based depen-
dency parsing algorithm (Nivre, 2008) can be for-
malized as a transition system, S = (C, T, cs,Cy),
where C' is the set of states, 1" is a set of transition
actions, c; is the initial state and C} is a set of ter-
minal states. The parsing process is modeled as an
application of a sequence of actions, transducing the
initial state into a final state, while constructing de-
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Transition o I5) A
0

0 [1 [1...6]

1 SHIFT [1] [2...6]

2 SHIFT [12] [3...6]

3 SHIFT [123] [4...6]

4 SHIFT [1234] [5,6]

5 SHIFT [12345] [6]

6  RIGHTARC [1234] [6] Au{4—5}
7  RIGHTARC [123] [6] AU{3—4}
8  RIGHTARC [12] [6] Au{2— 3}
9 SHIFT [126] [

10 RIGHTARC [I2] (] AU{2 -6}
11 LEFTARC 2] 0 AU{l « 2}

Table 1: arc-standard transition action sequence for
parsing the sentence in Figure 2.

pendency arcs. Each state in the transition system
can be formalized as a tuple (o, 3, A), where o is a
stack that maintains a partial derivation, [ is a buffer
of incoming input words and A is the set of depen-
dency relations that have been built.

Our work is based on the arc-standard algorithm
(Nivre, 2008). The deduction system of the arc-
standard algorithm is shown in Figure 1. In this
system, three transition actions are used: LEFT-
ARC, RIGHTARC and SHIFT. Given a state s =

([l il, [K]3], A),

e LEFTARC builds an arc {j < i} and pops j off
the stack.

e RIGHTARC builds an arc {j — i} and pops 4
off the stack.

e SHIFT removes the front word % from the buffer
(3, and shifts it onto the stack.

In the notations above, 7, j and k are word indices of
an input sentence. The arc-standard system assumes
that each input word has been assigned a part-of-
speech (POS) tag.

The sentence in Figure 2 can be parsed by the
transition sequence shown in Table 1. Given an input
sentence of n words, the algorithm takes 2n tran-
sitions to construct an output, because each word
needs to be shifted onto the stack once and popped
off once before parsing finishes, and all the transi-
tion actions are either shifting or popping actions.



Initial State

Final State (11,0, A)
Induction Rules:
j (J P A)
SHIFT-i-POS T~ T A
(lolj i, p, A)
LEFTARC ([oli], p, AU{j < i})
RIGHTARC ]([ olj i, p,A)

([olg], p, AU{j —i})

Figure 3: Deduction system for transition-based lin-
earization. Indices ¢, 5 do not reflect word order.

3 Transition-Based Linearization

The main difference between linearization and de-
pendency parsing is that the input words are un-
ordered for linearization, which results in an un-
ordered buffer p. At a certain state s = (o, p, A),
any word in the buffer p can be shifted onto the
stack. In addition, unlike a parser, the vanilla lin-
earization task does not assume that input words are
assigned POS. To extend the arc-standard algorithm
for linearization, we incorporate word and POS into
the SHIFT operation, transforming the arc-standard
SHIFT operation to SHIFT-Word-POS, which selects
the word Word from the buffer p, tags it with POS
and shifts it onto the stack. Since the order of words
in an output sentence equals to the order in which
they are shifted onto the stack, word ordering is per-
formed along with the parsing process.

Under such extension, the sentence in Figure
2 can be generated by the transition sequence
(SHIFT-Dr.  Talcott-NP, SHIFT-led-VBD, SHIFT-
of-NP, SHIFT-a team-NP, SHIFT-of-IN, SHIFT-
Harvard University-NP, RIGHTARC, RIGHTARC,
RIGHTARC, SHIFT-.-., RIGHTARC, LEFTARC),
given the unordered bag of words (Dr. Talcott, led,
a team, of, Harvard University, .).

The deduction system for the linearization algo-
rithm is shown in Figure 3. Given an input bag of
n words, this algorithm also takes 2n transition ac-
tions to construct an output, by the same reason as
the arc-standard parser.

3.1 Search and Learning

We apply the learning and search framework of
Zhang and Clark (2011a), which gives state-of-the-
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Algorithm 1: transition-based linearization
Input: C, a set of input syntactic constraints
Output: The highest-scored final state

1 candidates < ([ ], set(1..n),0)

2 agenda < ()

3 fori — 1..2n do

4

5

for s in candidates do
for action in GETPOSSIBLEACTIONS(s,
C)do

6 L agenda < APPLY(s, action)

7 candidates < ToP-K(agenda)
8 | agenda < ()

9 best — BEST(candidates)
10 return best

art transition-based parsing accuracies and runs in
linear time (Zhang and Nivre, 2011). Pseudocode of
the search algorithm is shown in Algorithm 1. It per-
forms beam-search by using an agenda to keep the
k-best states at each incremental step. When decod-
ing starts, the agenda contains only the initial state.
At each step, each state in the agenda is advanced by
applying all possible transition actions (GETPOSSI-
BLEACTIONS), leading to a set of new states. The
k best are selected for the new states, and used to
replace the current states in the agenda, before the
next decoding step starts. Given an input bag of n
words, the process repeats for 2n steps, after which
all the states in the agenda are terminal states, and
the highest-scored state in the agenda is taken for
the final output. The complexity of this algorithm
is n?, because it takes a fixed 2n steps to construct
an output, and in each step the number of possible
SHIFT action is proportional to the size of p.

The search algorithm ranks search hypotheses,
which are sequences of state transitions, by their
scores. A global linear model is used to score search
hypotheses. Given a hypothesis h, its score is calcu-
lated by: .

Score(h) = ®(h) - 6,
where 6 is the parameter vector of the model and
®(h) is the global feature vector of h, extracted by
instantiating the feature templates in Table 2 accord-
ing to each state in the transition sequence.

In the table, Sy represents the first word on the
top of the stack, S; represents the second word on
the top of the stack, w represents a word and p rep-



Unigrams

Sow; Sop; So,1w; So,1p; So,rw; So.rPs
So,12w; So,120; So,r2w; So,r2P;

S1w; S1p; S1,w; S1,ps S1,rw; S1,0p;
S1,12w; S1,12D; S1,r2w; S1,72D;

Bigram

SowSo,1w; SowSo,1p; SopSo,1w; SopSo,ip;
SowSo,rw; SowSo +p; SopSorw; SopSo,rPs
517~U51,1UJ; SleLlp; 511051,1711; 51]951,117;
S1wS1 yw; S1wSy rp; S1pS1,rw; S1pS1,P;
SQ’LUSlUJ; SowSlp; SgpSlw; Sopslp

Trigram

SowSopSo,1w; SowSo, 1 wSo,1p; SowSopSo,ip;
SopS'o,leo,zp; SO@USOPSO,MU; S(]ws(),lws(),rp;
SowSopSo,p; SopSo,rwSo,rp;

S1wS1pSw; S1wS1 wSh ip; S1wS1pS1,ip;
512751,11051,1]9; 5111/51]951,7«111; Slwsl,lwsl,rp;
S1wS1pS1,»p; S1051,,wS1 rD;

Linearizion

Wo; Po; W—-1Wo; P—1Po> W—2W_1Wo; P—2P—-1DP0;
So,1wSo,12w; So,1pS0,12D; So,r2wSo,»w; So,r2DSo,rD;
S1,wS1,12w; S1,1pS1,12D; S1,r2wS1 w; S1,r2DS1,rD;

Table 2: Feature templates.

resent a POS-tag. The feature templates can be clas-
sified into four types: unigram, bigram, trigram and
linearization. The first three types are taken from
the dependency parser of Zhang and Nivre (2011),
which capture context information for Sy, S; and
their modifiers. The original feature templates of
Zhang and Nivre (2011) also contain information of
the front words on the buffer. However, since the
buffer is unordered for linearization, we do not in-
clude these features.

The linearization feature templates are specific
for linearization, and captures surface ngram infor-
mation. Each search state represents a partially lin-
earized sentence. We represents the last word in the
partially linearized sentence as wq and the second
last as w_1.

Given a set of labeled training examples, the av-
eraged perceptron (Collins, 2002) with early update
(Collins and Roark, 2004; Zhang and Nivre, 2011)
is used to train the parameters 6 of the model.

3.2 Input Syntactic Constraints

The use of syntactic constraints to achieve better lin-
earization performance has been studied in previous
work. Wan et al. (2009) employ POS constraints
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Figure 4: Example partial tree. Words in the same
sub dependency trees are grouped by rounded boxes.
Word indices do not specify their orders. Base
phrases (e.g. Dr. Talcott) are treated as single words.

in learning a dependency language model. Zhang
and Clark (2011b) take supertags as constraints to a
CCQG linearizer. Zhang (2013) demonstrates the pos-
sibility of partial-tree linearization, which allows a
whole spectrum of input syntactic constraints. In
practice, input syntactic constraints, including POS
and dependency relations, can be obtained from ear-
lier stage of a generation pipeline, such as lexical
transfer results in machine translation.

It is relatively straightforward to apply input con-
straints to a best-first system (Zhang, 2013), but less
so for beam-search. In this section, we utilize the
input syntactic constraints by letting the information
decide the possible actions for each state, namely
the return value of GETPOSSIBLEACTIONS in Al-
gorithm 1, thus, when input POS-tags and depen-
dencies are given, the generation system can achieve
more specified outputs.

3.2.1 POS Constraints

POS is the simplest form of constraints to the
transition-based linearization system. When the
POS of an input word is given, the POS-tag com-
ponent in SHIFT-Word-POS operation is fixed, and
the number of SHIFT actions for the word is reduced
from the number of all POS to 1.

3.2.2 Partial Tree Constraints

In partial tree linearization, a set of dependency
arcs that form a partial dependency tree is given to
the linearization system as input constraints. Fig-
ure 4 illustrate an example. The search space can
be reduced by ignoring the transition sequences that
do not result in a dependency tree that is consis-
tent with the input constraints. Take the partial
tree in Figure 4 for example. At the state s
([Harvard Universitys), set(1..n)-{5}, 0), it is illegal
to shift the base phrase a feams onto the stack, be-

1



Algorithm 2: GETPOSSIBLEACTIONS for par-
tial tree linearization, where C' is a partial tree

Input: A state s = ([o]j 4], p, A) and partial tree C
Output: A set of possible transition actions 7'

1 if s.o is empty then

2 for k € s.pdo

3 | T« T U(SHIFT, POS, k)

4 else

5 if REDUCABLE(S, i, j, C') then
6 | T« T U (LEFTARC)

7 if REDUCABLE(s, 7, i, C') then
8 | T« T U (RIGHTARC)

9 for k € s.0 do
10 if SHIFTLEGAL(s, k, C') then
1 | T« T U(SHIFT, POS, k)

12 return T’
stack o )
I 4 3] [ 3 1]
S<4
(a) (b)

Figure 5: Two conditions for a valid LEFTARC ac-
tion in partial-tree linearization. The indices corre-
spond to those in Figure 4. A shaded triangle repre-
sents the readily built arcs under a root word.

cause this action will result in a sub-sequence (Har-
vard Universitys, a teams, ofy), which cannot have
the dependency arcs {3 — 4},{4 — 5} by using
arc-standard actions.

Algorithm 3 shows pseudocode of GETPOSSI-
BLEACTIONS when C' is a partial tree. Given a state
([o]j ], p, A) the LEFTARC action builds an
arc {j « i} and pops the word j off the stack.
Since the popped word j cannot be linked to any
words in future transitions, all the descendants of j
should have been processed and removed from the
stack. In addition, constrained by the given partial
tree, the arc {j < i} should be an arc in C' (Fig-
ure 5a), or j should be the root of a sub dependency
tree in C' (Figure 5b). We denote the conditions as
REDUCABLE(s, i, j, C) (lines 5-6). The case for
RIGHTARC is similar to LEFTARC (lines 7-8).

For the SHIFT action, the conditions are more
complex. Due to space limitation, we briefly sketch

S =
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stack o buffer p I L
l A A
,
z B2k
[ s | [3 4
(a) (b)

- 1 3][2 [ 1 3][e 2
() (d)
l k

-

(e)
Figure 6: 5 relations between k and [. The indices
correspond to those in Figure 4. The words in green
boxes must have arcs with k in future transitions.

the SHIFTLEGAL function below. Detailed algo-
rithm pseudocode for SHIFTLEGAL is given in the
supplementing material. For a word k£ in p to be
shifted onto the stack, all the words on the stack
must satisfy certain constraints. There are 5 possi-
ble relations between k and a word [ on the stack.
(1) If [ is a child of k in C' (Figure 6a), all the words
on the stack from [ to the top of the stack should be
reducable to k, because only LEFTARC can be ap-
plied between k and these words in future actions.
(2) If [ is a grand child of k (Figure 6b), no legal
sentence can be constructed if k is shifted onto the
stack. (3) If [ is the parent of k (Figure 6c¢), legal
SHIFTs require all the words on the stack from [ to
the top to be reducable to k. (4) If [ is a grand parent
of k, all the words on the stack from [ to the top will
become descendants of [/ in the output (Figure 6e).
Thus these words must be descendants of [ in C', or
the root of different subdependency trees. (5) If [ is
a siblings of k, we denote a as the least common an-
cestor of k£ and . a will become in the buffer and !
should be a direct child of a. All the words from [
to the top of the stack should be the descendants of
a in the output (Figure 6d), and thus a should have
the same conditions as in (4). Finally, if no word on
the stack is in the same subdependency tree as k in
C, then k can be safely shifted.



Algorithm 3: GETPOSSIBLEACTIONS for full
tree linearization, where C is a full tree

Input: A state s = ([o|j 4], p, A) and gold tree C
Output: A set of possible transition actions 7'

1T« 0
2 if s.o is empty then
3 for k € s.pdo
4 | T — T U (SHIFT, POS, k)
5 else
6 if 35,7 € (DESCENDANTS(7) N s.p) then
7 for j € (DESCENDANTS(7) N s.p) do
8 | T — T U(SHIFT, POS, j)
9 else
10 if {j — i} € C then
11 | T« T U (RIGHTARC)
12 else if {j — i} € C then
13 | T« T U (LEFTARC)
14 else
15 for
k € (SIBLINGS(i) UHEAD(7)) N's.p do
16 | T« T U(SHIFT, POS, k)

17 return T’

3.2.3 Full Tree Constraints

Algorithm 2 can also be used with full-tree con-
straints, which are a special case of partial-tree con-
straints. However, there is a conceptually simpler
algorithm that leverages full-tree constraints. Be-
cause tree linearization is frequently studied in the
literature, we describe this algorithm in Algorithm
3. When the stack is empty, we can freely move
any word in the buffer p onto the stack (line 2-4). If
not all the descendants of the stack top ¢ have been
processed, the next transition actions should move
them onto the stack, so that arcs can be constructed
between ¢ and these words (line 6-8). If all the de-
scendants of ¢ have been processed, the next action
should eagerly build arcs between top two words ¢
and j on the stack (line 10-13). If no arc exists be-
tween ¢ and j, the next action should shift the parent
word of ¢ or a word in ¢’s sibling tree (line 14-16).

4 [Experiments

We follow previous work and conduct experiments
on the Penn Treebank (PTB), using Wall Street Jour-
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Figure 7: Dev. results with different beam sizes.

nal sections 2-21 for training, 22 for development
testing and 23 for final testing. Gold-standard de-
pendency trees are derived from bracketed sentences
in the treebank using Penn2Malt!, and base noun
phrases are treated as a single word (Wan et al.,
2009; Zhang, 2013). The BLEU score (Papineni et
al., 2002) is used to evaluate the performance of lin-
earization, which has been adopted in former liter-
als (Wan et al., 2009; White and Rajkumar, 2009;
Zhang and Clark, 2011b) and recent shared-tasks
(Belz et al., 2011). We use our implementation of
the best-first system of Zhang (2013), which gives
the state-of-the-art results, as the baseline.

4.1 Influence of Beam size

We first study the influence of beam size by per-
forming free word ordering on the development test
data. BLEU score curves with different beam sizes
are shown in Figure 7. From this figure, we can see
that the systems with beam 64 and 128 achieve the
best results. However, the 128-beam system does
not improve the performance significantly (48.2 vs
47.5), but runs twice slower. As a result, we set the
beam size to 64 in the remaining experiments.

4.2 Input Syntactic Constraints

To test the effectiveness of GETPOSSIBLEACTIONS
under different input constraints, we follow Zhang
(2013) and feed different amounts of POS-tags and
dependencies to our transition-based linearization
system. Input syntactic constraints are obtained by
randomly sampling POS and dependencies from the
gold dependency tree. Nine development experi-
ments under different inputs are performed, and the

"http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html



no pos 50% pos all pos no pos 50% pos all pos no pos 50% pos all pos

no dep no dep no dep 50% dep | 50% dep | 50% dep all dep all dep all dep

BL Sp| BL Sp| BL SP| BL Sp| BL SP| BL SP| BL SP| BL SP| BL SP
Z13 ||42.9 4872 |43.4 4856|44.7 4826|50.5 4790 |51.4 4737|52.2 4720|73.3 4600 |74.7 4431|76.3 4218
Ours || 47.5 155|479 119]48.8 774|548 132|552 91|56.2 41|77.8 40|79.1 28|81.1 22

Table 3: Partial-tree linearizion results on the development test set. BL — the BLEU score, SP — number of
milliseconds to order one sentence. Z13 refers to the best-first system of Zhang (2013).

1.000

0.975

0.950

0.925

0.900 —

system
-~ bestfirst
-4&-ours
1
0

|
-

9-117
12-147

15-17 7
18-20 7

21-247]
25-327]
33-164 7

Figure 8: Comparison between transition-based and
best-first systems on surface string brevity.

Precision Recall F
len Z13 ours | Z13 ours | Z13 ours
<5 [[24.63 20.45|14.56 21.82| 18.3 21.11
< 1011520 16.33]10.59 15.88|12.48 16.1
<151/ 10.82 14.73| 9.38 14.08|10.05 14.4
< 30| 8.18 12.54| 826 12.43| 822 12.49

Table 4: Precision, recall and F-score comparison on
different spans lengths.

BLEU scores along with the average time to order
one sentence are shown in Table 3.

With more syntactic information in the input, our
linearization system achieves better performance,
showing that GETPOSSIBLEACTIONS can take ad-
vantage of the input constraints and yield more spec-
ified output. In addition, because input constraints
reduce the search space, the systems with more syn-
tactic information achieve faster decoding speeds. In
comparison with Zhang (2013), the transition-based
system achieves improved accuracies under the set-
tings, and the decoding speed can be over two orders
of magnitude faster (22ms vs. 4218ms). We give
more detailed analysis next.
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4.3 Comparison with Best-First

The beam-search linearizer takes a very differ-
ent search strategy compared with best-first search,
which affects the error distribution. As mentioned
earlier, one problem of best-first is the lack of the-
oretical guarantee on time complexity. As a result,
a time constraint is used and default output can be
constructed when no full output is found (White,
2004b; Zhang and Clark, 2011b). This may result
in incomplete output sentences and intuitively, this
problem is more severe for larger bag of words. In
contrast, the transition-based linearization algorithm
takes |2n| steps to generate a sentence and thus guar-
antees to order all the input words. Figure 8 shows
the results by comparing the brevity scores (i.e. the
number of words in the output divided by the num-
ber of words in reference sentence) on different sizes
of inputs. Best-search can fail to order all the in-
put words even on bags of 9 — 11 words, and the
case is more severe for larger bag of words. On the
other hand, the transition-based method uses all the
input words to generate output and the brevity score
is constant 1. Since the BLEU score consists two
parts: the n-gram precision and brevity, this com-
parison partly explains why the transition-based lin-
earization algorithm achieves higher BLEU scores.

To further compare the difference between the
two systems, we evaluate the qualities of projective
spans, which are dependency treelets. Both systems
build outputs bottom-up by constructing projective
spans, and a break-down of span accuracies against
span sizes shows the effects of the different search
algorithms. The results are shown in Table 4. Ac-
cording to this table, the best-first system tends to
construct smaller spans more precisely, but the re-
call is relatively lower. Overall, higher F-scores are
achieved by the transition-based system.

During the decoding process, the best-first sys-
tem compares spans of different sizes and expands
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Figure 9: Distributions of spans outputted by the
best-first, transition-based systems and the gold
trees.

nopos all pos all pos

nodep nodep alldep
Wan et al. (2009) - 33.7 -
Zhang and Clark (2011b) || - 40.1 -
Zhang et al. (2012) - 43.8 -
Zhang (2013) 44.7 46.8 76.2
This paper 494 50.8 82.3

Table 5: Final results.

those that have higher scores. As a result, the num-
ber of expanded spans do not have a fixed correlation
with the size, and there can be fewer but better small
spans expanded. In contrast, the transition-based
system models transition sequences rather than indi-
vidual spans, and therefore the distribution of spans
of different sizes in each hypothesis resembles that
of the training data. Figure 9 verifies the analysis by
counting the distributions of spans with respect to
the length, in the search algorithms of the two sys-
tems and the gold dependency trees. The distribu-
tion of the transition-based system is closer to that
of gold dependency trees, while the best-first sys-
tem outputs less smaller spans and more longer ones.
This explains the higher precision for the best-first
system on smaller spans.

4.4 Final Results

The final results on the test set of Penn Treebank are
shown in Table 5. Compared with previous studies,
our transition-based linearization system achieves
the best results on all the tests. Table 6 shows some
example output sentences, when there are no input
constraints. For longer sentences, the transition-
based method gives noticeably better results.
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output BL
ref. || There is no asbestos in our products now .
713 || There is no asbestos now in our products . | 43.5
ours || There is now our products in no asbestos . | 17.8
ref. || Previously , watch imports were denied
such duty-free treatment .
Z13 || such duty-free treatment Previously ,|67.6
watch imports were denied .
ours || Previously , watch imports were denied | 100
such duty-free treatment .
ref. || Despite recent declines in yields , investors
continue to pour cash into money funds .
Z13 || continue yields investors pour to recent de- | 20.1
clines in cash , into money funds
ours || Despite recent declines in yields into|67.0
money funds , investors continue to pour
cash .

Table 6: Example outputs.

5 Related Work

The input to practical natural language generation
(NLG) system (Reiter and Dale, 1997) can range
from a bag of words and phrases to a bag of lem-
mas without punctuation (Belz et al., 2011). The
linearization module of this paper can serve as the
final stage in a pipeline when the bag of words and
their optional syntactic information are given. There
has also been work to jointly perform linearization
and morphological generation (Song et al., 2014).

There has been work on linearization with unla-
beled and labeled dependency trees (He et al., 2009;
Zhang, 2013). These methods mostly use greedy or
best-first algorithms to order each tree node. Our
work is different by performing word ordering using
a transition process.

Besides dependency grammar, linearization with
other syntactic grammars, such as CFG and CCG
(White and Rajkumar, 2009; Zhang and Clark,
2011b), has also been studied. In this paper, we
adopt the dependency grammar for transition-based
linearization. However, since transition-based pars-
ing algorithms has been successfully applied to dif-
ferent grammars, including CFG (Sagae et al., 2005)
and CCG (Xu et al., 2014), our linearization method
can be applied to these grammars.



6 Conclusion

We studied transition-based syntactic linearization
as an extension to transition-based parsing. Com-
pared with best-first systems, the advantage of our
transition-based algorithm includes bounded time
complexity, and the guarantee to yield full sen-
tences when given a bag of words. Experimen-
tal results show that our algorithm achieves im-
proved accuracies, with significantly faster decod-
ing speed compared with a state-of-the-art best-first
baseline. We publicly release our code at http:
//sourceforge.net/projects/zgen/.

For future work, we will study the incorporation
of large-scale language models, and the integration
of morphology generation and linearization.
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Abstract

We present a statistical framework to extract
information-rich citation sentences that sum-
marise the main contributions of a scientific
paper. In a first stage, we automatically dis-
cover salient keywords from a paper’s citation
summary, keywords that characterise its main
contributions. In a second stage, exploiting the
results of the first stage, we identify citation
sentences that best capture the paper’s main
contributions. Experimental results show that
our approach using methods rooted in quan-
titative statistics and information theory out-
performs the current state-of-the-art systems
in scientific paper summarisation.

1 Introduction and Motivation

Science is not an isolated endeavour, but benefits
from and expands on the work of others, with more
or less cross fertilisation between disciplines. The
interdependent nature of research has naturally re-
sulted in a network of scientific areas with dense in-
terconnections between related fields. Though re-
search is a highly specialised activity, researchers
find themselves constantly in need to explore the
network further from the core of their research.
Tools that can facilitate understanding the key con-
tributions of papers in those parts of the network be-
ing explored can only prove highly valuable.

As an example of such tools, we focus on an
application that automatically extracts information-
rich sentences describing the main contributions of
a given paper. From which corpus the extraction
could take place? A natural answer is the abstract of
the paper. However, the contributions as perceived
by the authors can significantly deviate from those
judged extrospectively by the community over time
(Mei and Zhai, 2008). Instead, we take as corpus
the set of citing sentences to the paper (from other
papers). Indeed, those sentences can arguably be
deemed as a form of crowd-sourced review of the
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paper’s main contributions. The set of citing sen-
tences is referred to as the citation summary of the
target paper. Elkiss et al. (2008) carried out a large-
scale study and confirmed that citation summaries
contain extra information that does not appear in pa-
per abstracts. In addition, they found that the “self-
cohesion”, measured as the average cosine similar-
ity between sentences, is consistently higher in a pa-
per’s citation summary than in its abstract: the for-
mer is more focused than the latter in describing pa-
pers’ main contributions. This work presents our ef-
forts in advancing research along this direction.

Section 2 formally defines the problem we aim
to solve: summarise scientific papers using the
most informative and diversified part of their cita-
tion summaries. It surveys several prominent related
studies, and introduces the data used in our experi-
ments and evaluations. In Section 3, we present our
statistical framework built upon quantitative statis-
tics and information theory. In Section 4, we eval-
uate and compare the performance of our method
with state-of-the-art systems. We conclude and
point to future directions in Section 5.

2 Problem Statement

The problem we tackle in this paper is to generate
an extractive summary (usually, we will simply say
summary) from its citation summary. More specifi-
cally, we opt for a two stage approach. In the first
stage, we automatically discover salient keywords
from a paper’s citation summary, keywords that are
essential in characterising the paper’s main contribu-
tions. The second stage, exploiting the results of the
first stage, identifies citation sentences (to the paper)
that best capture the paper’s main contributions.

A word of caution: by utilising only citation sum-
maries, one should not expect to obtain well formu-
lated, readily consumable summaries of papers. In-
deed, a citation sentence may be not all about the
cited paper, but also talk about the citing paper and
other co-cited papers, which disqualify citation sum-
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maries as a premium source of sentences for build-
ing highly readable summaries (Siddharthan and
Teufel, 2007). Moreover, a summary built from cit-
ing sentences that come for a pool of multiple cit-
ing papers is bound to lack coherence. Therefore,
it is more appropriate to consider that the output of
such a system is to extrinsically gauge a system’s ef-
fectiveness in indexing information-rich citing sen-
tences containing keywords that facilitate rapidly
grasping a paper’s important contributions, rather
than be treated as a polished, readable summary for
human consumption (Qazvinian et al., 2013).

2.1 Related Work

Qazvinian and Radev (2008) first experimented
with citation summary based paper summarisations.
They proposed a graph-based method, C-LexRank,
that first generates a citation summary network for
a paper by mapping citing sentences to vertices and
creating edges from their lexical similarities. Clus-
ters of sentences capturing the same contribution
of the paper are then identified through link-based
community detection. Finally, the most central sen-
tence of each cluster is found using a weighted
random walk and selected to form a paper sum-
mary meant to comprehensively cover the paper’s
main contributions. Mohammad et al. (2009) further
adapted the C-LexRank to multi-document sum-
marisation in an attempt to generate surveys for sci-
entific paradigms.

In a later paper, Qazvinian et al. (2010) proposed
a more computationally efficient summariser that
does not require clustering citing sentences. As a
first step, key phrases are automatically identified
as significant n-grams with positive point-wise di-
vergence (Tomokiyo, 2003) from a foreground lan-
guage model estimated using the citation summary
of a paper w.r.t. a background language model built
from a large set of paper abstracts. A greedy algo-
rithm is subsequently applied to select citing sen-
tences and form a summary that maximises key
phrase coverage.

Mei and Zhai (2008) presented a sophisticated
generative approach that frames summarisation un-
der an Information Retrieval (IR) context. Specifi-
cally, an impact language model for a paper is first
built as a mixture of a language model estimated
from the paper’s own text, and a weighted citation
language model based on its collective citation con-
texts, using a compound coefficient reflecting both
a sentence’s proximity to the citation label (anchor)
in the citing paper and the citing paper’s authority
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calculated from the citation network using PageR-
ank (Brin and Page, 1998). Finally, documents (sen-
tences in the target paper) that are closest to the
query (the impact language model of the target pa-
per) are extracted to form a summary using ad-hoc
document retrieval. Note that Mei and Zhai (2008)
utilised extra information (i.e., paper full texts and
citation networks) to produce summaries that con-
sist of sentences from papers’ own texts rather than
their citation summaries, making their task related
to but different to ours.

2.2 Data

The experiments and evaluations presented here
have been based on Qazvinian’s single paper sum-
marisation corpus'. The dataset consists of 25
highly cited papers in the ACL Anthology Network
(AAN) (Radev et al., 2009) from 5 different do-
mains: Dependency Parsing (DP), Phrase Based
Machine Translation (PBMT), Text Summarisation
(SUM), Question Answering (QA) and Textual En-
tailment (TE). There are two files provided for each
paper: a citation summary file containing all citing
sentences to it, and a manually constructed key fact
file containing its main contributions hand picked
by human annotators after reading the citation sum-
mary. The manual annotation has been performed
independently by annotators, and a phrase needed to
be marked by at least 2 annotators to be qualified as
capturing a paper’s key fact (Qazvinian and Radeyv,
2008). This corpus represents a gold standard in re-
search paper summarisation and it has been widely
used in system evaluations (Qazvinian and Radeyv,
2008; Qaz