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Introduction

The W-NUT 2019 workshop focuses on a core set of natural language processing tasks on top of
noisy user-generated text, such as that found on social media, web forums and online reviews. Recent
years have seen a significant increase of interest in these areas. The internet has democratized content
creation leading to an explosion of informal user-generated text, publicly available in electronic format,
motivating the need for NLP on noisy text to enable new data analytics applications.

We received 89 long and short paper submissions this year. There are two invited speakers, Isabelle
Augenstein (University of Copenhagen) and Jing Jiang (Singapore Management University) with each
of their talks covering a different aspect of NLP for user-generated text. We have the best paper
award(s) sponsored by Google this year, for which we are thankful. We would like to thank the Program
Committee members who reviewed the papers this year. We would also like to thank the workshop
participants.

Wei Xu, Alan Ritter, Tim Baldwin and Afshin Rahimi
Co-Organizers
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Weakly Supervised Attention Networks
for Fine-Grained Opinion Mining and Public Health

Giannis Karamanolakis, Daniel Hsu, Luis Gravano
Columbia University, New York, NY 10027, USA
{gkaraman, djhsu, gravano}@cs.columbia.edu

Abstract

In many review classification applications, a
fine-grained analysis of the reviews is desir-
able, because different segments (e.g., sen-
tences) of a review may focus on different as-
pects of the entity in question. However, train-
ing supervised models for segment-level clas-
sification requires segment labels, which may
be more difficult or expensive to obtain than
review labels. In this paper, we employ Mul-
tiple Instance Learning (MIL) and use only
weak supervision in the form of a single la-
bel per review. First, we show that when inap-
propriate MIL aggregation functions are used,
then MIL-based networks are outperformed
by simpler baselines. Second, we propose a
new aggregation function based on the sig-
moid attention mechanism and show that our
proposed model outperforms the state-of-the-
art models for segment-level sentiment clas-
sification (by up to 9.8% in F1). Finally, we
highlight the importance of fine-grained pre-
dictions in an important public-health applica-
tion: finding actionable reports of foodborne
illness. We show that our model achieves
48.6% higher recall compared to previous
models, thus increasing the chance of identify-
ing previously unknown foodborne outbreaks.

1 Introduction

Many applications of text review classification,
such as sentiment analysis, can benefit from a fine-
grained understanding of the reviews. Consider
the Yelp restaurant review in Figure 1. Some seg-
ments (e.g., sentences or clauses) of the review ex-
press positive sentiment towards some of the items
consumed, service, and ambience, but other seg-
ments express a negative sentiment towards the
price and food. To capture the nuances expressed
in such reviews, analyzing the reviews at the seg-
ment level is desirable.

In this paper, we focus on segment classifica-
tion when only review labels—but not segment

1

M) Carmine’s Italian Restaurant
; 4 F9 $$ - Italian, Venues & Event Spaces
§ 200 W 44th St

New York, NY 10036

4/11/2017

Waited at the bar to be seated. Drink was very nice. Very strong delicious
drink. People were all friendly. Our server Papa was amazing.
Unfortunately | have been up half the night and suffering all day due to
food poisoning. I'm assuming it was the shrimp. Its been a waterfall out of
both ends and for the price | would expect better quality. Thus even
making me late for school drop off and pick up today. My "medium rare"
steak was too tough, more like medium well and the shrimp also was
slightly over cooked. Both to the point | had to spit them out. Manager
did take 50% off the steak. Great atmosphere. Just wish my bf and |
weren't suffering.

Figure 1: A Yelp review discussing both positive and nega-
tive aspects of a restaurant, as well as food poisoning.

labels—are available. The lack of segment labels
prevents the use of standard supervised learning
approaches. While review labels, such as user-
provided ratings, are often available, they are not
directly relevant for segment classification, thus
presenting a challenge for supervised learning.
Existing weakly supervised learning frame-
works have been proposed for training models
such as support vector machines (Andrews et al.,
2003; Yessenalina et al., 2010; Girtner et al.,
2002), logistic regression (Kotzias et al., 2015),
and hidden conditional random fields (Tadckstrom
and McDonald, 2011). The most recent state-of-
the-art approaches employ the Multiple Instance
Learning (MIL) framework (Section 2.2) in hi-
erarchical neural networks (Pappas and Popescu-
Belis, 2014; Kotzias et al., 2015; Angelidis and
Lapata, 2018; Pappas and Popescu-Belis, 2017;
Ilse et al., 2018). MIL-based hierarchical net-
works combine the (unknown) segment labels
through an aggregation function to form a single
review label. This enables the use of ground-truth
review labels as a weak form of supervision for
training segment-level classifiers. However, it re-
mains unanswered whether performance gains in
current models stem from the hierarchical struc-

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 1-10
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ture of the models or from the representational
power of their deep learning components. Also,
as we will see, the current modeling choices for
the MIL aggregation function might be problem-
atic for some applications and, in turn, might hurt
the performance of the resulting classifiers.

As a first contribution of this paper, we show
that non-hierarchical, deep learning approaches
for segment-level sentiment classification —with
only review-level labels— are strong, and they
equal or exceed in performance hierarchical net-
works with various MIL aggregation functions.

As a second contribution of this paper, we
substantially improve previous hierarchical ap-
proaches for segment-level sentiment classifica-
tion and propose the use of a new MIL aggrega-
tion function based on the sigmoid attention mech-
anism to jointly model the relative importance of
each segment as a product of Bernoulli distribu-
tions. This modeling choice allows multiple seg-
ments to contribute with different weights to the
review label, which is desirable in many applica-
tions, including segment-level sentiment classifi-
cation. We demonstrate that our MIL approach
outperforms all of the alternative techniques.

As a third contribution, we experiment beyond
sentiment classification and apply our approach
to a critical public health application: the dis-
covery of foodborne illness incidents in online
restaurant reviews. Restaurant patrons increas-
ingly turn to social media—rather than official
public health channels—to discuss food poison-
ing incidents (see Figure 1). As a result, public
health authorities need to identify such rare inci-
dents among the vast volumes of content on social
media platforms. We experimentally show that
our MIL-based network effectively detects seg-
ments discussing food poisoning and has a higher
chance than all previous models to identify un-
known foodborne outbreaks.

2 Background and Problem Definition

We now summarize relevant work on fully super-
vised (Section 2.1) and weakly supervised models
(Section 2.2) for segment classification. We also
describe a public health application for our model
evaluation (Section 2.3). Finally, we define our
problem of focus (Section 2.4).

2.1 Fully Supervised Models

State-of-the-art supervised learning methods for
segment classification use segment embedding
techniques followed by a classification model.
During segment encoding, a segment s; =
(i1, Ti2, . . ., xin,; ) composed of N; words is en-
coded as a fixed-size real vector h; € R us-
ing transformations such as the average of word
embeddings (Wieting et al., 2015; Arora et al.,
2017), Recurrent Neural Networks (RNNs) (Wi-
eting and Gimpel, 2017; Yang et al., 2016), Con-
volutional Neural Networks (CNNs) (Kim, 2014),
or self-attention blocks (Devlin et al., 2019; Rad-
ford et al., 2018). We refer to the whole seg-
ment encoding procedure as h; = ENC(s;). Dur-
ing segment classification, the segment s; is as-
signed to one of C predefined classes [C] :=
{1,2,...,C}. To provide a probability distribu-
tion p; = (p}, cey pZC> over the C' classes, the seg-
ment encoding h; is fed to a classification model:
pi = CLF(h;). Supervised approaches require
ground-truth segment labels for training.

2.2 Weakly Supervised Models

State-of-the-art weakly supervised approaches for
segment and review classification employ the Mul-
tiple Instance Learning (MIL) framework (Zhou
et al., 2009; Pappas and Popescu-Belis, 2014;
Kotzias et al., 2015; Pappas and Popescu-Belis,
2017; Angelidis and Lapata, 2018). In contrast to
traditional supervised learning, where segment la-
bels are required to train segment classifiers, MIL-
based models can be trained using review labels as
a weak source of supervision, as we describe next.
MIL is employed for problems where data are
arranged in groups (bags) of instances. In our set-
ting, each review is a group of segments: r =
(s1,82,...,8n). The key assumption followed by
MIL is that the observed review label is an aggre-
gation function of the unobserved segment labels:
p = AGG(p1,...,pnm). Hierarchical MIL-based
models (Figure 2) work in three main steps: (1)
encode the review segments into fixed-size vec-
tors h; = ENC(s;), (2) provide segment predic-
tions p; = CLF(h;), and (3) aggregate the pre-
dictions to get a review-level probability estimate
p = AGG(p1,...,pur). Supervision during train-
ing is provided in the form of review labels.
Different modeling choices have been taken for
each part of the MIL hierarchical architecture.
Kotzias et al. (2015) encoded sentences as the in-



14 Review Prediction
P P2 \ Py Segment Predictions
‘ CLF ‘ ‘ CLF ‘ ‘ CLF ‘

hy hy hy Segment Encodings
t t
ENC ENC ENC

+ t t

51 52 Sy

Figure 2: MIL-based hierarchical models.

ternal representations of a hierarchical CNN that
was pre-trained for document-level sentiment clas-
sification (Denil et al., 2014). For sentence-level
classification, they used logistic regression, while
the aggregation function was the uniform aver-
age. Pappas and Popescu-Belis (2014, 2017) em-
ployed Multiple Instance Regression, evaluated
various models for segment encoding, including
feed forward neural networks and Gated Recurrent
Units (GRUs) (Bahdanau et al., 2015), and used
the weighted average for the aggregation function,
where the weights were computed by linear re-
gression or a one-layer neural network. Ange-
lidis and Lapata (2018) proposed an end-to-end
Multiple Instance Learning Network (MILNET),
which outperformed previous models for senti-
ment classification using CNNs for segment en-
coding, a softmax layer for segment classification,
and GRUs with attention (Bahdanau et al., 2015)
to aggregate segment predictions as a weighted av-
erage. Our proposed model (Section 4) also fol-
lows the MIL hierarchical structure of Figure 2
for both sentiment classification and an important
public health application, which we discuss next.

2.3 Foodborne Illness Discovery in Online
Restaurant Reviews

Health departments nationwide have started to
analyze social media content (e.g., Yelp re-
views, Twitter messages) to identify foodborne
illness outbreaks originating in restaurants. In
Chicago (Harris et al., 2014), New York City (Ef-
fland et al., 2018), Nevada (Sadilek et al., 2016),
and St. Louis (Harris et al., 2018), text classifica-
tion systems have been successfully deployed for
the detection of social media documents mention-
ing foodborne illness. (Figure 1 shows a Yelp re-

view discussing a food poisoning incident.) Af-
ter such social media documents are flagged by
the classifiers, they are typically examined man-
ually by epidemiologists, who decide if further in-
vestigation (e.g., interviewing the restaurant pa-
trons who became ill, inspecting the restaurant)
is warranted. This manual examination is time-
consuming, and hence it is critically important to
(1) produce accurate review-level classifiers, to
identify foodborne illness cases while not showing
epidemiologists large numbers of false-positive
cases; and (2) annotate the flagged reviews to help
the epidemiologists in their decision-making.

We propose to apply our segment classification
approach to this important public health applica-
tion. By identifying which review segments dis-
cuss food poisoning, epidemiologists could focus
on the relevant portions of the review and safely
ignore the rest. As we will see, our evaluation
will focus on Yelp restaurant reviews. Discovering
foodborne illness is fundamentally different from
sentiment classification, because the mentions of
food poisoning incidents in Yelp are rare. Further-
more, even reviews mentioning foodborne illness
often include multiple sentences unrelated to food-
borne illness (see Figure 1).

2.4 Problem Definition

Consider a text review for an entity, with M con-
tiguous segments r = (s1,...,Sy). Segments
may have a variable number of words and differ-
ent reviews may have a different number of seg-
ments. A discrete label y, € [C] is provided
for each review but the individual segment labels
are not provided. Our goal is to train a segment-
level classifier that, given an unseen test review
rt = (sf,sh,...,5Y,), predicts a label p; € [C]
for each segment and then aggregates the segment
labels to infer the review label 3. € [C] for rt.

3 Non-Hierarchical Baselines

We can address the problem described in Sec-
tion 2.4 without using hierarchical approaches
such as MIL. In fact, the hierarchical structure of
Figure 2 for the MIL-based deep networks adds a
level of complexity that has not been empirically
justified, giving rise to the following question: do
performance gains in current MIL-based models
stem from their hierarchical structure or just from
the representational power of their deep learning
components?



We explore this question by evaluating a class
of simpler non-hierarchical baselines: deep neural
networks trained at the review level (without en-
coding and classifying individual segments) and
applied at the segment level by treating each test
segment as if it were a short “review.” While
the distribution of input length is different during
training and testing, we will show that this class of
non-hierarchical models is quite competitive and
sometime outperforms MIL-based networks with
inappropriate modeling choices.

4 Hierarchical Sigmoid Attention
Networks

We now describe the details of our MIL-based
hierarchical approach, which we call Hierarchi-
cal Sigmoid Attention Network (HSAN). HSAN
works in three steps to process a review, follow-
ing the general architecture in Figure 2: (1) each
segment s; in the review is encoded as a fixed-size
vector using word embeddings and CNNs (Kim,
2014): h; = CNN(s;) € R (2) each seg-
ment encoding h; is classified using a softmax
classifier with parameters W € R’ and b € R:
p; = softmax(Wh; + b); and (3) a review predic-
tion p is computed as an aggregation function of
the segment predictions p1, ..., pys from the pre-
vious step. A key contribution of our work is the
motivation, definition, and evaluation of a suitable
aggregation function for HSAN, a critical design
issue for MIL-based models.

The choice of aggregation function has a sub-
stantial impact on the performance of MIL-based
models and should depend on the specific assump-
tions about the relationship between bags and in-
stances (Carbonneau et al., 2018). Importantly, the
performance of MIL algorithms depends on the
witness rate (WR), which is defined as the propor-
tion of positive instances in positive bags. For ex-
ample, when WR is very low (which is the case in
our public health application), using the uniform
average as an aggregation function in MIL is not
an appropriate modeling choice, because the con-
tribution of the few positive instances to the bag la-
bel is outweighed by that of the negative instances.

The choice of the uniform average of segment
predictions (Kotzias et al., 2015) is also problem-
atic because particular segments of reviews might
be more informative than other segments for the
task at hand and thus should contribute with higher
weights to the computation of the review label.

For this reason, we opt for the weighted aver-
age (Pappas and Popescu-Belis, 2014; Angelidis
and Lapata, 2018):

XM o pi
P=——wv (1
D i1

The weights a1,...,ap € [0,1] define the rel-
ative contribution of the corresponding segments
S1,...,Sp to the review label. To estimate the
segment weights, we adopt the attention mecha-
nism (Bahdanau et al., 2015). In contrast to MIL-
NET (Angelidis and Lapata, 2018), which uses the
traditional softmax attention, we propose to use
the sigmoid attention. Sigmoid attention is both
functionally and semantically different from soft-
max attention and is more suitable for our prob-
lem, as we show next.

The probabilistic interpretation of softmax at-
tention is that of a categorical latent variable z €
{1,..., M} that represents the index of the seg-
ment to be selected from the M segments (Kim
et al., 2017). The attention probability distribution
is:

, exp(e;)
p(z:@‘el,...,eM):iu (2)
Zfl\il eXp(ei)
where:
e = ug tanh(Wah; + ba)7 (3)

where £ are context-dependent segment vectors
computed using bi-directional GRUs (Bi-GRUs),
W, € R™" and b, € R"™ are the attention
model’s weight and bias parameter, respectively,
and u, € R™ is the “attention query” vector pa-
rameter. The probabilistic interpretation of Equa-
tion 2 suggests that, when using the softmax at-
tention, exactly one segment should be considered
important under the constraint that the weights of
all segments sum to one. This property of the soft-
max attention to prioritize one instance explains
the successful application of the mechanism for
problems such as machine translation (Bahdanau
et al., 2015), where the role of attention is to align
each target word to (usually) one of the M words
from the source language. However, softmax at-
tention is not well suited for estimating the aggre-
gation function weights for our problem, where
multiple segments usually affect the review-level
prediction.

We hence propose using the sigmoid attention
mechanism to compute the weights aq, ..., axs.
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Figure 3: Our Hierarchical Sigmoid Attention Net-
work.

In particular, we replace softmax in Equation (2)
with the sigmoid (logistic) function:

1

ai=ole) =17 exp(—€;)

“4)
With sigmoid attention, the computation of the at-
tention weight «; does not depend on scores e;
for j # . Indeed, the probabilistic interpre-
tation of sigmoid attention is a vector z of dis-
crete latent variables z = [z1,...,2p], where
zi € {0,1} (Kim et al., 2017). In other words,
the relative importance of each segment is mod-
eled as a Bernoulli distribution. The sigmoid at-
tention probability distribution is:

plzi=1]e1,...,en) = o(ep). (3)
This probabilistic model indicates that 21, ..., zps
are conditionally independent given ey, ..., exs.

Therefore, sigmoid attention allows multiple seg-
ments, or even no segments, to be selected. This
property of sigmoid attention explains why it is
more appropriate for our problem. Also, as we
will see in the next sections, using the sigmoid at-
tention is the key modeling change needed in MIL-
based hierarchical networks to outperform non-
hierarchical baselines for segment-level classifica-
tion. Attention mechanisms using sigmoid acti-
vation have also been recently applied for tasks
different than segment-level classification of re-
views (Shen and Lee, 2016; Kim et al., 2017; Rei
and Sggaard, 2018). Our work differs from these
approaches in that we use the sigmoid attention

mechanism for the MIL aggregation function of
Equation 1, i.e., we aggregate segment labels p;
(instead of segment vectors h;) into a single re-
view label p (instead of review vectors h).

We summarize our HSAN architecture in Fig-
ure 3. HSAN follows the MIL framework and thus
it does not require segment labels for training. In-
stead, we only use ground-truth review labels and
jointly learn the model parameters by minimizing
the negative log-likelihood of the model parame-
ters. Even though a single label is available for
each review, our model allows different segments
of the review to receive different labels. Thus, we
can appropriately handle reviews such as that in
Figure 1 and assign a mix of positive and negative
segment labels, even when the review as a whole
has a negative (2-star) rating.

5 Experiments

We now turn to another key contribution of our pa-
per, namely, the evaluation of critical aspects of
hierarchical approaches and also our HSAN ap-
proach. For this, we focus on two important and
fundamentally different, real-world applications:
segment-level sentiment classification and the dis-
covery of foodborne illness in restaurant reviews.

5.1 Experimental Settings

For segment-level sentiment classification, we use
the Yelp’13 corpus with 5-star ratings (Tang et al.,
2015) and the IMDB corpora with 10-star rat-
ings (Diao et al., 2014). We do not use segment
labels for training any models except the fully su-
pervised Seg-* baselines (see below). For evalu-
ating the segment-level classification performance
on Yelp’13 and IMDB, we use the SPOT-Yelp and
SPOT-IMDB datasets, respectively (Angelidis and
Lapata, 2018), annotated at two levels of gran-
ularity, namely, sentences (SENT) and Elemen-
tary Discourse Units (EDUs)! (see Table 1). For
dataset statistics and implementation details, see
the supplementary material.

For the discovery of foodborne illness, we use
a dataset of Yelp restaurant reviews, manually la-
beled by epidemiologists in the New York City
Department of Health and Mental Hygiene. Each
review is assigned a binary label (“Sick” vs. “Not
Sick”). To test the models at the sentence level,
epidemiologists have manually annotated each

"The use of EDUs for sentiment classification is moti-
vated in (Angelidis and Lapata, 2018).



SPOT-Yelp SPOT-IMDB
Statistic SENT EDU | SENT EDU
# Segments 1,065 2,110 | 1,029 2,398
Positive segments (%) 39.9 32.9 379 25.6
Neutral segments (%) 21.7 343 29.2 47.7

Negative segments (%) 38.4 32.8 32.9 26.7
Witness positive (# segs) 7.9 12.1 6.0 8.5
Witness negative (# segs) 7.3 11.6 6.6 11.2
Witness salient (# segs) 8.5 14.0 7.6 12.6

WR positive 074 058 | 055 0.36
WR negative 0.68 053 | 0.63 0.43
WR salient 080 0.65 | 076  0.55

Table 1: Label statistics for the SPOT datasets. “WR
(x)” is the witness rate, meaning the proportion of seg-
ments with label x in a review with label z. “Witness
(z)” is the average number of segments with label x
in a review with label x. “Salient” is the union of the
“positive” and “negative” classes.

sentence for a subset of the test reviews (see the
supplementary material). In this sentence-level
dataset, the WR of the “Sick” class is 0.25, which
is significantly lower than the WR on sentiment
classification datasets (Table 1). In other words,
the proportion of “Sick” segments in “Sick” re-
views is relatively low; in contrast, in sentiment
classification the proportion of positive (or neg-
ative) segments is relatively high in positive (or
negative) reviews.

For a robust evaluation of our approach
(HSAN), we compare against state-of-the-art
models and baselines:

e Rev-*: non-hierarchical models, trained at
the review level and applied at the segment
level (see Section 3); this family includes
a logistic regression classifier trained on re-
view embeddings, computed as the element-
wise average of word embeddings (“Rev-
LR-EMB”), a CNN (“Rev-CNN”) (Kim,
2014), and a Bi-GRU with attention (“Rev-
RNN”) (Bahdanau et al., 2015). For food-
borne classification we also report a logis-
tic regression classifier trained on bag-of-
words review vectors (“Rev-LR-BoW”), be-
cause it is the best performing model in pre-
vious work (Effland et al., 2018).

e MIL-*: MIL-based hierarchical deep learn-
ing models with different aggregation func-
tions. “MIL-avg” computes the review label
as the average of the segment-level predic-
tions (Kotzias et al., 2015). “MIL-softmax”
uses the softmax attention mechanism —this is

the best performing MILNET model reported
in (Angelidis and Lapata, 2018) (“MIL-
NETgt”). “MIL-sigmoid” uses the sigmoid
attention mechanism as we propose in Sec-
tion 4 (HSAN model). All MIL-* models
have the hierarchical structure of Figure 2
and for comparison reasons we use the same
functions for segment encoding (ENC) and
segment classification (CLF), namely, a CNN
and a softmax classifier, respectively.

For the evaluation of hierarchical non-MIL net-
works such as the hierarchical classifier of Yang
et al. (2016), see Angelidis and Lapata (2018).
Here, we ignore this class of models as they have
been outperformed by MILNET.

The above models require only review-level la-
bels for training, which is the scenario of focus of
this paper. For comparison purposes, we also eval-
uate a family of fully supervised baselines trained
at the segment level:

e Seg-*: fully supervised baselines using
SPOT segment labels for training. “Seg-LR”
is a logistic regression classifier trained on
segment embeddings, which are computed
as the element-wise average of the corre-
sponding word embeddings. We also report
the CNN baseline (“Seg-CNN”), which was
evaluated in Angelidis and Lapata (2018).
Seg-* baselines are evaluated using 10-fold
cross-validation on the SPOT dataset.

For sentiment classification, we evaluate the mod-
els using the macro-averaged F1 score. For
foodborne classification, we report both macro-
averaged F1 and recall scores (for more metrics,
see the supplementary material).

5.2 Experimental Results

Sentiment Classification: Table 2 reports the
evaluation results on SPOT datasets for both
sentence- and EDU-level classification.

The Seg-* baselines are not directly comparable
with other models, as they are trained at the seg-
ment level on the (relatively small) SPOT datasets
with segment labels. The more complex Seg-CNN
model does not significantly improve over the sim-
pler Seg-LR, perhaps due to the small training set
available at the segment level.

Rev-CNN outperforms Seg-CNN in three out of
the four datasets. Although Rev-CNN is trained
at the review level (but is applied at the segment



SPOT-Yelp SPOT-IMDB
Method SENT EDU | SENT EDU
Seg-LR 55.6 59.2 | 60.5 62.8
Seg-CNN 562 60.0 | 583 63.0
Rev-LR-EMB | 512 493 52.7 48.6
Rev-CNN 60.6 61.5 60.8 60.1
Rev-RNN 58.5 539 | 553 50.8
MIL-avg 51.8 46.8 | 45.7 38.4
MIL-softmax 634 59.9 64.0 59.9
MIL-sigmoid | 64.6 63.3 | 662  65.7

Table 2: F1 score for segment-level sentiment classifi-
cation.

level), it is trained with 10 times as many ex-
amples as Seg-CNN. This suggests that, for the
non-hierarchical CNN models, review-level train-
ing may be advantageous with more training ex-
amples. In addition, Rev-CNN outperforms Rev-
LR-EMB, indicating that the fine-tuned features
extracted by the CNN are an improvement over the
pre-trained embeddings used by Rev-LR-EMB.

Rev-CNN outperforms MIL-avg and has
comparable performance to MILNET: non-
hierarchical deep learning models trained at the
review level and applied at the segment level are
strong baselines, because of their representational
power. Thus, the Rev-* model class should be
evaluated and compared with MIL-based hier-
archical models for applications where segment
labels are not available.

Interestingly, MIL-sigmoid (HSAN) consis-
tently outperforms all models, including MIL-avg,
MIL-softmax (MILNET), and the Rev-* base-
lines. This shows that:

1. the choice of aggregation function of MIL-
based classifiers heavily impacts classification
performance; and

2. MIL-based hierarchical networks can indeed
outperform non-hierarchical networks when
the appropriate aggregation function is used.

We emphasize that we use the same ENC and
CLF functions across all MIL-based models to
show that performance gains stem solely from the
choice of aggregation function. Given that HSAN
consistently outperforms MILNET in all datasets
for segment-level sentiment classification, we con-
clude that the choice of sigmoid attention for ag-
gregation is a better fit than softmax for this task.
The difference in performance between HSAN
and MILNET is especially pronounced on the *-

EDU datasets. We explain this behavior with the
statistics of Table 1: “Witness (Salient)” is higher
in *-EDU datasets compared to *-SENT datasets.
In other words, *-EDU datasets contain more seg-
ments that should be considered important than
*-SENT datasets. This implies that the attention
model needs to “attend” to more segments in the
case of *-EDU datasets: as we argued in Section 4,
this is best modeled by sigmoid attention.

Foodborne Illness Discovery: Table 3 reports
the evaluation results for both review- and
sentence-level foodborne classification.> For more
detailed results, see the supplementary material.
Rev-LR-EMB has significantly lower F1 score
than Rev-CNN and Rev-RNN: representing a re-
view as the uniform average of the word embed-
dings is not an appropriate modeling choice for
this task, where only a few segments in each re-
view are relevant to the positive class.

MIL-sigmoid (HSAN) achieves the highest F1
score among all models for review-level classifi-
cation. MIL-avg has lower F1 score compared to
other models: as discussed in Section 2.2, in appli-
cations where the value of WR is very low (here
WR=0.25), the uniform average is not an appro-
priate aggregation function for MIL.

Applying the best classifier reported in Effland
et al. (2018) (Rev-LR-BoW) for sentence-level
classification leads to high precision but very low
recall. On the other hand, the MIL-* models out-
perform the Rev-* models in F1 score (with the
exception of MIL-avg, which has lower F1 score
than Rev-RNN): the MIL framework is appropri-
ate for this task, especially when the weighted av-
erage is used for the aggregation function. The
significant difference in recall and F1 score be-
tween different MIL-based models highlights once
again the importance of choosing the appropriate
aggregation function. MIL-sigmoid consistently
outperforms MIL-softmax in all metrics, showing
that the sigmoid attention properly encodes the hi-
erarchical structure of reviews. MIL-sigmoid also
outperforms all other models in all metrics. Also,
MIL-sigmoid’s recall is 48.6% higher than that of
Rev-LR-BoW. In other words, MIL-sigmoid de-
tects more sentences relevant to foodborne illness
than Rev-LR-BoW, which is especially desirable

2We report review-level classification results because epi-
demiologists rely on the review-level predictions to decide
whether to investigate restaurants; in turn, segment-level pre-
dictions help epidemiologists focus on the relevant portions
of positively labeled reviews.



REV SENT

Method F1 | Prec Rec F1 AUPR
Rev-LR-BoW | 86.7 | 82.1 58.8 68.6 80.9
Rev-LR-EMB | 63.3 | 50.0 843 62.8 489
Rev-CNN 84.8 | 793 594 679 247
Rev-RNN 86.7 | 81.0 745 77.6 113
MIL-avg 598 | 75.0 78.0 76.5 73.6
MIL-softmax | 87.6 | 75.5 83.3 792 81.6
MIL-sigmoid | 89.6 | 76.4 874 81.5 84.0

Table 3: Review-level (left) and sentence-level (right)
evaluation results for discovering foodborne illness.

for this application, as discussed next.

Important Segment Highlighting Fine-grained
predictions could potentially help epidemiologists
to quickly focus on the relevant portions of the re-
views and safely ignore the rest. Figure 4 shows
how the segment predictions and attention scores
predicted by HSAN —with the highest recall and
F1 score among all models that we evaluated—
could be used to highlight important sentences of
a review. We highlight sentences in red if the cor-
responding attention scores exceed a pre-defined
threshold. In this example, high attention scores
are assigned by HSAN to sentences that mention
food poisoning or symptoms related to food poi-
soning. (For more examples, see the supplemen-
tary material.) This is particularly important be-
cause reviews on Yelp and other platforms can be
long, with many irrelevant sentences surrounding
the truly important ones for the task at hand. The
fine-grained predictions produced by our model
could inform a graphical user interface in health
departments for the inspection of candidate re-
views. Such an interface would allow epidemi-
ologists to examine reviews more efficiently and,
ultimately, more effectively.

6 Conclusions and Future Work

We presented a Multiple Instance Learning-based
model for fine-grained text classification that re-
quires only review-level labels for training but
produces both review- and segment-level labels.
Our first contribution is the observation that non-
hierarchical deep networks trained at the review
level and applied at the segment level (by treat-
ing each test segment as if it were a short “re-
view”) are surprisingly strong and perform com-
parably or better than MIL-based hierarchical net-
works with a variety of aggregation functions. Our
second contribution is a new MIL aggregation

Pred Att Text

v 0.00 IwishIcould give it zero stars. =¥ :Sick v :Not Sick
v 0.00 Tactually created a yelp account to write this review!
v 0.00 Atfirst I thought it was great that we got a table for 5 morning of on a Saturday.
v 0.00 The food was okay- the poached eggs on the Benedict were a little over
cooked, but nothing to complain about.
0.00  The service was good, it was overall fine.
0.00  That is- until I got home and me and boy friend spent the rest of the day/night
and into the morning hunched over or sitting on the toilet!
¥ 0.18 Ihave never experienced such violent food poisoning in my life!
v 0.00 That was the only place we ate or drank anything at that day, so [ know it
was from this restaurant.
¥ 0.82 By far the most miserable I've been- chills and crippling abdominal pain
along with uncontrollable vomiting and something worse out the other
end for my boyfriend!
= 0.00
0.00  To clarify what I believe caused this- we both had carrot juice randomly.
1 know more than one person who has gotten food poisoning recently from

Whatever you do, do not eat here, it is not worth the risk of ending up so unwell.

AN

carrot juice- especially if its raw or cold pressed.

Figure 4: HSAN’s fine-grained predictions for a Yelp
review: for each sentence, HSAN provides one binary
label (Pred) and one attention score (Att). A sentence
is highlighted if its attention score is greater than 0.1.

function based on the sigmoid attention mecha-
nism, which explicitly allows multiple segments
to contribute to the review-level classification de-
cision with different weights. We experimentally
showed that the sigmoid attention is the key mod-
eling change needed for MIL-based hierarchical
networks to outperform the non-hierarchical base-
lines for segment-level sentiment classification.
Our third contribution is the application of our
weakly supervised approach to the important pub-
lic health application of foodborne illness discov-
ery in online restaurant reviews. We showed that
our MIL-based approach has a higher chance than
all previous models to identify unknown food-
borne outbreaks, and demonstrated how its fine-
grained segment annotations can be used to high-
light the segments that were considered important
for the computation of the review-level label.

In future work, we plan to consider alterna-
tive techniques for segment encoding (ENC), such
as pre-trained transformer-based language mod-
els (Devlin et al.,, 2019; Radford et al., 2018),
which we expect to further boost our method’s per-
formance. We also plan to quantitatively evaluate
the extent to which the fine-grained predictions of
our model help epidemiologists to efficiently ex-
amine candidate reviews and to interpret classi-
fication decisions. Indeed, choosing segments of
the review text that explain the review-level de-
cisions can help interpretability (Lei et al., 2016;
Yessenalina et al., 2010; Biran and Cotton, 2017).
Another important direction for future work is
to study if minimal supervision at the fine-grain



level, either in the form of expert labels or ratio-
nales (Bao et al., 2018), could effectively guide the
weakly supervised models. This kind of supervi-
sion is especially desirable to satisfy prior beliefs
about the intended role of fine-grained predictions
in downstream applications. We believe that build-
ing this kind of fine-grained models is particularly
desirable when model predictions are used by hu-
mans to take concrete actions in the real world.
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Abstract

Typical datasets used for style transfer in NLP
contain aligned pairs of two opposite extremes
of a style. As each existing dataset is sourced
from a specific domain and context, most
use cases will have a sizable mismatch from
the vocabulary and sentence structures of any
dataset available. This reduces the perfor-
mance of the style transfer, and is particularly
significant for noisy, user-generated text. To
solve this problem, we show a technique to de-
rive a dataset of aligned pairs (style-agnostic
vs stylistic sentences) from an unlabeled cor-
pus by using an auxiliary dataset, allowing
for in-domain training. We test the technique
with the Yahoo Formality Dataset and 6 novel
datasets we produced, which consist of scripts
from 5 popular TV-shows (Friends, Futurama,
Seinfeld, Southpark, Stargate SG-1) and the
Slate Star Codex online forum. We gather
1080 human evaluations, which show that our
method produces a sizable change in formal-
ity while maintaining fluency and context; and
that it considerably outperforms OpenNMT’s
Seq2Seq model directly trained on the Yahoo
Formality Dataset. Additionally, we publish
the full pipeline code and our novel datasets '

1 Introduction

Typical datasets used for style transfer in NLP
contain aligned pairs of two opposite extremes of a
style (Hughes et al., 2012; Xu et al., 2012; Jham-
tani et al., 2017; Carlson et al., 2017; Xu, 2017;
Rao and Tetreault, 2018). Those datasets are use-
ful for training neural networks that perform style
transfer on text that is similar (both in vocabulary
and structure) to the text in the datasets. However,
as each of those datasets is sourced from a specific
domain and context, in most use cases there is not

'https:/github.com/ICEtinger/
StyleTransfer
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an available dataset of parallel data with vocabu-
lary and structure similar to the one requested.
This is especially significant for style transfer
with noisy/user-generated text, where a mismatch
is common even when the training dataset is also
noisy/user-generated. We explore formality trans-
fer specifically for noisy/user-generated text. To
the best of our knowledge, the best dataset for this
is currently the Yahoo Formality Dataset (Rao and
Tetreault, 2018). However, this dataset is limited
to few domains and to the context of Yahoo an-
swers instead of other websites or in-person chat.
To overcome this problem, we propose a tech-
nique to derive a dataset of aligned pairs from an
unlabeled corpus by using an auxiliary dataset;
and we apply this technique to the task of formal-
ity transfer on noisy/user-generated conversations.

2 Related Work

Textual style transfer has been a large topic of
research in NLP. Early research directly fed la-
beled, parallel data to train generic Seq2Seq mod-
els. Jhamtani et al. (2017) employed this tech-
nique on Shakespeare and modern literature. Carl-
son et al. (2017) employed it on bible translations.

More recent methods have tackled the problem
of training models with unlabeled corpora. They
seek to obtain latent representations that would
correspond to stylistics and semantics separately,
then change the stylistic representation while
maintaining the semantic one. This can be done
by one of 3 ways (Tikhonov and Yamshchikov,
2018): employing back-translation; training a
stylistic discriminator; or embedding words or
sentences and segmenting embedding state-space
into semantic and stylistic sections. Our method
differs from those works in many aspects.

Artetxe et al. (2017) worked on unsupervised
machine translation. It differs from our objective

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 11-16
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



because it is translation instead of style transfer.
Our work employs POS tags as a latent shared
representation of syntactic structures and style-
free semantics across sentences of different styles.
This is not possible (or much less direct) across
different languages.

Han et al. (2017) presented a Seq2Seq model
that uses two switches with tensor product to con-
trol the style transfer in the encoding and decod-
ing processes. Fu et al. (2018) proposed adver-
sarial networks for the task of textual style trans-
fer. Yang et al. (2018) presented a new technique
that uses a target domain language model as the
discriminator to improve training. Our method is
modular with respect to the main Seq2Seq neural
model, so it can more easily leverage state-of-the-
art (Merity et al., 2017) new models, e.g. most
recent versions of OpenNMT (Klein et al., 2017).

Shen et al. (2017) proposed a model that as-
sumes a shared latent content distribution across
different text corpora, and leverages refined align-
ment of latent representations to perform style
transfer. Our method does not assume such shared
latent content distribution across different corpora.
We instead leverage shared latent content distribu-
tion across different styles of a same corpus.

Zhang et al. (2018) presented a Seq2Seq model
architecture using shared and private model pa-
rameters to better train a model from multiple cor-
pora of different domains. Our method is modular
with respect to the main Seq2Seq neural model,
and is trained with a single corpus each time.

Li et al. (2018) proposed a method that uses re-
trieval of training sentences (after a deletion oper-
ation) during inference time to improve sentence
generation. Our method uses a similar inspira-
tion of selecting the “deleted” terms, but instead
of being deleted, they are replaced by a latent
shared representation of syntactic structures and
style-free semantics in the form of POS tags. Ad-
ditionally, we employ a modular Seq2Seq neural
model with the replaced representation instead of
retrieving training sentences.

Prabhumoye et al. (2018) presented a method
that uses back-translation in French to obtain a la-
tent representation of sentences with less stylis-
tic characteristics. That technique requires that
the French translation be trained on a dataset with
similar vocabulary and structure as the data on
which style transfer is applied. Our work does
not have this requirement. Additionally, that work
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fixes the encoder and decoder in order to employ
the back-translation, while our work employs a
modular Seq2Seq neural model to leverage state-
of-the-art Seq2Seq neural models.

3 Technique for Dataset Generation

Consider an unlabeled corpus A and a labeled, par-
allel dataset B. We show a technique that uses B
to derive a dataset A’ of aligned pairs from A.

If B contains aligned pairs of sentences with
styles s; and sg, then one technique to generate
A’ is to train a classifier between s and sy on B,
then to use the classifier to select subsets A; and
Ag from A following each style, i.e:

t constant

A; = {x € A|P(class(z) = s;) > t},

Then, to create parallel data from { A, A>}, use
the classifier to select the terms that have the most
weight in determining the style of sentences (e.g.:
if Logistic Regression, use term coefficients, se-
lect term with coefficients above a certain thresh-
old). Call the set of those terms 7'. For each sen-
tence x € A1 UAs, map x with an altered sentence
x’ which is equal to x when all terms in x that are
in T are replaced by their POS tags in z. The set
of pairs {(x,2’)} = A’ is now parallel data.

POS tags are employed as a latent shared repre-
sentation of syntactic structures and style-free se-
mantics across sentences of different styles.

4 Neural Network Models

After obtaining the dataset in the format {(z, z)}
as described in Section 3, we train a typical
Seq2Seq model to predict # from z’. Then, on
inference time, we apply the same transformation
described in Section 3 to the test set (that may have
different styles from the training set), and apply
the model on that transformed test set.

For example, consider we have a classifier of
two styles: formal and informal. We use
the classifier to produce datasets Ajformq and
Ainformal from an unlabeled corpus A. From
A formai, We produce {(z,2’)}, and use it to train
a model that predicts {z} from {z'}. Recall that
2’ is equal to x when all terms in z that are the
most characteristic of formality are replaced by
their POS tags in . During inference time, we
want to transform a neutral or an informal sentence
y to formal. We derive a y' from y at the same way
we did for 2/, but now we replace the terms most
characteristic of informality by their POS tags. We
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Figure 1: Pipeline for generating data, training Seq2Seq models, and applying style transfer.

feed this transformed 3’ to the model, and it pre-
dicts g, which should be formal because the model
learned to replace POS tags by words that are for-
mal and are suited to the other words in the sen-
tence. The full pipeline is shown in Figure 1.

5 Datasets

We used multiple datasets, existing and novel.

The Yahoo Formality Dataset was obtained
from (Rao and Tetreault, 2018), and it contains
106k formal-informal pairs of sentences. Infor-
mal sentences were extracted from Yahoo An-
swers (“Entertainment & Music” and “Family &
Relationships™ categories). Formal (parallel) sen-
tences were produced with mechanical turks.

The TV-Shows Datasets are the scripts of 5
popular TV-shows from the 1990’s and 2000’s
(Friends, Futurama, Seinfeld, Southpark, Stargate
SG-1), with 420k sentences in total. The datasets
are novel: we produced them by crawling a web-
site that contains scripts of TV-shows and movies
(IMS); except for Friends, obtained from (Fri).

The Slate Star Codex is a novel dataset we pro-
duced in this work. It is comprised of 3.2 mil-
lion sentences from comments in the online forum
Slate Star Codex(SSC), which contains very for-
mal language in the areas of science and philoso-
phy. It was obtained by crawling the website, and
contains posts from 2013 to 2019.

6 Experimental Setup

We applied the techniques explained in Sections 3
and 4. We used the Yahoo Formality Dataset as
labeled dataset B and either a TV-show dataset,
all TV-shows together, or the Slate Star Codex
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dataset as unlabeled corpus A. A Logistic Regres-
sion model was employed as the classifier > , and
OpenNMT as the Seq2Seq models 3.

The hyperparameters of the Seq2Seq models
are shown in Table 1.

Hyper-parameter Value
Encoder
type LSTM
rnn hidden size 100
layers 1
Decoder
type LSTM
rnn hidden size 100
layers 1
General
word vec size 200
optimizer Adam
learning rate le™3
train/validation split 90/10
vocabulary size 30k for SSC, TV merged
10k for single TV-shows

Table 1: Hyperparameters.

2Scikit-learn’s model was used. Terms were stemmed
with Porter Stemming before being fed to the model, and only
terms with frequency >2 in the dataset were fed.

3To derive formal and informal datasets from each of our
original unlabeled corpora, we applied our logistic regression
model on each sentence in each corpus. Sentences with infor-
mality scores < 0.6 were considered formal, scores > 0.65
were considered informal, and others were ignored for being
neutral. Terms were replaced by POS tags in the following
manner: the NV terms in each sentence with the highest abso-
lute weight (from the Log-Reg model) are replaced by POS
tags, provided they pass a certain threshold (—0.001 for for-
mal terms, and 0.2 for informal terms). N is the floor of the
number of terms in the sentence divided by 5.



Dataset Target Avg. formality Avg. suitability Total # of

formality score (1-5) score (1-5) sentences
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Table 2: Results of experiments on formality and sentence suitability.

Numbers and proper names were replaced by
symbols <NUMBER> and <NAME > respectively, in
order to greatly reduce data sparcity.

After splitting each corpus in formal and infor-
mal sentences (according to our logistic regres-
sion model), we randomly selected 60 sentences
from each corpus (30 formal and 30 informal) as
held-out test sets, and transformed them to oppo-
site styles. Sentences were assigned evenly split
to 3 human evaluators. To avoid bias, each sen-
tence was randomly shown either original or trans-
formed with equal probabilities (without evalua-
tors’ knowledge). Each sentence was shown ac-
companied with a context: preceding sentence in
the TV-show (or SSC post), character speaking
and TV-show name. Evaluators rated each sen-
tence formality and suitability (how fluent and ap-
propriate it is for the context) in a 1-5 scale*.

Additionally, to serve as baseline, we trained
two Seq2Seq models (formal-to-informal and

*1: The sentence does not form any grammatical struc-
ture, or the evaluator cannot understand its meaning. 2: The
sentence forms segments of grammatical structures, and the
evaluator can barely understand the intended meaning. 3:
The sentence is a few words away from perfect English, and
the evaluator probably understands its meaning; or meaning
is clear, but not appropriate for the context. 4: The sentence
is in almost perfect English (usually only missing a word or
a comma, which is common in informal oral speech) and the
meaning is clear; or the English is perfect but the meaning or
words used are not perfectly appropriate for the context. 5:
The sentence is in perfect English and perfectly appropriate
for the context.
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informal-to-formal) on OpenNMT directly on the
pairs of parallel sentences of the Yahoo Formality
Dataset. We used the same hyper-parameters as
the other experiments. Then we applied the model
on the All TV-Shows corpus and performed the
same human evaluation as described above, but we
doubled the number of sentences analyzed to 120.

7 Results

Results are presented in Table 2. The average
scores show the differences between the scores of
the original and transformed sentences.

The technique produced a sizable change in
formality while maintaining fluency and context.
When transforming informal sentences to formal,
the average formality score increased by ~1.5
points (in a 5-point scale) for TV shows, and 0.9
point for SSC. In the formal-to-informal transfor-
mation, the formality score decreased by ~2.2.
The absolute changes in formality seem to corre-
late with the formality scores of the original sen-
tences. They do not seem to correlate with the total
number of sentences in each dataset.

Average suitability scores suffered a small de-
crease for corpora with a low number of sentences.
The biggest decrease was for Futurama, whose
training datasets contained only ~10k sentences
(after splitting the 27k total in the corpus). Other
datasets contained smaller decreases in suitability,
or even small improvements over the original sen-



tences. The largest corpora (All TV-Shows and
SSC) maintained suitability scores approximately
unchanged (€ [—0.3,40.3]).

In general, all datasets showed sizable differ-
ences of formality when the formal or informal
transformation was applied, and showed small
decreases in suitability for small datasets (e.g.
10k training sentences for Futurama) and approxi-
mately no changes in suitability for larger datasets.
Note that the suitability scores for the original
sentences were not 5, because many sentences in
the conversations employed in the datasets are in
oral (“wrong”) English, had small typos, or do not
seem appropriate for the context.

The baseline (directly training the OpenNMT
model with the Yahoo Formality Dataset) only
showed small absolute changes in formality
(~0.5) and lost a sizable amount of average suit-
ability score (—0.8 or —1.5). We suspect the main
reason for the loss of average suitability is the mis-
match of the data used to train the model with the
data on which the style transfer was applied, both
in terms of vocabulary and in structure. The main
reason for the smaller absolute change in formality
scores, we suspect, is the model being conserva-
tive on making changes when it encountered sen-
tences with many new terms. For many sentences
generated by the model, the generated sentence
was equal to the original sentence, which did not
occurred as frequently in the other models (prob-
ably because of a greater match between training
data and inference data).

On the All TV-Shows dataset, our method out-
performs the baseline by 1.4 points in absolute
formality change (both formal and informal trans-
fers), and by 0.8 and 1.2 in average suitability.

8 Conclusion

In this work we presented a technique to derive
a dataset of aligned pairs from an unlabeled cor-
pus by using an auxiliary dataset. The technique
is particularly important for noisy/user-generated
text, which often lack datasets of matching vocab-
ulary and structure. We tested the technique with
the Yahoo Formality Dataset and 7 novel datasets
we produced by web-crawling, which consists of
scripts from 5 TV-shows, all TV-shows together,
and the SSC online forum. We gathered 1080 hu-
man evaluations on the formality and suitability of
sentences, and showed that our method produced a
sizable change in formality while maintaining flu-
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ency and context; and that it considerably outper-
formed OpenNMT’s Seq2Seq model trained di-
rectly on the Yahoo Formality Dataset.

A possible application of this technique in in-
dustry is to use large standard datasets as auxil-
iary to build style transformers based on specific
corpora relevant to the industry. For example, a
company wishing to change the formality of com-
ments in its website could use the Yahoo Formality
Dataset as the auxiliary dataset and use the logs
of comments in its own website as the main cor-
pus. This would enable them to create style trans-
fers that are suited to the vocabulary and structures
they use, improving style-transfer and fluency.

For future work, we plan to research different
models for selecting the words most characteris-
tic of formality instead of the logistic regression
model used, such as neural models.

We make available the full pipeline
code (ready-to-run) and our novel datasets:
https:/github.com/ICEtinger/
StyleTransfer
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Abstract

Naturally occurring paraphrase data, such as
multiple news stories about the same event, is a
useful but rare resource. This paper compares
translation-based paraphrase gathering using
human, automatic, or hybrid techniques to
monolingual paraphrasing by experts and non-
experts. We gather translations, paraphrases,
and empirical human quality assessments of
these approaches. Neural machine translation
techniques, especially when pivoting through
related languages, provide a relatively robust
source of paraphrases with diversity compara-
ble to expert human paraphrases. Surprisingly,
human translators do not reliably outperform
neural systems. The resulting data release will
not only be a useful test set, but will also allow
additional explorations in translation and para-
phrase quality assessments and relationships.

1 Introduction

Humans naturally paraphrase. These paraphrases
are often a byproduct: when we can’t recall the
exact words, we can often generate approximately
the same meaning with a different surface realiza-
tion. Recognizing and generating paraphrases are
key challenges in many tasks, including transla-
tion, information retrieval, question answering, and
semantic parsing. Large collections of sentential
paraphrase corpora could benefit such systems. '
Yet when we ask humans to generate paraphrases
of a given task, they are often a bit stuck. How
much should be changed? Annotators tend to pre-
serve the reference expression: a safe choice, as
the only truly equivalent representation is to leave
the text unchanged. Each time we replace a word
with a synonym, some shades of meaning change,
some connotations or even denotations shift.
1Expanding beyond the sentence boundary is also very im-

portant, though we do not explore cross-sentence phenomena
in this paper.
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Can you give me more info.
I£] Kénnen Sie mir weitere
Informationen geben.
Please tell me more Can you give me more Could you please give
about it. information. me more information?

Figure 1: Generating broad-coverage paraphrases
through pivot translation.

O 3e iaidd of (s o
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One path around the obstacle of reference bias is
to provide a non-linguistic input, then ask humans
to describe this input in language. For instance,
crowd-sourced descriptions of videos provide a
rich source of paraphrase data that is grounded in
visual phenomena (Chen and Dolan, 2011). Such
visual grounding helps users focus on a clear and
specific activity without imparting a bias toward
particular lexical realizations. Unfortunately, these
paraphrases are limited to phenomena that can be
realized visually. Another path is to find multi-
ple news stories describing the same event (Dolan
et al., 2004), or multiple commentaries about the
same news story (Lan et al., 2017). Although this
provides a rich and growing set of paraphrases, the
language is again biased, this time toward events
commonly reported in the news.

An alternative is to provide input in a foreign lan-
guage. Nearly anything expressible in one human
language can be written in another language. When
users translate content, some variation in lexical
realization occurs. To gather monolingual para-
phrases, we can first translate a source sentence
into a variety of target languages, then translate
back into the source language, using either humans
or machines. This provides naturalistic variation in
language, centered around a common yet relatively
unconstrained starting point. Although several re-
search threads have explored this possibility (e.g.,
(Wieting and Gimpel, 2018)), we have seen few if
any comparative evaluations of the quality of this
approach.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 17-26
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



Our primary contribution is to evaluate various
methods of constructing paraphrase corpora, in-
cluding monolingual methods with experts and non-
experts as well as automated, semi-automated, and
manual translation-based approaches. Each para-
phrasing method is evaluated for fluency (“does
the resulting paraphrase sound not only grammati-
cal but natural?”’) and adequacy (“does the para-
phrase accurately convey the original meaning
of the source?”’) using human direct assessment,
inspired by effective techniques in machine trans-
lation evaluation (Federmann, 2018).

In addition, we measure the degree of change
between the original and rewritten sentence us-
ing both edit distance and BLEU (Papineni et al.,
2002). Somewhat surprisingly, fully automatic neu-
ral machine translation actually outperforms man-
ual human translation in terms of adequacy. The
semi-automatic method of post-editing neural ma-
chine translation output with human editors leads
to fluency improvements while retaining diversity
and adequacy. Although none of the translation-
based approaches outperform monolingual rewrites
in terms of adequacy or fluency, they do produce
greater diversity. Human editors, particularly non-
experts, tend toward small edits rather than substan-
tial rewrites. We conclude that round-tripping with
neural machine translation is a cheap and effective
means of gathering diverse paraphrases.

Our second contribution is a unique data release.
As a byproduct of this evaluation, we have com-
piled a data set consisting of paraphrases gathered
using monolingual rewrites and translation para-
phrases generated through human translation, neu-
ral machine translation, and human post-edited
neural machine translation. These 500 source
sentences—together with all rewrites and interme-
diate translations—comprise a rare and interesting
multilingual data set, useful for both monolingual
and translation tasks. We include all human quality
assessments for adequacy (semantic equivalence)
and fluency of paraphrases, as well as translation
adequacy assessments. Data is publicly available
at https://aka.ms/MultilingualWhispers.

2 Related Work

Translation as a means of generating paraphrases
has been explored for decades. Paraphrase cor-
pora can be extracted from multiple translations
of the same source material (Barzilay and McK-
eown, 2001). Sub-sentential paraphrases (mostly
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phrasal replacements) can be gathered from these
multiple translations. Alternatively, one can create
a large body of phrasal replacements from by pivot-
ing on the phrase-tables used by phrase-based sta-
tistical machine translation (Bannard and Callison-
Burch, 2005; Ganitkevitch et al., 2013; Pavlick
etal., 2015).

Recent work has also explored using neural ma-
chine translation to generate paraphrases via pivot-
ing (Prakash et al., 2016; Mallinson et al., 2017).
One can also use neural MT systems to generate
large monolingual paraphrase corpora. Another
line of work has translated the Czech side of a
Czech-English parallel corpus into English, thus
producing 50 million words of English paraphrase
data (Wieting and Gimpel, 2018). Not only can
the system generate interesting paraphrases, but
embeddings trained on the resulting data set prove
useful in sentence similarity tasks. When added
to a paraphrase system, constraints obtained from
a semantic parser can reduce the semantic drift
encountered during rewrites (Wang et al., 2018).
Adding lexical constraints to the output can also
increase diversity (Hu et al., 2019).

Past research has also explored -effective
methods for gathering paraphrases from the
crowd (Jiang et al., 2017). However, to the best of
our knowledge, no prior work has compared the
efficacy of human experts, crowd-workers, human
post-editing approaches and machine translation
systems on gathering paraphrase quality.

3 Methodology

To run a comprehensive evaluation of paraphrase
techniques, we create many paraphrases of a com-
mon data set using multiple methods, then evaluate
using human direct assessment as well as automatic
diversity measurements.

3.1 Data

Input data was sampled from two sources: Reddit
provides volumes of casual online conversations;
the Enron email corpus represents communication
in the professional world.> Both are noisier than
usual NMT training data; traditionally, such noise
has been challenging for NMT systems (Michel
and Neubig, 2018) and should provide a lower-
bound on their performance. It would definitely be
valuable, albeit expensive, to rerun our experiments
on a cleaner data source.

2However, the Enron emails often contain conversations
about casual and personal matters.



Tokens per segment

Segments Types Tokens median mean min max

Tokens per segment

Segments Types Tokens median mean min max

500 2,370 9,835 19 19.67 4 46

14,500 7,196 285,833 19 19.72 1 68

Table 1: Key characteristics of the source sentences.

As an initial filtering step, we ran automatic
grammar and spell-checking, in order to select sen-
tences that exhibit some disfluency or clear error.
Additionally, we asked crowd workers to discard
sentences that contain any personally identifiable
information, URLs, code, XML, Markdown, and
non-English sentences. The crowd workers were
also encouraged to select noisy sentences contain-
ing slang, run-ons, contractions, and other behavior
observed in informal communications.

3.2 Paraphrase techniques

Expert human monolingual paraphrase. We
hired trained linguists (who are native speakers
of English) to provide paraphrases of the given
source sentences, targeting highest quality rewrites.
These linguists were also encouraged to fix any
misspellings, grammatical errors, or disfluencies.

Crowd-worker monolingual paraphrase. As
a less expensive and more realistic setting, we
asked English native speaking crowd workers who
passed a qualification test to perform the same task.

Human round-trip translation. For the first
set of translation-based paraphrases, we employed
human translators who translated the source text
from English into some pivot language and back
again. The translations were provided by a human
translation service, potentially using multiple dif-
ferent translators (though the exact number was not
visible to us). In our experiments we focused on
a diverse set of pivot languages, namely: Arabic,
Chinese, French, German, Japanese, and Russian.

While French and German seem like a better
choice for translation from and back into English,
due to the close proximity of English as part of the
Germanic language family and its shared vocabu-
lary with French, we hypothesize that the use of
more distant pivot languages may result in a greater
diversity of the back translation output.

We employed professional translators—native in
the chosen target language—who were instructed
to generate translations from scratch, without the
use of any online translation tools. Translation
from English into the pivot languages and back
into English were conducted in separate phases, by
different translators.
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Table 2: Key characteristics of collected paraphrases.

Post-edited round-trip translation. Second,
we created round-trip translation output based on
human post-editing of neural machine translation
output. Given the much lower post-editing cost,
we hypothesize that results contain only minimal
edits, mostly improving fluency but not necessarily
fixing problems with translation adequacy.

Neural machine translation. We kept the
NMT output used to generate post-editing-based
paraphrases, without further human modification.
Given the unsupervized nature of machine trans-
lation, we hypothesize that resulting output may
be closer to the source syntactically (and hopefully
more diverse lexically), especially those source
sentences which a human editor would consider
incomplete or low quality.

Crowd-worker monolingual paraphrase
grounded by translation. Finally, we also use
a variant of the Crowd-worker monolingual
paraphrase technique where the crowd worker is
grounded by a translation-based paraphrase output.
The crowd worker is then asked to modify the
translation-based paraphrase to make it more fluent
than the source, and as adequate.

Intuitively, one assumes that human translation
output should achieve both highest adequacy and
fluency scores, while post-editing should result in
higher adequacy than raw neural machine transla-
tion output.

Considering translation fluency scores, NMT
output should be closer to both post-editing and
human translation output, as neural MT models
usually achieve high levels of fluency (Bojar et al.,
2016; Castilho et al., 2017; Laubli et al., 2018).

We hypothesize that translation helps to increase
diversity of the resulting back translation output,
irrespective of the specific method.

3.3 Assessments

We measure four dimensions of quality:

1. Paraphrase adequacy;

2. Paraphrase relative fluency;
3. Translation adequacy;

4. Paraphrase diversity.



Eval mode  Priming question used

How accurately does candidate text B convey the original semantics of candidate text A?

Slider marks preference for Candidate A (left), no difference (middle) or preference for Candidate B (right).

Par 4
Slider ranges from Not at all (left) to Perfectly (right).
Parp Which of the two candidate texts is more fluent?
NMT 4

How accurately does the above candidate text convey the original semantics of the source text?

Slider ranges from Not at all (left) to Perfectly (right).

Table 3: Priming questions used for human evaluation of paraphrase adequacy (Par 4), paraphrase fluency (Pary),
and translation adequacy (NMT,4). Paraphrase evaluation campaigns referred to source and candidate text as
“candidate A” and “B”, respectively. Translation evaluation campaigns used “source” and “candidate text” instead.

Paraphrase adequacy For adequacy, we ask
annotators to assess semantic similarity between
source and candidate text, labeled as “candidate
A” and “B”, respectively. The annotation interface
implements a slider widget to encode perceived
similarity as a value z € [0,100]. Note that the
exact value is hidden from the human, and can
only be guessed based on the positioning of the
slider. Candidates are displayed in random order,
preventing bias.

Paraphrase fluency For fluency, we use a differ-
ent priming question, implicitly asking the human
annotators to assess fluency for candidate “B” rel-
ative to that of candidate “A”. We collect scores
x € [—50,50], with —50 encoding that candidate
“A” 1s much more fluent than “B”, while a value
of 50 denotes the polar opposite. Intuitively, the
middle value 0 encodes that the annotator could
not determine a meaningful difference in fluency
between both candidates. Note that this may mean
two things:

1. candidates are semantically equivalent but
similarly fluent or non-fluent; or
2. candidates have different semantics.

We observe that annotators have a tendency to fall
back to “neutral” z = 0 scoring whenever they are
confused, e.g., when semantic similarity of both
candidates is considered low.

Translation Adequacy We measure translation
adequacy using our own implementation of source-
based direct assessment. Annotators do not know
that the source text shown might be translated con-
tent, and they do not know about the actual goal of
using back-translated output for paraphrase genera-
tion. Except for the labels for source and candidate
text, the priming question is identical to the one
used for paraphrase adequacy evaluation. Notably,
we have to employ bilingual annotators to collect
these assessments. Scores for translation adequacy
again are collected as = € [0, 100].
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Paraphrase diversity Additionally, we measure
diversity of all paraphrases (both monolingual and
based on translation) by computing the average
number of token edits between source and can-
didate texts. To focus our attention on meaning-
ful changes as opposed to minor function word
rewrites, we normalize both source and candidate
by lower-casing and excluding any punctuation and
stop words using NLTK (Bird et al., 2009).

We adopt source-based direct assessment
(src-DA) for human evaluation of adequacy and
fluency. The original DA approach (Graham et al.,
2013, 2014) is reference-based and, thus, needs to
be adapted for use in our paraphrase assessment
and translation scoring scenarios. In both cases, we
can use the source sentence to guide annotators in
their assessment. Of course, this makes translation
evaluation more difficult, as we require bilingual
annotators. Src-DA has previously been used, e.g.,
in (Cettolo et al., 2017; Bojar et al., 2018).

Direct assessment initializes mental context for
annotators by asking a priming question. The user
interface shows two sentences:

- the source (src-DA, reference otherwise); and
- the candidate output.

Annotators read the priming question and both
sentences and then assign a score = € [0, 100] to
the candidate shown. The interpretation of this
score considers the context defined by the priming
question, effectively allowing us to use the same
annotation method to collect human assessments
with respect to the different dimensions of quality
a defined above. Our priming questions are shown
above in Table 3.

3.4 Profanity handling

Some source segments from Reddit contain profan-
ities, which may have affected results reported in
this paper. While a detailed investigation of such
effects is outside the scope of this work, we want



Method Pary T Parp T Parp T NMTa T Language Pary 1 Parp 1 Parp 1 NMT4 T
Expert 83.20 11.80 3.48 - Arabic 5833 -12.57 4.96 81.6
HT 63.13  -7.13 5.98 88.8 Chinese 61.57 -7.67 5.70 71.3
NMT 64.62  -8.60 3.58 85.1 Chinese-Japanese ~ 40.60 -22.30 6.42 539
Non-Expert 87.10 9.40 1.11 - French 71.50 -1.80 3.68 84.2
Post-Edited NMT ~ 67.57 -4.20 4.43 90.0 German 7090 -2.77 3.80 87.5
Multi-Hop NMT  42.05 -20.65 6.18 50.7 Japanese 59.67 -9.33 5.38 69.5

Japanese-Chinese  43.50 -19.00 5.95 474

Russian 68.67 -5.73 4.47 81.4

Table 4: Results by paraphrasing method. Adequacy
(Par4) and fluency (Parp) are human assessments of
paraphrases; paraphrase diversity (Parp) is measured
by the average string-edit-distance between source and
paraphrase (higher means greater diversity); NMT 4 is
a human assessment of translation quality.

to highlight two potential issues which could be
introduced by profanity in the source text:

1. Profanity may have caused additional
monolingual rewrites (in an attempt to clean
the resulting paraphrase), possibly inflating
diversity scores;

. Human translators may have performed simi-
lar cleanup, increasing the likelihood of back
translations having a lower adequacy score.

4 Results

In total, we collect 14,500 paraphrases from 29
different systems, as described below:

- Expert paraphrase;

Non-Expert paraphrase;

Human translation (HT), for 6 languages;

Human Post-editing (PE), for 6 languages;
Neural MT (NMT), for 6 languages;
- Neural “multi-hop” NMT, for 2 languages;

Grounded Non-Expert (GNE), with grounding
from 7 translation methods.

All data collected in this work is publicly re-
leased. This includes paraphrases as well as as-
sessments of adequacy, fluency, and translation
adequacy. Human scores are based on two eval-
uation campaigns—one for adequacy, the other for
fluency—with ¢ = 27 annotation tasks, a = 54
human annotators, r = 4 redundancy, and tpa = 2
tasks per annotator, resulting in a total of £ * r =
a * tpa = 108 annotated tasks—equivalent to at
least 9,504 assessments per campaign (more in
case of duplicates in the set of paraphrases to be
evaluated), based on the alternate HIT structure
with 88 : 12 candidates-vs-controls setting as de-
scribed in (Bojar et al., 2018).
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Table 5: Results by pivot language.

Table 4 presents empirical results organized by
paraphrasing method, while Table 5 organizes by
pivot languages used. ‘“Multi-Hop NMT” refers
to an experiment in which we created paraphrases
translating via two non-English pivot languages,
namely Chinese and Japanese. French and German
perform best as pivot languages, while Chinese-
Japanese achieves best diversity.

Table 6 shows results from our grounded para-
phrasing experiment in which we compared how
different translation methods affect monolingual
rewriting quality. Based on results in Tables 5, we
focus on French and German as our pivot languages.
We also keep Chinese-Japanese “Two-Pivot NMT”
to see how additional pivot languages may affect
resulting paraphrase diversity.

Figure 2 shows convergence of adequacy scores
for the grounded paraphrasing experiment, over
time. Figure 3 shows convergence of relative flu-
ency scores. Note how clustering reported in Ta-
ble 6 appears after a few hundred annotations only.
The clusters denote sets of systems that are not
statistically significantly different.

4.1 Error Analysis

While neural machine translation based para-
phrases achieve surprising results in terms of diver-
sity compared to paraphrases generated by human
Non-Experts, NMT does not reach the adequacy or
fluency level provided by Expert paraphrases. The
examples in Table 7 provides a flavor of the outputs
from each method and demonstrates some of the
erTor cases.

Partially paraphrasing entities and common ex-
pressions. NMT systems often mangle multi-
word units, rewriting parts of non-compositional
phrases that change meaning (‘“Material Design’
— “hardware design”) or decrease fluency.

B

Informal language. Inadequate or disfluent para-
phrases are also caused by typos, slang and



Labelling Time [seconds]

Method Pary T Parp T Parp 1 BLEUJ| Min FPss Median Mean  Prs Max StdDev
Non-Expert 91.7 133 1.106 78.8 747 2152 30.84 4035 48.07 120.0 28.34
GNE-PE French 88.2 119 2222 59.9 4.73 10.26 18.64 33.16 4339 120.0 32.30
Expert 88.2 14.6 3.482 39.0 - - - - - - -
GNE-PE German 88.1 11.7 2214 60.5 4.50 9.58 15.05 35.36 52.05 1200 35091
GNE-NMT German 87.9 10.5 2.068 622 228 10.72 19.74 30.98 39.62 120.0 29.73
GNE-HT French 85.4 124 3.160 473 450 17.07 3990 5221 81.65 120.0 39.37
GNE-NMT French 83.1 5.1 2374 549 175 2.80 729 2248 28.64 120.0 3092
GNE-HT German 82.8 9.9 3914 36.8 6.02 1448 4147 5053 76.67 120.0 38.66
GNE-NMT Chinese-Japanese 74.3 43  4.608 32.8 3.84 24.08 45.83 54.11 79.17 1200 3545

Table 6: Results for translation-based rewriting, ordered by decreasing average adequacy (Par 4). Horizontal lines
between methods denote significance cluster boundaries. Edits measures average number of edits needed to create
rewrite (higher means greater diversity). BLEU score measures overlap with original sentence (lower means greater
diversity). Labelling time measured in seconds, with a maximum timeout set to two minutes. P»5 and P75 refer to
the 25th and 75th percentiles of observed labelling time, respectively; StdDev to standard deviation.

other informal patterns. As prior work has men-
tioned (Michel and Neubig, 2018), NMT models of-
ten corrupt these inputs, leading to bad paraphrases.

Negation handling. One classic struggle for ma-
chine translation approaches is negation — losing
or adding negation is a common error type. Para-
phrases generated through NMT are no exception.

4.2 Key findings

Given our experimental results, we formulate the
following empirical conclusions:

“Monolingual is better” Human rewriting
achieves higher adequacy and fluency scores com-
pared to all tested translation methods. This comes
at a relatively high cost, though.

“Non-experts more adequate...” Human experts
appear worse than non-experts in adequacy. We
have empirically identified a way to either save or
produce more paraphrases for the same budget.

“...but less diverse” Non-expert paraphrases are
not as diverse as those created by experts. Expert
rewrites also fix source text issues such as profanity.

“MT is not bad” Neural machine translation per-
forms surprisingly well, creating more diverse out-
put than human experts.

“Post-editing is better” Paraphrase adequacy,
paraphrase fluency and translation adequacy benefit
from human post-editing. In our experiments, this
method achieved best performance of all tested
translation methods.

“Human translations are expensive and less ade-
quate” While humans achieve high translation ade-
quacy scores and good paraphrase diversity, the cor-
responding paraphrase adequacy values are worst
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among all tested methods (except two-pivot NMT,
which solves a harder problem).

“Related languages are better...” Generating
paraphrases by translation works better when pivot
languages are closely related.

“...but less diverse” Unrelated pivot languages
create more diverse paraphrases.

“Use neural MT for cheap, large data!” Seems
good enough to work for constrained budgets, can
be improved with post-editing as needed. Specif-
ically, we have empirically proven that you can
increase paraphrase diversity by using NMT pivot
translation, combined with non-expert rewriting.

>

5 Conclusions

Somewhat surprisingly, strong neural machine
translation is more effective at paraphrase genera-
tion than humans: it is cheap, adequate, and diverse.
In contrast, crowd workers required more money,
producing more adequate translations but with triv-
ial edits. Although neural MT also produced less
fluent outputs, post-editing could improve the qual-
ity with little additional expenditure. Expert lin-
guists produced the highest quality paraphrases,
but at substantially greater cost. Translation-based
paraphrases are more diverse.

One limitation of this survey is the input data
selection: generally all input sentences contained
some kind of error. This may benefit some tech-
niques — humans in particular can navigate these
errors easily. Also, the casual data used often in-
cluded profanity and idiomatic expressions. Trans-
lators often rewrote profane expressions, perhaps
decreasing adequacy. Future work on different data
sets could further quantify such data effects.



Method

Text

ORIGINAL
EXPERT

NMT CHINESE-JAPANESE
PE GERMAN

PE FRENCH
HT FRENCH

HT GERMAN
NON-EXPERT

Rick, It was really great visiting with you the other day.

Rick, . was
Rick, el
Rick, it}
Rick, It was really
Rick, . was really

was

great visiting - you the other day.
it o S 58 S
great visiting with you the other day.

visiting with you the other day.
- you the other day.

Rick, . was really great - - you -

was really great visiting with you the other day.

Rick,
Rick, [it was really great -

NMT FRENCH with you the other day.
NMT GERMAN Rick, It was really great - with you the other day.
ORIGINAL Yeah exactly, btw how did u manage to update ur nvidia driver ?
G i ] v 5 NV

NMT CHINESE-JAPANESE
PE GERMAN

PE FRENCH

HT FRENCH

HT GERMAN
NON-EXPERT

- exactly,

to update

[E1 how did - update -

how did - manage to update
how did - manage to update
- exactly, [fiOfEOVER how did - manage to update
- - _ did - manage to update

driver ?

NMT FRENCH - exactly, _ did - manage to update _ -
NMT GERMAN - exactly, - how did - manage to update - nvidia -
ORIGINAL Is it actually more benefitial/safe to do this many exercises a day?
EXPERT Is it - more _ to do 88 many exercises . a day?

NMT CHINESE-JAPANESE

PE GERMAN Is it actually more to do this many exercises a day?
PE FRENCH Is it actually more benefitial/safe to do many exercises a day?
HT FRENCH Is it more _ to do - - day?
HT GERMAN Is it more _ to do [§6] many exercises - day?
NON-EXPERT Is it actually more _ to do this many exercises a day?
NMT FRENCH Is it actually more benefitial/safe to do - many exercises - day?
NMT GERMAN Is it actually _ to do - many exercises a day?
ORIGINAL The cold and rain couldn’t effect my enjoyment.
EXPERT The cold and rain my enjoyment.
NMT CHINESE-JAPANESE - and rain my enjoyment.
PE GERMAN The cold and rain my enjoyment.
PE FRENCH The cold and rain effect my enjoyment.
HT FRENCH

HT GERMAN The cold and rain - my enjoyment.

NON-EXPERT
NMT FRENCH
NMT GERMAN

The cold and - rain couldn’t

The cold and - rain - - m.

The cold and rain couldn’ t- my enjoyment.

Table 7: Example paraphrases generated by several monolingual and bilingual methods.

Changed regions are

highlighted — insertions are presented in -, and deleted phrases from the original sentence are highlighted in

_. Note how Non-Expert translations tend to be the most conservative, except when clearly
informal language 1s rewritten or corrected.
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0 Convergence of adequacy scores over time

Average Score

—— set2_nonexpert_paraphrase.txt (91.7)
7% —— hbt_set2_bt_gne-pe.fra.txt (88.2) M
—— set2_human_paraphrase.txt (88.2)
—— hbt_set2_bt_gne-pe.deu.txt (88.1)
hbt_set2_bt_gne-nmt.deu.txt (87.9)
70 —— hbt_set2_bt_gne-ht.fra.txt (85.4)
—— hbt_set2_bt_gne-nmt.fra.txt (83.1)
hbt_set2_bt_gne-ht.deu.txt (82.8)
—— hbt_set2_bt_gne-bi-nmt.chs-jpn.txt (74.3)
65

0 100 200 300 400 500
Assessments

Figure 2: Convergence of adequacy scores over time. Despite the lack of an absolute standard of system assessment,
a diverse set of judges rapidly converge to a consistent ranking of system quality. Within a 100 to 200 judgements,
the rating has basically stabilized, though we continue to assess the whole set for greatest stability and confidence
in ranking. We note, however, that readers should take caution in an absolute reading of these ratings — instead, it
should reflect a relative quality assessment among the approaches under consideration.

Convergence of relative fluency scores over time
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Figure 3: Convergence of relative fluency scores over time. These assessments reflect the same trends as adequacy
— raters rapidly converge on a relative assessment of distinct systems.
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Abstract

Grammar error correction (GEC) systems have
become ubiquitous in a variety of software
applications, and have started to approach
human-level performance for some datasets.
However, very little is known about how to
efficiently personalize these systems to the
user’s characteristics, such as their proficiency
level and first language, or to emerging do-
mains of text. We present the first results on
adapting a general purpose neural GEC system
to both the proficiency level and the first lan-
guage of a writer, using only a few thousand
annotated sentences. Our study is the broad-
est of its kind, covering five proficiency levels
and twelve different languages, and compar-
ing three different adaptation scenarios: adapt-
ing to the proficiency level only, to the first
language only, or to both aspects simultane-
ously. We show that tailoring to both scenarios
achieves the largest performance improvement
(3.6 Fy 5) relative to a strong baseline.

1 Introduction

Guides for English teachers have extensively doc-
umented how grammatical errors made by learn-
ers are influenced by their native language (L1).
Swan and Smith (2001) attribute some of the er-
rors to “transfer” or “interference” between lan-
guages. For example, German native speakers are
more likely to incorrectly use a definite article with
general purpose nouns or omit the indefinite article
when defining people’s professions. Other errors
are attributed to the absence of a certain linguistic
feature in the native language. For example, Chi-
nese and Russian speakers make more errors in-
volving articles, since these languages do not have
articles.

A few grammatical error correction (GEC) sys-
tems have incorporated knowledge about L1. Ro-

This research was conducted while the author was at
Grammarly.
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zovskaya and Roth (2011) use a different prior for
each of five L1s to adapt a Naive Bayes classi-
fier for preposition correction. Rozovskaya et al.
(2017) expand on this work to eleven L1s and
three error types. Mizumoto et al. (2011) showed
for the first time that a statistical machine transla-
tion (SMT) system applied to GEC performs bet-
ter when the training and test data have the same
L1. Chollampatt et al. (2016) extend this work by
adapting a neural language model to three differ-
ent L1s and use it as a feature in SMT-based GEC
system. However, we are not aware of prior work
addressing the impact of both proficiency level and
native language on the performance of GEC sys-
tems. Furthermore, neural GEC systems, which
have become state-of-the-art (Gehring et al., 2017;
Junczys-Dowmunt et al., 2018; Grundkiewicz and
Junczys-Dowmunt, 2018), are general purpose
and domain agnostic.

We believe the future of GEC lies in providing
users with feedback that is personalized to their
proficiency level and native language (L.1). In this
work, we present the first results on adapting a
general purpose neural GEC system for English to
both of these characteristics by using fine-tuning,
a transfer learning method for neural networks,
which has been extensively explored for domain
adaptation of machine translation systems (Lu-
ong and Manning, 2015; Freitag and Al-Onaizan,
2016; Chu et al., 2017; Miceli Barone et al., 2017;
Thompson et al., 2018). We show that a model
adapted to both L1 and proficiency level outper-
forms models adapted to only one of these charac-
teristics. Our contributions also include the first
results on adapting GEC systems to proficiency
levels and the broadest study of adapting GEC to
L1 which includes twelve different languages.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 27-33
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics
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Figure 1: Corpus Distributions for CEFR Level, L1 and L1-Level.

2 Personalizing GEC

Data In this work, we adapt a general purpose
neural GEC system, initially trained on two mil-
lion sentences written by both native and non-
native speakers and covering a variety of topics
and styles. All the sentences have been corrected
for grammatical errors by professional editors. !

Adaptation of the model to proficiency level
and L1 requires a corpus annotated with these
features. We use the Cambridge Learner Corpus
(CLC) (Nicholls, 2003) comprising examination
essays written by English learners with six profi-
ciency levels® and more than 100 different native
languages. Each essay is corrected by one anno-
tator, who also identifies the minimal error spans
and labels them using about 80 error types. From
this annotated corpus we extract a parallel corpus
comprising of source sentences with grammatical
errors and the corresponding corrected target sen-
tences.

We do note the proprietary nature of the CLC
which makes reproducibility difficult, though it
has been used in prior research, such as Rei and
Yannakoudakis (2016). It was necessary for this
study as the other GEC corpora available are not
annotated for both L1 and level. The Lang-
8 Learner Corpora (Mizumoto et al., 2011) also
provides information about L1, but it has no in-
formation about proficiency levels. The FCE
dataset (Yannakoudakis et al., 2011) is a subset
of the CLC, however, it only covers one profi-
ciency level and there are not enough sentences
for each L1 for our experiments. Previous work
on adapting GEC classifiers to L1 (Rozovskaya
etal., 2017) used the FCE corpus, and thus did not

!"To maintain anonymity, we do not include more details.

>The CLC uses levels defined by the Common European
Framework of Reference for Languages: Al - Beginner, A2 -
Elementary, B1 - Intermediate, B2 - Upper intermediate, C1
- Advanced, C2 - Proficiency.
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address adaptation to different proficiency levels.
One of our future goals is to create a public corpus
for this type of work.

Experimental Setup Our baseline neural GEC
system is an RNN-based encoder-decoder neu-
ral network with attention and LSTM units (Bah-
danau et al., 2015). The system takes as input
an English sentence which may contain gram-
matical errors and decodes the corrected sen-
tence. We train the system on the parallel cor-
pus extracted from the CLC with the OpenNMT-
py toolkit (Klein et al., 2018) using the hyper-
parameters listed in the Appendix. To increase the
coverage of the neural network’s vocabulary, with-
out hurting efficiency, we break source and target
words into sub-word units. The segmentation into
sub-word units is learned from unlabeled data us-
ing the Byte Pair Encoding (BPE) algorithm (Sen-
nrich et al., 2016). The vocabulary, consisting of
20,000 BPE sub-units, is shared between the en-
coder and decoder.> We truncate sentences longer
than 60 BPE sub-units and train the baseline sys-
tem with early stopping on a development set sam-
pled from the base dataset.*

To train and evaluate the adapted models, we
extract subsets of sentences from the CLC that
have been written by learners having a particular
Level, L1, or L1-Level combination. We consider
all subsets having at least 11,000 sentences, such
that we can allocate 8,000 sentences for training,
1,000 for tuning and 2,000 for testing. We com-
pare adapted models trained and evaluated on the
same subset of the data. For example, we adapt
a model using the Chinese training data and then
evaluate it on the Chinese test set.

Since our base dataset and CLC are different
domains, we wanted to make sure that improve-

3Although the source and target vocabularies are the
same, the embeddings are not tied.
“Performance did not improve after 15 epochs.



ments by fine-tuning by Level or L1 were not
due to simply being in-domain with the test data,
which is also from the CLC. To control for this, we
construct another baseline system (“Random”) by
adapting the general purpose GEC system to a ran-
dom sample of learner data drawn from the CLC.
In Figure 1 we show the distribution of Level, L1
and L1-Level sentences in a random CLC sam-
ple, for the subsets having at least 100 sentences.
B1 is the most frequent level, while A2, the low-
est proficiency level included in this study, is half
as frequent in the random sample. The L1 dis-
tribution is dominated by Spanish, with Chinese
second with half as many sentences. Among the
L1-Level subsets, Spanish-B2 is the most frequent
with Spanish-A2 covering half as many sentences.

Fine-tuning We build adapted GEC models us-
ing fine-tuning, a transfer learning method for neu-
ral networks. We continue training the parameters
of the general purpose model on the “in-domain”
subset of the data covering a particular Level, L1,
or L1-Level. Thompson et al. (2018) showed that
adapting only a single component of the encoder-
decoder network is almost as effective as adapting
the entire set of parameters. In this work, we fine-
tune the parameters of the source embeddings and
encoder, while keeping the other parameters fixed.
To avoid quickly over-fitting to the smaller
“in-domain” training data, we reduce the batch
size (Thompson et al., 2018) and continue us-
ing the dropout regularization (Miceli Barone
et al., 2017). We apply dropout to all the lay-
ers and to the source words, as well as varia-
tional dropout (Gal and Ghahramani, 2016) on
each step, all with probability 0.1. We also re-
duce the learning rate by four times and use the
start_decay_at option which halves the learn-
ing rate after each epoch. Consequently, the up-
dates become small after a few epochs. To en-
able the comparison between different adaptation
scenarios, all fine-tuned models are trained for 10
epochs on 8,000 sentences of “in-domain” data.

3 Results

We report the results for the three adaptation sce-
narios: adapting to Level only, adapting to L1
only, and adapting to both L1 and Level. We sum-
marize the results by showing the average M? F 5
score (Dahlmeier and Ng, 2012) across all the test
sets included in the respective scenario.

We first note that the strong baseline (“Ran-
dom”), which is a model adapted to a random sam-
ple of CLC, achieves improvements between 11 to
13 Fg 5 points on average on all scenarios. While
not the focus of the paper, this large improvement
shows the performance gains by simply adapting
to a new domain (in this case CLC data). Second,
we note that the models adapted only by Level or
by L1 are on average better than the “Random”
model by 2.1 and 2.3 Fy 5 points respectively. Fi-
nally, the models adapted to both Level and L1
outperform all others, beating the “Random” base-
line on average by 3.6 Fg 5 points.

On all adaptation scenarios we report the per-
formance of the single best model released by
Junczys-Dowmunt et al. (2018). Their model,
which we call JD single, was trained on English
learner data of comparable size to our base dataset
and optimized using the CoNLL14 training and
test data.

Adaptation by Proficiency Level We adapt
GEC models to five of the CEFR proficiency lev-
els: A2, B1, B2, Cl, C2. The results in Ta-
ble 1 show that performance improves for all lev-
els compared to the “Random” baseline. The
largest improvement, 5.2 Fy 5 points, is achieved
for A2, the lowest proficiency level. We attribute
the large improvement to this level having a higher
error rate, a lower lexical diversity and being less
represented in the random sample on which the
baseline is trained on. In contrast, for the B1 and
B2 levels, the most frequent in the random sample,
improvements are more modest: 0.7 and 0.2 Fg 5
points respectively. Our adapted models are better
than the JD single model on all levels, and with a
large margin on the A2 and C1 levels.

Adapt A2 | BI1 B2 | C1 C2 | Avg.
No 304 | 349 | 33.1 | 325 | 33.0 | 32.8
Rand. 484 | 479 | 425 | 414 | 392 | 438
Level 53.6 | 48.6 | 42.7 | 43.3 | 41.1 | 459
JDsingle | 44.1 | 47.1 | 41.7 | 37.8 | 35.0 | 44.1

Table 1: Adaptation to Proficiency Level in Fy 5

Adaptation by L1 We adapt GEC models to
twelve L1s: Arabic, Chinese, French, German,
Greek, Italian, Polish, Portuguese, Russian, Span-
ish, Swiss-German and Turkish. The results in
Table 2 (top) show that all L1-adapted models
are better than the baseline, with improvements
ranging from 1.2 Fy 5 for Chinese and French, up



Adapt AR | CN| FR| DE| GR IT| PL| PT| RU| ES| CH| TR | Avg
No 37.5 13622 | 3277 | 314 | 32.7 | 293 | 36.0 | 31.7 | 35.8 | 32.1 | 31.1 | 354 | 335
Random | 463 | 45.0 | 449 | 447 | 46.4 | 449 | 46.2 | 452 | 453 | 47.6 | 442 | 47.0 | 45.6
L1 483 | 46.2 | 46.1 | 47.1 | 49.0 | 46.8 | 484 | 47.6 | 47.8 | 498 | 47.1 | 50.6 | 47.9
JDsingle | 47.0 | 44.7 | 44.2 | 41.4 | 44.1 | 40.7 | 46.0 | 44.6 | 43.7 | 44.8 | 40.7 | 47.5 | 44.1
Adapt CN-B2 | CN-C1 | FR-B1 | DE-B1 | IT-B1 | PT-B1 | ES-A2 | ES-B1 | ES-B2 | Avg.
No 36.1 325 31.8 31.2 28.1 314 28.9 31.9 337 | 31.8
Random 42.7 39.1 45.3 46.1 43.5 45.2 50.2 46.4 44.1 | 447
Level 43.4 41.0 46.5 46.9 45.3 46.1 56.6 47.5 43.7 | 46.3
L1 44.1 40.9 46.5 48.1 46.5 46.2 53.8 47.6 44.4 | 46.5
L1 & Level 45.5 43.1 48.1 50.2 | 473 47.9 58.2 48.8 45.6 | 48.3
JD single 43.0 35.8 46.9 43.8 41.6 46.7 434 45.0 41.0 | 43.0

Table 2: Top: Adaptation to L1 Only. Bottom: Adaptation to Level and L1. Eval metric: F 5

to 3.6 Fy5 for Turkish. For the languages that
are less frequent in the random sample of CLC
(Greek, Turkish, Arabic, Polish and Russian) we
see consistent improvements of over 2 Fg 5 points.
Our adapted models are better than the JD single
model on all L1s, and with a margin larger than
5 Fy5 points on German, Swiss-German, Italian,
Greek and Spanish.

Adaptation by L1 and Proficiency Level Fi-
nally, we adapt GEC models to the following
nine L1 — Level subsets: Chinese-B2, Chinese-Cl,
French-B1, German-B1, Italian-B1, Portuguese-
B1, Spanish-A2, Spanish-B1 and Spanish-B2. We
include these subsets in our study because they
meet the requirement of having at least 8,000 sen-
tences for training. All the models adapted to both
Level and L1 outperform the models adapted to
only one of these features, as shown in Table 2
(bottom). Focusing on the two levels for Chinese
native speakers, we see the model adapted to C1
achieves a larger improvement over the baseline,
4.1 Fy 5 points, compared to 2.7 Fy 5 points for the
B2 level. Again, this is explained by the lower fre-
quency of the C1 level in the random sample of
CLC, which is also reflected by the lowest Fg 5
score for the baseline model. Similarly, among
the models adapted to different levels of Spanish
native speakers, the one adapted to Spanish-A2
achieves the largest gains of 8 Fg 5 points. The
Spanish-A?2 testset has the highest number of er-
rors per 100 words among all the L1-Level test-
sets, as shown in Table 1 in the Appendix. Fur-
thermore, the A2 level is only half as frequent as
the B1 level in the random sample of CLC. Finally,
our adapted models are better than the JD single
model on all L1-Level subsets, with a margin of 5
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Fo.5 points on average.

Adapted P R | FO.5
Random 61.9 | 356 | 54.0
CN-Cl1 61.1 | 37.0 | 54.1
CN-B2 624 | 375 | 55.1
+ spellcheck  63.6 | 40.3 | 57.0

JD single 59.1 | 404 | 54.1
JD ensemble  63.1 | 42.6 | 57.5

Table 3: Results on the CoNLL14 testsets for Chinese
models.

CoNLL14 Evaluation We compare our adapted
models on the CoNLL14 testset (Ng et al., 2014)
in Table 3. The model adapted to Chinese-B2
improves the most over the baseline, achieving
55.1 Fg5. This result aligns with how the test
set was constructed: it consists of essays writ-
ten by university students, mostly Chinese na-
tive speakers. When we pre-process the eval-
uation set before decoding with a commercial
spellchecker’, our adapted model scores 57.0
which places it near other leading models, trained
on a similar amount of data, such as Chollam-
patt and Ng (2018) (56.52) and Junczys-Dowmunt
et al. (2018)° (57.53) even though we do not use
the CoNLL14 in-domain training data. We note
that the most recent state-of-the-art models (Zhao
et al., 2019; Grundkiewicz et al., 2019), are trained
on up to one hundred million additional synthetic
parallel sentences, while we adapt models with
only eight thousand parallel sentences.

SDetails removed for anonymity.

®We call their ensemble of four models with language
model re-scoring JD ensemble and their single best model
without language model re-scoring JD single



Adapt Det | Prep | Verb | Tense | NNum | Noun | Pron
CN-C1 | 353 | 590 | 299 1.77 8.28 | 8.02 | 22.78
FR-B1 | 234 | 1.99 | 1254 | 5.16 9.16 | 3.48 | 1.13
DE-B1 | 885 | 1.77 | 2.04 | 237 386 | 7.18 | 22.75
IT-B1 | 237 | 532 | 1248 | 6.74 440 | 329 | 899
ES-A2 | 6.06 | 12.52 | 7.51 8.54 8.73 | 12.39 | 10.57

Table 4: L1-Level breakdown by error type in relative improvements in Fj 5 over the “Random” baseline.

Error-type Analysis We conclude our study by
reporting improvements on the most frequent error
types, excluding punctuation, spelling and orthog-
raphy errors. We identify the error types in each
evaluation set with Errant, a rule-based classi-
fier (Bryant et al., 2017). Table 4 shows the results
for the systems adapted to both L1 and Level that
improved the most in overall Fy 5. The adapted
systems consistently outperform the “Random”
baseline on most error types. For Chinese-C1, the
adapted model achieves the largest gains on pro-
noun (Pron) and noun number agreement errors
(NNum). The Spanish-A2 adapted model achieves
notable gains on preposition (Prep), noun and pro-
noun errors. Both the French-B1 and Italian-B1
adapted models gain the most on verb errors. For
German-B1, the adapted model improves the most
on pronoun (Pron) and determiner (Det) errors.
The large improvement of 22.75 Fy 5 points for
the pronoun category is in part an artefact of the
small error counts. The adapted model corrects
35 pronouns (P=67.3) while the baseline corrects
only 15 pronouns (P=46.9). We leave an in depth
analysis by error type to future work.

Below, we give an example of a confused aux-
iliary verb that the French-B1 adapted model cor-
rects. The verb phrase corresponding to “go shop-
ping” in French is “faire des achats”, where the
verb “faire” would translate to “make/do”.

Orig He told me that celebrity can be bad
because he can’t do shopping nor-

mally.

Rand | He told me that the celebrity can be
bad because he can’t do shopping

normally.

FR-B1 | He told me that celebrity can be bad
because he can’t go shopping nor-

mally.

Ref He told me that celebrity can be bad
because he can’t go shopping nor-

mally.
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4 Conclusions

We present the first results on adapting a neural
GEC system to proficiency level and L1 of lan-
guage learners. This is the broadest study of its
kind, covering five proficiency levels and twelve
different languages. While models adapted to ei-
ther proficiency level or L1 are on average better
than the baseline by over 2 Fy 5 points and the
largest improvement (3.6 Fg 5) is achieved when
adapting to both characteristics simultaneously.
We envision building a single model that com-
bines knowledge across L1s and proficiency lev-
els using a mixture-of-experts approach. Adapted
models could also be improved by using the mixed
fine tuning approach which uses a mix of in-
domain and out-of-domain data (Chu et al., 2017).
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Abstract

In this paper, we investigate the modeling
power of contextualized embeddings from pre-
trained language models, e.g. BERT, on the
E2E-ABSA task. Specifically, we build a
series of simple yet insightful neural base-
lines to deal with E2E-ABSA. The experimen-
tal results show that even with a simple lin-
ear classification layer, our BERT-based archi-
tecture can outperform state-of-the-art works.
Besides, we also standardize the comparative
study by consistently utilizing a hold-out de-
velopment dataset for model selection, which
is largely ignored by previous works. There-
fore, our work can serve as a BERT-based
benchmark for E2E-ABSA.!

1 Introduction

Aspect-based sentiment analysis (ABSA) is to dis-
cover the users’ sentiment or opinion towards an
aspect, usually in the form of explicitly men-
tioned aspect terms (Mitchell et al., 2013; Zhang
et al., 2015) or implicit aspect categories (Wang
etal., 2016), from user-generated natural language
texts (Liu, 2012). The most popular ABSA bench-
mark datasets are from SemEval ABSA chal-
lenges (Pontiki et al., 2014, 2015, 2016) where a
few thousand review sentences with gold standard
aspect sentiment annotations are provided.

Table 1 summarizes three existing research
problems related to ABSA. The first one is the
original ABSA, aiming at predicting the senti-
ment polarity of the sentence towards the given
aspect. Compared to this classification problem,
the second one and the third one, namely, Aspect-
oriented Opinion Words Extraction (AOWE) (Fan

*The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14204418).

'Our code is open-source and available at: https://
github.com/lixindever/BERT-E2E-ABSA
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et al., 2019) and End-to-End Aspect-based Sen-
timent Analysis (E2E-ABSA) (Ma et al., 2018a;
Schmitt et al., 2018; Li et al., 2019a; Li and Lu,
2017, 2019), are related to a sequence tagging
problem. Precisely, the goal of AOWE is to ex-
tract the aspect-specific opinion words from the
sentence given the aspect. The goal of E2E-ABSA
is to jointly detect aspect terms/categories and the
corresponding aspect sentiments.

Many neural models composed of a task-
agnostic pre-trained word embedding layer and
task-specific neural architecture have been pro-
posed for the original ABSA task (i.e. the aspect-
level sentiment classification) (Tang et al., 2016;
Wang et al., 2016; Chen et al., 2017; Liu and
Zhang, 2017; Ma et al., 2017, 2018b; Majumder
et al., 2018; Li et al., 2018; He et al., 2018;
Xue and Li, 2018; Wang et al., 2018; Fan et al.,
2018; Huang and Carley, 2018; Lei et al., 2019;
Li et al., 2019b)?, but the improvement of these
models measured by the accuracy or F1 score
has reached a bottleneck. One reason is that the
task-agnostic embedding layer, usually a linear
layer initialized with Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014), only
provides context-independent word-level features,
which is insufficient for capturing the complex se-
mantic dependencies in the sentence. Meanwhile,
the size of existing datasets is too small to train
sophisticated task-specific architectures. Thus,
introducing a context-aware word embedding’
layer pre-trained on large-scale datasets with deep
LSTM (McCann et al., 2017; Peters et al., 2018;
Howard and Ruder, 2018) or Transformer (Rad-
ford et al., 2018, 2019; Devlin et al., 2019; Lample

Due to the limited space, we can not list all of the existing
works here, please refer to the survey (Zhou et al., 2019) for
more related papers.

3In this paper, we generalize the concept of “word em-
bedding” as a mapping between the word and the low-
dimensional word representations.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 34—41
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



<Great> [food]p but the

Sentence: T .
[service]y is <dreadful>.
Settings Input Output
1. ABSA sentence, aspect  aspect sentiment
2. AOWE sentence, aspect opinion words
3. E2E-ABSA sentence aspect, aspect sentiment

Table 1: Different problem settings in ABSA. Gold
standard aspects and opinions are wrapped in [] and
<> respectively. The subscripts N and P refer to aspect
sentiment. Underline * or * indicates the association
between the aspect and the opinion.

and Conneau, 2019; Yang et al., 2019; Dong et al.,
2019) for fine-tuning a lightweight task-specific
network using the labeled data has good potential
for further enhancing the performance.

Xu et al. (2019); Sun et al. (2019); Song et al.
(2019); Yu and Jiang (2019); Rietzler et al. (2019);
Huang and Carley (2019) have conducted some
initial attempts to couple the deep contextualized
word embedding layer with downstream neural
models for the original ABSA task and establish
the new state-of-the-art results. It encourages us
to explore the potential of using such contextual-
ized embeddings to the more difficult but practi-
cal task, i.e. E2E-ABSA (the third setting in Ta-
ble 1).* Note that we are not aiming at developing
a task-specific architecture, instead, our focus is
to examine the potential of contextualized embed-
ding for E2E-ABSA, coupled with various simple
layers for prediction of E2E-ABSA labels.’

In this paper, we investigate the modeling power
of BERT (Devlin et al., 2019), one of the most
popular pre-trained language model armed with
Transformer (Vaswani et al., 2017), on the task
of E2E-ABSA. Concretely, inspired by the inves-
tigation of E2E-ABSA in Li et al. (2019a), which
predicts aspect boundaries as well as aspect sen-
timents using a single sequence tagger, we build
a series of simple yet insightful neural baselines
for the sequence labeling problem and fine-tune
the task-specific components with BERT or deem
BERT as feature extractor. Besides, we standard-
ize the comparative study by consistently utiliz-
ing the hold-out development dataset for model
selection, which is ignored in most of the existing

“Both of ABSA and AOWE assume that the aspects in a
sentence are given. Such setting makes them less practical
in real-world scenarios since manual annotation of the fine-
grained aspect mentions/categories is quite expensive.

SHu et al. (2019) introduce BERT to handle the E2E-
ABSA problem but their focus is to design a task-specific
architecture rather than exploring the potential of BERT.
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Figure 1: Overview of the designed model.

ABSA works (Tay et al., 2018).

2 Model

In this paper, we focus on the aspect term-
level End-to-End Aspect-Based Sentiment Analy-
sis (E2E-ABSA) problem setting. This task can
be formulated as a sequence labeling problem.
The overall architecture of our model is depicted
in Figure 1. Given the input token sequence
x = {w1, - ,zp} of length T, we firstly em-
ploy BERT component with L transformer lay-
ers to calculate the corresponding contextualized
representations H- = {hl ... hL} € RTxdimn
for the input tokens where dimj, denotes the di-
mension of the representation vector. Then, the
contextualized representations are fed to the task-
specific layers to predict the tag sequence y
{y1,--- ,yr}. The possible values of the tag y;
are B-{POS,NEG,NEU}, I-{POS,NEG,NEU},
E-{POS, NEG, NEU}, S-{POS, NEG, NEU} or O,
denoting the beginning of aspect, inside of aspect,
end of aspect, single-word aspect, with positive,
negative or neutral sentiment respectively, as well
as outside of aspect.

2.1 BERT as Embedding Layer

Compared to the traditional Word2Vec- or GloVe-
based embedding layer which only provides a sin-
gle context-independent representation for each
token, the BERT embedding layer takes the sen-
tence as input and calculates the token-level rep-
resentations using the information from the entire
sentence. First of all, we pack the input features
as HY = {ey,--- ,er}, where ¢; (t € [1,T]) is



the combination of the token embedding, position
embedding and segment embedding correspond-
ing to the input token z;. Then L transformer
layers are introduced to refine the token-level fea-
tures layer by layer. Specifically, the representa-
tions H' = {n},--- KL} at the I-th (I € [1, L))
layer are calculated below:

H' = Transformer; (HZ*1 ) (D

We regard H' as the contextualized representa-
tions of the input tokens and use them to perform
the predictions for the downstream task.

2.2 Design of Downstream Model

After obtaining the BERT representations, we de-
sign a neural layer, called E2E-ABSA layer in
Figure 1, on top of BERT embedding layer for
solving the task of E2E-ABSA. We investigate
several different design for the E2E-ABSA layer,
namely, linear layer, recurrent neural networks,
self-attention networks, and conditional random
fields layer.

Linear Layer The obtained token representa-
tions can be directly fed to linear layer with soft-
max activation function to calculate the token-
level predictions:

P(ys|z:) = softmax(Wohl +b,)  (2)
where W, € RAmaxIYl jg the learnable parame-
ters of the linear layer.

Recurrent Neural Networks Considering its
sequence labeling formulation, Recurrent Neural
Networks (RNN) (Elman, 1990) is a natural so-
lution for the task of E2E-ABSA. In this paper,
we adopt GRU (Cho et al., 2014), whose superior-
ity compared to LSTM (Hochreiter and Schmid-
huber, 1997) and basic RNN has been verified
in Jozefowicz et al. (2015). The computational
formula of the task-specific hidden representation
h] € RY™~ at the ¢-th time step is shown below:

m = o(LN(W,hi) + LN(Wrh{_1))

ny = tanh(LN(Wanht) 4 re  LN(Whnhi_1)) 4

h;r:(l—zt)*nt—&—zt*hll

where o is the sigmoid activation function and
r¢, 2, Mg respectively denote the reset gate, up-
date gate and new gate. W, W), € R2dimnxdimy
Wens Whn € Rdimpxdimp gpe the parameters of

36

GRU. Since directly applying RNN on the out-
put of transformer, namely, the BERT represen-
tation h’, may lead to unstable training (Chen
et al., 2018; Liu, 2019), we add additional layer-
normalization (Ba et al., 2016), denoted as LN,
when calculating the gates. Then, the predictions
are obtained by introducing a softmax layer:

p(yelz:) = softmax(Woh] + b,) 4)
Self-Attention Networks With the help of self
attention (Cheng et al., 2016; Lin et al., 2017),
Self-Attention Network (Vaswani et al., 2017;
Shen et al., 2018) is another effective feature ex-
tractor apart from RNN and CNN. In this pa-
per, we introduce two SAN variants to build
the task-specific token representations H7 =
{r],--- ,h]}. One variant is composed of a
simple self-attention layer and residual connec-
tion (He et al., 2016), dubbed as “SAN”. The com-
putational process of SAN is below:

H” = LN(H* + SLF-ATT(Q, K, V)) )
Q K,V =HWCe H'WE HWY

where SLF-ATT is identical to the self-attentive
scaled dot-product attention (Vaswani et al.,
2017). Another variant is a transformer layer
(dubbed as “TFM”), which has the same archi-
tecture with the transformer encoder layer in the
BERT. The computational process of TFM is as
follows:

HY = LN(HY + SLE-ATT(Q, K, V))

H7 = LN(H" + Frn(HT)) ©
where FFN refers to the point-wise feed-forward
networks (Vaswani et al., 2017). Again, a linear
layer with softmax activation is stacked on the de-
signed SAN/TFM layer to output the predictions
(same with that in Eq(4)).

Conditional Random Fields Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001) is effec-
tive in sequence modeling and has been widely
adopted for solving the sequence labeling tasks
together with neural models (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016). In
this paper, we introduce a linear-chain CRF layer
on top of the BERT embedding layer. Different
from the above mentioned neural models max-
imizing the token-level likelihood p(y:|x¢), the
CRF-based model aims to find the globally most



LAPTOP REST
Model P R Fl P R Fl
(Lietal., 2019a)? 6127 5489 5790 | 68.64 7101 69.80
Existing Models (Luo et al., 2019)h - - 60.35 - - 72.78
(He et al., 2019)" - - 58.37 - - -
(Lample et al., 2016)F | 58.61 5047 5424 | 66.10 66.30 66.20
LSTM-CRF (Ma and Hovy, 2016)f | 58.66 5126 54.71 | 61.56 67.26 64.29
(Liu et al., 2018)! 5331 59.40 56.19 | 68.46 64.43 66.38
BERT+Linear 62.16 5890 60.43 | 71.42 7525 73.22
BERT+GRU 61.88 6047 61.12 | 70.61 7620 73.24
BERT Models ~ BERT+SAN 6242 5871 60.49 | 72.92 7672 74.72
BERT+TFM 6323 58.64 60.80 | 7239 76.64 74.41
BERT+CRF 6222 5949 60.78 | 71.88 76.48 74.06

Table 2: Main results. The symbol 7 denotes the numbers are officially reported ones. The results with  are

retrieved from Li et al. (2019a).

Dataset Train | Dev | Test | Total

# sent 2741 | 304 | 800 | 4245

LAPTOP 4 aspect | 2041 | 256 | 634 | 2931
REST # sent 3490 | 387 | 2158 | 6035
#aspect | 3893 | 413 | 2287 | 6593

Table 3: Statistics of datasets.

probable tag sequence. Specifically, the sequence-
level scores s(x,y) and likelihood p(y|x) of y =
{y1,--- ,yr} are calculated as follows:

T T
A P
s(x,y) = Z Myz,ytﬂ + Z Mtvyt (7)
t=0 t=1

ply|x) = softmax(s(x., y))

where M4 € RVl is the randomly initialized
transition matrix for modeling the dependency be-
tween the adjacent predictions and M ¥ € RT*IY
denote the emission matrix linearly transformed
from the BERT representations H”. The softmax
here is conducted over all of the possible tag se-
quences. As for the decoding, we regard the tag
sequence with the highest scores as output:

)

y* = argmax s(x,y)
y
where the solution is obtained via Viterbi search.

3 Experiment

3.1 Dataset and Settings

We conduct experiments on two review datasets
originating from SemEval (Pontiki et al., 2014,
2015, 2016) but re-prepared in Li et al. (2019a).
The statistics are summarized in Table 3. We
use the pre-trained “bert-base-uncased” model®,

Shttps://github.com/huggingface/transformers
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F1 score
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Figure 2: Performances on the Dev set of REST.

where the number of transformer layers L = 12
and the hidden size dimy, is 768. For the down-
stream E2E-ABSA component, we consistently
use the single-layer architecture and set the dimen-
sion of task-specific representation as dimy. The
learning rate is 2e-5. The batch size is set as 25 for
LAPTOP and 16 for REST. We train the model up
to 1500 steps. After training 1000 steps, we con-
duct model selection on the development set for
very 100 steps according to the micro-averaged F1
score. Following these settings, we train 5 models
with different random seeds and report the average
results.

We compare with Existing Models, including
tailor-made E2E-ABSA models (Li et al., 2019a;
Luo et al., 2019; He et al., 2019), and competitive
LSTM-CRF sequence labeling models (Lample
et al., 2016; Ma and Hovy, 2016; Liu et al., 2018).

3.2 Main Results

From Table 2, we surprisingly find that only in-
troducing a simple token-level classifier, namely,
BERT-Linear, already outperforms the existing
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Figure 3: Effect of fine-tuning BERT.

works without using BERT, suggesting that BERT
representations encoding the associations between
arbitrary two tokens largely alleviate the issue of
context independence in the linear E2E-ABSA
layer. It is also observed that slightly more pow-
erful E2E-ABSA layers lead to much better per-
formance, verifying the postulation that incorpo-
rating context helps to sequence modeling.

3.3 Over-parameterization Issue

Although we employ the smallest pre-trained
BERT model, it is still over-parameterized for the
E2E-ABSA task (110M parameters), which natu-
rally raises a question: does BERT-based model
tend to overfit the small training set? Following
this question, we train BERT-GRU, BERT-TFM
and BERT-CRF up to 3000 steps on REST and ob-
serve the fluctuation of the F1 measures on the de-
velopment set. As shown in Figure 2, F1 scores on
the development set are quite stable and do not de-
crease much as the training proceeds, which shows
that the BERT-based model is exceptionally robust
to overfitting.

3.4 Finetuning BERT or Not

We also study the impact of fine-tuning on the fi-
nal performances. Specifically, we employ BERT
to calculate the contextualized token-level repre-
sentations but kept the parameters of BERT com-
ponent unchanged in the training phase. Fig-
ure 3 illustrate the comparative results between
the BERT-based models and those keeping BERT
component fixed. Obviously, the general purpose
BERT representation is far from satisfactory for
the downstream tasks and task-specific fine-tuning
is essential for exploiting the strengths of BERT to
improve the performance.
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4 Conclusion

In this paper, we investigate the effectiveness of
BERT embedding component on the task of End-
to-End Aspect-Based Sentiment Analysis (E2E-
ABSA). Specifically, we explore to couple the
BERT embedding component with various neu-
ral models and conduct extensive experiments on
two benchmark datasets. The experimental results
demonstrate the superiority of BERT-based mod-
els on capturing aspect-based sentiment and their
robustness to overfitting.
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Abstract

Contemporary machine translation systems
achieve greater coverage by applying sub-
word models such as BPE and character-level
CNNS, but these methods are highly sensitive
to orthographical variations such as spelling
mistakes. We show how training on a mild
amount of random synthetic noise can dra-
matically improve robustness to these vari-
ations, without diminishing performance on
clean text. We focus on translation perfor-
mance on natural typos, and show that robust-
ness to such noise can be achieved using a bal-
anced diet of simple synthetic noises at train-
ing time, without access to the natural noise
data or distribution.

1 Introduction

Machine translation systems are generally trained
on clean data, without spelling errors. Yet many
translation scenarios require robustness to such er-
rors: for example, social media text in which there
is little emphasis on standard spelling (Michel and
Neubig, 2018), and interactive settings in which
users must enter text on a mobile device. Systems
trained on clean data generally perform poorly
when faced with such errors at test time (Heigold
et al., 2017; Belinkov and Bisk, 2018).

One potential solution is to introduce noise
at training time, similar in spirit to the use of
adversarial examples (Goodfellow et al., 2014;
Ebrahimi et al., 2018). So far, using synthetic
noise at training time has been found to im-
prove performance only on test data with exactly
the same kind of synthetic noise, while at the
same time impairing performance on clean test
data (Heigold et al., 2017; Belinkov and Bisk,
2018). We desire methods that perform well on
both clean text and naturally-occurring noise, but
this is beyond the current state of the art.

*Jacob Eisenstein is now at Google Research.
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Drawing inspiration from dropout and noise-
based regularization methods, we explore the
space of random noising methods at training time,
and evaluate performance on both clean text and
text corrupted by “natural noise” found in real
spelling errors. We find that by feeding our trans-
lation models a balanced diet of several types of
synthetic noise at training time (random charac-
ter deletions, insertions, substitutions, and swaps),
it is possible to obtain substantial improvements
on such naturally noisy data, with minimal impact
on the performance on clean data, and without ac-
cessing the test noise data or even its distribution.

Our method substantially improves the robust-
ness of a transformer-based machine translation
model with CNN character encoders to spelling
errors across multiple input languages (German,
French, and Czech). Of the different noise types
we use at training, we find that random charac-
ter deletions are particularly useful, followed by
character insertions. However, noisy training does
not improve translations of social media text, as
indicated by performance on the MTNT dataset
of Reddit posts (Michel and Neubig, 2018). This
finding aligns with previous work arguing that the
distinctive feature of social media text is not noise
or orthographical errors, but rather, variation in
writing style and vocabulary (Eisenstein, 2013).

2 Noise Models

We focus on orthographical noise; character-level
noise that affects the spelling of individual terms.
Orthographical noise is problematic for machine
translation systems that operate on token-level em-
beddings because noised terms are usually out-of-
vocabulary, even when divided into subwords us-
ing techniques such as byte pair encoding (BPE;
Sennrich et al., 2015). Interestingly, orthograph-
ical noise can also pose problems for character-
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Deletion A character is deleted.
Insertion
Substitution

Swap

A character is inserted into a random position.
A character is replaced with a random character.
Two adjacent characters change position.

whale — whle
whale — wxhale
whale — whalz
whale — wahle

Table 1: The synthetic noise types applied during training. Noise is applied on a random character, selected from
a uniform distribution. The right column illustrates the application of each noise type on the word “whale.”

level encoding models, which are based on mod-
els such as convolutional neural networks (CNNs;
Kim et al., 2016). These models learn to match
filters against specific character n-grams, so when
n-grams are disrupted by orthographical noise, the
resulting encoding may radically differ from the
encoding of a “clean” version of the same text. Be-
linkov and Bisk (2018) report significant degrada-
tions in performance after applying noise to only a
small fraction of input tokens.

Synthetic Noise Table 1 describes the four types
of synthetic noise we used during training. Substi-
tutions and swaps were experimented with exten-
sively in previous work (Heigold et al., 2017; Be-
linkov and Bisk, 2018), but deletion and insertion
were not. Deletion and insertion pose a different
challenge to character encoders, because they al-
ter the distances between character sequences in
the word, as well as the overall word length.

During training, we noised each token by sam-
pling from a multinomial distribution of 60%
clean (no noise) and 10% probability for each of
the four noise types. The noise was added dynam-
ically, allowing for different mutations of the same
example over different epochs.

Natural Noise We evaluate our models on nat-
ural noise from edit histories of Wikipedia (for
French and German; Max and Wisniewski, 2010;
Zesch, 2012) and manually-corrected essays (for
Czech; Sebesta et al., 2017). These authors have
obtained a set of likely spelling error pairs, each
involving a clean spelling and a candidate error.
We used that set to replace correct words with
their misspelled versions for each evaluation sam-
ple text in the source language. When there are
multiple error forms for a single word, an error is
selected randomly. Not all words have errors, and
so even with maximal noise, only 20-50% of the
tokens are noised.

Natural noise is more representative of what
might actually be encountered by a deployed ma-
chine translation system, so we reserve it for test
data. While it is possible, in theory, to use nat-
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ural noise for training, it is not always realistic.
Significant engineering effort is required to obtain
such noise examples, making it difficult to build
naturally-noised training sets for any source lan-
guage. Furthermore, orthography varies across de-
mographics and periods, so it is unrealistic to an-
ticipate the exact distribution of noise at test time.

3 Experiment

Data Following Belinkov and Bisk (2018), we
evaluated our method on the IWSLT 2016 ma-
chine translation benchmark (Cettolo et al., 2016).
We translated from three source languages (Ger-
man, French, Czech) to English, each with a train-
ing set of approximately 200K sentence pairs.
Synthetic noise was added only to the training
data, and natural noise was added only to the test
data; the validation data remained untouched.

Model We used a transformer-based translation
model (Vaswani et al., 2017) with a CNN-based
character encoder (Kim et al., 2016).

Hyperparameters We followed the base con-
figuration of the transformer (Vaswani et al., 2017)
with 6 encoder and decoder layers of 512/2048
model/hidden dimensions and 8 attention heads.
Character embeddings had 256 dimensions and
the character CNN followed the specifications of
Kim et al. (2016). We optimized the model with
Adam and used the inverse square-root learning
rate schedule typically used for transformers, but
with a peek learning rate of 0.001. Each batch
contained a maximum of 8,000 tokens. We used
a dropout rate of 0.2. We generated the transla-
tions with beam search (5 beams), and computed
BLEU scores to measure test set performance.

Results Table 2 shows the model’s performance
on data with varying amounts of natural errors. As
observed in prior art (Heigold et al., 2017; Be-
linkov and Bisk, 2018), when there are signifi-
cant amounts of natural noise, the model’s perfor-
mance drops significantly. However, training on
our synthetic noise cocktail greatly improves per-
formance, regaining between 19% and 54% of the



BLEU

Dataset Noise Probability Noised Tokens Clean Training Data  + Synthetic Noise A % Recovered
de-en 0.00% 0.00% 34.20 33.53 -0.67 -
de-en 25.00% 9.72% 27.93 31.32 3.39 54.1%
de-en 100.00% 39.36% 12.49 23.34 10.85 50.0%
fr-en 0.00% 0.00% 39.61 39.94 0.33 -
fr-en 25.00% 13.47% 30.48 34.07 3.59 39.3%
fr-en 100.00% 53.74% 11.48 19.43 7.95 28.3%
cs-en 0.00% 0.00% 27.48 27.09 -0.39 -
cs-en 25.00% 6.14% 24.31 2491 0.60 18.9%
cs-en 100.00% 24.53% 16.64 18.91 2.27 20.9%

Table 2: Performance on the IWSLT 2016 translation task with varying rates of natural noise in the test set. Noise
Probability is the probability of attempting to apply natural noise to a test token, while Noised Tokens is the
fraction of tokens that were noised in practice; not every word in the vocabulary has a corresponding misspelling.

Training Noise BLEU A
No Training Noise ~ 12.49

+ Deletion 17.39 4.90
+ Insertion 15.00 2.51
+ Substitution 11.99 -0.50
+ Swap 14.04 1.55
All Training Noise ~ 23.34

— Deletion 1496  -8.38
— Insertion 18.81 -4.53
— Substitution 20.23 3.11
— Swap 23.07 -0.27

Table 3: Performance on IWSLT 2016 de-en test with
maximal natural noise when training with one noise
type (top) and three noise types (bottom).

BLEU score that was lost to natural noise. More-
over, this training regime has minimal impact on
clean text translations, with negative and positive
fluctuations that are smaller than 1 BLEU point.

To determine the ceiling performance of noise-
based training, we split the set of natural typos
and used one part for training and the other for
test. However, we observed that training on natu-
ral noise behaves very similarly to training with-
out noise at all (not shown), perhaps because the
natural typos did not have enough variance to en-
courage the model to generalize well.

Ablation Analysis To determine the individual
contribution of each type of synthetic noise, we
conduct an ablation study. We first add only one
type of synthetic noise at 10% (i.e. 90% of the
training data is clean), and measure performance.
We then take the full set of noise types, and re-
move a single type at each time to see how impor-
tant it is given the other noises.

Table 3 shows the model’s performance on the
German dataset when training with various mix-
tures of noise. We find that deletion is by far
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Dataset Del Ins Sub Swap
de-en 16.6% 26.5% 17.0% 6.0%
fr-en 11.8% 11.4% 9.7% 2.6%
cs-en 6.6% 6.1% 41.7% 0.4%

Table 4: The proportion of natural errors caused
by deleting/inserting/substituting a single character or
swapping two adjacent characters.

the most effective synthetic noise in preparing
our model for natural errors, followed by inser-
tion. We observe the same trend for French and
Czech. This result could explain why our experi-
ments show a significant improvement when train-
ing on synthetic noise, while previous work, which
trained only on synthetic substitutions and swaps,
did not observe similar improvements.

Natural Noise Analysis Finally, we analyze
how well our synthetic noise covers the distribu-
tion of natural noise. Table 4 shows the percentage
of noised tokens that can be covered by a single
noising operation. With the exception of substitu-
tions in Czech, higher overlap between synthetic
and natural noise appears to correlate with higher
recovery rate in Table 2. One possible explanation
for this outlier is that random synthetic substitu-
tions might be less effective at imitating real sub-
stitutions, and that perhaps a more informed model
is needed for simulating synthetic substitutions.

4 Translating Social Media Text

We also apply our synthetic noise training proce-
dure to social media, using the recently-released
MTNT dataset of Reddit posts (Michel and Neu-
big, 2018), focusing on the English-French trans-
lation pair. Note that no noise was inserted into the
test data in this case; the only source of noise is the



Dataset Clean Train + Synthetic Noise
en-fr 21.1 20.6
fr-en 23.6 24.1

Table 5: The performance of a machine translation
model on the MTNT task.

non-standard spellings inherent to the dataset.

As shown in Table 5, noised training has min-
imal impact on performance. We did not ex-
haustively explore the space of possible noising
strategies, and so these negative results should be
taken only as a preliminary finding. Nonetheless,
there are reasons to believe that synthetic train-
ing noise may not help in this case. Michel and
Neubig (2018) note that the rate of spelling errors,
as reported by a spell check system, is not espe-
cially high in MTNT; other differences from stan-
dard corpora include the use of entirely new words
and names, terms from other languages (especially
English), grammar differences, and paralinguis-
tic phenomena such as emoticons. These findings
align with prior work showing that social media
does not feature high rates of misspellings (Rello
and Baeza-Yates, 2012). Furthermore, many of the
spelling variants in MTNT have very high edit dis-
tance (e.g., catholique — catho [Fr]). It is unlikely
that training with mild synthetic noise would yield
robustness to these variants, which reflect well-
understood stylistic patterns rather than random
variation at the character level.!

5 Related work

The use of noise to improve robustness in ma-
chine learning has a long history (e.g., Holm-
strom and Koistinen, 1992; Wager et al., 2013),
with early work by Bishop (1995) demonstrating a
connection between additive noise and regulariza-
tion. To achieve robustness to orthographical er-
rors, we require noise that operates at the character
level. Heigold et al. (2017) demonstrated that syn-
thetic noising operations such as random swaps
and replacements can degrade performance when
inserted at test time; they also show that some ro-
bustness can be obtained by inserting the same
noise at training time. Similarly, Sperber et al.
(2017) explore the impact of speech-like noise.

! Contemporaneous work shows that MTNT performance
can be improved by a domain-specific noising distribution
that includes character insertions and deletions, as well as
the random insertion of emoticons, stopwords, and profan-

ity (Vaibhav et al., 2019). The specific impact of spelling
noise is not evaluated, nor is the impact on clean text.
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Most relevant for us is the work of Belinkov
and Bisk (2018), who evaluated on natural noise
obtained from Wikipedia edit histories (e.g., Max
and Wisniewski, 2010). They find that robustness
to natural noise can be obtained by training on the
same noise model, but that (a) training on syn-
thetic noise does not yield robustness to natural
noise at test time, and (b) training on natural noise
significantly impairs performance on clean text. In
contrast, we show that training on the right blend
of synthetic noise can yield substantial improve-
ments on natural noise at test time, without signif-
icantly impairing performance on clean data. Our
ablation results suggest that deletion and insertion
noise (not included by Belinkov and Bisk) are es-
sential to achieving robustness to natural noise.

An alternative to noise infusion is to build
character-level encoders that are robust to noise by
design. Belinkov and Bisk (2018) experiment with
a bag of characters, while Sakaguchi et al. (2017)
use character-level recurrent neural networks com-
bined with special representations for the first and
last characters of each token. These models are
particularly suited for specific types of swapping
and scrambling noises, but are not robust to natu-
ral noise. We conducted preliminary experiments
with noise-invariant encoders, but obtained better
results by adding noise at training time. A re-
lated idea is to optimize an adversarial objective,
in which a discriminator tries to distinguish noised
and clean examples from their encoded represen-
tations (Cheng et al., 2018). This improves per-
formance on clean data, but it makes optimization
unstable, which is a well-known defect of adver-
sarial learning (Arjovsky et al., 2017). Cheng et al.
(2018) do not evaluate on natural noise.

6 Conclusion

This work takes a step towards making machine
translation robust to character-level noise. We
show how training on synthetic character-level
noise, similar in spirit to dropout, can significantly
improve a translation model’s robustness to natu-
ral spelling mistakes. In particular, we find that
deleting and inserting random characters play a
key role in preparing the model for test-time typos.
While our method works well on misspellings, it
does not appear to generalize to non-standard text
in social media. We conjecture that spelling mis-
takes constitute a small part of the deviations from
standard text, and that the main challenges in this



domain stem from other linguistic phenomena.

Acknowledgments Thanks to the anonymous
reviewers for their feedback. We also thank Luke
Zettlemoyer and our colleagues at FAIR for valu-
able feedback. Specifically, we thank Abdelrah-
man Mohamed for sharing his expertise on non-
autoregressive models.

References

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In International Conference on Machine Learning,
pages 214-223.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In ICLR.

Chris M Bishop. 1995. Training with noise is equiva-
lent to tikhonov regularization. Neural computation,
7(1):108-116.

Mauro Cettolo, Niehues Jan, Stiiker Sebastian, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2016. The IWSLT 2016 evaluation campaign. In In-
ternational Workshop on Spoken Language Transla-
tion.

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1756—
1766, Melbourne, Australia. Association for Com-
putational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. Hotflip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31-36, Melbourne, Australia. Association for Com-
putational Linguistics.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the 2013 confer-
ence of the North American Chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 359-369.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Georg Heigold, Giinter Neumann, and Josef van
Genabith. 2017. How robust are character-based
word embeddings in tagging and mt against wrod
scramlbing or randdm nouse? arXiv preprint
arXiv:1704.04441.

46

Lasse Holmstrom and Petri Koistinen. 1992. Using
additive noise in back-propagation training. /EEE
Transactions on Neural Networks, 3(1):24-38.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI pages 2741-2749.

Aurélien Max and Guillaume Wisniewski. 2010. Min-
ing naturally-occurring corrections and paraphrases
from wikipedia’s revision history. In LREC.

Paul Michel and Graham Neubig. 2018. Mtnt:
testbed for machine translation of noisy text.
EMNLP.

A
In

Luz Rello and Ricardo A Baeza-Yates. 2012. Social
media is not that bad! the lexical quality of social
media. In ICWSM.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2017. Robsut wrod reocgini-

ton via semi-character recurrent neural network. In
AAAI, pages 3281-3287.

Kagel gebesta, ZuzaQna Bedfichova, Katefina
Sormova, Barbora Stindlova, Milan Hrdlicka,
Tereza Hrdlickova, Jifi Hana, Vladimir Petkevic,
Tomas Jelinek, Svatava Skodova, Petr vJaneé,
Katefina Lundakova, Hana Skoumalova, Simon
Sladek, Piotr Pierscieniak, Dagmar Toufarovi,
Milan Straka, Alexandr Rosen, Jakub Néplava,
and Marie Polackova. 2017. CzeSL grammatical
error correction dataset (CzeSL-GEC). LIN-
DAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles University.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Matthias Sperber, Jan Niehues, and Alex Waibel. 2017.
Toward robust neural machine translation for noisy
input sequences. In International Workshop on Spo-
ken Language Translation (IWSLT), Tokyo, Japan.

Vaibhav, Sumeet Singh, Craig Stewart, and Graham
Neubig. 2019. Improving robustness of machine
translation with synthetic noise. arXiv preprint
arXiv:1902.09508.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998—-6008.

Stefan Wager, Sida Wang, and Percy S Liang. 2013.
Dropout training as adaptive regularization. In Ad-
vances in neural information processing systems,
pages 351-359.

Torsten Zesch. 2012. Measuring contextual fitness us-
ing error contexts extracted from the wikipedia revi-
sion history. In Proceedings of the 13th Conference



of the European Chapter of the Association for Com-
putational Linguistics, pages 529-538. Association
for Computational Linguistics.

47



Character-Based Models for Adversarial Phone Number Extraction:
Preventing Human Sex Trafficking

Nathanael Chambers
Yogaish Khastgir

Timothy Forman
Kevin Lu

Catherine Griswold
Stephen Steckler

Department of Computer Science
United States Naval Academy
nchamber@usna.edu

Abstract

Ilicit activity on the Web often uses noisy
text to obscure information between client and
seller, such as the seller’s phone number. This
presents an interesting challenge to language
understanding systems; how do we model ad-
versarial noise in a text extraction system?
This paper addresses the sex trafficking do-
main, and proposes some of the first neu-
ral network architectures to learn and extract
phone numbers from noisy text. We create
a new adversarial advertisement dataset, pro-
pose several RNN-based models to solve the
problem, and most notably propose a visual
character language model to interpret unseen
unicode characters. We train a CRF jointly
with a CNN to improve number recognition by
89% over just a CRF. Through data augmenta-
tion in this unique model, we present the first
results on characters never seen in training.

1 Introduction

One reason people intentionally obscure textual
content is to evade automatic extraction systems.
There are good reasons for wanting to do this, pri-
vacy being at the forefront. However, illicit activ-
ity is another reason, and human sex trafficking is
one of the most egregious uses. We draw inspi-
ration from this domain, but extracting informa-
tion from adversarial noisy text is a more general
challenge for the NLP community. It is a language
understanding task that humans can easily do, but
which presents difficulty for automated methods.
This paper presents the first deep learning models
for adversarial phone number extraction, and re-
leases new datasets for future experimentation.
An obscured example number is shown here:

(914) Too.46-callme-001/4

The true phone number is 914-246-0014, but
this breaks even the most comprehensive rule-
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based extractors. It contains examples of visual
substitution (I for 1 and unicode for 0), word sub-
stitution (“Too” for 2), and character confounders
(separators ., -’, °/* and other words). Any one
challenge might be solvable in isolation, but they
often combine together:

n1neOone 7n1ne3 n1ne351

Rather than swapping letters for digits (I for
1), this example swaps digits for letters (1 for i)
which are also part of a word swap (‘nine’ for 9).
There are four ‘1’ characters in the string, but only
one of them maps to one of the two 1 digits in
the number 901-793-9351. Beyond this, the most
challenging noise occurs when unicode is injected,
thus rendering finite character models ineffective
since they’ve never seen these characters in train-
ing. This paper proposes to model all of this noise
with several neural network architectures.

The domain of focus for our study is human sex
trafficking, although our proposed models apply to
any domain with obscured information (social me-
dia, for instance, often mixes unusual characters,
confounding normal language models). This topic
is important in terms of global need, but it also has
attractive language properties for research. Since
our datasets come from people who need to post
contact information, they can’t obscure the text roo
much, or nobody could call them. This results in
an interesting cognitive challenge that humans can
solve, but state-of-the-art extraction struggles.

The main contributions in this paper are (1) the
first neural models for noisy phone number extrac-
tion, (2) a visual language model over images of
characters, (3) a combined CRF with CNN input,
(4) a data augmentation technique for training that
helps recognize unseen unicode, and (5) state-of-
the-art extraction results on new datasets.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 48-56
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



2 Previous Work

A number of papers have looked into the sex traf-
ficking domain. Some focus on classifying entire
ads as trafficking or not (Alvari et al., 2016, 2017),
while others build knowledge graphs of mentioned
entities (Szekely et al., 2015) or focus on normal-
izing attributes like geolocations (Kapoor et al.,
2017; Kejriwal and Szekely, 2017; Kejriwal et al.,
2017). Most of these use phone numbers as fea-
tures, and several found them to be among the
most important input (Dubrawski et al., 2015;
Nagpal et al., 2017; Li et al., 2018). In fact, phone
numbers are used as gold truth to connect simi-
lar ads or link traffickers (Rabbany et al., 2018;
Li et al., 2018). Phone numbers have also been
shown to be some of the most stable links to enti-
ties (Costin et al., 2013), so are important for en-
tity linking tasks. Almost all of these threads as-
sume correct phone extraction and ignore the dif-
ficulty of ads with obscured numbers. Although
sometimes unspecified, they all appear to use rule-
based extractors.

Most relevant to this paper is TJBatchEx-
tractor, a rule-based regular expression system
(Dubrawski et al., 2015) which is still state-of-
the-art for extraction, and is used by other work
on trafficking ID (Nagpal et al., 2017). We em-
ploy TJBatchExtractor to identify the ads with ob-
scured text from which it fails to extract a number.
Our paper thus focuses on only the difficult ads
with noisy phone numbers.

Most language models use words or characters
as their base inputs. One of our contributions
is a visual model of characters. We use an im-
age database of 65k unicode characters developed
by BBVA Next Security Lab!' for phishing pre-
vention. Most similar is Liu et al. (2017) who
use CNNs for Asian-language classification. They
aren’t addressing noise like our paper, but rather
the semantics inherent to their visual characters.

Finally, we employ data augmentation (Ding
etal., 2016; Xu et al., 2016) during training of our
visual character model. This is commonly used in
the visual community (Salamon and Bello, 2017;
Zhong et al., 2017) and we adopt their overall idea
to randomly perturb our character images to learn
a robust character recognizer.

'https://github.com/next-security-lab
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3 Data and Attributes

3.1 Noisy and Obscured Data

We begin by highlighting the main methods peo-
ple use for adversarial noise in written text. This
is not an exhaustive list, but it covers the vast ma-
jority of cases observed in this paper’s datasets.

1. Digits as Lexemes. The most basic approach
to obscuring numbers is to substitute lexemes
(words) for digits. These are often easy to iden-
tify, and regular expressions with a dictionary are
usually sufficient for detection. Words might be
capitalized (FOUR) or camel case (foUr), such as
in the text, “threeoh2ZFOURO070six22”.

2. Homophones. This method replaces digits
with homophones or near-rhymes, thereby confus-
ing dictionary approaches as in “337 9twennyfo
06juan9”. Tokens “twenny” and “juan” share
phonological similarities with the digit pronunci-
ation. Regular expressions cannot capture these
without complex phoneme modeling.

3. Letters as Digits. This method substitutes
ASCII letters for their digit lookalikes (e.g., 615
093 93B6). The ‘I’ and ‘B’ are representing 1 and
8 respectively. These substitutions can grow more
complicated with things like ‘()’ for 0 and what
was popularized as leetspeak in the 1980’s with
‘E’ for ‘3’ and other such inversions.

4. Visual Deception and Unicode. This is a
variant of ‘Letters as Digits’ above, but goes be-
yond ASCII substitution to use Unicode charac-
ters. Unicode presents a huge challenge to extrac-
tion as these rely entirely on visual similarities in
the character images. Below are just some unicode
options that resemble the ASCII character ‘8’:

88v 8 88Y Y8 82883

A rule-based approach would have to manually
map all possible characters to their digits, an im-
possible task for 138k current unicode characters
(with future room for 1mil). This would also fail
on the larger problem of capturing visually am-
biguous close-matches. For instance, an emoticon
smiley face can be used for the ASCII letter ‘0’:

(4 @ne 2)456 9412

We are the first to our knowledge to model vi-
sual noise with a language model architecture.



5. Confounding Separators. Another common
noise tactic is to insert arbitrary characters as sep-
arators. For example: —270**Itree& &822==31-.
The noise in this obscured text is meant to con-
fuse a pattern matcher as to when a digit’s sub-
string begins and ends. Other difficult versions of
this method uses digit characters themselves as the
separators: 111 410 111 897 111 3245111

6. Human Reasoning. The most difficult class
of obscured text is that which requires reason-
ing to solve. For instance, including arithmetic
(3+1) or instructions to invert digits. This type is
a small minority in obscured phone numbers, but
they prove most challenging.

Some of these challenges have rule-based so-
lutions in isolation, but combined together, they
overlap and build on each other for an exponen-
tial number of noisy combinations. This paper ad-
dresses all of these challenges except for homo-
phones and human reasoning. We leave phoneme
modeling to future work, and reasoning requires
a different approach than discriminative classi-
fiers. The most significant challenge this paper
addresses is that of the visual deceptions (letters
as digits, unicode, and visual sim). We propose
the first neural model for visual similarity detec-
tion with a unique visual model based on a CNN.

4 Corpora
4.1 Real-World Noisy Advertisements

Our initial corpus started from a 250k advertise-
ment crawl of Backpage and Craigslist escort sec-
tions, shared with us by the Global Emancipation
Network. The majority of these ads (180k) are one
line with a standard phone number and no actual
text. We filtered these out to focus on ads with
written descriptions.

After removing one-liners, we ran the state-of-
the-art extractor (Dubrawski et al., 2015) to iden-
tify all ads where the extractor failed to extract
anything. This remaining subset contains ads that
either don’t have a phone number, or they contain
an obscured number that fooled the rule-based ex-
tractor. Figure 1 shows one such explicit ad.

Undergraduate volunteers manually inspected
the remaining ads, removed those without num-
bers, and identified minimal text spans that en-
compassed any obscured phone numbers. These
annotations resulted in approximately 200 real-
world obscured ads with their obscured text spans.
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Ad for Phone 555-584-4630

Sexy Slim 555 Ready for fun let me 584 sat-
isfy your 4630 every desire no disappointments..!!
**]F YOUR NOT SERIOUS PLEASE DON’T
CALL ME..!IKik Me-censored ____****CAR
PLAY ONLY##**

Figure 1: An example advertisement from the escort
section of Backpage. Phone and username changed for
anonymity. This ad illustrates an obscured number with
normal digits, but text is interspersed in between.

Desiring a larger test set for evaluation, we cre-
ated an adversarial data collection environment for
undergrads to try and “beat” the TIBatchExtractor.
This small-scale collection resulted in about 200
more obscured phone examples.

Merging the crawl with these adversarial ob-
scured numbers, we had 390 real-world examples.
We split into 250 test numbers and 140 for devel-
opment (dev). The dev set was used for model im-
provement and parameter tuning, and the test set
only for final results. Two examples from the dev
set are given here:

Gold Phone Ad Text
3189481720 treelate_nein 48-one7 twenty
4177015067 417 70! fifty6svn

Due to the nature of this domain, training data
is difficult to obtain so neural models are stymied.
We instead chose to “fake” the training data, cre-
ating our own computer-based adversarial dataset.
Though training data is artificial, all experiments
use the above real-world data annotations.

4.2 Artificial Noisy Adversarial Data

A core research question is now whether artificial
training data can train this real-world task. This
section describes our approach.

The generation algorithm starts with a 10 digit
number string (randomly selected?), and then
transforms the string with a sequence of obfusca-
tion operations. Space prevents a full description
of this process and its details, but we will release
the code upon publication. Example transforma-
tions are as follows:

1. Insert separator ASCII chars between digits.
2. Replace a digit with an ASCII lookalike.

>We used a US area code dictionary, and followed the con-
straint that the 4th digit must be [2-9] whereas the 5th to 10th
digits are [0-9]. Numbers were then chosen randomly.



Artificial Obscured Phone Numbers

2 1tree\6-zeroO###33\715
778cinco7five688 PaRtyGiRL 6
*forejuan*for 55!826ate

5 1290 si&ted
ateQ 5 **#2 08—88 8nine

Figure 2: Examples from the artificial phone number
training set.

3. Replace a digit with its English, Spanish, or
homonym (2 to ‘two’)

4. Capitalize letters or replace with an ASCII
lookalike (C to ‘(")

5. Replace two digits with its English word
(‘18 to ‘eighteen’)

6. Insert random English words as separators

These occur in sequence, each with random
chance, so the original digit ‘2° might become
‘too’ which then becomes ‘ToQ’ after character
conversion. The output of this process is arguably
more difficult than many real-world examples. See
Figure 2 for generated examples. We ultimately
trained on 100k of these.

5 Models for Obscured Extraction
5.1 Baseline Models

We use two baselines: one from prior work and
another with a basic RNN model.

5.1.1 Rule-Based Baseline

The state-of-the-art for phone number extraction
is the TJBatchExtractor from Debrawski et al.
(2015). This is a large set of regular expressions
designed to capture phone numbers even with vari-
ation and noise, mostly focused on what we’ve
named “Digits as Lexemes” and “Letters as Dig-
its”. Their previous results showed 99% extraction
accuracy, however, we found that 72% of ads are
one line with just unobscured digits, so their result
masks a more challenging subset.

5.1.2 RNN Baseline

Our baseline neural architecture is a character-
based bi-directional LSTM. Input is a 70 charac-
ter span of obscured text, and each character is
mapped to its embedding vector. The embeddings
are randomly initialized and learned during train-
ing. Each embedding is fed into the biLSTM, and
the final hidden state of the biLSTM is treated as
the representation of the obscured text. The hid-
den state is then passed to 10 independent dense
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layers, one for each of the 10 digits in the phone
number. A softmax is then used on the output of
each dense layer to predict the digit in that position
of the 10-digit phone number.

We also tested GRUs instead of LSTMs, but
performance did not significantly change.

5.2 Obscured Models
5.2.1 RNN with Positional Attention

The RNN baseline transforms the input text to a
single vector from the biLSTM, and then predicts
the digits in the phone number from this vector.
We found that the model quickly learns to pre-
dict the first digits and the last digits, but learning
for the middle digits is hindered. This intuitively
makes sense because the vector represents the en-
tire text without directed guidance on identifying
where in the text the digits exist. How does the
final dense layer know where the 4th and 5th dig-
its begin? The initial digit, in contrast, is easier to
identify because it leads the string.

Our solution to this deficiency was to add po-
sitional attention to the LSTM. Instead of using
its final LSTM state, the vector is a weighted sum
of all hidden states. The weight vector « is the
learned positional attention. Formally, the 7th digit
in the 10 digit phone number is predicted by a
dense layer over context vector input W;:

N
Wi=Y oV (1)
j=0

where N is the length of the LSTM, Vj is the jth
LSTM hidden state, 7 is the ith digit in the phone,
and «; is the 7th digit’s positional attention vector.
This allows the network to learn which part of the
text is relevant for each digit. The first digit in
the number should learn a weight vector g that
weights the front of the LSTM more than the end,
and vice versa for aeg. Figure 3 shows this model.

We experimented with individual attention
(each digit ¢ has its own learned «;) and a single
shared attention (all digits use the same learned
o). We only report on individual attention since it
outperformed shared attention.

We also tested multiple stacked LSTM layers.
Stacking showed no further improvement.

5.2.2 RNN with Conditioned Prediction

One characteristic of our task is that each digit
prediction is mostly independent from the previ-
ous digit. Unlike many domains in NLP, this is
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Figure 3: LSTM with position attention. Dotted lines
included with conditioned prediction (Sec 5.2.2).

not a sequence modeling problem where knowing
the previous digit semantically assists in guessing
the next. For instance, a 5 is not more likely to be
followed by a 4.3 Despite position attention, the
model still had difficulty distinguishing which por-
tion of the context vector was relevant to a middle
digit. It sometimes repeats an inner digit because
the 4th and 5th positions were too nearby in the
obscured text. Observe these 2 examples:

41093four 2830
4109threeefour tooo830

The seventh digit is a 2, but it starts five char-
acters later in the second string. We observed
repeated digit predictions like: 4109344830. It
would predict the same number twice, and then
skip over the next due to the shifting positions.

Our quick solution to avoiding repeats was to
pass the predictions forward. We added a sim-
ple conditional dependency that feeds the softmax
output of the previous digit to the current digit.
The dotted lines in Figure 3 illustrate this new
link. This removed many of our repeated digits,
and also increased accuracy in other examples that
weren’t even repeated but just made mistakes.

5.2.3 Conditional Random Field Model

Given that providing the previous digit prediction
showed slight improvements on the development
set, we wanted to formalize the sequence predic-
tions with proper transition probabilities. If a digit
prediction leads to an unlikely next prediction (ac-
cording to the model), then perhaps the previous
digit should switch to its 2nd most likely in order
to maximize the joint prediction.

3There are exceptions and phone numbers do have some
constraints, such as having a limited set of 3 leading digits.
However, the remaining 7 digits are mostly random in the US.
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Figure 4: Neural architecture with a CRF top layer.

The other RNN problem is that input varies in
length and noise. Some input is only about digits:

4treeTOOS564ateSVN33
Others contain varying complex separators:
—4**tree**TOO sms 564ate+SVN+33

RNNs must learn to ignore separators in ways
that don’t confuse the subsequent dense layers.
The network is remarkably adept at this, but we
hypothesized that a better model should make
a prediction on each and every input character
rather than merging all into the same hidden state.

Conditional Random Fields (Lafferty et al.,
2001) are a natural way of modeling the above. A
CRF tags each character as it goes, and performs
both training and inference, using viterbi search
to find the most likely output prediction sequence.
Figure 4 shows this model. We used the CRF im-
plementation in Keras inspired by (Huang et al.,
2015) to overlay a CRF on top of the RNN-based
models (see also Ma and Hovy (2016)).

The output of a CREF is different since it must
output a label for every character (rather than just
10 phone digits). We use the standard CRF labels
to mark the beginning (B) and included (I) charac-
ters. This means that instead of a single label for
each possible phone digit (e.g., 8), we now have
two labels which represent a character that begins
a digit (B8) and a character in the middle or end
of a digit (I8). We additionally use an Other la-
bel ‘O’ to label the noisy separator characters that
aren’t part of any digit’s substring. The following
is an example:

B2 12 12 B4 B7 O B6 16 16 B9 B9
T O04 7 - s 1 x 9 9

The mapping from CRF labels (B2,12,12) to ac-
tual digits (2) is deterministic. Evaluation metrics
for the previous RNNs also apply to the CRF out-
put after it is mapped. However, training for the
CRF is done entirely on the CRF label loss.
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Figure 5: CNN architecture for visual image input to
the LSTM model.

5.2.4 Visual Characters with CNNs

As with most NLP tasks, out of vocabulary (OOV)
input is an issue. Our adversarial task is even more
severe because visual substitutions are intentional,
and often OOV as there are 138k current unicode
options. If the character is unseen in training, only
context can try to guess the digit. Below are ex-
amples of such replacement:

Digits  ASCII
410 410

Unicode
410

Why are these easy for humans to decipher? It’s
purely due to visual similarity. In a “normal” NLP
neural model, each character (or token) is mapped
to an embedding, so unseen characters have no
representation. We might use the default approach
of mapping all unknowns to a shared ‘UNK’ em-
bedding, but this loses the different visual charac-
teristics of each character.

All of this motivates our new Visual-Based
Character RNN. Our model does not learn a dic-
tionary of character embeddings, but instead uses
a series of CNN layers that transform 34x34 im-
ages of the characters. The transformations then
feed into our above models. This is now a model
that can interpret unseen (in training) characters.

Figure 5 shows the CNN combined with our po-
sitional attention RNN. We use two 3x3 convolu-
tion layers with 4 and 8 filters respectively. Each
layer is followed by a relu layer and a batch nor-
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malization layer (not shown in the figure). The
convolutions are followed by a max pooling layer
and then flattened. A dense layer with softmax
then reduces the flattened vector. We experi-
mented with up to 3 convolution layers, up to 32
filters, and varied the size of the dense layer.

Visual input changes the model significantly. It
is no longer learning an NLP-style character em-
bedding, but rather learning CNN parameters to
transform an image input into that embedding.
Our first models ran into problems because they
simply memorized each 34x34 image. Since all
ASCII ‘3’ characters map to the same flattened
representation, the model memorizes it, and uni-
code variations fail no matter how similar. We
thus introduced data augmentation during train-
ing. Each 34x34 input is ‘jiggled’ with ran-
dom transformations: (1) translation of the im-
age up/down or right/left, (2) darken/lighten the
image, (3) stretch or widen, and (4) rotate up to
20 degrees. This provided different inputs for the
same ASCII chars, so the CNN was encouraged to
learn key visual features across all variants. Data
augmentation led to our most significant improve-
ments on unseen unicode character input.

6 Experiments

All models were trained on the 100k artificial ob-
scured phone dataset (Section 4.2). 90k was used
for training and 10k to determine convergence.
The RNNs were set to N = 70 in length, and in-
puts were padded to that length. The rare input text
longer than 70 is cropped. Embedding size N=100
and LSTM internal dimensions M=200 were cho-
sen for all RNNs based on dev set performance.
The CRFs performed best at N=200. We also ap-
plied dropout of 0.2 for the LSTMs and 0.5 CRF.

We report results with three metrics: digit ac-
curacy, Levenshtein edit distance, and perfect ac-
curacy. Digit accuracy is the simple alignment of
predicted digit with gold digit (# correct / 10). If
a predicted phone number is longer than 10 dig-
its (CRFs are not bound to strictly 10 predictions),
digit accuracy is computed only over the first 10
predicted digits.

Digit accuracy is flawed because a model might
insert one extra digit, but still guess correct for the

remainder. For example:
Gold: 4109342309

Guess: 41109342309
The CRF inserted an extra 1 digit, just one mis-

take, but digit accuracy is now a very low 0.2.



Development Set Test Set
Model Digit ‘ Lev ‘ Perfect | Digit ‘ Lev ‘ Perfect
TJBatch Rules 0.0 | 0.0 0.0 0.0 | 0.0 0.0
LSTM (5.1.2) 77.0 | 79.7 | 48.1 744 | 782 | 403
LSTM-2 77.5 | 794 | 49.7 748 | 77.6 | 40.6
LSTM +att (5.2.1) 78.5 | 80.5 | 48.6 76.6 | 789 | 435
LSTM +cond (5.2.2) 79.7 | 81.6 | 485 76.5 | 795 | 39.8
LSTM +att +cond 79.1 | 81.2 | 483 772 | 79.8 | 423
CRF with LSTM (5.2.3) | 729 | 84.0 | 58.1 67.7 | 83.4 | 48.2

Table 1: Results on dev and test. Though flawed, digit accuracy is included for completeness. The +att and +cond
options are not compatible with the CRF which does not need attention since it predicts at every input character.

We thus use the Levenshtein edit distance to bet-
ter evaluate performance. Levenshtein’s measure
judges string similarity based on the minimum
number of “edits” required to transform the pre-
diction into the gold: (1.0 — edits/10). In the
above case, one deletion is required to make the
strings the same, so the score is (1 —1/10) = 0.9.
Finally, perfect accuracy is the number of per-
fect phone numbers (all 10 digits) that were cor-
rectly guessed, divided by the size of the test set.

Real-world Test: We report results only on the
real-world test set from Section 4.1. The artifi-
cial data was solely used for training. We did not
run models on the test set until the very end after
choosing our best settings (on the dev set).

Real-world Challenge Test: To further illustrate
the challenge of noisy text, we enhanced the real-
world test set with unicode injections. Using a
hand-created character lookup of visually similar
unicode characters, we replaced 10% of the char-
acters with randomly chosen unicode lookalikes
not in the training data. This results in a very chal-
lenging test set to further benchmark the models.

Finally, all results in the next section are the av-
erage of 4 train/test runs of the same model.

7 Results

Table 1 contains results without CNNs for the
baselines, RNNs, and CRF. The models listed are
those that showed consistent improvement on de-
velopment, and the test set columns were run only
at the end for publication results. Adding position
attention and conditional dependence each showed
improvements of 1-2% Levenshtein. Stacking two
LSTMs showed little gain. The CRF excelled with
a 11% relative gain (on test) for perfect prediction
over the best LSTM setup.
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CNN Comparison (Perfect Acc)

Test Challenge

Lev | Perf | Lev | Perf

Best LSTM (noCNN) || 81.2 | 48.3 | 72.9 | 22.1
CNN-LSTM 773 | 42.1 | 65.5 | 15.6
CNN-LSTM +aug 79.7 | 39.8 | 75.2 | 27.3
Best CRF (no CNN) 84.0 | 58.1 | 749 | 17.6
CNN-CRF 82.8 | 54.2 | 73.4 | 14.6
CNN-CRF +aug 83.3 | 56.1 | 79.7 | 33.3

Table 2: Results of the CNN models. Challenge has
10% unseen unicode injected. +aug used visual data
augmentation during training.

For CNN results, Table 2 shows test set perfor-
mance. Adding just the CNNs does not improve
recognition, but in fact are slightly worse. How-
ever, more compelling is the challenge set with
injected unicode confounders. Recall the impor-
tance of data augmentation during training so the
models learn real visual features. These “+aug”
results show why it is needed with a 89% rela-
tive improvement in perfect phone accuracy (from
17.6% to 33.3%). The non-CNN LSTM and CRF
struggle at 17-22%. They simply cannnot repre-
sent unseen characters.

Our new CRF model (no CNN) outperforms the
RNNs on the test set by 10% absolute. When com-
paring challenge test performance, the best CRF-
CNN outperforms the best non-CNN LSTM by
11% absolute. To further illustrate the effect of
unicode confounders, we varied how much we in-
jected and graphed performance in Figure 3. The
CNN models consistently outperform.

8 Full Ad Extraction

We wrapup with a pilot for full ad extraction. The
models presented so far extract from one span of
text (it assumes a phone number exists). This for-



* LSTM @@ CRF & CNN-LSTM B CNN-CRF

Perfect phone accuracy

10% 20% 30% 40% 50%

Table 3: Phone accuracy as a higher % of unicode sub-
stitutions are made for lookalike ASCII characters.

mulation is a well-defined task for research, but
we also propose how one might apply these ex-
tractors to the more difficult task of full document
extraction when the location of the phone number
is unknown. We briefly describe initial tests.

The most straightforward way to extract from
a document is to split it into text windows
(spans) and try all possible extractions. Since
these are probabilistic models, we can compute
P(phone|span), and find the window span that
maximizes the probability.

)

best = max span P (phone|span)

9
P(phone|span) = Hmaach(di = jlspan)

=0

©))

The phone number extracted from the best span is
the phone number in the text.

We collected a set of real advertisements that
don’t have phone numbers, and artificially inserted
an obscured number from our artificial dataset.
This allows us to track which span contains the
phone number, and then evaluate an extractor.

The difficulty with this task is that our mod-
els are trained on precise text spans, whereas this
full document dataset contains lots of non-phone-
related text. To address this difference, we stopped
padding our snippet input with null values (up to
the length of the RNN), and instead pad with ran-
domly selected text snippets from real ads. The
models are exactly the same, we just change how
padding works when the training text is shorter
than length 70. We refer to this as the “ad pad”.

Datum: 615093 93B6
Null-Pad: 6I5 093 93B6
Ad-Pad: 6I5 093 93B6always in town call

To be clear, no models were changed, just how
training input is padded. Can the models iden-
tify the correct text span that contains a phone
number? Table 4 shows these results for standard
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Text Span ID of Phone Numbers

Full | Full+Partial
Zero pad 70.3% 92.1%
Craigslist ad pad | 99.3% 99.7%
Backpage ad pad | 98.0% 99.6%

Table 4: Results of choosing text spans with the full
phone number, or a partial match. Partial matches con-
tained on average 7-8 of the 10 digits.

null-padding versus ad-padding, as well as cross-
domain tests. We trained on Craigslist and Back-
page separately, then tested on only Backpage ads.

Window identification works very well as long
as training padded its input with real ad text. This
is encouraging in that it seems these models can
reliably identify where a phone number is present.

Finally, we tested how the models also extract
from these spans after identifying them. Extrac-
tion showed 80% accuracy on full numbers, com-
pared to 98% when train/test only on artificial
phone snippets. We attribute the drop to the diffi-
cult task - window spans contain more noise than
a precise text span. Future work will focus on this
full document task with real-world numbers.

9 Discussion

This is the first work to model noisy phone num-
ber extraction with neural models. Most notably,
our CNNs explore how to use visual characteris-
tics of the characters, rather than standard NLP-
style models with trained embeddings. To the best
of our knowledge, this is the first proposal for a vi-
sual language model in an extraction architecture.

We showed results on new challenge datasets
with injected unicode. These results illustrate the
challenge for extractors, but also the usefulness of
CNN recognizers. In fact, current rule-based ex-
tractors cannot extract any of the numbers in our
test sets. Our CRF outperformed an LSTM-only
model by 10% absolute, and data augmentation
improved on unicode tests by a relative 89% gain.

Possible future work could investigate a Gen-
erative Adversarial Network (GAN) (Goodfellow
etal., 2014). GANs have become popular in vision
tasks, but the normal GAN setup requires training
data to start from, and this sparse domain prohibits
its straightforward use.

Data from this work’s training and evaluation
are available online*, and we hope this spurs fur-
ther work on this important societal challenge.

*www.usna.edu/Users/cs/nchamber/data/phone/
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Abstract

Language is an important marker of a cultural
group, large or small. One aspect of language
variation between communities is the employ-
ment of highly specialized terms with unique
significance to the group. We study these high
affinity terms across a wide variety of commu-
nities by leveraging the rich diversity of Red-
dit.com. We provide a systematic exploration
of high affinity terms, the often rapid semantic
shifts they undergo, and their relationship to
subreddit characteristics across 2600 diverse
subreddits. Our results show that high affin-
ity terms are effective signals of loyal commu-
nities, they undergo more semantic shift than
low affinity terms, and that they are partial
barrier to entry for new users. We conclude
that Reddit is a robust and valuable data source
for testing further theories about high affinity
terms across communities.

1 Introduction

The evolution and semantic change of human lan-
guage has been studied extensively, both in a his-
torical context (Garg et al., 2017) and, increas-
ingly, in the online context (Jaidka et al., 2018).
However, few studies have explored the evolution
of words across different online communities that
allow a comparison between community charac-
teristics and terms that have high affinity to a com-
munity.

The banning of r/CoonTown and r/fatpeoplehate
in 2015, as analyzed by Saleem et al., provides
good motivation for our work. r/CoonTown was
a racist subreddit with a short life span of 8
months (November 2014 - June 2015)(Saleem
et al., 2017). During this time, as shown
by Saleem (2017), these subreddits underwent
rapid semantic development through which new
words, such as “dindu”, “tbi” and “nuffin” were
not only created, but increasingly became more

context-specific (accumulated in meaning). In
r/fatpeoplehate existing words such as “moo”,
“xxI” and “whale” underwent localized seman-
tic shift such that their meanings transformed to
derogatory terms (Saleem et al., 2017).

These two cases demonstrate that not only are
new words conceived within subreddits, existing
words undergo localized transition. They also sug-
gest that this phenomenon likely takes place in a
short time period for high affinity words. In or-
der to evaluate whether such trends are consistent
across subreddits, we study semantic shift and the
roles high affinity terms play in 2600 different sub-
reddits between November 2014 to June 2015.

Our aim is to provide a characterization of high
affinity terms by mapping their relationship to dif-
ferent types of online communities and the seman-
tic shifts they undergo in comparison to general-
ized terms (low affinity terms). We leverage data
curated from the multi-community social network
Reddit and the types of subreddit characteristics
we study are loyalty, dedication, number of users
and number of comments. Our paper explores the
following research questions:

1. Do certain community characteristics corre-
late with the presence of high affinity terms?

2. Do high affinity terms undergo greater se-
mantic shift than low affinity terms?

3. Do high affinity terms and community char-
acteristics function as a barriers to entry for
new users to participate?

Some key findings include:

1. Loyalty is strongly correlated to the presence
of high affinity terms in a community.

2. High affinity terms undergo greater seman-
tic shift than generalized terms (low affinity
terms) in a short interval of time.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 57-67
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



3. High affinity terms, and dedication values of
a subreddit strongly correlate to the number
of new users that participate, indicating that
the degree of high affinity terms establishes a
lexical barrier to entry to a community.

2 Related Work and Concepts

2.1 Understanding Community Specific
Terms

Before defining high affinity terms, we examine
the traits observed in community specific terms
from past literature.

Studies have shown that words specific to
a community have qualities of cultural carriers
(Goddard, 2015). While culture is “something
learned, transmitted, passed down from one gener-
ation to the next, through human actions,” (Duranti
et al., 1997) these transmissions through language
affect a culture’s system of “classifications, spe-
cialized lexicons, metaphors, and reference forms”
in communities (Cuza, 2011). Pierre Bourdieu ar-
gues that language is not only grammar and sys-
tematic arrangemennt of words, but it is symbolic
of cultural ideas for each community. To speak
a certain language, is to view the world in a par-
ticular way. To Bourdieu, through language peo-
ple are members of a community of unique ideas
and practices (Bourdieu et al., 1991). As such,
community specific terms are usually not easily
translatable across different communities. For ex-
ample, in Hungarian “life” is metaphorically de-
scribed as “life is a war” and “life is a com-
promise”, whereas in American English “life” is
metaphorically represented as “life is a precious
posesssion”, or “life is a game” (KA, 2010). These
definitions of similar entities vary due to different
cultural outlooks in communities.

Besides words that are cultural carriers, slang is
also a form of terminology specific to a commu-
nity. While there is no standard operational defini-
tion of slang, many philosophical linguists define
slang as terms that are vulgar (Green, 2016; Al-
lens, 1993), encapsulate local cultural value and a
type of insider speech that roots from subcultures
(Partridge and Beale, 2002). Morphological prop-
erties of slang are defined as “extra-grammatical”,
and these morphological properties in slang are
shown to be distinguishable from morphological
properties of standard words in English (Mat-
tiello, 2013). There has been an increase of slang
in online spaces (Eble, 2012), with many terms
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falling under the extra-grammatical classifica-
tions of abbreviation (‘DIY’, ‘hmu’, ‘lol’), blends
(‘brangelina’, ‘brunch’), and clippings (‘doc (doc-
tor)’, ‘fam (family)’) (Mattiello, 2013; Kulkarni
and Wang, 2018).

By extracting terms that have a high affinity to a
community, we approximate words that are either
cultural carriers or slang.

2.2 Measuring Affinity of Terms

Measurements for affinity of terms to a commu-
nity have been explored in research, where the fre-
quency of a word is compared to some background
distribution to extract linguistic variations that are
more likely in one setting (Monroe et al.; Zhang
et al., 2018). Most helpful to our approach is a
past study that computed a term’s specificity sp.
to a subreddit through the pointwise mutual infor-
mation (PMI) of a word w in one community c rel-
ative to all other communities C' in Reddit (Zhang
etal., 2017).

P.(w)
Pe(w)

spe(w) = log

An issue with this metric is that terms with
equal specificity can differ in their frequency.
Specificity does not show which term is more
dominant within a community by frequency, as
show in Table 1. Due to this, we compute the affin-
ity value of a term by measuring its locality and
dominance to a community. Locality is the likeli-
hood of a term belonging to some community, and
dominance captures the presence of the term in the
said community by its frequency.

We therefore calculate the locality [ of a word
wj in subreddit s; through the conditional proba-
bility of a word occurring in s;, relative to it oc-
curring in all other subreddits S.

P, (wj)

s, (wj) = P (wj)

We then calculate dominance d in two steps.
First we calculate an intermediate value r, which
is the difference between the count of word w; in
s; subtracted by the sum of all terms W in s; mul-
tiplied by constant e, which in our work was suf-
ficient as 0.0001. If the value of r is negative, we
disregard it, as it is likely to be an infrequent word
of little semantic significance, such as a typo.

rs;(w;j) = County, (w;) — Countg, (W) x €



mccoy [slowmo|ducati |bleacher|takahashi{motogp
spe| 0.000 | 0.000 |-0.004| 0.000 | 0.000 |-0.004
as;[0.942] 0.666 [0.987| 0.500 | 0.833 | 0.987

Table 1: Affinity and Specificity of terms found in
r/motogp calculated on the word distributions of 10
sample subreddits. This shows that less frequently oc-
curring words and frequently occurring words can have
the same specificity value, however the affinity value
takes into account the degree of frequency of each term
in a community.

where

T's; (wj) = {

Then, we calculate the dominance d as a neg-
ative hyperbolic function of each word’s occur-
rence:

e (wj) > 1
Ts; (wj) <1

Tsi (wj)

1

1
Ts; (wj )
Finally, we compute the affinity value of a word

to a subreddit as a product of a word’s dominance
and locality:

dsi(wj> =1-

As; (wj) =ds, (wj) X ls, (wj)

After extracting affinity values of each word rel-
ative to a subreddit, we partition the sets of words
into high affinity terms and low affinity terms.

High Affinity Terms: For each subreddit, we
extract 50 terms with the highest affinity values,
and we categorize them as high affinity terms. The
average of high affinity terms is denoted as high
affinity average.

Low Affinity Terms: For each subreddit, we
extract 50 terms with the lowest affinity values,
and we categorize them as low affinity terms. The
average of low affinity terms is denoted as low
affinity average.

2.3 How Semantic Shift Can Capture
Cultural Shifts

As previously stated, high affinity terms are ap-
proximations for words that are either cultural car-
riers or slang.

Research has shown that shifts of local neigh-
borhoods across embeddings are more effective in
capturing cultural shifts than to calculate distances
of a word across aligned embeddings, which is
used to measure structural shifts (Hamilton et al.,
2016; Eger and Mehler, 2016). Studies have repre-
sented k-nearest neighbors n of a word w through
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second-order vectors VI that are made of the
cosine similarities between n and w, then cal-
culate the difference between these second-order
vectors to identify shifts (Hamilton et al., 2016;
Eger and Mehler, 2016). Recent works have also
modeled shifts in words through the change in
common neighbors across different embeddings
(Wendlandt et al., 2018; Eger and Mehler, 2016).

2.4 Measuring Semantic Change

Our measurement of semantic shift is based on
the concepts of semantic narrowing of words, a
process in which words become more specialized
to a context, and semantic broadening of words,
a process in which words become more gener-
alized from a context (Bloomfield, 1933; Blank
and Koch, 1999). We capture this contextual in-
formation by constructing 300 dimensional word
embeddings (word2vec) for each subreddit us-
ing skip-gram with negative sampling algorithms,
where a distributional model is trained on words
predicting their context words (Mikolov et al.,
2013). For each word, we measure narrowing as
an increase in co-occurrence of a word’s nearest
neighbors, and broadening as a decrease in co-
occurrence of a word’s nearest neighbors (Crow-
ley and Bowern, 2010).

To measure semantic shift, we extract common
vocabulary V' = (wy, ..., wy,) across all time in-
tervals ¢ € T'. Then, for some t and ¢ + n, we take
a word w;’s set of k nearest-neighbors (accord-
ing to cosine similarity). These neighbor sets are
denoted as Al (w;) and A7 (w;). We then cal-
culate the neighbours co-occurrence value C'O as
the Jaccard similarity of neighbours sets (Hamil-
ton et al., 2016), in subreddit s;:

Al (w)) = Cos—sim(w§~, k)

A (w;) = cos—sim(w;&", k)
€O, (utwytm) = 1AE) DAL ()

1AL (w)) U AL (w))

Then, we calculate the difference of CO across
successive embeddings in 7. We label, chrono-
logically, the first time interval (1) as initial point
and the last time interval (f,) as terminal point,
across which narrowing and broadening are mea-
sured. We used k& = 10 for all computations.

Broadening Measurement: We measure
broadening as the sum of the difference of C Oy,



Average Co-Occurrences of Neighbors

in High Affinity Terms Across Embeddings,
in CoonTown

Forward Stablity is the
co-occurence value between a
word embedding with its
immediate next embedding.

2014-11/12 - 0.18 018 017

Semantic Broadening is the
sum of the difference between
all forward stability values.
E.g.,(0.18-0.18) + (0.18 -
0.17)=-0.01

015-01/02 - 018 027 026

2015-03/04 - 018 027 037
Backward Stablity is the
co-occurence value between
the terminal embedding with
its immediate previous

embedding.

'

=)
=
=

2015-05/06

=]
w
=

Semantic Narrowing is the
sum of the difference between
all backward stability values.
E.g.(026-0.17) + (0.37 -
0.26) = +0.20

:

-2014-11/12 -
-2015-01/02 -
-2015-03/04 -
-2015-05/06 -

Figure 1: This figure provides a visual representa-
tion of our methodology of semantic shift measure-
ment. The initial point embedding is trained on 2014-
11/12 dataset. The terminal point embedding is trained
on 2015-05/06. All semantic shift measurements fol-
low a chronological order of comparison, such that
narrowing and broadening are both measurements of
embedding,, ; - embedding;.

between initial point embedding and all successive
embeddings. This is defined as:

p—1
b, (1) = D_(COs (), wih) = CO (w), i)
t=2

By comparing an embedding to its future em-
beddings, we are able to see which contexts are
lost as a word’s meaning becomes more broad.

Narrowing Measurement: Similarly, we mea-
sure narrowing by calculating the sum of the dif-
ference of C'O between terminal point embedding
and all previous embeddings.

p—2
ns, (wy) =Y _(CO (wh, wh™)=COg, (wh, wh))
t=1

By comparing an embedding to its previous em-
beddings, we are able to see which contexts as-
sociated with a word have increased in specificity
over time.

A visual representation of the metrics are pro-
vided in Figure 1.

2.5 Extracting Rate of Change of Frequency

Many past works have also modelled relationships
between frequency and semantic shift (Lancia,
2007; Hilpert and Gries, 2016; Lijffijt et al., 2014).
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One study shows that an increase in frequency of
a term across decades results in a semantic broad-
ening, while a decrease in frequency causes it to
narrow (Feltgen et al., 2017). For example an in-
crease in frequency of the word “dog” evolved its
meaning from a breed to an entire species, and
the decrease in frequency of “deer” localized its
meaning from “animal” to a specific animal (un-
dergoing narrowing) (Hilpert and Gries, 2016).

Very few studies have modelled narrowing and
broadening of terms in the short term. As such, we
are interested in the frequency patterns of terms
that go through short-term cultural shifts. One
study showed the effect of frequency on learn-
ing new words, and how it affects the use of
new words in their correct context. They con-
ducted their experiments in a physical capacity on
children of five years old who were made famil-
iar with new words (Abbot-Smith and Tomasello,
2010) in a short time period. Their results demon-
strate that familiarizing children with new words
allowed them to use the word in correct grammat-
ical contexts, and greater frequency of exposure to
new words resulted in more narrowed and correct
use of the word to a context. This pattern of teach-
ing is categorized as lexically-based learning.

Due to this, we assess whether in the short-term
in subreddits, narrowing and broadening of terms
correlates to the rate of change of frequencies.

We calculate rate of change of frequency across
time periods T for a subreddit s; as such, where n
is the size of T":

ft+1 — fi(w;)
Afsl w] Z ftJrl ,w]) !

A positive value shows an increasing rate of fre-
quency, and a negative value shows a decreasing
rate of frequency.

2.6 Characteristics of Subreddits

We introduce four quantifiers that describe subred-
dit networks based on existing typology. Using
these quantitative chararacteristics we can evalu-
ate and identify systemic patterns that exist be-
tween types of subreddits and high affinity terms.
The four quantifiers are loyalty, dedication, num-
ber of comments, and number of users.

Loyalty: Previous work on subreddit character-
istics has defined community loyalty as a percent-
age of users that demonstrate both preference and
commitment, over other communities in multiple



High Aff. Low Aff.
Subreddits Avg. High Aff. Terms Avg. Low Aff. Terms
‘sbb’, ‘zelnite’, ‘darvanshel’, “food’, “drive’, ‘park’,
Top 1% bravefrontier | 0.999 ‘tridon’, ‘ulkina’ 0.000 ‘episode’, ‘photo’
pgn’, ‘bxc’, 'nxe’, “character’, ‘compose’,
chess 0.999 ‘nxd’, ‘bxf’ 0.000 |‘pack’, ‘message’, ‘damage’
‘cuttooth’, ‘backdrifts’, ‘tkol’, “willing’, “phone’, “gain’,
Arbitrary radiohead 0.732 ‘crushd’, ‘htde’ ,| 0.000 ‘sell’, ‘provide’
"application’, ‘network’,
‘pco’, ‘tubblr’, ‘fatshion’, ‘engine’, ‘element’,
fatpeoplehate| 0.357 ‘fatkini’, ‘feedee’ 0.000 ‘cable’
‘helmet’, ‘shoe’, ‘brake’, ‘help’, ‘team’, ‘Tove’,
Bottom 1% Wellthatsucks| 0.002 ‘truck’, ‘tire’ 0.000 ‘include’z ‘question’
“gif ", “prank’, ‘repost’, ‘subreddit’, ‘order’,
gif 0.002 ‘swim’, ‘ftfy’ 0.000 | ‘account’, ‘game’, ‘issue’

Table 2: A sample presentation of high affinity terms and low affinity terms from subreddits with high high affinity
averages (top 1%), and low high affinity averages (bottom 1%).

time periods (Hamilton et al., 2017). Preference is
demonstrated by more than half of a user’s com-
ments contributing to subreddit s; € S, and com-
mitment is measured by a user commenting in s;
in multiple time periods ¢ € T'. It has been shown
that community wide loyalty impacts usage of lin-
guistic features such as singular (“I”’) and plural
(“We”) pronoun (Hamilton et al., 2017). Commu-
nities with greater loyalty have a higher usage of
plural pronouns than communities with low loy-
alty which have a heavier usage of singular pro-
nouns. Following this finding, we investigate re-
lationships between loyal communities and high
affinity terms, to gauge whether loyal communi-
ties are also strongly correlated to use of other
types of terms.

Dedication: Other studies have also shown
that user retention correlates to increased use of
subreddit specific terms (similar to high affinity
terms) (Zhang et al., 2017). We calculate user
retention to measure a community characteristic
similar to commitment as defined in a past study
(Hamilton et al., 2017), by extracting users that
comment in subreddit s; € S a minimum of n
number of times across all time periods ¢ € 7" and
label this retention value as dedication. A key dif-
ference between dedication and loyalty is that a
user does not have to contribute more than 50%
of their comments to a particular subreddit to be
dedicated, which is a requirement for loyalty. This
means that a user can be dedicated to multiple sub-
reddits, while a user is loyal to only one group at a
particular time. The comparison between loyalty
and dedication allows us to explore whether pref-
erence is a strong factor in the linguistic evolution
of high affinity terms in online communities.
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Number of Comments and Number of Users:
Lastly, we measure raw metadata of subreddits
which are the number of comments made, and the
number of users that participated in a subreddit.

Existing work has shown that areas with large
populations experience a larger introduction of
new words, whereas areas with small populations
experience a greater rate of word loss (Bromham
et al., 2015). Furthermore, words in larger popu-
lations are suspect to greater language evolution.
While this is a correlation found in physical com-
munities, we assess whether this remains consis-
tent in online communities. As a proxy for pop-
ulation we consider both the number of users and
the number of comments.

3 Description of Data

Our dataset consists of all subreddits between
November 2014 to June 2015 with more than
10000 comments in that period. We performed our
measures on the curated data in time intervals of 2
months. We manually removed communities that
are mostly in non-ascii or run by bots. This re-
sulted in a dataset of 2626 subreddits.

4 Qualitative Overview of High Affinity
and Low Affinity Terms

We examine high and low affinity terms across
subreddits. Our results, as shown in Table 2,
demonstrate that high affinity terms have different
characteristics across communities.

Certain high affinity terms exist independent of
online communications. For example in r/chess,
the high affinity terms “bxc”, “bxf”, “nxe” are
all numerical representations used to communi-
cate game moves. Similarly in r/bravefrontier,
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Figure 2: This figure shows the relationship between community characteristics and high affinity averages. Each
community characteristics is binned into intervals of 20% by percentile. Loyalty most strongly correlates with

high affinity averages.

the terms “zelnite” and “darvanshel” are game
characters. However in r/fatpeoplehate, there are
high affinity terms that originate online. Terms
in r/fatpeoplehate demonstrate extra-grammatical
qualities of slang, such as “fatkini”, which is a
blend of “fat” + “bikini”, and “feedee”, which
is clipping of “feeder”, signalling word devel-
opment through online communication (Kulkarni
and Wang, 2018).

Interestingly, across the topically different sub-
reddits, abbreviations are common form of high
affinity terms. For instance, “pgn” in r/chess
stands for “portable game notation”, “tkol” in
r/radiohead stand for “The king of Limbs”, “ftfy”
in r/gif stands for “fixed that for you”. The use
of abbreviations illustrates the transformation of
“gibberish” into collective meaning within a com-
munity. It is only with the context of domain and
culture, that one can attribute meaning to these
terms.

Named Entity Recognition (NER) of Top 100
and Bottom 100 subreddits by high affinity av-
erages: We performed NER using bablefy on the
names of the top 100 and bottom 100 subreddits by
high affinity averages. Through this analysis, we
observe that 82 of the top 100 are named entities,
whereas only 18 of bottom 100 are named entities.
Of the 82, 33 subreddits are videogames, 19 are
regional subreddits and 11 are sports subreddits.
This shows that communities with high affinity av-
erages are likely to be strongly linked with a phys-
ical counterpart. Whereas the bottom 100 subred-
dits consisted of discussion and generalized sub-
reddits such as r/TrueReddit, r/Showerthoughts,
r/blackpeoplegifs whose creation and culture can
directly be attributed to online communities rather
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than physical counterparts. This provides an
explanation for subreddits with low high affin-
ity averages having extremely generalized high
affinity terms, such as “helmet” and ‘“shoe” in
r/Wellthatsucks.

5 Impact of Community Characteristics
on Affinity of Terms

We conducted prediction tasks using community
characteristics to demonstrate meaningful rela-
tionships between high affinity terms. We treated
each of the community characteristics as features
(log-transformed), and perform linear regressions,
with five cross-validation, to predict the high affin-
ity average (log-transformed) of a subreddit.

5.1 Prediction of High Affinity Terms from
Community Characteristics

We find that loyalty of a subreddit is remarkably
correlated to the high affinity average of subred-
dits. A linear model trained on loyalty to predict
high affinity average of a subreddit achieves an R?
of 0.364 (p-value < 0.001). Compared to this, a
linear model trained on dedication results in an R?
value of 0.274 (p-value < 0.001). This implies
that preference is a strong factor in the likelihood
of high affinity terms in communities.

In contrast, models trained on number of com-
ments and number of users resulted in an R? of
0.071 and 0.004. Loyalty is therefore a much more
effective measure than most standard community
measures at least when measured on a linear scale.
This finding supports existing work, which shows
that distinctiveness of a community is strongly re-
lated to its rate of user retention (Zhang et al.,
2017).



Community Type R? p-value Community Type R? p-value

loyalty 0.038 | < 0.001 loyalty 0.005 | <0.001
dedication 0.036 | < 0.001 dedication 0.002 0.032

no. comments 0.048 | < 0.001 no. comments 0.016 | < 0.001
no. users 0.004 0.001 Nno. users 0.001 0.062

Table 3: Coefficient of determination values for linear models trained on community characteristics that predict
semantic narrowing (left) and semantic broadening (right) of high affinity terms.

5.2 Prediction of Low Affinity Terms from
Community Characteristics

Although low affinity terms for almost all subred-
dits have values that are very close to 0, we find
that raw subreddit meta data (log-transformed) is
an effective predictor of low average affinity term
value (log-transformed). A linear model trained
on number of comments results in a R? of 0.456
(p-value < 0.001). This makes sense intuitively,
because as the number of comments increases, low
affinity terms have more likelihood of being gen-
eralized.

A similar model trained on number of users at-
tains an R? of 0.180, with a model trained on loy-
alty performing the worst with an R? of 0.055.

Finally, as we might expect a multivariate re-
gression model trained on both loyalty and number
of comments performs the best out of all models,
scoring an R? of 0.391 (p-value < 0.001) when
predicting high affinity averages and scoring an
R? of 0.470 (p-value < 0.001) when predicting
low affinity averages, which are significant im-
provements.

6 Assessing Semantic Shift of High
Affinity Terms

Calculating semantic shifts of high affinity terms
enables us to test whether high affinity terms are
subject to cultural shifts and whether linguistic de-
velopments in online spaces are consistent with
trends in physical communities.

6.1 Evaluating Semantic Shift to Community
Characteristics

We perform linear regression between community
characteristics and semantic shifts to assess their
relationships. Our results show that all commu-
nity characteristics are weak predictors of seman-
tic shifts. This is surprising as they are effective
predictors of affinity values.

Semantic Narrowing and Semantic Broaden-
ing: Table 3 shows that number of comments has
the strongest correlation to semantic narrowing
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and semantic broadening of high affinity terms,
achieving R? values of 0.037 and 0.019 (p-value
< 0.001). In contrast, while loyalty and dedication
have similarly high R? values when used for mod-
eling semantic narrowing of high affinity terms as
shown in Table 3, it is more weakly linked to the
semantic broadening of high affinity terms.

Perhaps the most surprising finding is that num-
ber of users is a poor predictor of both semantic
narrowing and semantic broadening (R? of 0.004
and 0.001) in online spaces. This is surprising be-
cause number of users and number of comments
are highly correlated features (Pearson coefficient
of 0.726, p-value < 0.001), but their performance
in approximation of semantic shifts are broadly
different.

These results provide insight into how the con-
cept of “population” works in online spaces in
contrast to physical communities. Previous works
show a weak correlation between population of a
geographic area and the occurrence of language
evolution (Bromham et al., 2015; Greenhill et al.,
2018). A limitation of these studies was their in-
ability to account for language output that was not
written (i.e, oral communications). This limita-
tion is not present in online communities because
all language output is recorded via online com-
ments. As such, the number of comments having a
stronger correlation to semantic shift than number
of users, indicates that the amount of oral commu-
nication may have contributed to language evolu-
tion.

6.2 Comparing Semantic Shift in High
Affinity and Low Affinity Terms

First we compute a metric that shows the overall
semantic shift a subreddit has experienced. This is
measured by computing the difference between se-
mantic narrowing and semantic broadening, where
a positive value indicates overall narrowing and a
negative value indicates overall broadening. We
label this result as net semantic shift. Then we
compute net semantic shift for high affinity terms
and low affinity terms for all subreddits.
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Figure 3: The sum of semantic narrowing and semantic
broadening from all subreddits by high affinity and low
affinity terms. High affinity terms are more volatile and
sensitive to cultural shifts.

We find that out of 2626 subreddits, 1638 (62%)
subreddits demonstrate a positive net semantic
shift in high affinity terms, whereas, 1529 (58%)
subreddits demonstrate a positive net semantic
shift in low affinity terms.

In Figure 3, we show that across all subred-
dits, the sum of net semantic shift in high affinity
terms is 20.462 (50.253-29.791), whereas the sum
of net semantic shift in low affinity terms is 4.402
(17.878-13.476). This implies that high affinity
terms in general are more likely to attain quali-
ties that are defining of neologisms, and are more
likely to be narrowed in communities across Red-
dit.

This is explained by our results which show
that the rate of decrease of semantic broadening
is slower than the rate of increase of semantic nar-
rowing (Pearson coefficient of -0.192, p-value <
0.001), as demonstrated by a regression coefficient
of -0.148. This trend is consistent when modeling
semantic narrowing and semantic broadening with
other community characteristics.

Interestingly, in communities with very high
affinity averages, we observe several cases where
the semantic narrowing and semantic broadening
are close to 0. Examples of such subreddits are
r/kpop, r/chess, and r/Cricket. We notice that these
groups contain terms that are essential and almost
exclusive to the domain of that community. How-
ever, these terms do not undergo extraordinary cul-
tural impetus that causes a shift in meaning. For
instance in r/chess there is little motivation to use
“bxe”, “cdf” outside of the context of game moves.

Additionally, we observe highest semantic
shifts in groups that are mostly video games, tv-
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Relationship of Net Semantic Shift and Rate of Change of Frequency of High Affinity Term
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Figure 4: This figure illustrates the relationship be-
tween net semantic shift of subreddits and their average
rate of change of frequency for high-affinity terms.

shows and sports communities, with high affinity
averages being less than 0.5 in most cases - the av-
erage high affinity score of top 100 semantic nar-
rowing groups is 0.367. These lower scores that
tend away from the possible extremes, show that
niche terms that shift the most are also slightly
distributed in few other communities, but clearly
dominant in one. Terms that are likely to undergo
high levels of semantic shift have potential of be-
ing cross-cultural and adopted by a different group
of people. Study of external influence of high
affinity terms in other communities is an area of
future research, and may reveal factors that make
some high affinity terms more likely to evolve in a
short period of time.

6.3 Mapping of Frequency

Past studies show that in the long term words that
narrow decrease in frequency (Feltgen et al., 2017;
Hilpert and Gries, 2016). However, our results, as
shown in Figure 4, indicate that in the short term
net semantic shift is strongly correlated with in-
crease in frequency.

By testing the relationship between Af,, and
net semantic shift, we discovered a strong linear
relationship (Pearson coefficient of 0.429, p-value
< 0.001).

Language adoption studies have shown that in-
creased familiarization with a word in the short
term - measured through frequency - actually en-
ables a person to use the word more accurately
and precisely. This is achieved, in both adults and
children through lexically-based learning (Abbot-
Smith and Tomasello, 2010). Our results indicate
that online communities also employ lexically-



Community - — 3
Characteristic R2 p-value Community Cha.ract.erlstlc R p-value
loyalty + dedication 0.503 | < 0.001
loyalty 0.340 | < 0.001 -
— loyalty + High Aff. 0.377 | < 0.001
dedication 0.518 | <0.001 dedicati Hich AT 0.539 0.001
High AfT. Avg. | 0.201 | < 0.001 edication + High AlL. | 0. <Y

Table 4: Coefficient of determination values for linear and multivariate models trained on community characteris-

tics that predict rate of new users (du(s;)).

based learning in the short term, and may factor
into linguistic culture adoption and development.
We derive this finding from the fact that increase
in frequency is strongly correlated with semantic
narrowing.

7 Barriers to Entry

In this section, we evaluate the impact high affinity
values have on the rate of new users participating
in each time period.

We calculate the rate of new users du(s;) as:

S Urpa(si) — Us(si)
(5’U(52) = tZ:; a Ut—‘rl(si)

where U is the set of users in subreddit s; at
time period t.

In Table 4 we present our results of regression
and correlation testing. We find that dedication
shows the strongest correlation to the rate of new
users in a community. This insinuates that abso-
lute preference is an unlikely indicator of du(s;).

Although weaker, high affinity terms also show
a correlation to du(s;). However, as shown in Ta-
ble 4, it is remarkable that dedication and high
affinity averages outperform the combination of
loyalty and dedication in predicting the value of
du(s;). This is because loyalty has a stronger cor-
relation with du(s;) than high affinity averages.
Due to this, a model trained on loyalty and ded-
ication should perform better. However not only
does it not perform better than a model trained on
dedication and high affinity averages, it performs
worse than a model trained only on dedication.
This suggests that loyalty likely captures barriers
to entry similar to dedication but more poorly. It
also suggests that high affinity terms and dedica-
tion capture different types of barriers to entry.

Furthermore, we observe that communities
which show the least du(s;), are mostly topics that
originate outside of Reddit, such as r/NASCAR
(sports) and r/SburbRP (sexual roleplay).

These results indicate that there are linguis-
tic and non-linguistic barriers that prevent peo-

ple from engaging in certain online communi-
ties. While this may not be concerning for in-
nocuous topics such as r/Chess, issues may arise
for ideologically-themed subreddits. In the age of
political polarization, hate groups and infamous
echo chambers, further research could be con-
ducted into barriers to entry and the role high affin-
ity terms play.

8 Conclusion and Future Work

Through several analyses we have shown there to
be a strong relationship between online commu-
nity behaviour and several aspects of high affin-
ity terms. We found correlations with subreddit
characteristics related to collective user behaviour,
especially loyalty. The high affinity terms under-
went semantic shift at a high rate given our very
condensed timescale. Finally, we showed a rela-
tionship between user retention and the presence
of these terms.

All three conclusions, and the secondary anal-
yses conducted alongside them, show that high
affinity terms have strong potential for further elu-
cidating online community behaviour, and likely
are correlated with further characteristics more
difficult to measure than subreddit loyalty such
as community cohesion (the strength and salience
of group identity (Rogers and Lea, 2004)) or be-
haviour leading to the formation of extremist hate
groups. Finally, our results and further investiga-
tion can contribute to the literature surrounding the
relationship between vocabulary and social mobil-
ity between groups.
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Abstract

The goal of a Question Paraphrase Retrieval
(QPR) system is to retrieve similar questions
that result in the same answer as the orig-
inal question. Such a system can be used
to understand and answer rare and noisy re-
formulations of common questions by map-
ping them to a set of canonical forms. This
task has large-scale applications for commu-
nity Question Answering (cQA) and open-
domain spoken language question-answering
systems. In this paper, we describe a new
QPR system implemented as a Neural Infor-
mation Retrieval (NIR) system consisting of a
neural network sentence encoder and an ap-
proximate k-Nearest Neighbour index for ef-
ficient vector retrieval. We also describe our
mechanism to generate an annotated dataset
for question paraphrase retrieval experiments
automatically from question-answer logs via
distant supervision. We show that the standard
loss function in NIR, triplet loss, does not per-
form well with noisy labels. We propose the
smoothed deep metric loss (SDML), and with
our experiments on two QPR datasets we show
that it significantly outperforms triplet loss in
the noisy label setting.

1 Introduction

In this paper, we propose a Question Paraphrase
Retrieval (QPR) (Bernhard and Gurevych, 2008)
system that can operate at industrial scale when
trained on noisy training data that contains some
number of false-negative samples. A QPR sys-
tem retrieves a set of paraphrase questions for a
given input, enabling existing question answering
systems to answer rare formulations present in in-
coming questions. QPR finds natural applications
in open-domain question answering systems, and
is especially relevant to the community Question
Answering (cQA) systems.

Open-domain QA systems provide answers to a
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user’s questions with or without human interven-
tion. These systems are employed by virtual as-
sistants such as Alexa, Siri, Cortana and Google
Assistant. Most virtual assistants use noisy chan-
nels, such as speech, to interact with users. Ques-
tions that are the output of an Automated Speech
Recognition (ASR) system could contain errors
such as truncations and misinterpretations. Tran-
scription errors are more likely to occur for rarer
or grammatically non-standard formulations of a
question. For example ‘Where Michael Jordan
at?” could be a reformulation for ‘Where is
Michael Jordan?’. QPR systems mitigate the im-
pact of this noise by identifying an answerable
paraphrase of the noisy query and hence improves
the overall performance of the system.

Another use of QPR is with cQA websites such
as Quora or Yahoo Answers. These websites
are platforms in which users interact by asking
questions to the community and answering ques-
tions that have been posted by other users. The
community-driven nature of these platforms leads
to problems such as question duplication. There-
fore, having a way to identify paraphrases can
reduce clutter and improve the user experience.
Question duplication can be prevented by present-
ing users a set of candidate paraphrase questions
by retrieving them from the set of questions that
have been already answered.

Despite some similarities, QPR task differs
from the better known Paraphrase Identification
(PI) task. In order to retrieve the most similar
question to a new question, QPR system needs
to compare the new question with all other ques-
tions in the dataset. Paraphrase Identification (Mi-
halcea et al., 2006; Islam and Inkpen, 2009; He
et al., 2015) is a related task where the objec-
tive is to recognize whether a pair of sentences
are paraphrases. The largest dataset for this task
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was released by Quora.com'. State-of-the-art ap-
proaches on this dataset use neural architectures
with attention mechanisms across both the query
and candidate questions. (Parikh et al., 2016;
Wang et al., 2017; Devlin et al., 2019). However,
these systems are increasingly impractical when
scaled to millions of candidates as in the QPR set-
ting, since they involve a quadratic number of vec-
tor comparisons per question pair, which are non-
trivial to parallelize efficiently.

Information Retrieval (IR) systems have been
very successful to operate at scale for such tasks.
However, standard IR systems, such as BM25
(Robertson et al., 2004), are based on lexical over-
lap rather than on a deep semantic understanding
of the questions (Robertson et al., 2009), mak-
ing them unable to recognize paraphrases that lack
significant lexical overlap. In recent years, the
focus of the IR community has moved towards
neural network-based systems that can provide a
better representation of the object to be retrieved
while maintaining the performance of the standard
model. Neural representations can capture latent
syntactic and semantic information from the text,
overcoming the shortcomings of systems based
purely on lexical information. Moreover, repre-
sentations trained using a neural network can be
task-specific, allowing them to encode domain-
specific information that helps them outperform
generic systems. The major components of a Neu-
ral Information Retrieval (NIR) system are a neu-
ral encoder and a k-Nearest Neighbour (kNN) in-
dex (Mitra and Craswell, 2017). The encoder is a
neural network capable of transforming an input
example, in our case a question, to a fixed size
vector representation. In a standard setting, the
encoder is trained via triplet loss (Schroff et al.,
2015; Rao et al., 2016) to reduce the distance be-
tween a paraphrase vector when compared to a
paraphrase vector with respect to a non-paraphrase
vector. After being trained for this task, the en-
coder is used to embed the questions that can be
later retrieved at inference time. The encoded
questions are added to the kNN index for efficient
retrieval. The input question is encoded and used
as a query to the index, returning the top k most
similar questions

Public datasets, such as Quora Question Pairs,
are built to train and evaluate classifiers to iden-

"https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs
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tify paraphrases rather than evaluating retrieval
systems. Additionally, the Quora dataset is not
manually curated, thus resulting in a dataset that
contains false-negative question paraphrases. This
problem introduces noise in the training procedure
when minimizing the triplet loss, since each ques-
tion is compared with a positive and a negative
example, that could be a false negative, at each
training step. This noise is further exacerbated
in approaches for training that exploit the concept
of hard negatives, i.e., mining the non-paraphrase
samples that are close to paraphrase samples in the
vector space (Manmatha et al., 2017; Rao et al.,
2016). Rather than treating these false negatives
as a quirk of our data generation process, we rec-
ognize that false negatives are unavoidable in all
large scale information retrieval scenarios with or-
ders of millions or billions of documents - it is not
feasible to get complete annotations as that would
be of quadratic complexity in the number of doc-
uments. Usually, in these settings, randomly se-
lected documents are treated as negative examples
- thus the presence of noisy annotations with a bias
towards false negatives is a recurring phenomenon
in machine-learning based information retrieval.

In this work, we propose a loss function that
minimizes the effect of false negatives in the train-
ing data. The proposed loss function trains the
model to identify the valid paraphrase in a set
of randomly sampled questions and uses label
smoothing to assign some probability mass to neg-
ative examples, thus mitigating the impact of false
negatives.

The proposed technique is evaluated on two
datasets: a distantly supervised dataset of ques-
tions collected from a popular virtual assistant sys-
tem, and a modified version of the Quora dataset
that allows models to be evaluated in a retrieval
setting. The effect of our proposed loss and the
impact of the smoothing parameters are analyzed
in Section 4.

2 Question Paraphrase Retrieval

In QPR the task is to retrieve a set of candidate
paraphrases for a given query. Formally, given a
new query gnew, the task is to retrieve k-questions,
Qr (|Qk| = k), that are more likely to be para-
phrases of the original question. The questions
need to be retrieved from a given set of questions
Qqay such that Qr C Qqy, e.g., questions already
answered in a cQA website.



2.1 System overview

The QPR system described in this paper is made
of two core components: a neural encoder and an
index. The encoder ¢ is a function (¢ :  — R"™)
that takes as input a question ¢ € () and maps
it to a dense n-dimensional vector representation.
The index is defined as the encoded set of all the
questions that can be retrieved {¢(¢')|¢’ € Quu}
using the standard kNN search mechanism.

2.1.1 Encoder

The encoder ¢ used by our system is a neural
network that transforms the input question to a
fixed size vector representation. To this end, we
use a convolutional encoder since it scales bet-
ter (is easily parallelizable) compared to a re-
current neural network encoder and transformers
(Vaswani et al., 2017), that have quadratic com-
parisons while maintaining good performance on
sentence matching tasks (Yin et al., 2017). Addi-
tionally, convolutional encoders are less sensitive
to the global structure of the sentence then recur-
rent neural network thus being more resilient to
noisy nature of user-generated text The encoder
uses a three-step process:

1. An embedding layer maps each word w; in
the question ¢ to its corresponding word em-
bedding z; € R®%im and thereby generating
a sentence matrix X, € Rixedim  where [ is
number of words in the question. We also use
the hashing trick of (Weinberger et al., 2009)
to map rare words to m bins via random pro-
jection to reduce the number of false matches
at the retrieval time.

. A convolutional layer (Kim, 2014) takes
the question embedding matrix X, as in-
put and applies a trained convolutional filter
W € ReimWin jteratively by taking at each
timestep ¢ a set of win word embeddings.
This results in the output:

7 1t

(D

, where ¢ is a non linearity function, tanh in
our case, and b € R is the bias parameter. By
iterating over the whole sentence it produces
a feature map h*™" = [p¥in . pivin].

. A global max pooling operation is applied
over the feature map (h*™" = maz(h¥™))
to reduce it into a single feature value. The
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convolutional and global max pooling steps
described above are applied multiple times
(cgim times) with varying window size with
resultant h values concatenated to get a fea-
ture vector h &€ R%im which is then lin-
early projected to an n-dimensional output

vector using a learned weight matrix W), €
Rnxcdim‘

2.1.2 kNN Index

Despite there is no restriction on the type of kNN
index that can be used, for performance reasons,
we use FAISS? (Johnson et al., 2017) as an ap-
proximate kNN index>. All the questions (Qq)
are encoded offfine using the encoder ¢ and added
to the index. At retrieval time a new question is en-
coded and used as a query to the index. The kNN
index uses a predefined distance function (e.g. Eu-
clidean distance) to retrieve the nearest questions
in the vector space.

3 Training

Typical approaches for training the encoder use

triplet loss (Schroff et al., 2015; Rao et al., 2016).

This loss attempts to minimize the distance be-

tween positive examples while maximizing the

distance between positive and negative examples.
The loss is formalized as follows:

N

Z[Hqﬁ(Q?) — ()3 — o) — d(g)13 + o]+
(2)

(2

where ¢ is a positive (anchor) question, ¢ is a
positive match to the anchor (a valid paraphrase),
g;' is a negative match (i.e. a non-paraphrase), o
is a margin parameter and N is the batch size.

In a recent work by Manmatha et al. 2017 the
authors found that better results could be obtained
by training the above objective with hard nega-
tive samples. These hard negatives are samples
from the negative class that are the closest in vec-
tor space to the positive samples, hence most likely
to be misclassified.

However, in our case, and in other cases with
noisy training data, this technique negatively im-
pacts the performance of the model since it starts
focusing disproportionately on any false-negative
samples in the data (i.e. positive examples labelled

https://github.com/facebookresearch/
faiss

3FAISS provides efficient implementations of various ap-
proximated kNN search algorithms for both CPU and GPU



Paraphrase
Training Vector Indexing Inference
Encoding Indexing Encoding Index Top K
paraphrases
— — o => (N —
(— IR i | I
Encoder Encoder Encoder — Encoder e N
—/ N
: — —
What is a Car? Define Car Who is Obama? Where is Rome?
Figure 1: System

as negative due to noise) making the learning pro-
cess faulty. For example in the Quora dataset pos-
itive examples are marked as paraphrase, dupli-
cate, by users using the website however there is
no manual check for the negative examples, thus
leading to a number of false negatives that hap-
pens to be close in the vector space.

3.1 Smoothed Deep Metric Learning

In this paper, we propose a new loss function that
overcomes the limitation of triplet loss in the noisy
setting. Instead of minimizing the distance be-
tween positive examples with respect to negative
examples, we view the problem as a classifica-
tion problem. Ideally, we would like to classify
the paraphrases of the original question amongst
all other questions in the dataset. This process
is infeasible due to time and memory constraints.
We can, however, approximate this general loss by
identifying a valid paraphrase in a set of randomly
sampled questions (Kannan et al., 2016). We map
vector distances into probabilities similar to Gold-
berger et al. 2005 by applying a softmax operation
over the negative squared euclidean distance:

e—llo(a®)—o(a")13

pla,i) = SN e lota) 6@ ®

where ¢® is an anchor question and ¢/ and ¢
are questions belonging in a batch of size N con-
taining one paraphrase and N — 1 randomly sam-
pled non-paraphrases. The network is then trained
to assign a higher probability, hence a shorter dis-
tance, to pair of questions that are paraphrases.

Additionally, we apply the label smoothing reg-
ularization technique (Szegedy et al., 2016) to re-
duce impact of false negatives. This technique
reduces the probability of the ground truth by a
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smoothing factor ¢ and redistributes it uniformly
across all other values, i.e.,

P(kla) = (1 -pkla) + 5 @

where p(k|a) is the probability for the gold label.
The new smoothed labels computed in this way
are used to train the network using Cross-Entropy
(CE) or Kullback-Leibler (KL) divergence loss®.
In our setting, the standard cross-entropy loss tries
to enforce the euclidean distance between all ran-
dom points to become infinity, which may not
be feasible and could lead to noisy training and
slow convergence. Instead, assigning a constant
probability to random interactions tries to position
random points onto the surface of a hypersphere
around the anchor which simplifies the learning
problem.

The sampling required for this formulation can
be easily implemented in frameworks like Py-
Torch (Paszke et al., 2017) or MxNet (Chen et al.,
2015) using a batch of positive pairs < q1 ;, g2, j >
derived from a shuffled dataset, as depicted in Fig-
ure 2. In this setting, each question g; ; would have
exactly one paraphrase, i.e., g2 ; and N —1 all other
questions g2 ; when j # i would serve as counter-
examples. This batched implementation reduces
training time and makes sampling tractable by
avoiding sampling /N questions for each example,
reducing the number of forward passes required to
encode the questions in a batch from O(N?) in a
naive implementation to O(2N).

*In this setting, CE loss and KL divergence loss are equiv-
alent in expected values. However, we use the KL divergence
loss for performance reasons.



d2,1 Q2,2 d2,3
Q1,1 0.8 0.1 0.1
d1,2 0.1 0.8 0.1
a3 0.1 0.1 0.8

Figure 2: Batched implementation of the loss with
smoothing parameter ¢ = 0.3 and batch size N = 3.
Each paraphrase pair < ¢ ;, g2, ; > in the batch is com-
pared with all the others questions in the batch.

4 Experiments

In this section, we present the experimental setup
used to validate our approach for QPR using the
Smoothed Deep Metric Learning (SDML) tech-
nique.

4.1 Datasets

In order to generate a dataset for question para-
phrase retrieval, we propose a technique that uses
distant supervision to create it automatically from
high-precision question-answer (QA) logs. Addi-
tionally, due to the proprietary nature of our in-
ternal dataset, we tested our approach on a modi-
fied version of the Quora paraphrase identification
dataset that has been adapted for the paraphrase
retrieval task.

4.1.1 Open Domain QA dataset

Our open domain Q&A dataset is created by weak
supervision method using high precision QA logs
of a large scale industrial virtual assistant. From
the logs, we retrieve ‘clusters’ of questions that
are mapped to the same answer. However, we
notice that this may generate clusters where un-
related questions are mapped to a generic answer.
For instance, many different math questions may
map to the same answer; e.g. a given number. To
further refine these clusters, the data is filtered us-
ing a heuristic based on an intra-cluster similarity
metric that we call cluster coherence, denoted as c.
We define this metric as the mean Jaccard similar-
ity (Levandowsky and Winter, 1971) of each ques-
tion in a cluster to the cluster taken as the whole.
Mathematically, for a given cluster A
{q1,q2...qn} and defining Ty, = {w;,, ws,, ...w;, }
as shorthand for the set of unique tokens present
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in a given question, the coherence of the cluster is
defined as:

s=JT, (5)
=1
_ 1 n |TquS’
c=-%L, S (6)

In practice, we found that even a small coher-
ence filter (¢ < 0.1) can eliminate all incoherent
question clusters. Our approach to weak supervi-
sion can be considered as a generalized instance of
the candidate-generation noise-removal pipeline
paradigm used by Kim et al. 2018. Once the in-
coherent clusters are removed from the dataset,
the remaining clusters are randomly split in an
80:10:10 ratio into training, validation and test sets
and question pairs are generated from them®. A
second filter is applied to remove questions in the
validation and test sets that overlap with questions
in the training set. The final output of the weak su-
pervision process is a set of silver labelled clusters
with > 99% accuracy based on spot-checking, a
random sample of 200 clusters.

4.1.2 Quora dataset

We introduce a variant of the Quora dataset for
QPR task. The original dataset consists of pairs
of questions with a positive label if they are para-
phrases, and a negative label if they are not. Simi-
larly to Haponchyk et al. (2018), we identify ques-
tion clusters in the dataset by exploiting the transi-
tive property of the paraphrase relation in the orig-
inal pairs, i.e., if g; and ¢o are paraphrases, and ¢
and g3 are paraphrases then ¢; and g3 are also para-
phrases, hence q1, g2, and g3 belong to the same
cluster. After iterating over the entire dataset, we
identified 60, 312 question clusters. The question
clusters are split into the training, validation and
test sets such that the resulting validation and test
set contains roughly 5,000 question pairs each,
and the training set contains 219,369 question
pairs®. The kNN index is composed of all the
questions in the original Quora datasets (includ-
ing questions that appear only as negative, thus not
being part of any cluster) for a total of 556,107
questions.

>The open-domain QA dataset contains on order of 100k
- 1M training clusters, 10k - 100k clusters each for validation
and testing, and a search index of size ~ 10M.

%The code to generate the splits will be released upon ac-
ceptance.



4.2 Experimental setup

We described the architecture of our encoder pre-
viously in section 2.1.1. For experimentation, we
randomly initialized word embeddings. The size
of vocabulary for Quora dataset is fixed at 50,000
whereas for the bigger open-domain QA dataset
we used a vocabulary of size 100,000. To map
rare words we use the hashing trick (Weinberger
et al., 2009) with 5,000 bins for the Quora dataset
and 10,000 bins for the QA dataset.

We set the dimensionality of word embeddings
at 300 (i.e., eq;n = 300); the convolutional layer
uses a window size of 5 (i.e., win = 5) and the en-
coder outputs a vector of size n = 300. For triplet
loss the network is trained with margin a@ = 0.5.
The default batch size for all the experiments is
512 (i.e., N 512) and the smoothing factor
for SDML, ¢, is 0.3. For all experiments train-
ing is performed using the Adam optimizer with
learning rate A = 0.001 until the model stops im-
proving on the validation test, using early stop-
ping (Prechelt, 1998) on the ROC AUC metric
(Bradley, 1997).

4.3 Evaluation

We use IVF2000, Flat configuration of the FAISS
library as our index, which is a hierarchical in-
dex consisting of an index of k-means centroids
as the top-level index. For evaluation, we re-
trieve 20 questions with 10 probes into the in-
dex each returning a pair of paraphrase questions,
with an average query time of < 10 ms. These
questions are used to measure the system per-
formance via standard information retrieval met-
rics, Hits@N (H@N) and Mean Reciprocal Rank
(MRR). HQN measures if at least one question
in the first IV that are retrieved is a paraphrase
and MRR is the mean reciprocal rank (position)
at which the first retrieved paraphrase is encoun-
tered.

4.4 Results

In the first set of experiments, we measured the
impact of varying the smoothing factor e. The re-
sults for the Quora validation set are presented in
Table 1. We observe that the presence of smooth-
ing leads to a significant increase over the baseline
(simple cross-entropy loss) and increasing this pa-
rameter has a positive impact up to ¢ = 0.3.

In our second experiment, we hold the € con-
stant at 0.3 and experiment with varying the num-
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€ H@l H@10 MRR

0 0.5568 0.7381 0.6217
0.1 | 0.5901 0.7841 0.6591
0.2 | 0.6030 0.8090 0.6762
0.3 | 0.6133 0.8113 0.6837
0.4 | 0.6107 0.8144 0.6815

Table 1: Impact of smoothing factor € on the Quora
validation set.

N H@l H®@10 MRR

32 0.5389 0.7444 0.6103

64 0.5710 0.7726 0.6410

128 | 0.6093 0.8085 0.6777

256 | 0.6112 0.8141 0.6833

512 | 0.6133 0.8113 0.6837

1024 | 0.6081 0.8008 0.6764
Table 2: Impact of the batch size N on the Quora

validation set. For computing SDML a batch consists
of a paraphrase and N — 1 negative examples.

ber of negative samples. Table 2 shows the effect
of an increase in the number of negative examples
in a batch. The model’s performance reaches its
maximum value at N = 512, i.e., with 511 nega-
tive samples for each positive sample. We want to
point out that we limited our exploration to 1024
due to memory constraints. However, better per-
formance may be achieved by further increasing
the number of examples, since the batch becomes
a better approximation of the real distribution.

Table 3 and 4 compare the proposed loss with
the triplet loss with random sampling, TL(Rand).
We compared the proposed approach with two
variants of triplet loss that uses different distance
functions Euclidean Distance (EUC) and Sum of
Squared Differences (SSD). The Euclidean dis-
tance is the standard distance function for triplet
loss implementation present in popular deep learn-
ing frameworks, PyTorch and Mxnet, whereas
SSD is the distance function used in the original
paper of Schroff et al. 2015. Our approach im-
proves over the original triplet loss considerably
on both datasets. The SSD distance also outper-
forms the EUC implementation of the loss.

Tables 5 and 6 show the results on the open do-
main QA dataset validation and test set. TL(Rand)
is the triplet loss with random sampling of nega-
tive examples, whereas TL(Hard) is a variant with
hard negative mining. In both cases, the SDML
outperforms triplet loss by a considerable mar-



Loss Dist H@l H®@10 MRR
TL (Rand) | EUC | 0.4742 0.6509 0.5359
TL (Rand) | SSD | 0.5763 0.7640 0.6421
SDML SSD | 0.6133 0.8113 0.6837
Table 3: Comparison of different loss functions on

Quora validation set.

Loss Dist H@l H@1l0 MRR
TL (Rand) | EUC | 0.4641 0.6523 0.5297
TL (Rand) | SSD | 0.5507 0.7641 0.6265
SDML SSD | 0.6043 0.8179 0.6789
Table 4: Comparison of different loss functions on

Quora test set.

Loss Dist H@l H@10 MRR

TL (Rand) | EUC | 0.5738 0.7684 0.6428
TL (Rand) | SSD | 0.6506 0.8579 0.7252
TL (Hard) | EUC | 0.5549 0.7534 0.6256
TL (Hard) | SSD | 0.5233 0.7077 0.5870
SDML EUC | 0.6526 0.8832 0.7361
SDML SSD | 0.6745 0.8817 0.7491

Table 5: Comparison of different loss functions on
open domain QA dataset validation set.

Loss Dist H@l H®@10 MRR

TL (Rand) | EUC | 0.5721 0.7695 0.6431
TL (Rand) | SSD | 0.6538 0.8610 0.7271
TL (Hard) | EUC | 0.5593 0.7593 0.6304
TL (Hard) | SSD | 0.5201 0.7095 0.5863
SDML EUC | 0.6545 0.8846 0.7382
SDML SSD | 0.6718 0.8830 0.7480

Table 6: Comparison of different loss functions on

open domain QA dataset test set.

gin. It is important to note that, since our dataset
contains noisy examples, triplet loss with random
sampling outperforms hard sampling setting, in
contrast with the results presented in Manmatha
etal. 2017.

The results presented in this section are consis-
tent with our expectations based on the design of
the loss function.

5 Conclusion

We investigated a variant of the paraphrase identi-
fication task - large scale question paraphrase re-
trieval, which is of particular importance in indus-
trial question answering applications. We devised
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a weak supervision algorithm to generate training
data from the logs of an existing high precision
question-answering system and introduced a vari-
ant of the popular Quora dataset for this task. In
order to solve this task efficiently, we developed
a neural information retrieval system consisting of
a convolutional neural encoder and a fast approxi-
mate nearest neighbour search index.

Triplet loss, a standard baseline for learning-
to-rank setting, tends to overfit to noisy examples
in training. To deal with this issue, we designed
a new loss function inspired by label smooth-
ing, which assigns a small constant probability to
randomly paired question utterances in a training
mini-batch resulting in a model that demonstrates
superior performance. We believe that our batch-
wise smoothed loss formulation will be applicable
to a variety of metric learning and information re-
trieval problems for which triplet loss is currently
widespread. The loss function framework we de-
scribe is also flexible enough to experiment with
different priors - for e.g. allocating probability
masses based on the distances between the points.
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Abstract

User reviews provide a significant source of
information for companies to understand their
market and audience. In order to discover
broad trends in this source, researchers have
typically used topic models such as Latent
Dirichlet Allocation (LDA). However, while
there are metrics to choose the “best” num-
ber of topics, it is not clear whether the re-
sulting topics can also provide in-depth, ac-
tionable product analysis. Our paper exam-
ines this issue by analyzing user reviews from
the Best Buy US website for smart speakers.
Using coherence scores to choose topics, we
test whether the results help us to understand
user interests and concerns. We find that while
coherence scores are a good starting point to
identify a number of topics, it still requires
manual adaptation based on domain knowl-
edge to provide market insights. We show that
the resulting dimensions capture brand perfor-
mance and differences, and differentiate the
market into two distinct groups with different
properties.

1 Introduction

The Internet has provided a platform for people to
express their opinions on a wide range of issues,
including reviews for products they buy. Listen-
ing to what users say is critical to understanding
the product usage, helpfulness, and opportunities
for further product development to deliver better
user experience. User reviews — despite some po-
tentially inherent biases' — have quickly become
an invaluable (and cheap) form of information for
product managers and analysts (Dellarocas, 2006).
However, the speed, amount, and varying format
of user feedback also creates a need to effectively
extract the most important insights.

"People tend to over-report negative experiences, while
some positive reviews are bought (Hovy, 2016).
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Topic models, especially LDA (Blei et al,
2003), are one of the most widely used tools for
these purposes. However, due to their stochas-
tic nature, they can present a challenge for in-
terpretability (McAuliffe and Blei, 2008; Chang
et al., 2009). This is less problematic when the
analysis is exploratory, but proves difficult if it is
to result in actionable changes, for example prod-
uct development. The main dimension of freedom
in LDA is the number of topics: while there are
metrics to assess the optimal number according
to a criterion, it is unclear whether the resulting
topics provide us with a useful discrimination for
product and market analysis. The question is “Can
we derive market-relevant information from topic
modeling of reviews?”

We use smart speakers as a test case to study
LDA topic models for both high-level and in-depth
analyses. We are interested in to answer the fol-
lowing research questions:

e What are the main dimensions of concerns
when people talk about smart speakers?

e Can the LDA topic mixtures be used to di-
rectly compare smart speakers by Amazon,
Google, Apple, and Sonos?

Smart speakers are a type of wireless speaker
that provides a voice interface for people to use
spoken input to control household devices and ap-
pliances. While still relatively new, smart speak-
ers are rapidly growing in popularity. As the
Economist (2017) put it: “voice has the power
to transform computing, by providing a natural
means of interaction.” We use a dataset of smart
speaker reviews and coherence scores as a met-
ric to choose the number of topics, and evaluate
the resulting model both in terms of human judge-
ment and in its ability to meaningfully discrimi-
nate brands in the market.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 76—83
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



Raw data After .
pre-processing
# reviews 53,273
# words 1,724,842 529,035
# unique words 25,007 10,102

Table 1: Summary of dataset.

Contributions We show that LDA can be a
valuable tool for user insights: 1) basic user con-
cerns can be distinguished with LDA by using co-
herence scores (Roder et al., 2015) to determine
the best number of topics, but an additional step
is still needed for consolidation; 2) human judge-
ment correlates strongly with the model findings;
3) the extracted topic mixture distributions accu-
rately reflect the qualitative dimensions to com-
pare products and distinguish brands.

2 Dataset

2.1 Data collection

From the Best Buy US website, we collect a
dataset of 53,273 reviews for nine products from
four brands: Amazon (Echo, Echo Dot, Echo
Spot), Google (Home, Home Mini, Home Max),
Apple (HomePod) and Sonos (One, Beam). Each
review includes a review text and the brand as-
sociated with it. Our collection took place in
November 2018. Due to their later market entries
and significantly smaller market sizes, the num-
ber of available Apple and Sonos reviews is lim-
ited. Amazon, Google, Apple, and Sonos reviews
account for 53.9%, 41.1%, 3.5% and 1.5% of the
dataset, respectively.

2.2 Review text pre-processing

We pre-process the review text as follows: First,
we convert all text to lowercase and tokenize it.
We then remove punctuation and stop words. We
build bigrams and remove any remaining words
with 2 or fewer characters. Finally, we lemma-
tize the data. The statistics of the resulting bag-of-
words representation are described in Table 1.

3 Methodology

3.1 Topic extraction

The main issue in LDA is choosing the optimal
number of topics. To address this issue, we use
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the coherence score (Roder et al., 2015) of the re-
sulting topics. This metric is more useful for in-
terpretability than choosing the number of topics
on held-out data likelihood, which is a proxy and
can still result in semantically meaningless topics
(Chang et al., 2009).

The question is: what is coherent? A set of topic
descriptors are said to be coherent if they sup-
port each other and refer to the same topic or con-
cept. For example, “music, subscription, stream-
ing, spotify, pandora” are more coherent than “mu-
sic, machine, nlp, yelp, love.” While this differ-
ence is obvious to human observers, we need a
way to quantify it algorithmically.

Coherence scores are a way to do this. Several
versions exist, but the one used here has the high-
est correlation with human ratings (Roder et al.,
2015). It takes the topic descriptors and combines
four measures of them that capture different as-
pects of “coherence”: 1) a segmentationn Sgy,
2) a boolean sliding window P, (110), 3) the in-
direct cosine measure with normalized pointwise
mutual information (NPMI) mMcos(ir), and 4) the
arithmetic mean of the cosine similarities oy,.

The input to the scoring function is a set W of
the IV top words describing a topic, derived from
the fitted model. The first step is their segmenta-
tion S27F. It measures how strongly W* supports
W’ by quantifying the similarity of W* and W’ in
relation to all the words in W:

{W' WHW' = {w;};w; € W; W =W}

In order to so do, W’ and W* are represented as
context vectors ¥(W') and (W*) by pairing them
with all words in W:

> NPMI(w;, w;)”
wieW! =1, W]
The same applies for ¢(1W*). In addition:

P(w;,wj)+e v
P(w;i)-P(wj)

—log(P(w;, wj) + €

log
NPMI(IUZ', wj)”’ =

An increase of v gives higher NPMI values
more weight. € is set to a small value to pre-
vent logarithm of zero. We choose v = 1 and
e=10"12

Second, the probability Py, (110) captures prox-
imity between word tokens. It is the boolean slid-
ing window probability, i.e., the number of doc-



Choose a word that is not related to others

O loud O time O music O sound () quality (O speaker

Figure 1: Example of word intrusion task in the survey

Which group of words does not describe the following sentence:
“I get my morning facts and news all in one. Easy to use system.”
(O easy, use, setup, simple, install
(O control, command, system, integration, smart
(O music, weather, news, alarm, timer

(O price, buy, sale, deal, item

Figure 2: Example of topic intrusion task in the survey

uments in which the word occurs, divided by the
number of sliding windows of size s = 110.
Third, given context vectors @ = ¢(W') and
w = ¥(W*) for the word sets of a pair S; =
(W', W*), the similarity of W’ and W* is the co-
sine vector similarity between all context vectors.

(4 4) ‘ZV:Vl‘ Ui - Wj
S Uw) = =
e (| P

Finally, the cosine similarity measures are aver-
aged, giving us a single coherence score for each
model (each model has a different number of top-
ics).

We fit LDA models, using Gensim library in
Python, with the number of topics ranging from
2 to 20 to calculate the coherence score. For each
model, we choose the top 20 words of each topic
as inputs to calculate the model’s coherence score.
We move forward with the model with the highest
coherence score (13 topics) for validation, and use
the document-topic distributions and topic-word
distributions from that model in the subsequent
steps.

3.2 LDA validation

To evaluate the semantic interpretability of the re-
sulting LDA model from the coherence score se-
lection, we run a human judgment survey using
word intrusion and topic intrusion. We used 125
human judges. Each of 125 human subjects re-
sponds to 10 questions (5 questions for word in-
trusion, and 5 questions for topic intrusion), which
are randomly selected from a collection of 20
questions.

For the word intrusion task, each subject is
asked to choose which word they think does not
belong to the topic (Fig. 1). Each question is com-
prised of the 5 words with the highest probabili-
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ties in that topic, and one random word with low
probability in that topic but high probability (top 5
most frequent words) in another topic. The word
that does not belong to the topic is called the true
intruder word. The hypothesis of word intrusion is
that if the topics are interpretable, they are coher-
ent, and subjects will consistently choose the true
intruder words.

For topic k, let wy, be the true intruder word, iy,
be the intruder selected by the subject s. .S is the
number of subjects. The model precision for topic
k is defined as the fraction of subjects agreeing
with the model:

Zs |(ik,8 - wk)|
S

MP, =

The model precision ranges from O to 1, with
higher value indicating a better model.

For the topic intrusion task, each survey sub-
ject is shown a short review text and is asked to
choose a group of words which they think do not
describe the review (Fig. 2). Each group of words
represents a topic. Each question is comprised of 3
topics with the highest probabilities LDA assigned
to that review, and 1 random topic with low proba-
bility. The topic with low probability is called the
true intruder topic. The hypothesis of topic intru-
sion is that if the association of topics to a doc-
ument is interpretable, subjects will consistently
choose the true intruder topic.

For review r, let j, be the true intruder topic,
Jr,s be the intruding topic selected by subject s. 0,
is the probability that the review r belongs to each
topic. The topic log odds for a review 7 are defined
as the log ratio of a) the probability mass assigned
to the true intruder to b) the probability mass as-
signed to the intruder selected by the subject:

ZS (log 97’,]} - log 07’7‘7.1",3)

TLO, =
© S

The topic log odds have an upper bound of 0,
which indicates the perfect match between judg-
ments of the model and the subjects. This met-
ric is preferred for the topic intrusion task rather
than the model precision, which only takes into
account right or wrong answers, because each
topic has a probability of generating the review.
Thus, the topic log odds serve as an error function
(Lukasiewicz et al., 2018).



Coherence score

6 8 10 12

Number of topics

14 16 18 20

Figure 3: Coherence score for each model. Models
with 7, 13, and 14 topics have highest coherence score.

4 Results and discussion

4.1 Topic extraction

For each model, we compute topic coherence
based on the top 20 words in each topic. The topic
coherence plot (Fig. 3) shows three candidates for
the best number of topics, 7, 13, and 14, all with
a score of 0.62. We manually examine the top
20 words for each. The 7-topic model has some
mixed and chained topics e.g., “easy, use, great,
setup, gift, christmas.” The 14-topic model does
not provide any more meaningful topics compared
to 13 topics. Thus, we choose the 13-topic model.

4.2 LDA validation and consolidation

We extract document-topic and topic-word distri-
butions for 13 topics and evaluate them in a hu-
man judgment survey on word and topic intrusion.
The mean of the word intrusion precision is 0.85
(standard deviation 0.086), and the mean of the
topic log odds is -1.66 (standard deviation 1.58).
Fig. 4 shows the box plots for the results of both
tasks. Model precision and topic log odds are on
different scales, see section 3.2. Model precision
is sufficiently good, while topic log odds are ac-
ceptable, but with higher variance. They are on a
par with the best models in (Chang et al., 2009;
Arnold et al., 2016).

Reviews dominated by few topics show more
agreement between model and human judges, re-
views with many topics show a greater diver-
gence. For example, for the review with the lowest
level of agreement (lowest topic log odds): “Once
I managed to get all the apps synced with this
speaker, I was blown away by the sound quality.
Using Alexa’s voice recognition is great, even from
the other side of the room.”, LDA assigns fairly
equal proportions to the top 3 topics (23%, 25%,
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Figure 4: Model precision with word intrusion (left)
and topic log odds with topic intrusion (right).

and 32%). For the review with the highest level
of agreement (highest topic log odds): “I get my
morning facts and news all in one easy to use sys-
tem.”, LDA assigns 48% to a dominant topic, and
15% and 26% to the next two topics.

After running the intrusion tests with the 13-
topic model, we manually merge some topics that
were similar to each other. This process results in
8 dimensions (we call them “dimensions” to dif-
ferentiate them from the 13-topic model of the pre-
vious steps). We use these 8 dimensions to mea-
sure brand performance.

As (Boyd-Graber et al., 2014) pointed out, dif-
ferent researchers might combine topics differ-
ently. Here, the merging step is based on our
domain knowledge in the smart speaker market.
We group topics with similar top words into one
dimension. For topics that we cannot label, we
group them to the most similar topics based on the
top words. Doing so, we aim to make the topics
maximally distinguished from each other, and to
be able to label the topics appropriately.

Table 2 shows the respective top keywords. The
following describes the resulting 8 dimensions.

1. Price: price and worthiness, especially as
gifts. Example: “Love my Echo Dot, great
purchase! Made a great Christmas gift.”
(Amazon)

. Integration: ability to connect, and control
devices/household appliances (e.g., lighting,
thermostat) in a smart home. Bedroom and
kitchen are the two rooms in which people
put their smart speakers most often. Exam-
ple: “I use these in several rooms in my home
to control lights and my AV system. They in-
tegrate with my Samsung Smart Things Hub



Label

Top keywords

Price
Integration
Sound quality
Accuracy
Skills

Fun

Ease of use
Playing music

price, buy, gift, christmas, worth, black friday, money, sale, deal, item

light, control, command, system, integration, thermostat, room, ecosystem, connect
speaker, sound, quality, small, music, loud, great, room, bluetooth, volume
question, answer, time, response, quick, issue, problem, work, search, good

music, weather, news, alarm, timer, kitchen, morning, reminder, shopping_list

fun, family, kid, useful, helpful, great, friend, game, information, question

easy, use, set, setup, simple, install, recommend, connect, quick, work

music, play, song, playlist, favorite, pandora, prime, stream, subscription, beam

Table 2: 8 merged dimensions and the keywords reveal how people use smart speakers and their perceptions.

and Harmony Hub.” (Amazon)

. Sound quality: ability to provide high-
quality sound. Example: “Can’t believe this
little device has such great sound quality”
(Apple). “This is a great speaker! The sound
is just WOW! And the speaker doesn’t take up
much space.” (Sonos)

. Accuracy: ability to respond accurately to
the users voice commands, provide answers
to questions, and to issues they might en-
counter. Example: “It is amazing how many
simple questions stump Alexa. Too frequently
the response I hear is “I don’t understand”
or “Sorry, I can’t find the answer.”” (Ama-
zZon)

. Skills: variety of applications that the smart
speaker provides. They are referred to as
“skills” in Amazon Alexa, and as “actions” in
Google Assistant. L.e., music, weather fore-
cast, news, alarms, setting kitchen timers, re-
minders, and shopping lists. Example: “You
can ask Alexa anything. Find information
about the weather, sports, or the news. Also,
ask her to play your favorite music. All you
have to do is ask.” (Amazon)

Fun: pleasure to interact with smart speak-
ers, especially with/for kids and family. Ex-
ample: “Lots of fun and lots of great infor-
mation. It was fun to ask it all kinds of ques-
tions.” (Google)

. Ease of use: ease of setup and connecting to
an existing internet connection via the mobile
app to use voice commands. Example: “Fun
and easy to operate. Connects to your Wi-Fi
in a simple and quick manner.” (Amazon)
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Price
Integration
Sound quality
Accuracy
Skills

Fun

Ease of use

Playing music

0% 5% 10% 15%

Percentage of reviews

20% 25%

Figure 5: % of reviews based on dominant dimensions.

8. Playing music: ability to play music, con-
nect with music services, like Amazon Music
and Pandora. Example: “Upload all of your
music for free to Google Play Music and then
tell the Mini what to play from your music
and it will!” (Google)

Since the LDA model can assign a review to
multiple topics, it is more difficult to see the pro-
portion of reviews for each. We define the domi-
nant dimension for each review as the topic with
the highest probability for the review. The most
frequently mentioned dominant dimensions (Fig.
5) are price (27% of total reviews), integration
(25%), sound quality (14%), and accuracy (13%).

4.3 Brand performance along dimensions

Brand performance measures how frequently each
dimension was mentioned in user reviews.

As described in section 2.1, the amount of avail-
able data across companies is highly imbalanced.
Thus, in order to compare the relative performance
of brands along the 8 dimensions, we normalize
the amount of data for each company. We define
a relative dimension score for a brand b (Ama-



Dimension score
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Figure 6: Company profiles along 8 dimensions form 2
groups with similar positioning.

zon, Google, Apple Sonos) along a dimension
dy (k € [1,8]) as the normalized topic probabil-

ity:

Ny,
DSb,dk = 7;71
1/N ler,dk.

r=

Dr.d,, 18 the probability that review r belongs to
dimension dj. NV is the number of reviews for
brand b. N is the total number of reviews for all
brands.

The line plot in Fig. 6 reveals some interesting
differences between the brands’ relative strengths
and weaknesses.

Amazon and Google speakers are similar to
each other, with a balanced performance on all di-
mensions. On the other hand, Apple and Sonos
speakers are also similar to each other, but with a
focus on sound quality. This suggests a segmenta-
tion of the smart speaker market into two groups
along those lines.

Apple and Sonos clearly outperform Amazon
and Google speakers in terms of sound quality.
Indeed, both Apple and Sonos speakers are high-
end products, arguably the best sounding smart
speakers on the market, using, e.g., adaptive audio
(beamforming) to determine the position of a user
and adjust its microphones accordingly. Sonos has
digital amplifiers, a tweeter, a woofer, and a 6-
microphone array, and an adaptive noise suppres-
sion algorithm.

Interestingly, Amazon and Google users men-
tion using their speakers to listen to music as much
as Apple and Sonos users do. This is most likely
due to the fact that playing music is the most pop-
ular task on every smart speaker. However, it does
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suggest that only a few people are willing to pay
extra for better sound quality, and that they do
greatly appreciate sound quality and mention it of-
ten.

Amazon performs best in term of price, fol-
lowed by Google. Users mention that prices are
reasonable, and many people buy it as a gift for
Christmas or during sales such as Black Friday.
Amazon speakers do have the lowest prices among
the 4 brands (Amazon: $49.99, Echo 2nd Gen:
$99.99, Echo Spot: $129.99). Google’s high-end
speaker, the HomeMax ($399.00) is much less
popular than its Home Mini ($49.00) and Home
($129.00). The main competition in terms of price
and gift is between Amazon Echo Dot ($49.99)
and Google Home Mini ($49).

For skills, Amazon/Google perform better than
Apple/Sonos. Siri is strictly limited to Apple’s
ecosystem (e.g., users can only stream music from
Apple Music, not from Spotify). This is poten-
tially interesting for Sonos to distinguish them-
selves, as the speakers are Alexa-enabled (as of
November 2018 when the reviews were collected),
so users could exploit its skills just like Ama-
zon users. One possible explanation could be that
Sonos users focus more on music and sound qual-
ity, and that other skills become less important to
them so they mention other skills less often.

5 Related work

Several topic models have been proposed, such as
Latent Semantic Indexing (LSI) (Deerwester et al.,
1990), Probabilistic LSI (pLSI) (Hofmann, 1999),
and the most commonly used, Latent Dirichlet Al-
location (Blei et al., 2003). LDA assumes that
a document is comprised of mixtures over latent
topics, and each topic is a distribution over words.

LDA has some limitations. The main limita-
tions are the assumption that the number of topics
is known and fixed, together with the validity of
the assignments, and the interpretability of topics.
LDA evaluation schemes can be categorized into
intrinsic evaluation (holdout-log likelihood/ per-
plexity (Blei et al., 2003; Wallach et al., 2009),
topic coherence (Newman et al., 2010; Roder
et al., 2015), human-in-the-loop (word or topic in-
trusion (Chang et al., 2009; Lau et al., 2014)), and
extrinsic evaluation (e.g., document clustering (Ja-
garlamudi et al., 2012), information retrieval (Wei
and Croft, 2006)). Those work mainly focus on
extracting meaningful high-level topic descriptors.



In this paper, we show that those techniques, when
combined appropriately together, are useful in not
only high-level topics but also in-depth insights
from data. In order to do so, we address LDA lim-
itations with topic coherence, human-in-the-loop,
and incorporating human knowledge to merge top-
ics for better quality (Boyd-Graber et al., 2014).

6 Conclusion

In this paper, we use the coherence score by Roder
et al. (2015) as a guide to choose the optimal num-
ber of topics, and evaluate this choice with respect
to human judgement and its ability to provide mar-
ket insights. While coherence scores are judged
meaningful (in word intrusion and topic intrusion)
and provide a good starting point, they require and
additional merging step based on domain knowl-
edge to provide market insights. We merge the op-
timal choice of 13 topics into 8 dimensions for eas-
ier interpretation. We show that the topic mixture
proportions are useful to give more insights about
brand performance and market structure, separat-
ing the brands into two distinct camps with sim-
ilar properties. Further research directions could
assess the generalizability of the methodology on
other datasets and tasks.
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Abstract

We introduce the task of algorithm class pre-
diction for programming word problems. A
programming word problem is a problem writ-
ten in natural language, which can be solved
using an algorithm or a program. We define
classes of various programming word prob-
lems which correspond to the class of algo-
rithms required to solve the problem. We
present four new datasets for this task, two
multiclass datasets with 550 and 1159 prob-
lems each and two multilabel datasets having
3737 and 3960 problems each. We pose the
problem as a text classification problem and
train neural network and non-neural network
based models on this task. Our best perform-
ing classifier gets an accuracy of 62.7 per-
cent for the multiclass case on the five class
classification dataset, Codeforces Multiclass-5
(CFMC5). We also do some human-level anal-
ysis and compare human performance with
that of our text classification models. Our best
classifier has an accuracy only 9 percent lower
than that of a human on this task. To the best
of our knowledge, these are the first reported
results on such a task. We make our code and
datasets publicly available.

1 Introduction

In this paper we introduce and work on the prob-
lem of predicting algorithms classes for program-
ming word problems (PWPs). A PWP is a prob-
lem written in natural language which can be
solved using a computer program. These prob-
lems generally map to one or more classes of al-
gorithms, which are used to solve them. Binary
search, disjoint-set union, and dynamic program-
ming are some examples. In this paper, our aim
is to automatically map programming word prob-
lems to the relevant classes of algorithms. We ap-

* denotes equal contribution

84

Problem Title: Hit the Lottery

time limit per test: 1 second
memery limit per test: 256 megabytes

Problem Statement:
Allen has a LOT of money. He has n dollars in the
bank. For security reasons, he wants to withdraw
it in cash (we will not disclose the reasons here).

The denominations for dollar bills are 1, 5, 10,
20, 100. What is the minimum number of bills
Allen could receive after withdrawing
his entire balance?

Input: The first and only line of input
contains a single integer n(1=n=1079).

output: Output the minimum number of bills
that Allen could receive.

Tags/Classes: dp (dynamic programming), greedy

Figure 1: An example programming word problem.
Note that the example shown here is one of the
easy Codeforces problems — most problems are much
harder.

proach this problem by treating it as a classifica-
tion task.

Programming word problems A program-
ming word problem (PWP) requires the solver to
design correct and efficient programs. The cor-
rectness and efficiency is checked by various test-
cases provided by the problem writer. A PWP
usually consists of three parts — the problem state-
ment, a well-defined input and output format, and
time and memory constraints. An example PWP
can be seen in Figure 1.

Solving PWPs is difficult for several reasons.
One reason is, the problems are often embedded
in a narrative, that is, they are described as quasi
real-world situations in the form of short stories or
riddles. The solver must first decode the intent of
the problem, or understand what the problem is.
Then the solver needs to apply their knowledge of
algorithms to write a solution program. Another
reason is that, the solution programs must be effi-

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 84-93
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



cient with respect to the given time and memory
constraints. An outgrowth of this is that, the al-
gorithm required to solve a particular problem not
only depends on the problem statement, but also
the constraints. Consider that there may be two
different algorithms which will generate the cor-
rect output, for example, linear search, and binary
search, but only one of those will abide by the time
and memory constraints.

With the growing popularity of these prob-
lems, various competitions like ACM-ICPC, and
Google CodeJam have emerged. Additionally,
several companies including Google, Facebook,
and Amazon evaluate problem-solving skills of
candidates for software-related jobs (McDowell,
2016) using PWPs. Consequently, as noted by
Forisek (2010), programming problems have been
becoming more difficult over time. To solve a
PWP, humans get information from all its parts,
not just the the problem statement. Thus, we pre-
dict algorithms from the entire text of a PWP. We
also try to identify which parts of a PWP con-
tribute the most towards predicting algorithms.

Significance of the Problem Many interesting
real-world problems can be solved and optimised
using standard algorithms. Time spent grocery
shopping can be optimised by posing it as a graph
traversal problem (Gertin, 2012). Arranging and
retrieving items like mail, or books in a library
can be done more efficiently using sorting and
searching algorithms. Solving problems using al-
gorithms can be scaled by using computers, trans-
forming the algorithms into programs. A program
is an algorithm that has been customised to solve a
specific task under a specific set of circumstances
using a specific language. Converting textual de-
scriptions of such real-world problems into algo-
rithms, and then into programs has largely been
a human endeavour. An Al agent that could au-
tomatically generate programs from natural lan-
guage problem descriptions could greatly increase
the rate of technological advancement by quickly
providing efficient solutions to the said real-world
problems. A subsystem that could identify algo-
rithm classes from natural language would signif-
icantly narrow down the search space of possible
programs. Consequently, such a subsystem would
be a useful feature for, or likely be even part of,
such an agent. Therefore, building a system to
predict algorithms from programming word prob-
lems is potentially an important first step toward
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an automatic program generating Al. More imme-
diately, such a system could serve as an applica-
tion to help people in improving their algorithmic
problem-solving skills for software job interviews,
competitive programming, and other uses.

As per our knowledge, this task has not been
addressed in the literature before. Hence, there
is no standard dataset available for this task. We
generate and introduce new datasets by extracting
problems from Codeforces!, a sport programming
platform. We release the datasets and our experi-
ment code at >

Contribution The major contributions of this
paper are: Four datasets on programming word
problems - two multiclass® datasets having 5 and
10 classes and two multilabel* datasets having 10
and 20 classes. Evaluation of Classifiers on var-
ious multiclass and multilabel classifiers that can
predict classes for programming word problems
on our datasets along with the human baseline.
We define our problem more clearly in section 2.
Then we explain our datasets — their generation
and format along with human evaluation in sec-
tion 3. We describe the models we use for mul-
ticlass and multilabel classification in section 4.
We delineate our experiments, models, and eval-
uation metrics in section 5. We report our clas-
sification results in section 6. We analyse some
dataset nuances in section 7. Finally, we discuss
related work and the conclusion in sections 8 and
9 respectively.

2 Problem Definition

The focus of this paper is the problem of mapping
a PWP to one or more classes of algorithms. A
class of algorithms is a set containing more spe-
cific algorithms. For example, breadth-first search,
and Dijkstra’s algorithm belong to the class of
graph algorithms. A PWP can be solved using one
of the algorithms in the class it is mapped to. Prob-
lems on the Codeforces platform have tags that
correspond to the class of algorithms.

Thus, our aim is to find a tagging function, f* :
S — P(T) which maps a PWP string, s € S, to a
set of tags, {t1,t2,...} € P(T). We also consider
another variant of the problem. For the PWPs that
only have one tag, we focus on finding a tagging

!codeforces.com
Zhttps://github.com/aayn/codeforces-clean
3each problem belongs to only one class
4each problem belongs to one or more classes



Dataset | Size | Vocab | classes | Avg. words | Class percentage

CFMC5 | 550 | 9326 |5 504
greedy: 20%, implementation:20%, data struc-
tures: 20%, dp: 20%, math: 20%

CEMCI0 | 1159 | 14691 | 10 485

implementation: 34.94%, dp: 12.42%, math:
11.38%, greedy: 10.44%, data structures:
9.49%, brute force: 5.60%, geometry: 4.22%,
constructive algorithms: 5.52%, dfs and simi-
lar: 3.10%, strings: 2.84%

Table 1: Dataset statistics for multiclass datasets. CFMCS5 has 550 problems with a balanced class distribution.
CFMCI10 has 1159 problems and has a class imbalance. CFMCS is a subset of CFMC10. Red classes belong to
the solution category; blue classes belong to the problem category.

Dataset | Size | Vocab | N classes | Avg. len | Label card | Label den | Label subsets
CFMLI10 | 3737 | 28178 | 10 494 1.69 0.169 231
CFML20 | 3960 | 29433 | 20 495 2.1 0.105 808

Table 2: Dataset statistics for multilabel datasets. The problems of the CFML10 dataset are a subset of those in the

CFML20 dataset.

function, f{ : & — T, which maps a PWP string,
s € S,toatag,t € T. We approximate f* and f;
by training models on data.

3 Dataset

3.1 Data Collection

We collected the data from a popular sport pro-
gramming platform called Codeforces. Code-
forces was founded in 2010, and now has over
43000 active registered participants®>. We first col-
lected a total of 4300 problems from this platform.
Each problem has associated tags, with most of
the problems having more than one tag. These
tags correspond to the algorithm or class of al-
gorithms that can be used to solve that particular
problem. The tags for a problem are given by the
problem writer and they can only be edited only by
high-rated (expert) contestants who have solved
the problem. Next, we performed basic filtering
on the data — removing the problems which had
non-algorithmic tags, problems with no tags as-
signed to them, and also the problems wherein the
problem statement was not extracted completely.
After this filtering, we got 4019 problems with 35
different tags. This forms the Codeforces dataset.
The label (tag) cardinality (average number of la-
bels/tags per problem) was 2.24. Since the Code-
forces dataset is the first dataset generated for a
new problem, we select different subsets of this

>http://codeforces.com/ratings/page/219
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dataset with differing properties. This is to check
if classification models are robust to different vari-
ations of the problem.

3.2 Multilabel Datasets

We found that a large number of tags had a very
low frequency. Hence, we removed those prob-
lems and tags from the Codeforces dataset as fol-
lows. First, we got the list of 20 most frequently
occurring tags, ordered by decreasing frequency.
We observed that the 20" tag in this list had a fre-
quency of 98, in other words, 98 problems had this
tag. Next, for each problem, we removed the tags
that are not in this list. After that, all problems that
did not have any tags left were removed.

This led to the formation of the Codeforces
Multilabel-20 (CFML20) dataset, which has 20
tags. We used the same procedure for the 10 most
frequently occurring tags to get the Codeforces
Multilabel-10 (CFML10) dataset. The CFML20
has 98.53 (3960 problems) percent of the prob-
lems of the original dataset and the label (tag) car-
dinality only reduces from 2.24 to 2.21. CFML10
on the other hand has 92.9 percent of the problems
with label (tag) cardinality 1.69. Statistics about
both these multilabel datasets are given in Table 2.

3.3 Multiclass Datasets

To generate the multiclass datasets, first, we ex-
tracted the problems from the CFML20 dataset
that only had one tag. There were about 1300



such problems. From those, we selected the prob-
lems whose tags occur in the list of 10 most com-
mon tags. These problems formed the Codeforces
Multiclass-10 (CFMC10) dataset which contains
1159 examples. We found that the CFMCI10
dataset has a class (tag) imbalance. We also
make a balanced dataset, Codeforces Multiclass-5
(CFMCS), in which the prior class (tag) distribu-
tion is uniform. The CFMCS5 dataset has five tags,
each having 110 problems. To make CFMCS5, first
we extracted the problems whose tags are among
the five most common tags. The fifth most com-
mon tag occurs 110 times. We sampled 110 ran-
dom problems corresponding to the other four tags
to give a total of 550 problems. Statistics about
both the multiclass datasets are given in Table 1.

3.4 Dataset Format

Each problem in the datasets follows the same for-
mat (refer to Figure 1 for an example problem).
The header contains the problem title, and the time
and memory constraints for a program running on
the problem testcases. The problem statement is
the natural language description of the problem
framed as a real world scenario. The input and
output format describe the input to, and the out-
put from a valid solution program. It also contains
constraints that will be put on the size of inputs
(for example, max size of input array, max size of
2 input values). The tags associated with the prob-
lem are the algorithm classes that we are trying to
predict using the above information.

3.5 Class Categories in the Dataset

The classes for PWPs can be divided into two cat-
egories: Problem category classes tell us what
kind of broad class of problem the PWP belongs
to. For instance, math, and string are two such
classes. Solution category classes tell us what
kind of algorithm can solve a particular PWP. For
example, a PWP of class dp or binary search
would need a dynamic programming or binary
search based algorithm to solve it.

Problem category PWPs are easier to classify
because, in some cases, simple keyword mapping
may lead to the classification (an equation in the
problem is a strong indicator that a problem is of
math type). Whereas, for solution category PWPs,
a deeper understanding of the problem is required.

The classes belong to problem and solution cat-
egories for CFML20 are mentioned in the supple-
mentary material.
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3.6 Human Evaluation

In this section, we evaluate and analyze the per-
formance of an average competitor on the task of
predicting an algorithm for a PWP. The tags for
a given PWP are added by its problem setter or
other high-rated contestants who have solved it.
Our test participants were recent computer science
graduates with some experience in algorithms and
competitive programming. We gave 5 participants
the problem text along with all the constraints, and
the input and output format. We also provided
them with a list of all the tags and a few exam-
ple problems for each tag. We randomly sample
120 problems from the CFML20 dataset and split
them into two parts — containing 20 and 100 prob-
lems respectively. The 20 problems were given
along with their tags to familiarize the participants
with the task. For the remaining 100 problems,
the participants were asked to predict the tags (one
or more) for each problem. We chose to sample
the problems from the CFML20 dataset as it is the
closest to a real-world scenario of predicting algo-
rithms for solving problems. We find that there is
some variation in the accuracy reported by differ-
ent humans with the highest F1 micro score being
11 percent greater than that of the the lowest. (see
supplementary material for more details). The F1
micro score averaged over all 5 participants was
51.8 while the averaged F1 Macro was 42.7. The
results are not surprising since this task is like any
other problem solving task, and people based on
their proficiency would get different results. This
shows us that the problem is hard even for humans
with a computer science education.

4 Classification Models

To test the compatibility of our problem with text
classification paradigm, we apply to it some stan-
dard text classification models from recent litera-
ture.

4.1 Multiclass Classification

To approximate the optimal tagging function f;
(see section 2) we use the following models.
Multinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SYM) Wang and Man-
ning (2012) proposed several simple and effec-
tive baselines for text classification. An MNB is a
naive Bayes classifier for multinomial models. An
SVM is a discriminative hyperplane-based classi-
fier (Hearst et al., 1998). These baselines use uni-



grams and bigrams as features. We also try apply-
ing TF-IDF to these features.

Multi-layer Perceptron (MLP) An MLP is a
class of artificial neural network that uses back-
propagation for training in a supervised setting
(Rumelhart et al., 1986). MLP-based models are
standard for text classification baselines (Glorot
etal., 2011).

Convolutional Neural Network (CNN) We
also train a Convolutional Neural Network (CNN)
based model, similar to the one used by Kim
(2014) in their paper, to classify the prob-
lems. We use the model both with and without
pre-trained GloVe word-embeddings (Pennington
etal., 2014).

CNN ensemble Hansen and Salamon (1990)
introduce neural network ensemble learning, in
which many neural networks are trained and their
predictions combined. These neural network sys-
tems show greater generalization ability and pre-
dictive power. We train five CNN networks and
combine their predictions using the majority vot-
ing system.

4.2 Multilabel Classifiers

To approximate, f* (see section 2), we apply the
following augmentations to the models described
above.

Multinomial Naive Bayes (MNB) and Sup-
port Vector Machine (SVM) For applying these
models to the multilabel case, we use the one-vs-
rest (or, one-vs-all) strategy. This strategy involves
training a single classifier for each class, with the
samples of that class as positive samples and all
other samples as negatives (Bishop, 2006).

Multi-layer Perceptron (MLP) Nam et al.
(2014) use MLP-based models for multilabel text
classification. We use similar models, but use the
MSE loss instead of the cross-entropy loss.

Convolutional Neural Network (CNN) For
multilabel classification we use a CNN based fea-
ture extractor similar to the one used in (Kim,
2014). The output is passed through a sigmoid
activation function, o(z) = H% The labels
which have a corresponding activation greater than
0.5 are considered (Liu et al., 2017). Similar to
the multiclass case, we train the model both with
and without pre-trained GloVe (Pennington et al.,
2014) word-embeddings.

CNN ensemble We train five CNNs and add
their output linear activation values. We pass this

88

sum through a sigmoid function and consider the
labels (tags) with activation greater than 0.5.

S Experiment setup

All hyperparameter tuning experiments were per-
formed with 10-fold cross validation. For the non-
neural network-based methods, we first vector-
ize each problem using a bag-of-words vectorizer,
scikit-learn’s (Pedregosa et al., 2011) CountVec-
torizer. We also experiment with TF-IDF features
for each problem. In the multiclass case, we use
the LIBSVM (chung Chang and Lin, 2001) im-
plementation of the SVM classifier and we grid
search over different kernels. However, the LIB-
SVM implementation is not compatible with the
one-vs-rest strategy (complexity O(n) where n is
the number of classes), but only the one-vs-one
(complexity O(n?)). This becomes prohibitively
slow and thus, we use the LIBLINEAR (Fan et al.,
2008) implementation for the multilabel case. For
hyperparameter tuning, we applied a grid search
over the parameters of the vectorizers, classifiers,
and other components. The exact parameters
tuned can be seen in our code repository. For the
neural network-based methods, we tokenize each
problem using the spaCy tokenizer (Honnibal and
Montani, 2017). We only use words appearing 2
or more times in building the vocabulary and re-
place the words that appear fewer times with a spe-
cial UNK token. Our CNN network architecture is
similar to that used by Kim (2014). The batch size
used is 32. We apply 512 one-dimensional con-
volution filters of size 3, 4, and 5 on each prob-
lem. The rectifier, R(z) max(z,0), is used
as the activation function. We concatenate these
filters, apply a global max-pooling followed by a
fully-connected layer with output size equal to the
number of classes. We use the PyTorch frame-
work (Paszke et al., 2017) to build this model.
For the word embedding we use two approaches
- a vanilla PyTorch trainable embedding layer and
a 300-dimensional GloVe embedding (Pennington
et al., 2014). The networks were initialized us-
ing the Xavier method (Glorot and Bengio, 2010)
at the beginning of each fold. We use the Adam
optimization algorithm (Kingma and Ba, 2014) as
we observe that it converges faster than vanilla
stochastic gradient descent.



Classifier CFMC5 CFMC10
Acc | FIW | Acc | FIW
CNN Random | 25.0 | 22.1 352 1192
MNB 47.6 | 475 | 439 | 374
SVM BoW 49.3 |1 49.1 | 479 | 432
SVM TFIDF 478 | 47.6 | 457 | 41.2
MLP 478 | 47.6 | 493 | 46.2
CNN 61.7 | 613 | 54.7 | 51.3
CNN Ensemble | 62.7 | 62.2 | 53.5 | 50.5
CNN GloVe 622 | 613 | 545|514

Table 3: Classification Accuracy for single label classi-
fication. Note that all results were obtained on 10-fold
cross validation. CNN Random refers to a CNN trained
on a random labelling of the dataset. F1 W stands for
weighted macro F1-score.

6 Results

6.1 Multiclass Results

We see that the classification accuracy of the
best performing classifier, CNN ensemble, for the
CFMCS5 dataset is 62.7 %. The highest accu-
racy for the CFMC10 dataset was achieved by the
CNN classifer which does not use any pretrained
embeddings. For all the multiclass classification
results refer to table 3. We observe that CNN-
based classifiers perform better than other classi-
fiers — MLP, MNB, and SVM for both CFMC5
and CFMCI10 datasets. Since these are the first
learning results on the task of algorithm prediction
for PWPs, we train a CNN classifier on a random
labelling of the dataset. The results are given in
the row called CNN random. To obtain this ran-
dom labelling we shuffle the current mapping from
problem to tag randomly. This ensures that the
class distribution of the datasets remain the same.
We see that all the classifiers significantly outper-
form the performance on the random dataset. We
also observe that the classification accuracy is not
the same for every class. We get the highest ac-
curacy (see Fig. 2) for the class, data structures,
at 90%, while, the lowest accuracy is for the class,
greedy, at 40%. These results are on the CFMC5
dataset.

6.2 Multilabel Results

We see that CNN-based classifiers give the best re-
sults for the CFML10 and CFML20 datasets. The
best F1 micro and macro scores for the CFML10
dataset were 45.32, 38.9 respectively. These were
obtained by the CNN Ensemble model. For com-
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plete results see table 4. The best performing
model on the CFML20 dataset was also the CNN
ensemble. As we did in the multiclass case, we
train a CNN model on the randomly shuffled la-
belling for both CFML10, CFML20 datasets. We
find that all the classifers significantly outperform
the model trained on a shuffled labelling. The
human-level F1 micro and macro scores on a sub-
set of the CFML20 dataset were 51.2 and 40.5. In
comparison, our best performing classifier on the
CMFL20 dataset, CNN Ensemble, got F1 macro
and micro scores of 42.75, 37.29 respectively. We
see that the performance of our best classifiers trail
average human performance by about 8.45% and
3.21% on F1 micro and F1 macro scores respec-
tively.

7 Analysis

7.1 Experiments with various subsets of the
problem

As described in section 1, a PWP consists of three
components — the problem statement, input and
output format, and time and memory constraints.
We seek to answer the following questions. Does
one component contribute to the accuracy more
than any other? Does the contribution of different
components vary over the problem class? We per-
formed some experiments to address these ques-
tions. We split the problem into two parts — 1)
the problem statement, and 2) the input and out-
put format, and time and memory constraints. We
train an SVM, and a CNN on these two compo-
nents independently.

Multiclass PWP component analysis We find
classifier accuracies on the CFMCS5 dataset. We
choose the CFMCS5 dataset out of the two multi-
class datasets because it has a balanced class dis-
tribution. We find that the classifiers perform quite
well on only the input and output format, and time
and memory constraints — the best classifier get-
ting an accuracy of 56.4 percent (only 5.3 percent
lower than the accuracy of CNN with the whole
problem). Classification using only the problem
statement gives worse results than using the for-
mat and constraints, with a classification accuracy
of 45.2 percent for the best classifier CNN (16.5
percent lower than the accuracy of a CNN trained
on the whole problem). Complete results are given
in table 5. We also see that the performance across
different classes varies when trained on different
inputs. We find that the class dp performs better



Classifier CFML10 CFML20
hamming loss | F1 micro | F1 macro | hamming loss | F1 micro | F1 macro

CNN Random TWE | 0.2158 15.98 9.39 0.1207 12.07 4.02
MNB BoW 0.1706 30.57 25.73 0.1067 29.67 23.41
SVM BoW 0.1713 36.08 31.09 0.1056 34.93 30.70
SVM BoW + TF-IDF | 0.1723 38.20 33.68 0.1059 38.55 34.70
MLP BoW 0.1879 39.13 34.92 0.1167 38.12 31.37
CNN TWE 0.1671 39.20 32.59 0.1023 38.44 30.38
CNN Ensemble TWE | 0.1703 45.32 38.93 0.1093 42.75 37.29
CNN GloVe 0.1676 39.22 33.77 0.1052 37.56 30.29
Human - - - - 51.8 42.7

Table 4: Classification Accuracy for multi-label classification. TWE stands for trainable word embeddings ini-
tialized with a normal distribution. Note that all results were obtained on 10-fold cross validation. CNN Random
refers to a CNN trained on a random labelling of the dataset.

when trained on the problem statement, whereas
the other classes perform much better on the for-
mat and constraints. For each class except greedy,
we see an additive trend — the accuracy is im-
proved by combining both these features. Refer
to figure 2 for more details.

Multilabel partial problem results We also
tabulate the classifier accuracies on the CFML20
dataset by training it only on the format and con-
straints, and the problem statement. Even here,
we observe similar trends as the multiclass par-
tial problem experiments. We find that classifiers
are more accurate when trained only on the format
and constraints than only on the problem state-
ment. Again, the accuracy is improved by combin-
ing both these features. Refer to table 5 for more
details.

7.2 Problem category and Solution category
results

We find that correctly classifying PWPs of the so-
lution category is harder than correctly classify-
ing PWPs of the problem category (table 5). For
instance, take a look at the row corresponding to
CFMCS5 dataset and all prob” feature. The ac-
curacy for solution category is 54.24% as com-
pared to 71.36% for the problem category. This
trend is followed for both CFMCS5 and CFML20
datasets and also when using different features of
the PWPs. In spite of the difficulty, the classifi-
cation scores for the solution category are signifi-
cantly better than random.

8 Related Work

Our work is related to three major topics of re-
search, math word problem solving, text document

90

classification and program synthesis.

Math word problem solving In the recent
years, many models have been built to solve dif-
ferent kinds of math word problems. Some mod-
els solve only arithmetic problems (Hosseini et al.,
2014), while others solve algebra word prob-
lems (Kushman et al., 2014). There are some
recent solvers which solve a wide range pre-
university level math word problems (Matsuzaki
et al., 2017), (Hopkins et al., 2017). Wang et al.
(2017), and Mehta et al. (2017) have built deep
neural network based solvers for math word prob-
lems. Program synthesis Work related to the
task of converting natural language description
to code comes under the research areas of pro-
gram synthesis and natural language understand-
ing. This work is still in its nascent stage. Zhong
et al. (2017) worked on generating SQL queries
automatically from natural language descriptions.
Lin et al. (2017) worked on automatically gener-
ating bash commands from natural language de-
scriptions. lyer et al. (2016) worked on summa-
rizing source code. Sudha et al. (2017) use a
CNN based model to classify the algorithm used
in a programming problem using the C++ code.
Our model tries to accomplish this task by using
the natural language problem description. Gul-
wani et al. (2017) is a comprehensive treatise on
program synthesis. Document classification The
problem of classifying a programming word prob-
lem in natural language is similar to the task of
document classification. The state-of-the-art ap-
proach currently for single label classification is to
use a hierarchical attention network based model
(Yang et al., 2016). This model is improved by us-
ing transfer learning (Howard and Ruder, 2018).




. Soln. category Prob. category all
Dataset | Features Classifier e TFiMa | FIMi | FIMa | FIMi | Fl Ma
CFMCS | only statement | cnn 42.73 46.14 51.32 64.35 46.13 45.20
CFMCS | only i/o cnn 44.24 51.73 74.73 81.31 56.42 55.41
CFMCS5 | all prob cnn 54.24 59.91 71.36 78.32 61.71 61.32
CFML20 | only statement | cnn 30.83 17.32 38.64 41.82 33.59 28.34
CFML20 | only i/o cnn 34.63 19.59 44.49 44.34 38.44 30.38
CFML20 | all prob cnn 34.39 19.23 45.36 44.02 39.20 32.59

Table 5: Performance on different categories of PWPs for different parts of the PWPs. The rows with “only
statement” features use only the problem description part of the PWP, the rows with “only i/0” use only the I/O and
constraint information, and “all prob” use the entire PWP. The results under the ”Soln category”, "Prob category”
columns are for the problems which have the label under problem, solution category respectively. ”All” is for the
entire dataset. So, for example, the F1 Micro score using only I/O and constraint for solution category problems of
CFML20 is 34.63. Note that for CFMCS5, F1 Mi (F1 Micro) is the same as accuracy, and F1 Ma (F1 Macro) score

is a weighted Macro F1-score.
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Figure 2: Confusion matrices for different parts of the problem on CFMC5. Whole problem text (left), only format
and constraints information (center), and only problem statement (right). Perfomance on the whole problem is the
highest, followed by only format and constraints information. Performance across different classes (except greedy)
is additive, which shows that features extracted from both the parts are of importance

Other approaches include a Recurrent Convolu-  tively. Our classifiers are falling short only by
tional Neural Network based approach (Lai et al.,  about 9 percent of the human score. We also
2015) or the fasttext model (Joulin et al., 2016)  did some experiments which show that increasing
which uses bag-of-words features and a hierarchi-  the size of the train dataset improves the accuracy
cal softmax. Nam et al. (2014) use a feed-forward  (see supplementary material). These problems are
neural network with binary cross entropy per la-  much harder than high school math word problems
bel to perform multilabel document classification.  as they require a good knowledge of various com-
Kurata et al. (2016) leverage label co-occurrence  puter science algorithms and an ability to reduce a
to improve multilabel classification. Liu et al.  problem to these known algorithms. Even our hu-
(2017) use a CNN based architecture to perform  man analysis shows that trained computer science

extreme multilabel classification. graduates only get an F1 of 51.8. Based on these
results, we see that algorithm class prediction is

9 Conclusion compatible with and can be solved using text clas-
sification.

We introduced a new problem of predicting the al-

gorithm classes for programming word problems.
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Abstract

Psychologically motivated, lexicon-based text
analysis methods such as LIWC (Pennebaker
et al., 2015) have been criticized by compu-
tational linguists for their lack of adaptabil-
ity, but they have not often been systemati-
cally compared with either human evaluations
or machine learning approaches. The goal of
the current study was to assess the effective-
ness and predictive ability of LIWC on a rela-
tionship goal classification task. In this paper,
we compared the outcomes of (1) LIWC, (2)
machine learning, and (3) a human baseline.
A newly collected corpus of online dating pro-
file texts (a genre not explored before in the
ACL anthology) was used, accompanied by
the profile writers’ self-selected relationship
goal (long-term versus date). These three ap-
proaches were tested by comparing their per-
formance on identifying both the intended re-
lationship goal and content-related text labels.
Results show that LIWC and machine learning
models both correlate with humans in terms
of content-related label assignment. Further-
more, LIWC’s content-related labels corre-
sponded more strongly to humans than those
of the machine learning model. Moreover, all
approaches were similarly accurate in predict-
ing the relationship goal.

1 Introduction

When investigating large textual datasets, it is of-
tentimes necessary to use (automated) tools in or-
der to make sense of the texts. Such tools can
help expose properties of texts or of the texts’ au-
thor (Riffe et al., 2014). A distinction in these
tools can be made between predefined lexicon-
based approaches and more content-specific ma-
chine learning approaches. One commonly used
lexicon-based approach is the Linguistic Inquiry
and Word Count program (LIWC; Pennebaker
et al.,, 2015). This approach assigns words to
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one or more (psychologically validated) labels as-
sociated with the word. These labels might re-
veal more about a writer’s thought processes, emo-
tional states, and intentions (Tausczik and Pen-
nebaker, 2010).

Text analysis tools such as LIWC have become
more popular with the surge of social media: re-
searchers want to assess, for instance, the sen-
timent of social media users on various matters,
and lexicon-based text analysis tools can provide
help with that. At the same time, these tools
have also garnered criticism, for example, because
they do not differentiate between domains and
cannot deal with non-literal language use (e.g.,
irony), or out-of-vocabulary terms frequently seen
within noisy text (e.g., typos or (internet) slang)
(Panger, 2016; Franklin, 2015; Schwartz et al.,
2013). This is something that machine learn-
ing methods might be better suited for as they
can be trained on specific content, thus are able
to analyze more complex language. Yet, not
much is known about the effectiveness of lexicon-
based compared to machine learning methods or
a ground truth: comparative research is scarce,
with few exceptions like Hartmann et al. (2019).
Thus, outcomes of lexicon-based approaches are
often taken at face value, without knowing how
they compare to human attributions. While some
researchers dispute the effectiveness of lexicon-
based approaches (Kross et al., 2019; Johnson and
Goldwasser, 2018), there are others who found
that such approaches are helpful on their own (Do
and Choi, 2015), or that classification performance
increases with the addition of features from such
approaches (Sawhney et al., 2018; Pamungkas and
Patti, 2018). Additionally, most work on writer’s
intentions focuses on basic emotions only (Yang
et al., 2018; Chen et al., 2018; Yu et al., 2018).
Thus, LIWC’s wide range of psychology-related
label detection is presently not matched by others.
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The social media domain, which the online dat-
ing domain (hereafter: dating profiles) is part of,
might be challenging for LIWC, since these texts
often contain non-standard language and noise.
LIWC may nevertheless be a viable tool for ana-
lyzing dating profiles. Previous research has found
that intended relationship goals are related to psy-
chological traits (Feeney and Noller, 1990; Peter
and Valkenburg, 2007), and that dating profiles
can contain information about a writer’s psycho-
logical and mental states (Ellison et al., 2006).
This underlying psychological layer is something
that may be exploited by LIWC, since previous re-
search found that the tool can expose such psycho-
logical and mental states from linguistic behavior
(Tausczik and Pennebaker, 2010; Van der Zanden
etal., 2019).

The goal of the current study was to assess the
effectiveness and predictive ability of LIWC on
a relationship goal classification task. For this,
LIWC was compared to human judgment and ma-
chine learning approaches in three steps. First, the
quality of LIWC’s content-related labels was as-
sessed by comparing the values given to content-
related labels to those of humans and a regression
model. Second, the meaningfulness of LIWC’s
dictionary was investigated by using the label val-
ues as features for a classification model that pre-
dicts relationship type, contrasting these results
with the predictions of humans and a classifica-
tion model using word features. Third, a quali-
tative evaluation based on topic models, Gini Im-
portance scores, and log-likelihood ratios was con-
ducted to find limitations of LIWC’s lexicon.

2 Method
2.1 Corpus

Date
Tokens

Corpus Long-term

Tokens

Texts Types | Texts Types

Full
Train+val
Test

10,696 863,227 32,020
1,464 117,947 9,973
150 11,886 2,383

1,634
1,464
150

127,644
115,227
11,738

11,274
10,540
2,592

Table 1: Descriptives of the dating profile corpus

A total sample of 12,310 dating profiles together
with the indicated desired relationship goal was
collected from a popular Dutch dating site (see
Table 1). These profiles were anonymized after
collection, and were between 50 and 100 words,
written in Dutch (M = 80.36 words, SD = 14.56).
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Ethical clearance was obtained from the university
for the collection of the dating profiles and the use
for further text analysis. The (anonymized) corpus
itself and the results from the human evaluation
are available upon request.

2.2 LIWC

LIWC 2015 (Pennebaker et al., 2015) was used
for the experiments, with the Dutch lexicon by
Van Wissen and Boot (2017). This Dutch version
of LIWC is of similar size as the English version
and the scores have been found to correlate well
with those of its English counterpart when tested
on parallel corpora (Van Wissen and Boot, 2017).
LIWC works by iterating over all words and multi-
word phrases in a text and checking whether the
word or phrase is in the predefined lexicon of one
or more labels. There are 70 labels in total. LIWC
outputs percentage scores. For example, if 8%
of words are an I-reference, the I-reference score
would be 8.

2.3 Human Evaluation

In this study, 152 university students participated
(68% female, mean age = 21.8 years). For
their voluntary participation they received course
credit. Altogether, these participants rated a ran-
dom sample of 300 profile texts (test set in Ta-
ble 1). Each participant judged six texts in to-
tal: 3 texts where the indicated goal was a long-
term relationship, and 3 texts where this goal was
a date. Approximately three judgments for each of
the 300 profile texts were obtained.

Participants rated the degree to which the pro-
file writer discussed six topics which were deemed
important for dating profiles based on previous re-
search (status, physical appearance, positive emo-
tion, I-references, you-references, we-references;
see Appendix A) (Davis and Fingerman, 2016;
Groom and Pennebaker, 2005; Van der Zanden
et al.,, 2019). These ratings were done on six
items, all 7-point Likert scales (“To what degree is
the writer of the text talking about: status related
qualities (e.g., job, achievements), physical quali-
ties (e.g., height, build), positive emotions, them-
self (use of ‘I’), the reader (use of ‘you’), a group
the writer belongs to (use of ‘we’)”, ranging from
“low degree” to “high degree”). The judgments
were used as a baseline for the label assignment
task. Furthermore, participants indicated whether
they thought the profile text writer sought for a
long-term relationship or a date (Krippendorff’s a



Method Status Physical Positive I You We
appearance emotion

LIWC A2%E - D0%* 30%% A5%E 44%x 3eH*

Regression .51%*%  13%* 13% 31k 37H% 0 D%k

Table 2: Pearson’s r compared to humans. Verti-
cally aligned bold values differ significantly.
*p < .05, ** p < .001.

=(0.24). These predictions were used as a baseline
for the relationship goal classification task. Ad-
ditionally, participants were asked to highlight the
words in the text on which they based their long-
term or date prediction. All marked words were
then collected and counted for the qualitative anal-
ysis.

2.4 Label Assignment Task

The goal of this task was to evaluate the similarity
of labels from lexicon-based and machine learning
approaches compared to a human baseline. The
output of LIWC was limited to the six labels dis-
cussed in Section 2.3. The 300 dating profiles
evaluated in the human evaluation task were rated
by LIWC for fair comparison.

The same 300 texts were also used (with ran-
dom ten-fold cross-validation) for the regression
model. This model was trained to give continuous
scores on the six text labels. Word features were
chosen for fair comparison, since LIWC is word-
based and humans also tend to analyze texts at
word, phrase, or sentence level (Marsi and Krah-
mer, 2005). TheilSenRegressor was the regression
algorithm used (see Appendix B for details).

2.5 Relationship Goal Identification Task

With this task, the meaningfulness of the lexi-
cons used by LIWC to capture writers’ relation-
ship goals was investigated and compared to the
feature sets that humans and machine learning ap-
proaches use. To do so, three classification models
were used. One classification model used LIWC’s
label scores on the aforementioned six labels as
features. The second classification model used
word features. Furthermore, a meta-classifier was
trained on the probability scores of the classifi-
cation model with LIWC features and the model
with word features. This was done to investigate
if LIWC and word features use different facets of
a text to distinguish between relationship goals. If
so0, pooling them together could achieve some kind
of synergy, resulting in higher accuracy scores.
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Metric Human LIWC Word Meta
Precision 0.55 0.54 0.61 0.61
Recall 0.67 0.87 0.65 0.65
F1 0.60 0.67 0.63 0.63
Accuracy 0.57 0.56  0.62 0.62

Table 3: Accuracy scores by humans and classifica-
tion models. Bold indicates highest score on metric.

A total of 3,228 texts (1,614 texts for each re-
lationship group; see Table 1) was used for train-
ing and testing. This sample was randomly strat-
ified on gender, age and education level based
on the distribution of the group of date seek-
ers. For the classification models, the text was
trained using 2,635 texts and validated on 293
texts. Finally, to enable fair comparison between
methods, the model was tested on the 300 texts
rated by humans. While this test dataset is rel-
atively small, only minor differences were found
between accuracy scores when trained on the full
dataset using ten-fold cross-validation (approxi-
mately 1-2%). Thus, the test set was sufficiently
large to obtain relatively stable results. Further-
more, a test was done using Dutch word2vec
word-embeddings pre-trained on the COW corpus
(Iv{ehﬁfek and Sojka, 2010; Tulkens et al., 2016)
for the classification model with word features, but
this did not lead to an increase of accuracy scores.
For all classification models, an LSTM network
with eight layers was used (see Appendix B for
details).

2.6 Qualitative analysis

A qualitative analysis of the output on the re-
lationship goal identification task was performed
to analyze possible shortcomings of LIWC’s lexi-
con. Indicative words for identification according
to Gini Importance scores obtained with XGBoost
were compared to LIWC’s lexicon (Breiman et al.,
1984). Furthermore, LIWC’s lexicon was com-
pared to indicative words according to humans and
according to log-likelihood ratio scores (Dunning,
1993). Labels from LIWC were also compared
with topics obtained by topic modeling (see Ap-
pendix B).

3 Results
3.1 Label Assignment Task

For the label assignment task, the performance of
LIWC and the regression model were measured
using (two-tailed) Pearson’s r. Results show that



Topic name Words

Person characteristics
especially, reliable, human, happy
Self-disclosure

Being together

cozy, go, where, come
Family and
occupation time, since, like, old

Named entities,
English, and Misc.
Nature and hobbies

rather, music, EVENT, my

I, humor, good, man, honest, sportive, like, social, sometimes, sweet, spontaneous, woman, positive, little bit, open, stubborn,

I, you, none, much, say, come, good, something, myself, human, find, become, we, think, sit, always, see, sometime, other
I, you, want, woman, someone, together, man, sweet, find, know, with, you, good, each other, relationship, spontaneous,

I, LOCATION, PERSON, reside, year, name, visit, ORGANISATION, work, child, you, come, MISCELLANEOUS, go,
pro, MISCELLANEOUS, LOCATION, PERSON, you, the, ORGANIZATION, to, a, none, and, 4, what, I, one, life,

I, like, find, nice, go, friend, eat, movie, cozy, time, watch, couch, delightful, walk, evening, day, good, make, enjoy, music

Table 4: Translated topic models with assigned topic names.

both LIWC and the regression model correlate sig-
nificantly with human behavior for all six inves-
tigated labels. This suggests that LIWC and a
regression model can obtain label scores similar
to humans. However, it should be noted that the
correlation coefficients are relatively low (ranging
from .13 to .51), which indicates a weak to mod-
erate relationship between the regression models
and human judgments.

Fishers r to z transformation was employed to
investigate whether the strength of the correlation
with humans differed significantly between LIWC
scores and word-based regression scores. Over-
all, LIWC performed better on this task: the cor-
relation for LIWC on positive emotions (p = .03)
as well as I-references (p = .05) was significantly
stronger than the correlation scores for the regres-
sion model on these labels (see Table 2). This in-
dicates that LIWC scores are more similar to the
label scores of human annotators (at least for pos-
itive emotions and I-references) than the scores of
the regression model.

3.2 Relationship Goal Identification Task

For the intended relationship goal identification
task, chi-square tests were performed on the pre-
dictions for all different methods, to compare them
to chance and to each other. All methods turned
out to perform better than chance (humans: x2(1)
= 17.58, p < .001; word-based classifier: x2(1)
= 17.28, p < .001; classifier with LIWC features:
x2(1) = 533, p = .02; meta-classifier: y?(1) =
17.28, p < .001). These results suggest that hu-
mans, LIWC, and a word-based regression model
are similarly accurate in identifying a writer’s rela-
tionship goal. This was further corroborated by a
4 (text analysis method) x 2 (correct vs. incorrect
judgments) not significant chi-square test (x%(3) =
4.22, p = .24), meaning that there was no method
that performed significantly better than any other
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method (see Table 3).

Accuracy for the meta-classifiers did not in-
crease for the relationship goal identification task.
The accuracy score of the meta-classifier was the
same as the word-based classifier, which suggests
that LIWC features and word features pick up on
the same aspects of the text. Since the classifica-
tion model with word features performed slightly
better, the meta-classifier likely learns to focus on
the probability scores of that model.

3.3 Qualitative Analysis

With all 70 labels, LIWC manages to capture
only 15% of the types in the dating profile texts,
which suggests that a substantial amount of infor-
mation is not captured by the approach. Infor-
mation that is missing are words such as ‘date’,
‘profile’, ‘click’, and ‘friendship’ (all x2(1) >=
5.39, and p <= .02): important relationship-
related words, and good discriminators accord-
ing to the word-based classification model, hu-
mans, and log-likelihood ratio. This illustrates that
LIWC was not necessarily built with dating pro-
files in mind.

Distinctive words like ‘spontaneous’ (x%(1) =
0.13, p = .72, but distinctive according to humans
and Gini Importances), ‘caring’, ‘quiet’, ‘honest’,
and ‘sweet’ (all x%(1) >= 7.18, and p <= .007)
show that LIWC is missing a person characteris-
tics category. Topic modeling also found a per-
sonality traits topic, further emphasizing the im-
portance of this label. Similarly, words like ‘sea’
and ‘nature’ (both X2(1) >=15.99 and p =.01), and
a nature-related topic model shows that a nature-
focused label is important to distinguish relation-
ship goals, which LIWC is currently lacking (see
Table 4 and Table 5).

However, while there are some systematic pat-
terns to be found regarding what LIWC is not cap-
turing, do note that LIWC’s scores on the two



tasks were similar to machine learning and to hu-
mans. This suggests that the relatively small per-
centage of word types that LIWC is processing
is meaningful. The top 100 most important fea-
tures according to log likelihood ratios, humans,
and Gini Importances corroborates this sugges-
tion. 62% of the top 100 most important words
according to log likelihood ratios are found in
LIWC, 81% of the top 100 most important words
according to humans, and 90% of the top 100 most
important words according to Gini Importances.

Method Important features

Human seek, date, nice, know, people, undertake, spontaneous,
sweet, terrace, pretty, enjoy, child wish, family person

Classifier date, spontaneous, let, live, nature, sociable, send, build,
exercise, nice, independent, again, friendship, sea, girl,
terrace

LLR quiet, sweet, nothing, nature, fetch, again, profile,

click, feel free, weekend, sea, people, visit, caring

Table 5: Translated words not in LIWC’s lexicon or-
dered by importance for relationship goal identifica-
tion. Blue is indicative of long-term, red is indicative
of date

4 Discussion

In this study, a lexicon-based text analysis method
(LIWC) was compared to machine learning ap-
proaches (regression, classification model), with
human judgment scores as a baseline. Lexicon-
based methods are criticized because they may not
capture complex elements of language and do not
discriminate between domains. Still, research of-
ten takes the outcomes of these approaches at face
value without assessing whether they accurately
reflect reality. This study aimed to address these
issues using three tasks: (1) assigning content-
related labels to texts, (2) predicting intended re-
lationship goals, and (3) comparing the output of
the different approaches with a qualitative study.
While (1) was used to investigate if LIWC’s la-
bels reflect reality, (2) and (3) aimed to elucidate
if LIWC’s labels are sufficient to highlight differ-
ences in intended relationship goals. The three
tasks were conducted on a newly collected corpus
of online dating profiles.

The results of this study show that LIWC is a vi-
able text analysis method for these tasks. Despite
the fact that it uses a fixed word list and there-
fore might miss context and out-of-vocabulary
words, it performed similarly to machine learn-
ing methods and humans. The label assignment
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task showed that the labels of LIWC and the re-
gression model both correlated with the labels as-
signed by humans. Furthermore, for some labels,
LIWC’s scores corresponded more to human judg-
ments than those of the regression model. This
suggests that LIWC’s lexicon was chosen mean-
ingfully and that despite its limitations, it seems to
be good at exposing textual themes. This is cor-
roborated by the fact that most of the important
words according to Gini Importances, log likeli-
hood ratio, and humans were in LIWC’s lexicon.

However, it should be noted that the sample size
for this task was small (300 texts), and that re-
sults could be different if there was more training
data. Relationship goal prediction turned out to be
a difficult task (low accuracy scores overall, and
low inter-rater agreement). Thus, future research
should look into extending the human evaluation
dataset with more texts and judgments per text.
Nevertheless, humans and all classification models
scored similarly on accuracy and performed above
chance, suggesting that LIWC does cover cate-
gorical differences between long-term relationship
and date seekers, although LIWC seems to pick up
on the same signal as the word-based classification
model. Results from the qualitative analysis show
that the categories in LIWC might not be sufficient
to cover the full range of categorical linguistic dif-
ferences between the two groups. These short-
comings might be addressed by novel approaches
that aim to combine dictionaries with neural text
analysis methods, such as Empath (Fast et al.,
2016). Or by extending neural Emotion Classifi-
cation and Emotion Cause Detection systems like
(Yang et al., 2018; Chen et al., 2018; Yu et al.,
2018) to cover more psychology-relevant cate-
gories. Using novel pre-trained word-embeddings
such as BERT (Devlin et al., 2019) could also
boost the results for the current approach, as this
has improved results for many tasks.

The focus of this study on the intended relation-
ship goals of online daters was a challenge that had
not been investigated in previous computational
linguistics research. We must note that this is just
one example of a task for which LIWC could be
used. Studies have shown that LIWC may be less
suited for some tasks, such as sentiment analysis
(Hartmann et al., 2019). However, the current re-
sults indicate that it can be a viable method for
tasks that tend to look at other, deeper, psycholog-
ical constructs.
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Abstract

We describe a special type of deep contex-
tualized word representation that is learned
from distant supervision annotations and dedi-
cated to named entity recognition. Our exten-
sive experiments on 7 datasets show system-
atic gains across all domains over strong base-
lines, and demonstrate that our representation
is complementary to previously proposed em-
beddings. We report new state-of-the-art re-
sults on CONLL and ONTONOTES datasets.

1 Introduction

Contextualized word representations are nowa-
days a resource of choice for most NLP tasks (Pe-
ters et al., 2018). These representations are trained
with unsupervised language modelling (Jozefow-
icz et al., 2016), masked-word prediction (Devlin
et al., 2018), or supervised objectives like ma-
chine translation (McCann et al., 2017). Despite
their strength, best performances on downstream
tasks (Akbik et al., 2018; Lee et al., 2018; He
et al., 2018) are always obtained when these rep-
resentations are stacked with traditional (classic)
word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014).

Our main contribution in this work is to re-
visit the work of Ghaddar and Langlais (2018a)
that explores distant supervision for learning clas-
sic word representations, used later as features for
Named Entity Recognition (NER). Motivated by
the recent success of pre-trained language model
embeddings, we propose a contextualized word
representation trained on the distant supervision
material made available by the authors. We do so
by training a model to predict the entity type of
each word in a given sequence (e.g. paragraph).

We run extensive experiments feeding our rep-
resentation, along side with previously proposed
traditional and contextualized ones, as features to

.Ca
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a vanilla Bi-LSTM-CRF (Ma and Hovy, 2016).
Results shows that our contextualized represen-
tation leads to significant boost in performances
on 7 NER datasets of various sizes and domains.
The proposed representation surpasses the one
of Ghaddar and Langlais (2018a) and is com-
plementary to popular contextualized embeddings
like ELMo (Peters et al., 2018).

By simply stacking various representations,
we report new state-of the-art performances on
CONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2013)
with a F1 score of 93.22 and 89.95 respectively.

2 Related Work

Pre-trained contextualized word-embeddings have
shown great success in NLP due to their ability
to capture both syntactic and semantic properties.
ELMo representations (Peters et al., 2018) are
built from internal states of forward and backward
word-level language models. Akbik et al. (2018)
showed that pure character-level language mod-
els can also be used. Also, McCann et al. (2017)
used the encoder of a machine translation model to
compute contextualized representations. Recently,
(Devlin et al., 2018) proposed BERT, an encoder
based on the Transformer architecture (Vaswani
et al., 2017). To overcome the unidirectionality of
the language model objective, the authors propose
two novel tasks for unsupervised learning: masked
words and next sentence prediction.

Ghaddar and Langlais (2018a) applied distant
supervision (Mintz et al., 2009) in order to in-
duce traditional word representations. They used
WiFiNE! (Ghaddar and Langlais, 2018b, 2017),
a Wikipedia dump with massive amount of auto-
matically annotated entities, using the fine-grained

"http://rali.iro.umontreal.ca/rali/en/
wikipedia—-lex-sim

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 101-108
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



tagset proposed in (Ling and Weld, 2012). Mak-
ing use of Fasttext (Bojanowski et al., 2016), they
embedded words and (noisy) entity types in this
resource into the same space from which they
induced a 120-dimensional word-representation,
where each dimension encodes the similarity of a
word with one of the 120 types they considered.
While the authors claim the resulting representa-
tion captures contextual information, they do not
specifically train it to do so. Our work revisits pre-
cisely this.

3 Data and Preprocessing

We leverage the entity type annotations in WiFiNE
which consists of 1.3B tokens annotated with
159.4M mentions, which cover 15% of the to-
kens. A significant amount of named enti-
ties such as person names and countries can
actually be resolved via their mention tokens
only (Ghaddar and Langlais, 2016a,b). With the
hope to enforce context, we use the fine-grained
type annotation available in the resource (e.g.
/person/politician). Also, inspired by the
recent success of masked-word prediction (Devlin
etal., 2018), we further apply preprocessing to the
original annotations by (a) replacing an entity by
a special token [MASK] with a probability of 0.2,
and (b) replacing primary entity mentions, e.g. all
mentions of Barack Obama within its dedicated
article, by the special mask token with a probabil-
ity of 0.5. In WiFiNE, named-entities that do not
have a Wikipedia article (e.g. Malia Ann in Fig-
ure 2) are left unannotated, which introduces false
negatives. Therefore, we mask non-entity words
when we calculate the loss.

Although contextualized representation learn-
ing has access to arbitrary large contexts (e.g.
the document), in practice representations mainly
depend on sentence level context (Chang et al.,
2019). To overcome this limitation to some extent,
we use the Wikipedia layout provided in WiFiNE
to concatenate sentences of the same paragraphs,
sections and document up to a maximum size of
512 tokens.

An illustration of the preprocessing is depicted
in Figure 2 where for the sake of space, a single
sentence is being showed. Masked entities encour-
age the model to learn good representations for
non-entity words even if they do not participate
in the final loss. Because our examples are sec-
tions and paragraphs, the model will be forced to
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encode sentence- as well as document-based con-
text. In addition, training on (longer) paragraphs
is much faster and memory efficient than batching
sentences.

4 Learning our Representation

We use a model (Figure 1) composed of a multi-
layer bidirectional encoder that produces hidden
states for each token in the input sequence. At
the output layer, the last hidden states are fed into
a softmax layer for predicting entity types. Fol-
lowing (Strubell et al., 2017), we used as our en-
coder the Dilated Convolutional Neural Network
(DCNN) with an exponential increasing dilated
width. DCNN was first proposed by (Yu and
Koltun, 2015) for image segmentation, and was
successfully deployed for NER by (Strubell et al.,
2017). The authors show that stacked layers of
DCNN that incorporate document context have
comparable performance to Bi-LSTM while be-
ing 8 times faster. DCNN with a size 3 convolu-
tion window needs 8 stacked layers to incorporate
the entire input context of a sequence of 512 to-
kens, compared to 255 layers using a regular CNN.
This greatly reduces the number of parameters and
makes training more scalable and efficient. Be-
cause our examples are paragraphs rather than sen-
tences, we employ a self-attention mechanism on
top of DCNN output with the aim to encourage the
model to focus on salient global information. In
this paper, we adopt the multi-head self-attention
formulation by Vaswani et al. (2017). Compar-
atively, Transformer-based architectures (Devlin
et al., 2018) require a much larger> amount of re-
sources and computations. To improve the han-
dling of rare and unknown words, our input se-
quence consists of WordPiece embeddings (Wu
et al., 2016) as used by Devlin et al. (2018); Rad-
ford et al. (2018). We use the same vocabulary dis-
tributed by the authors, as it was originally learned
on Wikipedia. Model parameters and training de-
tails are provided in Appendix A.1.

5 Experiments on NER

5.1 Datasets

To compare with state-of-the-art models, we
consider two well-established NER benchmarks:
CoONLL-2003 (Tjong Kim Sang and De Meulder,
2003) and ONTONOTES 5.0 (Pradhan et al., 2012).

2 Actually prohibitive with our single GPU computer.
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Figure 1: Illustration of the architecture of the model used for learning our representation. It consists of
stacked layers of dilated convolutional neural network followed by a self-attention layer. The input is
a sequence of tokens with a maximum length of 512, where the output is the associated entity type se-
quence. We use the hidden state of the last DCNN layer and the self-attention layer as our representation.

before [Obama] first daughter, Malia Ann, was
born in [July 1998] at [Chicago], [1llinois].
after [MASK] first daughter, Malia Ann, was
born in [July 1998] at [Chicago], [1llinois].
tags /person/politician X X X X X X X

X X /date /date X /location/city
X /location/province X

Figure 2: Sequence before and after masking,
along with output tags. X indicates that no pre-
diction is made for the corresponding token.

To further determine how useful our learned repre-
sentation is on other domains, we also considered
three additional datasets: WNUT17 (Derczyn-
ski et al., 2017) (social media), 12B2 (Stubbs and
Uzuner, 2015) (biomedical), and FIN (Alvarado
et al.,, 2015) (financial). In addition, we per-
form an out-domain evaluation for models trained
on CONLL-2003 and tested on WIKIGOLD (Bal-
asuriya et al., 2009) (wikipedia) and WEB-
PAGES (Ratinov and Roth, 2009) (web pages).
Statistics of the datasets are provided in Ap-
pendix A.2.

5.2 Input Representations

Our NER model is a vanilla Bi-LSTM-CRF (Ma
and Hovy, 2016) that we feed with various repre-
sentations (hereafter described) at the input layer.
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Model parameters and training details are pro-
vided in Appendix A.3.

5.2.1 Word-Shape Features

We use 7 word-shape features: allUpper,
allLower, upperFirst, upperNotFirst,
numeric, punctuation or noAlphaNum.
We randomly allocate a 25-dimensional vector for
each feature, and learn them during training.

5.2.2 Traditional Word Embeddings

We use the 100-dimensional case sensitive
Sski1P (Ling et al., 2015) word embeddings. We
also compare with the previously described 120-
dimensional vector representation of (Ghaddar
and Langlais, 2018a), they call it LS.

5.2.3 Contextualized Word Embeddings

We tested 3 publicly available contextualized
word representations: ELMo (Peters et al., 2018):
dim = 1024, layers = 3; FLAIR (Akbik et al.,
2018): d = 2048, [ = 1; and BERT (Devlin
et al., 2018): d = 1024, [ = 4. For the latter,
we use the hidden state of the 4 last layers of the
Large model. For the proposed representation,
we use the hidden state of the last DCNN layer and
the self-attention layer as feature input (d = 384,
[ = 2). Following Peters et al. (2018), each rep-
resentation (including ours) is the weighted sum
of the hidden layers, where weights are learned



Conll Ontonotes
X LS ours X LS ours
ws+sskip 90.37|91.23 (+0.9)|91.76 (+1.4)|86.44|87.95 (+0.9)|88.13 (+0.9)
ws+sskip+elmo 92.47|92.49 (+0.0)|92.82 (+0.4)|89.37|89.44 (+0.1)|89.68 (+0.3)
ws+sskip+elmo-lair 92.69|92.75 (+0.1)|93.22 (+0.5)|89.55|89.59 (+0.0)(89.73 (+0.2)

ws+sskip+elmo-+flair+bert|92.91|92.87 (+0.0)

93.01 (+0.1)|89.66|89.70 (+0.0)|89.95 (+0.3)

(Peters et al., 2018)
(Clark et al., 2018)
(Devlin et al., 2018)

92.20
92.61
92.80

88.81

Table 1: F1 scores over five runs on CONLL and ONTONOTES test set of ablation experiments. We
evaluate 4 baselines without additional embeddings (column X’) and with LS embeddings (Ghaddar and
Langlais, 2018a) or ours. Figures in parenthesis indicate the gain over the baselines.

during training. We use concatenation to stack
the resulting representations in the input layer of
our vanilla Bi-LSTM-CRF model, since Coates
and Bollegala (2018) show that concatenation per-
forms reasonably well in many NLP tasks.

6 Experiments

6.1 Comparison to LS embeddings

Since we used the very same distant supervision
material for training our contextual representation,
we compare it to the one of Ghaddar and Langlais
(2018a). We concentrate on CONLL-2003 and
ONTONOTES 5.0, the datasets most often used for
benchmarking NER systems.

Table 1 reports results of 4 strong baselines
that use popular embeddings (column X’), further
adding either the LS representation (Ghaddar and
Langlais, 2018a) or ours. In all experiments, we
report the results on the test portion of models per-
forming the best on the official development set of
each dataset. As a point of comparison, we also
report 2018 state-of-the-art systems.

First we observe that adding our representation
to all baseline models leads to systematic improve-
ments, even for the very strong baseline which ex-
ploits all three contextual representations (fourth
line). The LS representation does not deliver such
gains, which demonstrates that our way of ex-
ploiting the very same distant supervision mate-
rial is more efficient. Second, we see that adding
our representation to the weakest baseline (line 1),
while giving a significant boost, does not deliver
as good performance as when adding other contex-
tual embeddings. Nevertheless, combining all em-
beddings yields state-of-the-art on both CONLL
and ONTONOTES.

6.2 Comparing Contextualized Embeddings

Table 2 reports F1 scores on the test portion of
the 7 datasets we considered, for models trained
with different embedding combinations. Our base-
line is composed of word-shape and traditional
(SSkIP) embeddings. Then, contextualized word
representations are added greedily, that is, the rep-
resentation that yields the largest gain when con-
sidered is added first and so forth.

Expectedly, ELMo is the best representation to
add to the baseline configuration, with significant
F1 gains for all test sets. We are pleased to ob-
serve that the next best representation to consider
is ours, significantly outperforming FLAIR. This is
likely due to the fact that both FLAIR and ELMo
embeddings are obtained by training a language
model, therefore encoding similar information.

Continuously aggregating other contextual em-
beddings (FLAIR and BERT) leads to some im-
provements on some datasets, and degradations on
others. In particular, stacking all representations
leads to the best performance on 2 datasets only:
ONTONOTES and 12B2. Those datasets are large,
domain diversified, and have more tags than other
ones. In any case, stacking word-shapes, SSKIP,
ELMo and our representation leads to a strong
configuration across all datasets. Adding our rep-
resentation to ELMo, actually brings noticeable
gains (over 2 absolute F1 points) in out-domain
settings, a very positive outcome.

Surprisingly, BERT did not perform as we ex-
pected, since they bring minor (ONTONOTES) or
no (CONLL) improvement. We tried to repro-
duce the results of fine-tuned and feature-based
approaches reported by the authors on CONLL,
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In Domain Out Domain
Conll | Onto | WNUT | FIN | 12B2 || WikiGold | WebPage
WS+SSKIP 90.73 | 86.44 | 3230 | 81.82 | 86.41 66.03 45.13
+ELMo 92.47 | 89.37 | 44.15 | 82.03 | 94.47 76.34 54.45
+Ours 92.96 | 89.68 | 47.40 | 83.00 | 94.75 78.51 57.23
+FLAIR 93.22 | 89.73 | 46.80 | 83.11 | 94.79 77.77 56.20
+BERT | 93.02 | 89.97 | 46.47 | 81.94 | 94.92 78.06 56.84

Table 2: Mention-level F1 scores. The baseline (first line) uses word shape and traditional (classic)
embeddings. Variants stacking various representations are presented in decreasing order of F1 return. So
for instance, ELMo is the best representation to add to the baseline one.

but as many others,® our results were disappoint-
ing.

6.3 Analysis

We suspect one reason for the success of our repre-
sentation is that it captures document wise context.
We inspected the words the most attended accord-
ing to the the self-attention layer of some docu-
ments, an excerpt of which is reported in Figure 3.
We observe that attended words in the document
are often related to the topic of the document.

84 economic Stock, mark, Wall, Treasury, bond
148  sport World, team, record, game, win
201  news truck, Fire, store, hospital, arms

Figure 3: top 5 attended words for some randomly
picked documents in the dev set of CONLL. Col-
umn 1 indicate document number, while column 2
is our appreciation of the document topic.

We further checked whether the gain could be
imputable to the fact that WiFiNE contains the
mentions that appear in the test sets we consid-
ered. While this of course happens (for instance
38% of the test mentions in ONTONOTES are in
the resource), the performance on those mentions
with our representation is no better than the per-
formance on other mentions.

7 Conclusion and Future Work

We have explored the idea of generating a contex-
tualized word representation from distant super-
vision annotations coming from Wikipedia, im-
proving over the static representation of Ghad-
dar and Langlais (2018a). When combined with

*https://github.com/google-research/
bert/issues?utf8=%E2%9C%$93&g=NER

popular contextual ones, our representation leads
to state-of-the-art performance on both CONLL
and ONTONOTES. We are currently analyzing the
complementarity of our representation to others.
We plan to investigate tasks such as coref-
erence resolution and non-extractive machine
reading comprehension, where document level
context and entity type information is crucial.
The source code and the pre-trained models
we used in this work are publicly available
at http://rali.iro.umontreal.ca/
rali/en/wikipedia-ds—-cont—-emb
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A Appendices

A.1 Training Representation

We use 8 stacked layers of DCNN to encode input
sequences of maximum length of 512. WordPiece
and position embeddings, number of filters in each
dilated layer and self-attention hidden units were
all set to 384. For self-attention, we use 6 attention
heads and set intermediate hidden unit to 512. We
apply a dropout mask (Srivastava et al., 2014) with
a probability of 0.3 at the end of each DCNN layer,
and at the input and output of the self-attention
layer. We adopt the Adam (Kingma and Ba, 2014)
optimization algorithm, set the initial learning rate
to le*, and use an exponential decay. We train
our model up to 1.5 millions steps with mini-batch
size of 64. We implemented our system using the
Tensorflow (Abadi et al., 2016) library, and train-
ing requires about 5 days on a single TITAN XP
GPU.

A.2 Dataset

Table 3 list the dataset used in this study do-
main, label size, and number of mentions in
train/dev/test portions.

# entities
Dataset Domain |Types| train | dev | test
CoONLL news 4 |23499| 5942 | 5648
ONTONOTES| news 18 |81828|11066|11257
WNUT17 tweet 6 |1975| 836 | 1079
12B2 bio 23 11791 5453 |11360
FIN finance 4 460 - 120
WIKIGOLD |wikipedia| 4 - - 3558
WEBPAGES web 4 - - 783

Table 3: Statistics on the datasets used in our ex-
periments.

We used the last 2 datasets to perform an out-of-
domain evaluation of CONLL models. Those are
small datasets extracted from Wikipedia articles
and web pages respectively, and manually anno-
tated following CONLL-2003 annotation scheme.

A.3 NER Model Training

Our system is a single Bi-LSTM layer with a CRF
decoder, with 128 hidden units for all datasets
except for ONTONOTES and 12B2 where we use
256 hidden units. For each learned representa-
tions (ours, ELMo, FLAIR, BERT), we use the
weighted sum of all layers as input, where weights
are learned during training. For each word, we
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stack the embeddings by concatenating them to
form the input feature of the encoder.

Training is carried out by mini-batch of stochas-
tic gradient descent (SGD) with a momentum of
0.9 and a gradient clipping of 5.0. To mitigate
over-fitting, we apply a dropout mask with a prob-
ability of 0.7 on the input and output vectors of the
Bi-LSTM layer. The mini-batch is 10 and learning
rate is 0.011 for all datasets. We trained the mod-
els up to 63 epochs and use early stopping based
on the official development set. For FIN, we ran-
domly sampled 10% of the train set for develop-
ment.
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Abstract

Question paraphrasing aims to restate a given
question with different expressions but keep
the original meaning. Recent approaches are
mostly based on neural networks following a
sequence-to-sequence fashion, however, these
models tend to generate unpredictable results.
To overcome this drawback, we propose a
pipeline model based on templates. It fol-
lows three steps, a) identifies template from
the input question, b) retrieves candidate tem-
plates, c) fills candidate templates with orig-
inal topic words. Experiment results on two
self-constructed datasets show that our model
outperforms the sequence-to-sequence model
in a large margin and the advantage is more
promising when the size of training sample is
small.

1 Introduction

Paraphrase means sentences or phrases that con-
vey the same meaning with different expressions.
Popular tasks about paraphrases are paraphrase
identification (Yin and Schiitze, 2015), paraphrase
generation (Li et al., 2018; Gupta et al., 2018),
sentence rewriting (Barzilay and Lee, 2003), etc.
As a special case of paraphrase generation, ques-
tion paraphrasing (McKeown, 1983) aims to re-
state an input question. It can be applied in a ques-
tion answering system for the expansion of ques-
tion set to enhance the coverage of candidate an-
swers. Besides, it is able to probe the need of users
within an interactive system by rephrasing ques-
tions.

Traditional approaches for paraphrase genera-
tion are mostly based on external knowledge, in-
cluding manually constructed templates (McKe-
own, 1983), or external thesaurus (Hassan et al.,

* Corresponding author
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Original Question
EHRE— T EARITPT

Please help me check the card’s bank.
Paraphrase Questions
FREFE R AR P

I would like to know the card’s bank
i EHREW—T R AR 1T
Hi, please help me checkthe card’s bank
TR PTEHERER—T

The card’s bank, please help me check it
£ BT FATRER AW — TS

The card’s bank, can you help me check it?

Table 1: Example of an question and its paraphrases.
Underlined phrases are topic words and others are tem-
plates.

2007). The generated paraphrases are usually flu-
ent and informative. However, it is very time-
consuming to construct templates by human and
external thesaurus are always absent for some
languages. Recently, researchers start to use
neural network based approaches by formulating
the generation task in a fashion of sequence-to-
sequence (Sutskever et al., 2014; Bahdanau et al.,
2014; Prakash et al., 2016). However, these mod-
els tend to “lose control” generating some unpre-
dictable results.

In order to alleviate the uncertainty in sequence-
to-sequence model, Cao et al. (2018) propose to
search for similar sentences as soft template to
back up the neural generation model in the sce-
nario of text summarization. With this inspira-
tion, we also try to bridge neural-based models
and template-based approaches for question para-
phrasing. An example of question paraphrasing
can be seen in Table 1. We have two observations.
First, words in a question can be easily divided
into two types, namely, topic words and template
words. Template words define the information
need of the question while topic words are related
to some specific entities or events. Second, for a
pair of paraphrase questions, they tend to share the

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 109-114
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



same topic words while template words are differ-
ent. Motivated by these two observations, we try
to identify template and topic words in the origi-
nal question and construct paraphrase questions by
considering these two parts separately.

In this paper, we propose a template-based
framework to generate question paraphrase in a
pipeline. The framework mainly includes three
components, namely template extraction, template
transforming and template filling. The contribu-
tion of our paper is three-fold.

o First, we propose a pipeline model to identify
template and topic words from a question and
generate the question paraphrases via tem-
plate transforming and filling.

Second, we construct two datasets for ques-
tion paraphrasing collected from two do-
mains, namely financial domain and automo-
tive domain. All topic words are labeled in
questions. The dataset is available here !

Third, extensive experiments are performed
on the self-constructed dataset to evaluate the
effectiveness of our pipeline model. Results
show that our model outperforms the state-
of-the-art approach in a large margin.

2 Datasets Description

Two datasets are collected and annotated for ques-
tion paraphrasing, including banking service ques-
tions from the financial domain and sales service
questions from the automotive domain. The an-
notation consists of two parts. First, we classify
questions into different clusters so that questions
in each cluster share the same meaning. Second,
we label template and topic words in each ques-
tion. The number of question clusters for the fi-
nancial domain and automotive domain are 2,589
and 526 respectively. Note that, for each cluster
in financial dataset, we have 5 paraphrasing ques-
tions and for each cluster in automotive dataset,
we have 4 paraphrasing questions.

The annotation of question cluster is performed
by experts in the two domains, while two student
annotators are hired for the labeling of the tem-
plates. For the template identification, annotators
are instructed that the template part should be gen-
eralized, which means that the question will be

'nttp://www.sdspeople.fudan.edu.cn/
zywel/data/paraphrase.zip
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readable if we replace the topic words with other
similar content.

The agreement between annotators for template
identification is 0.558 and 0.568 for the domain
of finance and automotive respectively. Further
observations on the annotation results of template
identification show that even if templates identi-
fied by the two annotators are different, both tem-
plates can be reasonable. We therefore construct
two versions of datasets for experiments. One
keeps both annotations (union) and the other in-
cludes questions with same labels from annotators
(intersection). The statistics of our datasets can be
seen in Table 2.

.. financial automotive
Statistics - - - -
inter. union | inter. | union
# of questions 7,218 | 12,938 | 1,195 | 2,103
# of templates 6,574 | 17,300 | 1,184 | 2,998
# of vocab. 908 1,100 656 907
# of template vocab. | 325 528 144 303
# of topic vocab. 869 1,063 620 873

Table 2: Statistics of annotated datasets for question
paraphrasing. inter. is short for intersection; vocab.
is short for vocabulary; vocabulary here means unique
tokens.

3 Proposed Model

Given the input question g, question paraphrasing
system aims to generate questions with the same
meaning but different expressions. Our proposed
template-based model follows a pipeline fashion.
It includes three main components, namely, tem-
plate extraction, template transforming and tem-
plate filling. The template extraction module clas-
sifies words in the input question into template
part and topic part. Template transforming module
searches for candidate templates for paraphrasing.
Finally template filling module fills in the slots of
the retrieved templates with topic words. And we
take two training approaches, one is separate train-
ing and the other is joint training. A running ex-
ample can be seen in Figure 1.

3.1 Template Extraction

Take a question as input, template extraction mod-
ule classifies words into template and topic ones.
We treat the problem as a supervised sequence la-
beling task and modify the classical BIO tagging
strategy to fit our scenario. Specifically, we use
“O” to specify the template part, and treat “B”
and “I” as the topic part. As Bi-LSTM has been
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Figure 1: The overview of the proposed framework.

proved to be effective for the task of sequence la-
beling (Ma and Hovy, 2016), we also utilize such
structure for template extraction. Cross-entropy
(CE) is used for training and the loss is J7g.

3.2 Template Transforming

Take the extracted template from previous module
as input, template transforming module searches
for candidate templates for paraphrasing. We uti-
lize a retrieval-based approach to search for can-
didate templates. We first build an index for all
the templates in our dataset. Then we use a score
function (e.g. cosine similarity) to evaluate the
similarity between original template and candidate
templates to find out the most similar template.
To better represent our template, we train a
sequence-to-sequence model with attention for
template transforming. For each template, the hid-
den state resulted from the encoder is used as its
representation. Note that, we also tried the gen-
eration results directly, however, preliminary ex-
periment results showed the model performs poor.
The loss for training seq-to-seq model is J77.

3.3 Template Filling

Take a candidate template and topic words as in-
put, template filling module fills each slot in the
template with topic words to form a new question.
In practice, we use two encoders to encode sub-
sequence of topic part and candidate template sep-
arately. Then we concatenate topic representation
and candidate representation, and put them into a
classifier to predict the position of the slot for the
particular topic word. Cross-entropy is used here
for training and loss is denoted by Jrp.

3.4 Training

We study two different approaches for the train-
ing of our pipeline model, namely separate train-
ing and joint training. For separate training, we
train three modules (template extraction, template
transforming and template filling) separately and
combine them together for the whole framework.
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We can also train them together to ease the error
propagation problem resulted from separate train-
ing. The loss function here is the sum of each
module.

J(0) = Jre0) + Jrr(0) + Jrr(0) (1)

4 Experiments

4.1 Experimental Setup

We test our model on datasets described in Sec-
tion 2. Both datasets are divided into training,
validation and test with split ratio of 7:2:1. We
use Adam as our optimization method and set the
learning rate as 0.0001. We set the dimension
of hidden state as 128. For padding, we set the
max length as 64. We use BERT-Chinese tok-
enizer(Devlin et al., 2018) to separate characters.

For the general evaluation, we evaluate the qual-
ity of the generated paraphrase questions. BLEU-
1, BLEU-2, BLEU-3, BLEU-4((Papineni et al.,
2002)) are used as evaluation measures. Three
models are compared.

seq2seq (Bahdanau et al., 2014) uses an
encoder-decoder structure with attention for gen-
eration.

ours (separate) this is our pipeline model con-
sisting of three modules. Each module is trained
separately.

ours (joint) this is our pipeline model consist-
ing of three modules and joint training is used.

4.2 Overall Evaluation

The overall experiment results can be seen in Ta-
ble 3. Both of our pipeline models based on tem-
plate outperform sequence-to-sequence model in a
large margin on all the four datasets in terms of all
the four metrics. The performance of ours (joint)
is better than that of ours (separate) which indi-
cates that joint training is effective for the pipeline
model. The performances of all three models on
the union set are better than their counter-part on



BLEU-1 BLEU-2 BLEU-3 BLEU-4

Dataset Model . - . - - . - - . - - .
intersection [ union [ intersection | union | intersection | union | intersection | union
seq2seq 0.658 0.803 0.577 0.741 0.504 0.683 0.444 0.630
Financial ours (separate) 0.863 0.892 0.808 0.832 0.753 0.772 0.698 0.716
ours (joint) 0.873 0.902 0.827 0.857 0.782 0.812 0.739 0.770
seq2seq 0.581 0.771 0.526 0.723 0.482 0.684 0.441 0.648
Automotive | ours (separate) 0.826 0.850 0.757 0.777 0.701 0.713 0.650 0.654
ours (joint) 0.859 0.849 0.808 0.790 0.763 0.738 0.720 0.690

Table 3: The overall performance of different models on four datasets from two domains (bold number in each

column is the best performance on that dataset).

the intersection set. This is probably because the
size of training samples are larger in the union
set. Moreover, the sequence-to-sequence model
is more sensitive to the size of training set, while
our template-based model can achieve comparable
performance on both sets.

4.3 Further Analysis for Transfer Learning

In addition to the overall performance of our
pipeline model, we also analyze its performance
for transfer learning. Since we have datasets from
two domains, and the financial one is much bigger
than the one from automotive domain. It is nat-
ural to train the model in the bigger dataset and
transfer it to the domain with less training data.
We thus report the experiment results for transfer
learning from financial domain to the automotive
one. Here, we compare three settings for the train-
ing of our model.

f2a: Model is trained on the financial dataset.

a2a: Model is trained on the automotive dataset
only. It is the same joint model as we used in the
previous section.

f+a2a: Model is pre-trained on the financial
dataset and then fine-tuned on the automotive
dataset.

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
Seq2Seq(f2a) 0.251 0.167 0.110 0.085
Seq2Seq(a2a) 0.581 0.526 0.482 0.441

Seq2Seq(f+a2a) 0.715 0.661 0.619 0.580
ours (f2a) 0.796 0.722 0.656 0.598
ours (a2a) 0.859 0.808 0.763 0.720

ours (f+a2a) 0.881 0.835 0.791 0.747

Table 4: Transfer learning performance of our pipeline
model on the intersection datasets (bold number in
each column is the best performance on that dataset).

Performance for transfer learning can be seen
in Table 4. The performance of ours (f2a) that
directly applies the model trained on financial
domain to automotive domain is better than the
performance of Seg2Seq. This indicates that
template-based model is easier to be transferred

from one domain to the other. ours (f2a) is worse
than our (a2a), this is reasonable because there is
a gap between dataset, such as different vocabu-
laries and different templates. The performance
of ours (f+a2a) is better than ours (a2a). This
shows that fine-tuning on the target domain can
further improve the model. The results on Seqg2Seq
(f2a), Seq2Seq (a2a) and Seq2Seq (f+a2a) show
the same trend. The experiment we have done in
this part also gives us a new way to improve the
performance of our model when the size of target
dataset is limited.

5 Related Work

There are two lines of research for paraphrase gen-
eration including knowledge based ones and neu-
ral network based ones. Some researchers pro-
vide rules (Bhagat and Hovy, 2013) or corpus in-
cluding knowledge (Fader et al., 2013; Ganitke-
vitch et al., 2013; Pavlick et al., 2015). Other re-
searchers try to make use of templates (Berant and
Liang, 2014), semantic information (Kozlowski
et al., 2003) and thesaurus (Hassan et al., 2007)
for paraphrase generation.

Rush (2015) have applied Seq2Seq model
with attention mechanism for text summarization.
Prakash (2016) employ a residual net in Seq2Seq
model to generate paraphrases. Cao (2017) com-
bine a copying decoder and a generative decoder
for paraphrase generation. Cao(2018) try to uti-
lize template information to help text summariza-
tion, however, the template is vague in that paper.
We hope to utilize the special structure of question
and extract the template explicitly from questions.

6 Conclusion

In this paper, we proposed a template-based
framework for paraphrase question generation in-
cluding three components, template extraction,
template transforming and template filling. We
identify template and topic words via template
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extraction and generate paraphrase questions via
template transforming and filling. Experiment re-
sults on two self-constructed datasets from two do-
mains showed that our pipeline model outperforms
seq2seq model in a large margin.
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Abstract

Existing natural language processing systems
have often been designed with standard texts
in mind. However, when these tools are used
on the substantially different texts from social
media, their performance drops dramatically.
One solution is to translate social media data
to standard language before processing, this
is also called normalization. It is well-known
that this improves performance for many nat-
ural language processing tasks on social me-
dia data. However, little is known about which
types of normalization replacements have the
most effect. Furthermore, it is unknown what
the weaknesses of existing lexical normaliza-
tion systems are in an extrinsic setting. In this
paper, we analyze the effect of manual as well
as automatic lexical normalization for depen-
dency parsing. After our analysis, we con-
clude that for most categories, automatic nor-
malization scores close to manually annotated
normalization and that small annotation differ-
ences are important to take into consideration
when exploiting normalization in a pipeline
setup.

1 Introduction

It is well known that many traditional natural lan-
guage processing systems are focused on standard
texts, and their performance drops when used on
another domain. This is also called the problem
of domain adaptation. Recently, much focus has
been on the notoriously noisy domain of social
media. The hasty and informal nature of com-
munication on social media results in highly non-
standard texts, including a variety of phenomena
not seen in standard texts, like phrasal abbrevi-
ations, slang, typos, lengthening, etc. One ap-
proach to adapt natural language processing tools
to the social media domain is to ‘translate’ in-
put to standard text before processing it, this is
also referred to as normalization. In this ap-
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proach, the input data is made more similar to
the type of data the tool is expecting. Previous
work has shown that normalization improves per-
formance on social media data for tasks like POS
tagging, parsing, lemmatization and named en-
tity tagging (Baldwin and Li, 2015; Schulz et al.,
2016; Zhang et al., 2013), however, it often re-
mains unknown which types of replacements are
most influential and which type of replacements
still have potential to improve the usefulness of an
automatic normalization system.

Baldwin and Li (2015) already investigated this
effect in detail. They evaluate the effect of man-
ual normalization beyond the word-level (includ-
ing insertion and deletion of words). To the best of
our knowledge, no automatic systems are available
to obtain such a normalization, which is why Bald-
win and Li (2015) focused only on the theoretical
effect (i.e. manually annotated normalization). In
this work, we will instead focus on lexical normal-
ization, which is normalization on the word level.
For this task, publicly available datasets and au-
tomatic systems are available (Han and Baldwin,
2011; Baldwin et al., 2015).

Recently, multiple English social media tree-
banks were released (Blodgett et al., 2018; Liu
et al., 2018; van der Goot and van Noord, 2018) in
Universal Depencies format (Nivre et al., 2017), as
well as novel categorizations of phenomena occur-
ring in lexical normalization (van der Goot et al.,
2018). In this work, we combine both of these
tasks into one dataset, which allows us not only to
evaluate the theoretical effect of lexical normaliza-
tion for dependency parsing, but also a real-world
situation with automatic normalization.

The main contributions of this paper are:

e We add a layer of annotation to a social media
treebank to also include normalization cate-
gories.

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 115-120
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



DISCOURSE
DISCOURSE

PARATAXIS

X [{NSUBJ]—\ [C/OMPOUND:PRX;F]
Orig. text Oo yeaa il hear thunda ! Rainnn ~ kum onnnnnn
POS INTJ] INTJ] PRON VERB NOUN PUNCT NOUN VERB ADP
Gold norm. Oh yeah I hear thunder ! rain come on
Aut. norm. Oo yeah i hear thunder ! Rainn kum on
Norm. cat. 11 12 7 0 11 0 7 12 7

Figure 1: Example annotation for the sentence “Oo yeaa ii hear thunda ! Rainnn kum onnnnnn”

e We analyze the theoretical effect of lexical
normalization for dependency parsing by us-
ing manually annotated normalization.

e We analyze the effect of an automatic lexical
normalization model for dependency parsing,
thereby showing which type of replacements
still require attention.

2 Data

In this section we shortly discuss our choices for
datasets and annotation formats, starting with the
treebank data, followed by the lexical normaliza-
tion categories annotation and automatic normal-
ization. See Figure 1 for a fully annotated example
instance from our development data.

2.1 Treebank

In 2018, three research groups simultaneously an-
notated dependency trees in the Universal Depen-
dencies format on tweets: Liu et al. (2018) fo-
cussed on training a better parser by using an en-
semble strategy, Blodgett et al. (2018) improved
a dependency parser by using several adaptation
methods, whereas van der Goot and van Noord
(2018) focused on the use of normalization. Be-
cause the treebank created by van der Goot and
van Noord (2018) is already annotated for lexical
normalization, we will use this treebank.

The data from the treebank is taken from Li and
Liu (2015), where van der Goot and van Noord
(2018) only kept the tweets that were still avail-
able at the time of writing. The data from Li and
Liu (2015) was in turn taken from two different
sources: the LexNorm dataset (Han and Baldwin,
2011), originally annotated with lexical normal-
ization and the dataset by Owoputi et al. (2013),
originally annotated with POS tags. Li and Liu
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(2015) complemented this annotation so that both
sets contain normalization as well as POS tags,
to which van der Goot and van Noord (2018)
added Universal Dependency structures. Simi-
lar to van der Goot and van Noord (2018) we
use the English Web Treebank treebank (Silveira
et al., 2014) for training, and Owoputi (develop-
ment data) for the analysis. The test split is not
used in this work, since our aim is not to improve
the parser.

2.2 Normalization Categories

We choose to use the taxonomy of van der Goot
et al. (2018) for three main reasons: 1) to the best
of our knowledge, this is the most detailed catego-
rization for lexical normalization 2) annotation for
the same source data as the treebanks is available
from Reijngoud (2019) 3) systems are available to
automatically perform this type of normalization,
as opposed to the taxonomy used by Baldwin and
Li (2015). The existing annotation is edited to fit
the treebank tokenization; if a word is split in the
treebank, the normalization is split accordingly,
and both resulting words are annotated in the same
category. (Reijngoud, 2019) added one category
to the taxonomy: informal contractions, which in-
cludes splitting of words like ‘gonna’ and ‘wanna’.
The frequencies of the categories in the devel-
opment data are shown in Table 1. The ‘split’,
‘merge’ and ‘phrasal abbreviations’ categories are
very infrequent, because the original annotation
only included 1-1 replacements, these categories
have been added when transforming the annota-
tion to treebank tokenization.

2.3 Automatic Lexical Normalization

We use the state-of-the-art model for lexical nor-
malization: MoNoise (van der Goot, 2019), which
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Figure 2: The effect of the categories when using manually annotated normalization. Isolation is the increase
in performance when using only one category compared to using no normalization. Ablation is the loss when

disabling only one category (higher is better).

Category Freq. % ‘ Category Freq. %
No norm. 3,743 81.76 | Short. vow. 22 0.48
Typo 30 0.66 | Short. end 64 1.40
Missing apo. 176 3.84 | Short. other 35 0.76
Spelling err. 44 0.96 | Reg. trans. 66 1.44
Split 0 0.0 | Other trans. 18 4.06
Merge 10 0.22 | Slang 42 092
Phrasal abbr. 2 0.04 | Inf. Contr. 56 1.22
Repetition 90 1.97 | Unk 12 0.26

Table 1: Distribution of the replacement categories
in the development data, ‘No norm.” refers to words
which are not normalized. For a detailed description of
the categories we refer to (van der Goot et al., 2018).

is a modular normalization model, consisting of
two steps; candidate generation and candidate
ranking. For the generation, the most important
modules are a lookup list based on the training
data, the Aspell spell-checker! and word embed-
dings. For the ranking of candidates, features
from the generation are complemented with n-
gram probabilities and used as input to a random
forest classifier, which predicts the confidence that
a candidate is the correct replacement.

We train MoNoise on data from (Li and Liu,
2014), because it is most similar in annotation
style to our development and test sets. Perfor-
mance on the normalization task is slightly lower
compared to the reported results (Error reduc-
tion rate (van der Goot, 2019) on the word level
dropped from 60.61 to 45.38), because of differ-

"http://aspell.net/
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ences in tokenization required for Universal De-
pendencies annotation. Also, the model clearly
has issues with capitalization (see for example
Figure 1) because capitalization is not corrected
in the normalization training data.

3 Effect of Manual Normalization

We use the UUparser(de Lhoneux et al., 2017) for
our experiments, with similar settings as van der
Goot and van Noord (2018), including a heuris-
tic to correctly parse a sentence starting with a
retweet token or a username. All results reported
in this paper are obtained with the official UD
evaluation script” and are the average of 10 runs
with different random seeds for the parser. For
both settings (manual/automatic) we inspected the
LAS graphs as well as the UAS graphs, but be-
cause the UAS scores showed very similar trends
they are not reported here. The parser scores 52.56
LAS on the original input data, which improves to
57.83 when using the full gold normalization.

To evaluate the effect of each category, we mea-
sure performance twofold: in isolation, and in an
ablation setting. For the isolation, we look at
the difference between the baseline parser (with-
out normalization) and a parser which only has
access to normalization replacements of one cat-
egory. For the ablation setting, we look at the loss
when removing one category from the full model.

http://universaldependencies.org/
conlll8/conlll8_ud_eval.py
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Figure 3: The effect of the categories when using automatic normalization. On the right y-axis the performance of
the normalization model on this category is plotted (recall). The ‘Other’ category shows the effect of normalization
replacements that were not annotated (but are still replaced by MoNoise).

The results for each category with gold normal-
ization are shown in Figure 2. From these results,
it becomes clear that some categories have a much
larger effect compared to other categories. Not
surprisingly, there is a correlation visible with the
frequencies (Table 1). The categories going be-
yond the 1-1 normalization have only very little
effect since they are very rare in this dataset’. The
most important category is ‘other transformation’,
this is mainly due to very frequent short words
(e.g. 2—to, u—you). Other important categories
are ‘shortening end’ and ‘regular transformations’.
This can be explained by the fact that they repair
the suffixes, which often contain important syntac-
tic clues.

It also becomes clear that differences in to-
kenization guidelines play a large role; one of
the most frequent categories ‘missing apostrophe’
seems to be not useful for parsing; a manual in-
spection showed that this is because these also
occur in the training data in their not-normalized
form (e.g. ’ll— will), thereby normalizing them
creates more diversity. For the same reason, infor-
mal contractions (e.g. wanna, gonna) also have a
relatively small effect.

4 Effect of Automatic Normalization

When using the full normalization model, the
parser achieves a LAS of 56.32 when using all

3they were not annotated in their original releases, but
were added when used in the treebank

118

normalization categories, which is 72% of the gain
that can be achieved with gold normalization com-
pared to the baseline setting (52.56). Similar to
the previous section, we run an isolation as well
as an ablation experiment. In this setting, we only
allow the normalization to replace words that are
annotated as the category under evaluation (for the
ablation experiments the inverse).

The parser performance as well as the recall
of the normalization model on each category are
plotted in Figure 3. Results show that the ‘other
transformations’ and ‘slang’ category have the
most room for improvement in LAS compared to
gold normalization, even though they are not the
worst categories with respect to the normaliza-
tion performance. Furthermore, trends are rather
similar compared to the gold normalization, even
though there are differences in normalization per-
formance. As expected from the gold normaliza-
tion, the ‘missing apostrophe’ category is not help-
ful.

Interestingly, the ‘other’ category, which in-
cludes normalization replacements that were not
annotated in the gold normalization, shows a
small increase in performance. This category in-
cludes replacements like ‘supp’+ ‘support’ and
‘da’—‘the’, which were overlooked by the anno-
tator. This could also be due to differences in the
scope of annotation between the training data and
development data.



5 Conclusion

We have introduced a novel annotation layer for
an existing treebank with normalization annota-
tion, which indicates which types of replacements
are made. This allowed us to evaluate the effect
of lexical normalization on the dependency pars-
ing of tweets, both with manual normalization an-
notation and automatically predicted normaliza-
tion. The automatic normalization obtained over
70% of the performance increase that could be ob-
tained with gold normalization. The most influen-
tial categories were ‘other transformation’, which
includes many replacements for very short words,
and the categories with a high frequency that re-
pair a words’ suffix: ‘shortening end’ and ‘regular
transformation’. The categories which have the
most potential for improvement in parser perfor-
mance are the ‘other transformation’ and ‘slang’
categories. Furthermore, we saw that some pre-
dicted normalization replacements which were not
annotated in the gold data also led to an increase in
performance. Our results suggest that care should
be taken when taking out-of-the-box annotation,
because differences in annotation and the scope of
the normalization task (i.e. tokenization, missed
normalization) could lead to sub-optimal perfor-
mance.

The dataset and code for the analysis is
available on: https://bitbucket.org/
robvanderg/taxeval/.
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Abstract

Modern e-commerce catalogs contain millions
of references, associated with textual and vi-
sual information that is of paramount impor-
tance for the products to be found via search
or browsing. Of particular significance is the
book category, where the author name(s) field
poses a significant challenge. Indeed, books
written by a given author might be listed with
different authors’ names due to abbreviations,
spelling variants and mistakes, among others.
To solve this problem at scale, we design a com-
posite system involving open data sources for
books, as well as deep learning components,
such as approximate match with Siamese net-
works and name correction with sequence-to-
sequence networks. We evaluate this approach
on product data from the e-commerce website
Rakuten France, and find that the top proposal
of the system is the normalized author name
with 72% accuracy.

1 Introduction

Unlike brick-and-mortar stores, e-commerce websites
can list hundreds of millions of products, with thousands
of new products entering their catalogs every day. The
availability and the reliability of the information on the
products, or product data, is crucial for the products to
be found by the users via textual or visual search, or
using faceted navigation.

Books constitute a prominent part of many large e-
commerce catalogs. Relevant book properties include:
title, author(s), format, edition, and publication date,
among others. In this work, we focus on the names of
book authors, as they are found to be extremely relevant
to the user and are commonly used in search queries on
e-commerce websites, but suffer from considerable vari-
ability and noise. To the best of our knowledge, there is
no large-scale public dataset for books that captures the
variability arising on e-commerce marketplaces from
user-generated input. Thus, in this work we use product
data from Rakuten France (RFR).!

"https://fr.shopping.rakuten.com
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The variability and noise is evident in the RFR dataset.
For example, books written by F. Scott Fitzgerald are
also listed with the following author’s names: “Fran-
cis Scott Fitzgerald” (full name), “Fitzgerald, F. Scott”
(inversion of the first and last name), “Fitzgerald” (last
name only), “F. Scott Fitgerald” (misspelling of the last
name), “F SCOTT FITZGERALD” (capitalization and
different typological conventions), as well as several
combinations of those variations. The variability of the
possible spellings for an author’s name is very hard to
capture using rules, even more so for names which are
not primarily written in latin alphabet (such as arabic or
asian names), for names containing titles (such as “Dr.”
or “Pr.’), and for pen names which may not follow the
usual conventions. This motivated us to explore auto-
mated techniques for normalizing the authors’ names to
their best known (“‘canonical”) spellings.

Fortunately, a wealth of open databases exist for
books, making it possible to match a significant frac-
tion of the books listed in e-commerce catalogs. While
not always clean and unambiguous, this information is
extremely valuable and enables us to build datasets of
name variants, used to train machine learning systems to
normalize authors’ names. To this end, in addition to the
match with open databases, we will explore two differ-
ent approaches: approximate match with known authors’
names using Siamese neural networks, and direct cor-
rection of the provided author’s name using sequence-
to-sequence learning with neural networks. Then, an
additional machine learning component is used to rank
the results.

The rest of the paper is organized as follows: we
present the data from RFR and from the open databases
in Section 2, before turning to the experimental setup for
the overall system and for each of its components in Sec-
tion 3. Finally, we give results in Section 4, we present
related works in Section 5, and conclude in Section 6.

2 Book data

2.1 Rakuten France data
The RFR dataset contains 12 million book references?.
The most relevant product data for normalization is:

The RFR dataset is publicly available at https://rit .
rakuten.co.jp/data_release.
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Figure 1: Overview of the system for normalizing author names. Each component is detailed in Section 3.

Table 1: Performances of the external bibliographic re-
sources used for matching books on RFR via ISBN.

Source URL % of ISBNs
Open Library  openlibrary.org 24.9%
ISBNdb isbndb.com 36.3%
Goodreads www.goodreads.com 64.7%
Google Books books.google.com 51.2%
OCLC www.oclc.org 52.2%

BnF www.bnf.fr 7.4%
Sudoc www.sudoc.abes.fr 29.0%
Babelio www.babelio.com 7.9%

e ISBN? in 10 digit or 13 digit format;

e product title, which includes the book title, often
supplemented with extra information in free text;

e author(s) of the book as the input catalog name
provided by the seller.

In particular, the ISBN is a worldwide unique iden-
tifier for books, which makes it a prime candidate for
unambiguous matching with external sources. In this
dataset, an ISBN is present for about 70% of the books.
Among the books with no ISBN, 30% are ancient books
which are not expected to be associated an ISBN.

2.2 External bibliographic resources

There is no central authority providing consistent infor-
mation on books associated with an ISBN. However,
there is a wealth of bibliographic resources and open
databases for books. In order to retrieve the author’s
name(s) associated with the books in the RFR dataset,
we perform ISBN matching using public APIs on eight
of them, listed in Table 1 along with the fraction of
found ISBNs from this dataset. We find the sources to
be highly complementary and that 75% of the books
with an ISBN are matched with at least one source. The
match via ISBN on external bibliographic resources is
the first component of the system depicted in Fig. 1.

2.3 Dataset of name entities

In order to train and evaluate machine learning systems
to match or correct authors’ names, a dataset of name en-

*International Standard Book Number, see https://
www.lsbn-international.org

tities containing the different surface forms (or variants)
of authors’ names is required. The entities should reflect
as well as possible the variability that can be found in
the RFR dataset, as was illustrated in the case of F. Scott
Fitzgerald in Section 1.

For each entity, a canonical name should be elected
and correspond to the name that should be preferred for
the purpose of e-commerce. Instead of setting these gold
spellings by following some predefined rules (i.e. family
name in the first position, initial of first name, etc. ), for
e-commerce applications it is more appropriate that the
displayed authors names have the most popular spellings
among readers. In agreement with Rakuten catalog ana-
lysts we set the most popular spelling of an author name
as the one found on Wikipedia* or DBpedia (Lehmann
et al., 2015).

While Wikipedia seems more pertinent to select
canonical names matching the e-commerce user expec-
tations, specialized librarian data services, such as the
Library of Congress Name Authority’, could be used in
future research to enrich the dataset of name entities.

Name entities are collected in three distinct ways:

1. ISBN matching: for each book the different author
names found via ISBN search on external sources
and the RFR author name field build up an entity.
The canonical form is the one that is matched with
Wikipedia or DBpedia; else the one provided by
the greatest number of sources.

. Matching of Rakuten authors: we build entities
using fuzzy search on the author name field on
DBpedia and consider the DBpedia value to be
canonical. We limit the number of false positives in
fuzzy search by tokenizing both names, and keep-
ing only the names where at least one token from
the name on RFR is approximately found in the
external resource (Levenshtein distance < 2).

. Name variants: DBpedia, BnF, and JRC-
names (Steinberger et al., 2011; Maud et al., 2016)
directly provide data about people (not limited to
book authors) and their name variants.

‘https://www.wikipedia.org
5id.loc.gov/authorities/names.html
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As an example, by using the wikiPageRedirects field
in DBpedia we can build a large entity for the canoni-
cal name “Anton Tchekhov”, containing “Anton Tche-
chov”, “Anton Pavlovi¢ Chéchov”, “Checkhov”, “Anton
Chekov”, and many more.

After creating the name entity dataset, we normalize
all names to latin-1. We obtain about 750,000 entities,
for a total of 2.1 million names.

2.4 Annotated Rakuten France data

In order to evaluate the overall system, we need product
data from RFR for which the canonical author name has
been carefully annotated and can be considered as the
ground truth. To this end, we have considered a subset
of 1000 books from the RFR dataset, discarding books
written by more than one author for simplicity.® We find
that 467 books have a canonical author name that differs
from RFR’s original (unnormalized) author name. Also,
310 do not have an ISBN or do not match on any of
the bibliographic resources listed in Section 2.2. Among
them, 208 books have a canonical name that differs from
the input catalog name provided by the seller.

3 Experimental setup

The overview of the system can be found in Fig. 1. Its
first component, the matching via ISBN against external
databases, has already been presented in Section 2.2. In
the rest of this section, we will shed light on the three
machine learning components of the system.

3.1 Siamese approximate name matching

We want to learn a mapping that assigns a similarity
score to a pair of author names such that name variants
of the same entity will have high similarity, and names
that belong to different entities will have low similarity.
Once learned, this mapping will enable us to assign an
entity to any given name.

To this end, we might use a classical string metric
such as the Levenshtein distance or the n-gram dis-
tance (Kondrak, 2005). However, those are not specific
to people’s names, and might return a large distance (low
similarity) in cases such as the inversion between first
name and last name or the abbreviation of the first name
to an initial. Thus, we want to use the dataset of name
entities to learn a specialized notion of similarity—this
is known as distance metric learning (Kulis et al., 2013).

To this purpose, we use a pair of neural networks
with shared weights, or Siamese neural network (Brom-
ley et al., 1994). Each network is a recurrent neural
network (RNN) composed of a character-level embed-
ding layer with 256 units, a bidirectional long short-
term memory (LSTM) (Hochreiter and Schmidhuber,
1997) with 2 x 128 units, and a dense layer with 256
units. Each network takes a name as input and outputs a
representation—the two representations are then com-
pared using cosine similarity with a target value equal to

%The annotated RFR dataset is publicly available at
https://rit.rakuten.co.jp/data_release.
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1 for name variants of the same entity, and to 0 otherwise.
We preprocess the input by representing all characters
in ASCII and lowercase. We consider a sequence length
of 32 using zero padding.

The Siamese network is trained with contrastive
loss (Hadsell et al., 2006) in order to push the similarity
towards 1 for similar pairs, and below a certain margin
(that we set to 0) for dissimilar pairs. The optimization
is done using Adam (Kingma and Ba, 2014), with a
learning rate of 10~3 and a gradient clipping value of 5.
We use batches of 512 samples, consider a negative to
positive pairs ratio of 4 : 1, and randomly generate new
negative pairs at every epoch.

At test time, we search for the canonical name whose
representation is closest to that of the query, using only
the high-quality name entities from DBpedia, BnF, and
JRC-names. To this end, we do approximate nearest
neighbor search using Annoy’.

3.2 Name correction with seq2seq networks

We use a generative model to correct and normalize
authors’ names directly. The dataset of name entities
is again employed to train a sequence-to-sequence
(seq2seq) model (Sutskever et al., 2014) to produce the
canonical form of a name from one of its variants. The
dataset is further augmented by including additional
variants where the first name is abbreviated to an initial.

The seq2seq model is an encoder-decoder using
RNN:Ss, with a character embedding layer, as in the case
of the Siamese network. The encoder is a bi-directional
LSTM with 2 x 256 units, while the decoder is a plain
LSTM with 512 units connected to a softmax layer that
computes a probability distribution over the characters.

The training is performed by minimizing the categor-
ical cross-entropy loss, using teacher forcing (Williams
and Zipser, 1989). The optimization setting is identical
to that of the Siamese nework, with batches of 1024 sam-
ples. For inference, we collect the 10 output sequences
with highest probability using beam search.

3.3 Ranking of the proposals

For any given book with an ISBN and an author’s name,
all three techniques shown in Fig. 1 provide one or sev-
eral candidate canonical names. As we aim at providing
an automated tool to enhance the quality of the book
products, the final system should provide a ranked list
of candidates with a calibrated confidence level. For
this purpose we train a logistic regression to estimate
the probability that a proposal is the canonical form for
an author’s name. This information is then used as a
confidence score to rank the different candidate names
returned by the three normalization approaches.
Specifically, we represent a proposal with a set of 12
features: 11 indicating whether it is found in the bib-
liographic sources, generated from the seq2seq model,
matched with the Siamese network or equal to the input
name, and one last feature corresponding to the cosine

"https://github.com/spotify/annoy



distance between the representation of the proposal and
that of the input name. The selected features reflect that
the confidence of the global system should increase with
(i) the consensus among the different sources, and (i)
the similarity of the candidate to the input name.

For this component we use the annotated dataset in-
troduced in Section 2.4, splitting the books between
training and test sets, with a ratio of 50% : 50%, gener-
ating a total of 11185 proposals.

4 Results

The three machine learning components discussed in
the previous section have been individually evaluated
on their specific task. Furthermore the final system has
been evaluated in terms of correctly normalized book
authors in a real case scenario.

Siamese approximate name matching We evaluate
the Siamese network on a held out test set, and compare
it to an n-gram distance, by checking that the nearest
neighbor of a name variant is the canonical name of
the entity to which it belongs. We find an accuracy of
79.8% for the Siamese network, against 71.1% for the
n-gram baseline with n = 3. We have also checked
metrics when introducing a threshold distance above
which we consider that no matching entity is found, and
found systematic improvement over the baseline. In the
final system, we set the threshold to infinity.

Siamese networks are more effective than simpler
rule-based approaches and more specifically they per-
form better than the n-gram baseline on the following
cases:

e Vittorio Hugo — Victor Hugo: capturing name
variants in different languages;

e Bill Shakespeare — William Shakespeare: captur-
ing common nicknames

Name correction with seq2seq networks Similarly
to the previous approach, the seq2seq network is evalu-
ated on a held out test set by checking that one of the gen-
erated name variants is the canonical name of the entity
to which it belongs. As expected, name normalization
using seq2seq network gives poorer performances than
approximate matching within a dataset of known au-
thors, but constitutes a complementary approach that is
useful in case of formatting issues or incomplete names.
This approach alone reaches a top-10 accuracy of 42%
on the entire test set, 26% on a test set containing only
names with initials, and 53% on a test set containing
only minor spelling mistakes.

Some examples where seq2seq performs better than
the other methods are as follows:

e V. Hugo — Victor Hugo: first name prediction for
authors we don’t have in the canonical database;

e Vicor Hugo — Victor Hugo: misspelling correction
for authors we don’t have in the canonical database.
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Table 2: Global system top-k accuracy at the book level.

Type of books #samples acc@1 acc@3
all 500 2% 85%
unnorm. input author 235 49% 67%
no ISBN match 151 50% 64%
unnorm. + no ISBN 109 35% 49%

Ranking of the proposals With a decision threshold
of p = 0.5, the trained classifier has an accuracy of 93%
for both positive and negative candidates in the test set.
The coefficients of the estimator reveal the importance
of the features and, thus, of the related components. The
three most important contributions are the match with
the Siamese network, the match via ISBN in Babelio,
and the similarity with the input catalog name, confirm-
ing the relevance of a multi-approach design choice.

Global system In order to reflect the actual use of
the global system on e-commerce catalog data, the final
evaluation is performed at the book level, by considering
all the proposals provided by the different components
for a given book. The metric used is the top-k accuracy
on the ranked list of proposals for each book; results
are summarized in Table 2. We find that 72% of the
books have the author’s name normalized by the highest
ranked proposal. Excluding from the evaluation books
where the ground truth for the author’s name equals the
catalog value, this accuracy drops to 49%. In the case
of books without ISBN or that do not match on any of
the bibliographic resources, thus relying on machine
learning-based components only, we find that 50% of
the books are normalized by the top proposal. Finally,
for the combination of the above two restrictions, we
find a top-1 accuracy of 35%.

5 Related works

There is a long line of work on author name disambigua-
tion for the case of bibliographic citation records (Hus-
sain and Asghar, 2017). While related, this problem dif-
fers from the one of book authors. Indeed, unlike most
books, research publications usually have several au-
thors, each of them having published papers with other
researchers. The relationships among authors, which
can be represented as a graph, may be used to help dis-
ambiguate the bibliographic citations.

Named entity linking (Shen et al., 2015), where one
aims at determining the identity of entities (such as a
person’s name) mentioned in text, is another related
problem. The crucial difference with the disambiguation
of book authors is that entity linking systems leverage
the context of the named entity mention to link unam-
biguously to an entity in a pre-populated knowledge
base.

The conformity of truth in web resources is also
a related problem, addressed in the literature by
TruthFinder (Yin et al., 2008) algorithms. Similarly, the
proposed global model in which we combine sources
learns to some extent the level of trust of the different



sources. Unlike our technique, the TruthFinder approach
needs to start from a book we can unambiguously iden-
tify in several sources and, thus, needs its ISBN.

Distance metric learning with neural networks has
been used for merging datasets on names (Srinivas et al.,
2018), for normalizing job titles (Neculoiu et al., 2016),
and for the disambiguation of researchers (Zhang et al.,
2018). Sequence-to-sequence learning has been used
for the more general task of text normalization (Sproat
and Jaitly, 2016), and for sentence-level grammar error
identification (Schmaltz et al., 2016).

To the best of our knowledge, the problem of normal-
ization of book authors name has not been tackled in the
previous literature, except for a work on named entity
linking for French writers (Frontini et al., 2015).

6 Conclusions

We provided a first attempt at solving the problem of au-
thor name normalization in the context of books sold on
e-commerce websites. To this end, we used a composite
system involving open data sources for books, approx-
imate match with Siamese networks, name correction
with sequence-to-sequence networks, and ranking of the
proposals. We find that 72% of the books have the au-
thor’s name normalized by the highest ranked proposal.
In order to facilitate future research, we are releasing
data from Rakuten France: a large dataset containing
product information, and a subset of it with expert hu-
man annotation for the authors’ names. They are acces-
sible at rit.rakuten.co.jp/data_release.
Multiple challenges remain and are left for future re-
search. First, the system should be extended to handle
the case of books with multiple authors. In addition, the
book title could be used to help disambiguate between
authors and to query external bibliographic resources.
This work can also be seen as an intermediate step to-
wards a knowledge base for book author names with
name variants, extending public ones such as BnF, using
the ISNI® for easier record linkage whenever available.
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Abstract

The automatic analysis of expressions of opin-
ion has been well studied in the opinion min-
ing area, but a remaining problem is robustness
for user-generated texts. Although consumer-
generated texts are valuable since they contain
a great number and wide variety of user eval-
uations, spelling inconsistency and the variety
of expressions make analysis difficult. In order
to tackle such situations, we applied a model
that is reported to handle context in many nat-
ural language processing areas, to the problem
of extracting references to the opinion target
from text. Experiments on tweets that refer to
television programs show that the model can
extract such references with more than 90%
accuracy.

1 Introduction

For some decades, opinion mining has been
among the more extensively studied natural
language applications, as plenty of consumer-
generated texts have become widely available on
the Internet. Consumer-generated texts in the real
world are not always “clean” in the sense that
vocabulary not in dictionaries is frequently used,
so some measures for handling out-of-vocabulary
(OOV) words are required. (Turney, 2002) gave a
solution to this problem in the form of a semantic
orientation measure, defined by pointwise mutual
information, to automatically calculate the polar-
ity of words.

However, these kinds of measures, usually
called sentiment analysis, are only one aspect of
opinion mining; another big problem to be tackled
is the detection of the target of the opinion. Unlike
analyzing opinions about, say, a well-known prod-
uct that is referred to by name without many vari-
ations, analyzing opinions about an inconcrete ob-
ject such as media content requires the extraction
of the opinion target. Real tweets that refer to tele-
vision (TV) programs frequently do not explicitly
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mention the proper full name of the program. Al-
though official hashtags supplied by broadcasters
are sometimes used, unofficial hashtags may also
appear, and on occasion, paraphrased versions of
the content may be used without either hashtags or
the program name. Thus some method for finding
paraphrases in that context is required in order to
extract the target of such tweets.

Following the advent of Deep Neural Networks
(DNNs), many context processing models have
been proposed. One of the most successful models
is Long Short-term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), which we adopt as the
basis for context processing. The recurrent archi-
tecture of LSTM is thought to handle long-term
dependencies.

Our task is to detect references to TV programs
as described in section 3. Viewers of TV programs
generate many tweets, and broadcasters pay much
attention to what viewers say, including what spe-
cific part of a program is being discussed. Produc-
ers and directors want to know as specifically as
possible what viewers talk about, in order to as-
sess in detail the impact that their programs have
on audiences.

Formally, our task is to extract relevant parts
from a sentence, which is similar to named en-
tity recognition (NER) in the sense that it is a se-
quence detection problem, but rather more seman-
tic. Our motivation is to clarify how well various
NER models work on our task. The contribution
of this paper is the performance comparison, on
our task, of three NER methods that are reported
to perform at state-of-the-art levels. We also con-
ducted the same experiment on the CoNLL 2003
NER task, to allow comparison against our task.

2 Related Work

Related to our task in this study is the extrac-
tion of opinion targets in sentiment analysis that
was conducted as a shared task in SemEval 2016,
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called aspect-based sentiment analysis (Pontiki
et al., 2016), where opinion target extraction was
one measure of performance for a sentence-level
subtask. Unlike other sentiment analysis tasks,
such a task requires the extraction of entity types
including the opinion target and attribute labels
as aspects of the opinion. However, entities to
be extracted remain at the word level, and the
candidates are given, such as “RESTAURANT”,
“FOOD”, etc. Aspects to be extracted are similar
in that one word can be chosen among given can-
didates, such as “PRICE”, “QUALITY” and so on.
In our task, the opinion target to be extracted is not
restricted to a word but rather can be a phrase, and
is not in general specified in advance. There have
been many studies related to paraphrases, one of
which was a shared task in SemEval 2015, known
as paraphrase identification (Xu et al., 2015).

As regards phrase extraction, NER has a long
history from (Tjong Kim Sang and De Meulder,
2003). The state-of-the-art models are thought to
be (Huang et al., 2015; Lample et al., 2016; Ma
and Hovy, 2016).

3 Task and Data

The task is to extract references to TV programs
in the text part of tweets. We call such expressions
“referers”. Figure 1 shows these notions with an
example. The referer part is not always the proper
name of the program or an officially-defined hash-
tag, but can be a paraphrased reference to the pro-
gram content.

Tweet text

lllustration is good.

The Great Tokyo Air Raid is

expressed by:Manga and
narration.

4% War Scene

Referer «—» Reference

Figure 1: Terminology with an example

The targeted TV program is a Japanese TV
drama, described in Table 1. We prepared a pop-
ulation of tweets that refer to TV programs by se-
lecting tweets manually in a best-effort manner:
tweets that contain wider general terms are likely
to contain some portion of targeted data (includ-
ing the broadcaster name NHK, for this study) if
transmitted during the broadcast time of the pro-
gram. Tweets were then selected manually to pre-
pare research data.

The referer parts in the text are annotated man-
ually as a region, using the brat rapid annotation
tool by (Stenetorp et al., 2012). Since such anno-

tations are performed at the character level before
the tokenization process, labels for the sequence
tagging problem are converted to the positions of
tokens during the tokenization process. The cod-
ing scheme for the region of the reference is IOB
tags (Ramshaw and Marcus, 1995).

The tweets and targeted program names are
both in Japanese, and since Japanese has no spaces
between words, a Japanese tokenizer is used to
separate words. We used SentencePiece (Kudo,
2018), a kind of subword tokenizer that handles
OOVs and de-tokenization well. SentencePiece is
trained with the same training data as the main
task. Raw data are as described in Table 2. Se-
quence lengths in terms of words and characters
are given as averages and standard deviations. Ta-
ble 3 shows the characteristics of annotated tags.
The referer part is annotated more finely, i.e. sub-
categorized by type of reference such as people,
scene, music, etc., but for this study, we gather
them into a single type of reference. Almost one
third of the tokens has some kind of reference to
the targeted program, and many chunks consist
of more than one token, since there are many I-
REFERENCE tags in the corpus. The data thus
prepared are used for both training and evaluation.

Broadcast time 2019.4.1 8:00-8:15

Broadcaster NHK (GTV channel)
Program title Natsuzora'
Genre television drama series
Synopsis The story of an animator

who decides to go to Tokyo.

Table 1: Targeted TV program

# tweets 3,745
# chars per. tweet  30.1(ave.) 19.5(SD.)
# words per. tweet 11.6(ave.) 9.4(SD.)
# vocab of chars 1,693
# vocab of words 7,727

Table 2: Statistics of Raw Data

# B-REFERENCE 7,871
# I-REFERENCE 5,558
#0 29,829

Table 3: Statistics of Reference Tags

'https://en.wikipedia.org/wiki/
Natsuzora



4 Model and Training Procedure

We treat the extraction of referer sections as a se-
quence tagging problem, and the state-of-the-art
model for such a sequence tagging problem is a
LSTM model combined with CRF, as reported in
(Huang et al., 2015). We used a modified version
of LSTM-CREF 2, implemented by TensorFlow 3.

The models used have three types of layers. In-
puts for the model are a sequence of tokenized
words, and to deal with large vocabulary tasks,
distributed representations are used. The first
layer is a trainable embedding layer that inputs se-
quences of words. The second layer is a recurrent
layer, LSTM, where contexts are handled. The
third layer is a CRF layer. The Viterbi decoding
becomes the model output. For robustness pur-
poses, a dropout (Hinton et al., 2012) layer is in-
serted at each layer, and can be thought of as a
kind of regularizer.

Models are trained to maximize the fl score
(harmonic mean of precision and recall), and train-
ing is stopped when there is no further improve-
ment. We tried three variants of these models, de-
tails of which are described as follows.

4.1 Bidirectional LSTM-CRF

The basic type of LSTM-CRF model was dis-
cussed in (Huang et al., 2015). The model consists
generally of three layers: embedding, recurrent,
and CRFE.

Although several pre-trained models are avail-
able for the embedding layer, such as GLoVE
(Pennington et al., 2014) or Word2Vec (Mikolov
et al., 2013), we elected to train the embedding it-
self during the training procedure.

For the recurrent layer, contexts are handled by
the LSTM type cell, whose input is whole se-
quence of words (distributed reps.) of a text, and
whose output is a sequence of the same length as
the input. The input is treated bi-directionally, so
that a reversed word order is equivalent, in order to
handle both forward and backward context depen-
dencies. Forward and backward computations are
performed separately, and they are concatenated
just before the next CRF layer.

At the CRF layer, the concatenated outputs from
the preceding recurrent layer are input to a linear-
chain CRF. Like the original CRF (Lafferty et al.,
2001), output labels are also used in the estimation
of subsequent outputs.

https://github.com/guillaumegenthial/
tf_ner

3TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. http://tensorflow.org/
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4.2 Character Embeddings

Given the sparsity problem with vocabularies,
characters (the components of words) are used and
combined with words. Like (Lample et al., 2016),
characters are fed into the embedding layer and
their parameters are also trained like the word in-
put layer. The embeddings of both words and char-
acters are concatenated, for input to the following
recurrent layer.

4.3 Character Convolutions

There is also a model that uses convolutions for
character inputs. (Ma and Hovy, 2016) used a con-
volutional neural network for characters, which
then performed max-pooling. We also evaluated
this model.

5 Experiments

5.1 Data allocation

Data with referer tags, as described in section 3,
were divided into sets for training, validation, and
evaluation, in the proportions 90%, 5%, and 5%,
respectively.

The three models described in the previous sec-
tion were compared on two tasks. One task is the
original CoNLL 2003 Named Entity Recognition
task (Tjong Kim Sang and De Meulder, 2003) in
English. Named entities here are persons, loca-
tions, organizations, and names of miscellaneous
entities, found in the Reuters news corpus. The
second task is the task for this study, described in
section 3.

We used texts without part-of-speech tags. De-
tails of the training parameters are given in Ta-
ble 4. Character type parameters are only used
for those models that include character-level mod-
eling. The training took 10 to 20 minutes on a
laptop computer. Training was stopped at around
4,000 iterations.

Mini-batch size 20

Char. embedding dims. 100
Word embedding dims. 100
Char LSTM size 25

Word LSTM size 100

Dims. of context representations 300
Dropout rate 0.5

Table 4: Training Parameters

5.2 Results

The results are shown in Table 5. Figures for accu-
racy, precision, and recall have the same meanings



Task Model Accuracy(%) Precision(%) Recall(%)
Majority Voting 82.54 100.00 0.05
LSTM-CRF 94.15 75.61 69.97
CoNLL 2003 With char-emb. 95.92 80.35 77.90
With conv. of char-emb. 96.19 81.00 79.76
. Majority Voting 78.12 7.73 5.11
Extraction of referer part
for TV program extra fﬁon LSTM-CRF 90.27 76.53 82.95
from tweets With char-emb. 91.23 77.38 82.70
With conv. of char-emb. 91.06 76.71 82.95

Table 5: Results

as in CoNLL 2003. Accuracy is an overall correct
ratio including O tags (which means containing no
kind of tags of interest). Precision is a measure
for extracted instances, while recall relates to rel-
evant instances, as usual in information retrieval
parlance. The three models described in section 4
are compared together with majority voting as a
trivial baseline model. The trivial model chooses
the most frequent output seen in the training data
as the trained output. Bold-faced figures are the
best results among the four models compared.

Figures for the CoNLL 2003 NER task are al-
most the same as those given for the state-of-the-
art models, so the implementation seems correct.
On the CoNLL 2003 NER task, models that use
convolution of character embeddings were the best
performing, as reported in (Ma and Hovy, 2016).
The 100% precision attained by majority voting
comes at the price of extremely low recall, so it is
not of much use; majority voting works very con-
servatively, only working when confident of the
occurrence.

Figures for our task are original, and first re-
ported here as far as we know. Unlike the NER
task, the best performing model except for recall
is LSTM-CRF with simple character embeddings,
while simple word-level LSTM-CRF with convo-
lutional character embeddings performed best for
recall. Convolution of character embeddings per-
formed a little worse than the model without con-
volutions. This may be due to over-modeling of
characters, when in fact they are not so impor-
tant for this task, while character level modeling
remains effective.

6 Discussions

The experiments showed that referer sections for
TV programs were well extracted using the state-
of-the-art models for sequence tagging. However,
the performance on this task was somewhat dif-
ferent than that on the NER task. This is be-
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cause the extracted parts are longer than named
entities, and tend to form explanatory phrase ex-
pressions. These expressions can be thought of as
phrase-level coreferences, or paraphrases, which
are thought to relate linguistically to the high-
level understanding of natural languages, such as
rhetorical structures.

One possibility is to improve the embedding
layer. Several phrase-level embeddings have been
studied, and they may be useful for this kind of
task. As words and characters are combined,
phrases can also be combined to represent input
sequences, and such models are probably worth
trying.

A second possibility is to improve the recurrent
layer. For deeper context handling, simply stack-
ing LSTM layers is proposed. Techniques from
semantic parsers may also help in capturing se-
mantic chunks from the whole sentence. Whether
further handling of contexts is possible is of much
interest.

7 Conclusions and Future Work

We applied sequence tagging models to study the
performance of extracting referer sections from
relevant tweets for a targeted TV program. The
extraction accuracy achieved by LSTM-CRF was
significantly better than that attained by majority
voting. Further treatment of deep contexts is sug-
gested by comparisons of the experimental results
on NER tasks, which remains a topic for future
work. We suspect that some variations of deep
neural networks may be able to solve this prob-
lem, especially for this kind of domain, because
although noisy, large amounts of data addressing
the same topic are available.
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Abstract

We work with Algerian, an under-resourced
non-standardised Arabic variety, for which
we compile a new parallel corpus consist-
ing of user-generated textual data matched
with normalised and corrected human annota-
tions following data-driven and our linguisti-
cally motivated standard. We use an end-to-
end deep neural model designed to deal with
context-dependent spelling correction and nor-
malisation. Results indicate that a model
with two CNN sub-network encoders and an
LSTM decoder performs the best, and that
word context matters.  Additionally, pre-
processing data token-by-token with an edit-
distance based aligner significantly improves
the performance. We get promising results for
the spelling correction and normalisation, as a
pre-processing step for downstream tasks, on
detecting binary Semantic Textual Similarity.

1 Introduction

Natural language processing (NLP) research has
achieved impressive results, notably thanks to the
use of deep neural networks (DNNs) which has
pushed the field forward, achieving unprecedented
performance for various tasks. However, research
is often focused on large, standardised, monolin-
gual and well-edited corpora that exist for a few
well-resourced languages. We believe that such
corpora will not generalise to all languages and
domains, particularly regarding the colloquial va-
rieties used in new communication channels. In
fact, the large unstructured data coming from such
channels is not only unedited, it also poses serious
challenges to the current NLP processing pipelines
and approaches as a whole.

Traditionally, the standard language ideology
has dominated linguistic studies: it has been fre-
quently assumed that languages are naturally uni-
form and monolingual. Nevertheless, the new
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online data reveals that standardisation is nei-
ther natural nor universal, it is rather a human
invention (Milroy, 2001), and variation is the
norm. This variation presents several challenges
to studying and processing dialects in social me-
dia (Jgrgensen et al., 2015). These challenges
are even more pronounced in multilingual soci-
eties where people use more than one language
or language variety at the same time. We con-
sider the case of the colloquial language used in
Algeria (hereafter referred to as ALG) which com-
bines both linguistic challenges mentioned above:
(i) it is non-standardised, and (ii) it is a mixture of
languages which involves code-switching between
Modern Standard Arabic (MSA) and local Arabic,
French, Berber, and English. (We refer the inter-
ested reader to the work of Adouane et al. (2018),
who provides an overview of the linguistic land-
scape in Algeria.)

In interactive scenarios, people usually use
spoken-like language and spontaneous orthogra-
phy which reflects local variations. Our observa-
tions confirm those of Eisenstein (2013), namely
that speakers have some-kind of tacit knowledge
of spelling which is not completely arbitrary.
However, it is hard to distinguish between local
varieties and draw a clear borderline between them
due to the free mobility of people, their ability to
interact online, and the fact that these varieties are
closely related and therefore hard to describe for-
mally. Therefore, we find that using location to
map dialectal variation (Doyle, 2014) is not use-
ful. In many cases, the spelling is not consistent
even by a single person within the same conversa-
tion. There is nothing intrinsically wrong with this
inconsistency for there is no standard form to take
as a reference. Besides, spelling variation does not
hinder mutual understanding.

Current NLP approaches based on learning un-
derlying regularities from data is not suitable to

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 131-140
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



sparse noisy data. Furthermore, the data written in
Arabic script is already rich in orthographic am-
biguity because vowels are not written, except in
very specific settings. Our focus is to process such
user-generated textual data, reflecting the real use
of a language. Therefore, for computational pur-
poses, we want to automatically reduce the data
sparsity caused by spelling inconsistency by nor-
malising it based on spelling decisions that we de-
signed, and build a tool that can be used for pre-
processing such texts for other NLP tasks.

This paper is an attempt to take advantage of
DNNs to reduce spelling inconsistency by per-
forming several transformations (normalisation,
disambiguation, etc.) detailed in Section 3 as a
single machine-learning task. It is significantly
different from the well-established spelling error
correction mainly because we have to deal with a
non-standardised code-switched language. In ad-
dition to the fact that ALG is an under-resourced
language with respect to the size, quality and the
diversity of the available labelled data, it suf-
fers from the absence of other tools and linguis-
tic resources required by current NLP techniques
such as tokenisers, syntactic parsers, morphologi-
cal taggers, lexicons, etc.

As contributions, (i) we introduce a new user-
generated corpus for ALG with its parallel spelling
normalised and corrected version produced by hu-
man annotators. (ii) We describe our spelling de-
cisions aiming to reduce orthographic ambiguity
and inconsistency for NLP tasks. These decisions
are not the only possible ones, and can be debated
and further refined. (iii) We propose a general
end-to-end model for context sensitive text nor-
malisation of non-standardised languages. We opt
for end-to-end deep learning approach (with only
a simple automatic pre-processing) because it is
not only expensive and time consuming to build
equivalent rule-based tools from bottom up, but it
is also hard to exhaustively define spelling norms
given the high linguistic variation.

The paper is organised as follows. In Sec-
tion 2 we survey related work. In Section 3, we
present our newly compiled parallel corpus and
explain our data processing decisions. In Sec-
tion 4, we give information about data statistics
and data alignment. In Section 5, we describe our
models. In Section 6, we describe our experiments
and discuss the results. We conclude in Section 7
with potential future improvements.

2 Related Work

The task of normalising user-generated non-
standardised data is closely related to the one of
historical text normalisation (Pettersson, 2016),
namely they present similar challenges for the cur-
rent NLP — little sparse data. While the latter has
a standardised spelling as a reference, the former
does not because many colloquial languages have
not undergone the standardisation process. Boll-
mann (2019) surveys the approaches used for his-
torical text normalization for a set of languages.
Both tasks are mainly framed as (statistical/neural)
machine translation mostly at a token level where
the source and the target language are the same or
a standardised version of one another.

Similarly to the previous work, we formu-
late our task as a sequence-to-sequence (seq2seq)
learning problem, but in contrast we take word
context into account. A large body of work has
been done to address the problem of seq2seq
prediction and has achieved impressive results
for diverse NLP tasks. Encoder-decoder mod-
els are most frequently used for seq2seq predic-
tion with varying the architectures of the encoder
like Recurrent Neural Network (RNN) in (Cho
et al., 2014; Sutskever et al., 2014), bidirectional
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) in (Bahdanau et al.,
2014), Convolutional Neural Networks (CNN) in
(Vinyals et al., 2015).

Our CNN-based architecture (see Section 5) is
reminiscent of what has been proposed for ma-
chine translation by Gehring et al. (2017) but in-
stead they use CNN for both encoder and de-
coder with multi-step attention. A difference
with our model is that we use two sub-networks
(LSTM/CNN and CNN/CNN) as an encoder,
jointly trained to learn contextual representations
of words. Then we use an LSTM as decoder in-
stead of a CNN. Compared to the model of Bah-
danau et al. (2014), an important difference is that
we do not jointly train alignment and seq2seq pre-
diction. Instead we perform alignment separately
as a pre-processing step using edit-distance.

None of the mentioned models have been tested
on the same prediction task as ours or on a re-
lated language. As the most closely related work
for spell checking, Ghosh and Kristensson (2017)
propose a seq2seq neural attention network sys-
tem for automatic text correction and comple-
tion. They combine a character-based CNN and
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a Gated Recurrent Unit (GRU) (Cho et al., 2014)
as encoder and a word-based GRU as decoder
using a 12 million word English corpus. Re-
cently, Sooraj et al. (2018) employed a character-
based LSTM language model to detect and cor-
rect spelling errors for Malayalam. In the same
line of research, Etoori et al. (2018) propose an
attention model with a bidirectional character-
based LSTM encoder-decoder trained end-to-end
for Hindi and Telugu spelling correction using
synthetic datasets.

Contrary to the task we are trying to address in
this paper, the mentioned work deals either with
spelling correction for monolingual standardised
languages or historical text normalisation for stan-
dardised languages. This makes our task linguisti-
cally more challenging because our data includes
more languages hence the model has to find the
correct spelling of a word not only based on its
context but also based on its language.

There has been work done for Arabic automatic
error correction mainly for MSA including the
work of Shaalan et al. (2012) and others included
in the Arabic shared task (Mohit et al., 2014). Still
they are inadequate to process non-standardised
Arabic varieties given the significant phonolog-
ical, morphological and lexicon differences be-
tween MSA and Arabic dialects (Watson, 2007).
To the best of our knowledge, this is the first effort
to process user-generated non-standardised dialec-
tal Arabic textual data end-to-end.

3 Data Preparation

3.1 Corpus creation

As a basis we take the extended version of the
unlabelled dataset of Adouane et al. (2018). Our
extended version of it consists of 408,832 auto-
matically pre-processed user-generated short texts
from social media, such as forum discussions, and
contains more than 6 million words. The auto-
matic pre-processing involves removal of punctu-
ation, emoticons and reduction of repeated letters
to a maximum of two. Indeed, Arabic orthogra-
phy does not use more than two adjacent occur-
rences of the same letter, and repeats in social
media texts are mainly typos or emphasis. For
this work, we further pre-processed this dataset
by removing any existing diacritics representing
short vowels because they are used rarely and in-
consistently, even in the texts generated by the
same user. We assume that such idiosyncratic
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variation will not affect our task in terms of se-
mantics and bring about more robustness to lan-
guage processing, especially because diacritics are
not commonly used outside of the formal regis-
ter. We also normalised many commonly used
(often french-based) Latin script abbreviations to
their full versions using the most frequent spelling
in Arabic script including psk/because, r7/recipe,
bnj/good morning, bl/well, 2m1/see you tomor-
row, dsl/sorry, on+/moreover, tj/always, etc.

All texts are written in Arabic script and dis-
play spelling variations, typos and misspellings
wrt.  MSA, diglossic code-switching between
MSA and local colloquial Arabic varieties, bilin-
gual code-switching between Arabic varieties;
French; Berber and English. From this further pre-
processed unlabelled dataset, we created a paral-
lel corpus of manually normalised texts. For this
purpose, we randomly selected 185,219 texts and
had 5 human annotators, who are native speak-
ers with (computational) linguistics background,
to edit and process them. The process took 6
months mainly working on lexical and syntactic
ambiguities which require linguistically informa-
tive decisions, and all annotators checked the an-
notations of each other. We give here a few exam-
ples of spelling variation, but the corpus contains
50,456 words and 26,199 types to be normalised
or corrected. Note that we will use word to re-
fer to lexical words and tokens to refer to lexical
words plus digits and interjections.

3.2 Annotation standard

In order to guide the annotators in producing par-
allel normalised text, we designed the following
annotation standard which involves (i) spelling
correction and (ii) spelling normalisation tasks.

3.2.1 Spelling correction for MSA

Misspelled MSA words are corrected using MSA
orthography based on their context. (asldsé (Caoal
a3l « ¢!y~ (clean, nutritional, Algeria, discussion)
are corrected as L3l ¢ Jl> (d01he (2 lal.

3.2.2 Typographical error correction

The texts have been written on different kinds of
keyboards resulting in lot of typos which mainly

include missing spaces like in s> >lilaglzy or
additional spaces like in & LJ which have been
respectively corrected as 5 » & glasglsles (and

they did not let her to go out and) and i.LJ (the
family). There are also keyboard related typos like



reversing the order of letters or substituting one
letter by another like in s.Js where o should be

replaced by (s to get the correct intended word
Mg (my son).

These typos can be detected from their context by
manual checking. Usually they are not valid words
and tend to be consistently generated by the same
user which suggests that they may be related to

their typing style and conditions. In L~xé L~ the

user used the same wrong letter ¢ twice instead of

,, and the correct form is anxé ans (the better is
in something else).

3.2.3 Spelling normalisation

Non-MSA words including local Arabic vari-
eties, French, Berber, English and neologisms are
spelled spontaneously in Arabic script where users
use improvised phonetically-based orthography.

A. Local Arabic varieties To deal with the
spelling variation in colloquial varieties, a conven-
tional orthography for dialectal Arabic (CODA)
has been proposed for Egyptian (Eskander et al.,
2013) and has been extended for Algerian
(Saadane and Habash, 2015) and recently for sev-
eral other Arabic varieties (Habash et al., 2018).
We share the overall goals with the authors of
CODA that a conventional orthography for de-
veloping NLP tools should preserve phonological,
morphological and syntactic information of di-
alectal texts, should not diverge substantially from
the existing forms, and should be easy to learn and
write by the annotators.

However, CODA is primarily a recommenda-
tion of guidelines with several open questions re-
lated to how these guidelines could be imple-
mented in new scenarios. In our case the most
relevant open question is how to deal with mul-
tilingual code-switched data found in ALG. Using
the existing recommendations from CODA would
be in several cases impractical because several
phonological distinctions required by the varieties
in ALG could not be encoded and would have to
be listed as exceptions. In other cases, the appli-
cation of CODA would also require a substantial
rewriting of the original user-generated text. In-
stead we use data statistics as heuristics to find the
canonical forms.
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We first train word embeddings using FastText
(Joulin et al., 2016) on the entire unlabelled data.
We collect a list of all words in the corpus and for
each word we use FastText to predict the 10 most
similar words and their frequencies. This normally
returns the spelling variations of that word. A hu-
man annotator then decides whether the returned
cluster should be considered as a spelling varia-
tion and assigns the most frequent spelling as the
canonical form for all word occurrences in this
cluster.

This is not a trivial task to be performed fully
automatically because the model often returns un-
related words for less frequent words (case of the
majority of words in the dataset). Hence a human
expertise is needed. Contrary to CODA where
every word has a single orthographic rendering,
if a word has more than one frequently occur-
ring spelling we keep such variations because they
reflect local lexical or phonological differences
which may be useful for sociolinguistic studies.
For example, we keep both spelling variations of
question words olas ¢ glus and oMsg ¢ #Me (When
and why) because they occurred very frequently
and could be mapped to the same form if needed.

In cases where the difference between MSA and
local Arabic spelling of a word is based on phonet-

ically close sounds such as the sounds . [s] and
% [s'] as in i (dare (reputation) or between

[t] and L [t'] as in & b ¢y (road), and the mean-
ing is preserved, MSA spelling is used. These
cases are hard to identify automatically and re-
quire human expertise. Making spelling MSA-like
as practically as possible will facilitate the reuse
of existing MSA resources. Nevertheless, in cases
where a word does not exist in MSA and has sev-
eral different spellings, the most frequent one is
used provided that it is not homonymous with an-
other existing word. Such words include frequent

local Arabic words like YL ¢ «lo ¢ Jlade (so,
now, for) with 27, 59 and 39 spellings respectively,

along with the newly created words like ;5 (I
practise sports) and -,z ;5 (I fast).

B. Non-Arabic words The dataset includes
French, Berber and English words, and the limi-
tation of the Arabic script creates more ambiguity
regrading how to spell non-existing sounds like /g,
p, v/. The most frequent spelling with long vowels
is used. For example, the French word “journal”



(newspaper) occurs with 6 spellings all mapped to
Jb, s> which is the most frequent spelling.

3.24 Word sense disambiguation

Using various languages with spelling variation
at the same time creates considerable ambiguity,
especially when all the varieties are written in
the Arabic script. One particular frequent source
of lexical ambiguity concerns the spelling of the

French definite articles (le, la, les) spelled as « J
s« Y, either separated or concatenated to the
word they associate with. However, the Arabic
spelling is ambiguous because each of the above
words means something else in MSA or local Ara-

bic. For instance, J when written as a separate
word could either be a prepositional phrase (for
me) in MSA or a relative pronoun (who / that /
which) in local Arabic. For this reason we decided
to spell French definite articles attached as prefixes

like the Arabic definite article J! . This allows

disambiguation of cases like: s} (hair strand
dyeing) in French and (who is not) in local Arabic.

The Berber word for “window” is spelt as &l
which means energy in MSA. Since Berber does
not have a standardised spelling in Arabic script!,

we decided to change the spelling to U which
is another spelling found in the dataset. Further-
more, lexical ambiguity is caused by the absence
of sounds (and corresponding graphemes) in Ara-

bic like /g,v,p/. “Group” is spelled : ¢ g4 ,3

Gt sk O F ¢ oy Where O 2 and
< 55 mean “sunset” and “closeness” in MSA. To

disambiguate these senses _ s x3 is used for
6‘gr0up”.

3.2.5 Negation particle

The various spellings of the word L cause sig-
nificant lexical and syntactic ambiguity. When
written separately, it could be a relative pronoun
or an interjection in MSA, a feminine possessive
pronoun in French, *mother’, water’ or a nega-
tive particle in local Arabic. We decided to spell
this negation particle as a proclitic with a long Alif

when used with verbs (Ls instead of f). This re-
moves ambiguity for cases like the local Arabic
negated verb ;"\ (there was not) from the MSA
noun . (place) and the local Arabic o§ L laa
(that’s it). All negated verbs in local Arabic are

"Berber has its own script called Tifinagh and a standard-
ised Latin spelling.
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spelled with L as proclitic and ¢ as enclitic. As
a result it is easier to get the non-negated form by
stripping off the negation clitics. By removing the

initial L and the final s from il.cls (he did not
call) we get lac (he called).

3.2.6 Word segmentation and tokenisation

Users tend to spell prepositions, reduced question
words and conjunctions as proclitics. This creates
an unnecessary sparse and large vocabulary. To
reduce the size of the vocabulary, we write such

proclitics as separate full forms, among others: 3,
(ﬂziéuAuﬁ‘jzdlj‘ég.;é%;éfécl
Yj« 0 ¢ J.f—( &4 C’Ia}b Wesplitd!anduwhen

they occur as relative pronouns attached to a verb.
0+ (Who is him) is tokenised to (s gls,
LY (from the crisis) as ¥ o, o pais (T will
make him) o), C‘J’ and split relative pronouns
in sl (what you wish) as sl L and oi<J
(who was) as o8 J. Other ambiguous cases in-

clude 1, g which could be either U}, . s (Where are

we) or Ul, 4 (and we are) or Usl,4 (behind us)
depending on the context.

3.2.7 Abbreviations and acronyms

We collapse acronyms written as several tokens
to a single token and extend abbreviated words to

their full form based on their context. For instance,
o ¢l Y is collapsed to LY (SMS), and 4 ,

is extended to 545 3 s (tablespoon).

4 Data Statistics and Alignment

4.1 Data statistics

The final processed parallel corpus, described in
Section 3 consists of 185,219 unique (input, out-
put) text pairs where the input is from the automat-
ically pre-processed data and the output is from
the manually corrected and normalised data. The
input corpus has 3,175,788 words, and 272,421
types (unique words) where 90.20% of them oc-
curred less than 10 times and 59.60% occurred
only once in the entire corpus. These figures serve
to give an idea about how sparse the data is. The



longest text has 112 words. The output corpus
has 3,125,332 words and 246,222 types (unique
words). The longest text has 112 words. The dif-
ference in the vocabulary size between the two
corpora (50,456 words and 26,199 types) is pri-
marily because of the introduced transformations.

4.2 Data alignment

Another difference between the two corpora is that
the lengths of the input and the output may vary
as a result of different tokenisation. This is not
a problem in terms of machine learning, because
the models described in Section 5 are designed
to deal with variable length input and output se-
quences. However, because our two sequences are
from the same language with the same meaning
(the only difference is in spelling) we expect that
alignment at the token level will lead to improved
performance (see Section 6.1).

To this end, we have developed an aligner
whose task is to make sure that every single unit
(token) in the input (with potential misspelling)
matches a unit (token) in the output. This may
seem trivial until one remembers that misspellings
may include added or deleted spaces. Our aligner
works by computing the minimal edits to trans-
form the input into the output (using the standard
Levenshtein distance algorithm).

These minimal edits are not the basis for train-
ing (they will be discarded) unless they concern
spaces. If a space is added, then to preserve word
alignment we replace the corresponding space in
the output by a special symbol (#). In inference
mode (see Section 5.4), this symbol will be re-
placed by a space. If on the contrary a space
is deleted, then it is added back (and words are
aligned again). A special extra symbol ($) is
added to mark that a spurious space was added and
should be eventually deleted again when the model
is used in inference mode. This alignment algo-
rithm provides correct results whenever the Leven-
shtein distance at the sequence level is the sum of
the Levenshtein distances for each unit (token) that
is misspellings are not so large as to make delet-
ing/inserting whole words a shorter operation than
changing characters within words; and this condi-
tion is satisfied in our corpus.

5 Models

We frame the task of spelling correction and nor-
malisation as a sequence-to-sequence (seq2seq)
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prediction problem, i.e., given an input sequence
what is the best predicted output sequence. Note
that sequence refers to user texts of any length in-
cluding one token or more. We use an encoder-
decoder architecture which consists of two neu-
ral networks where the first one reads an input se-
quence and transforms it into a vector representa-
tion, and the second one, representing a language
model, conditions the generation of output sym-
bols on the input sequence representation and gen-
erates an output sequence (Cho et al., 2014).

Output layer A Ghd I lvels

Dense layer

A

[ Token Decoder (LSTM) ]
[ Sequence Encoder (3 x CNN) J

1
[

Decoder layer

Encoder layers

Token Encoder

LSTM or | 2xCNN |

Character Encoder

f

input characters in [0..48]

Embedding layer

Input layer

b b IS e
Figure 1: Model architecture.

As shown in Figure 1, the encoder consists of two
sub-neural networks, namely token encoder and
sequence encoder.

5.1 Token encoder

It reads the input sequence character by character
and outputs a vector representation for each token
in the sequence. Two configurations are used: ei-
ther an LSTM encoder or a CNN encoder.

e LSTM encoder: represented in yellow and
takes as input character embeddings with vo-
cabulary size of 49, 100 dimensions, token
representation size of 50 and a dropout rate
of 30%.

CNN encoder: represented in red and takes
as input character embeddings. It is com-
posed of 2 CNN layers with 50 filters of size
5, a RELU activation, a dropout rate of 20%
followed by max pooling in the temporal di-
mension.



5.2 Sequence encoder

Represented in blue and consists of 3 CNN lay-
ers with 200 filters for the two first layers and 100
for the third layer, all filters have size 3, a RELU
activation and dropout rate of 5%.

5.3 Token decoder

It is composed of one character-based LSTM layer
with the same hyper-parameters as the LSTM en-
coder, followed by a dense layer.

5.4 Training and inference

All models are trained end-to-end to maximise the
likelihood of the output sequence conditioned on
the input sequence for 150 epochs using a batch
size of 64 and Adam optimiser. Gradients with a
norm greater than 5 are clipped.

For inference (generating an output character
sequence), we use beam-search with a size of 20.
Note that beam-search is used only to generate
an output sequence and does not influence nei-
ther model training nor validation. The models
generate characters starting from the start symbol
(<) and stop at the end symbol (>) or at a prede-
fined sequence length given as a hyper-parameter,
whichever comes first.

6 Experiments and Results

In order to test our models and the gain from the
aligner (see Section 4.2), we experiment with both
versions of data: the non-aligned and the aligned
data. It is worth mentioning that the only differ-
ence between them is that the aligned one contains
extra symbols (# and $) marking missing or extra
spaces. An extra space — thus word- is also added
for every dollar sign. Moreover, to measure the ef-
fect of the context, we feed the data either token-
by-token or sentence by sentence.

We split both the datasets into 75% (138,917
samples) for training, 5% (9,261 samples) for de-
velopment, and 20% (37,041 samples) for valida-
tion. The reported hyper-parameters in Section 5
were fine-tuned on the development set.

We conduct two evaluations: (i) how well the
suggested models perform on the seq2seq task,
and (ii) how good is the best performing model
for spelling correction and normalisation task, and
what is its effect as a pre-processing step on
downstream tasks like Semantic Textual Similarity
(STS). We evaluate (i) using character-level accu-
racy, and we evaluate (ii) by calculating Precision,
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Recall and the F-score for the class of tokens that
should be changed. Hence, Recall is the ratio of
the correctly changed tokens to the number of to-
kens that should be changed, and Precision is the
ratio of the correctly changed tokens to the num-
ber of tokens that are changed. F-score is the har-
monic average of both.

6.1 Comparing models on Seq2seq task

In Table 1 we report the overall character level ac-
curacy of the 4 best performing models for each
configuration and experiment: (1) LSTM-Token-
seq: the model with the Token LSTM + Sequence
encoder (yellow and blue parts of Figure 1) and
Token decoder, (2) CNN-Token-seq: the model
with the Token CNN + Sequence encoder (red
and blue parts of Figure 1) and Token decoder.
Both (1) and (2) are trained and evaluated on non-
aligned data with a sequence of tokens as input.
(3) CNN-Token-seq-alig the same as model (2) but
trained and evaluated on aligned data. (4) CNN-
Token-token-alig: the same as (3) but with one to-
ken as input (token-by-token).

Results indicate that the LSTM encoder in (1)
does not suit our task / data and fails to learn
the sequential representations with an overall char-
acter accuracy of only 23.90%. This could be
because of the high sparsity of the data which
makes it hard to learn regularities. In contrast, the
CNN encoder in (2) performs much better, with
an overall character accuracy of 89.20%, suggest-
ing that learning sequences of patterns through
convolutions suits better our task / data than se-
quence modelling with LSTM. This is in line with
what has been reported for machine translation in
(Gehring et al., 2017).

The CNN encoder performs even better with
the aligned data in (3). The difference can be at-
tributed to the positive effect of the aligner which
boosts the accuracy by 7%. The 9.1% drop in the
accuracy in (4) compared to (3) is due to the lack
of word context. This indicates that word context
is essential, especially for word sense disambigua-
tion in such highly varied data.

6.2 Quality and effect

e Quality We use the best performing model (3)
and run the inference mode, (see Section 5.4),
on the validation set which contains 567,308
words of which 507,429 words are already
correctly spelled and 59,880 words must be
changed, either corrected or normalised. We



Models Input Data Validation
1 LSTM-Token-seq sequence of tokens non-aligned 23.90
2 CNN-Token-seq sequence of tokens non-aligned 89.20
3 CNN-Token-seq-alig sequence of tokens aligned 96.20
4 CNN-Token-token-alig one token aligned 87.10

Table 1: Accuracy of models (%) on Seq2seq task.

perform quantitative and qualitative analysis
of the generated sequences in terms of the
changed spellings at a word level. Model (3)
achieves an overall F-score of 64.74%, Recall of
88.58% and Precision of 51.02% on the words
to change. It correctly spells 53,041 words
from the total words to change and fails to cor-
rectly change 6,839 words. However, it in-
troduces 50,914 incorrect changes (newly mis-
spelled words or infelicitous corrections).

Error analysis Examining the generated se-
quences shows that most errors are at the level
of one character (duplicating or substituting one
character) and the generated words are very
similar to the reference. This is similar to the
conclusion of Tiedemann (2009) that many er-
rors of a character level phrase-based statistical
machine translation for Norwegian and Swedish
are of small length. Furthermore, we find that
most of the not properly corrected words ac-
tually do not have enough representative in-
stances, i.e., most of them occurred only once
in the validation data and were not seen during
the training. The high sparsity of the data is an
interesting challenge for the current neural net-
works for which more research is needed.

With the settings of our experiments, the high
Recall of the model at a word level indicates that
it can be used for detecting errors and words to
normalise but not for automatically fixing them
because of its low Precision. Actually the re-
ported low Precision is not that dramatic as it
might seem because it is aggressive, i.e., a sin-
gle wrong character means the entire word is
wrong. Besides improving our inference set-
tings, a better metric for evaluating such cases
is needed.

Effect We evaluate the effect of spelling correc-
tion and normalisation, as a pre-processing step
for downstream tasks, on detecting binary Se-
mantic Textual Similarity. We chose this task
because it is one of the few available tasks for
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ALG we are aware of. We apply our spelling
correction and normalisation on the ALG data
reported by (Adouane et al., 2019). We repli-
cate the best performing model for which the
authors report an accuracy of 92.76%, and we
get an accuracy of 94.40% with the same set-
tings. The gain indicates that the spelling cor-
rection and normalisation is potentially a useful
pre-processing step for downstream tasks.

7 Conclusion and Future Work

We compiled a new parallel corpus for ALG with
linguistically motivated decisions for spelling cor-
rection and normalisation. Considerations such as
being practical to implement and suitability for our
goals are taken into account. We designed, imple-
mented and tested 2 deep neural network architec-
tures trained end-to-end to capture the knowledge
encoded in the corrected and normalised corpus.
The results showed that a CNN token-sequence
encoder and an LSTM decoder performed the best
when including context information. Additionally,
applying a token aligner on the input data yielded
better performance compared to the non-aligned
data. Even though, with the current inference set-
tings, the model generated some errors at a charac-
ter level mainly due to the data sparsity, it is gen-
eral and does not require extra resources except a
parallel corpus. Hence it could be applied to other
languages with the same settings.

In future work, we plan to improve the current
inference mode by investigating other settings, im-
prove the decoder by pre-training on the corrected
and normalised data and a large MSA corpus to
avoid generating incorrect character sequences.
Moreover, we will evaluate the model extrinsically
by using it to pre-process data for tasks such as
code-switch detection, and topic detection to see
how much it helps or hinders attempts to tackle
these tasks.
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Abstract

We compare different LSTMs and transformer
models in terms of their effectiveness in nor-
malizing dialectal Finnish into the normative
standard Finnish. As dialect is the common
way of communication for people online in
Finnish, such a normalization is a necessary
step to improve the accuracy of the existing
Finnish NLP tools that are tailored for norma-
tive Finnish text. We work on a corpus consist-
ing of dialectal data from 23 distinct Finnish
dialect varieties. The best functioning BRNN
approach lowers the initial word error rate of
the corpus from 52.89 to 5.73.

1 Introduction

Normalization is one of the possible pre-
processing steps that can be applied to various text
types in order to increase their compatibility with
tools designed for the standard language. This ap-
proach can be taken in an essentially similar man-
ner with dialectal texts, historical texts or collo-
quial written genres, and can be beneficial also
as one processing step with many types of spoken
language materials.

Our study focuses to the normalization of di-
alect texts, especially within the format of tran-
scribed dialectal audio recordings, published pri-
marily for linguistic research use. However, the
dialectal correspondences in this kind of material
are comparable to phenomena in other texts where
dialectal features occur, the results are expected to
be generally applicable.

This paper introduces a method for dialect tran-
script normalization, which enables the possibility
to use existing NLP tools targeted for normative
Finnish on these materials. Previous work con-
ducted in English data indicates that normaliza-
tion is a viable way of improving the accuracy of
NLP methods such as POS tagging (van der Goot
etal.,2017). This is an important motivation as the
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non-standard colloquial Finnish is the de facto lan-
guage of communication on a multitude of internet
platforms ranging from social media to forums and
blogs. In its linguistic form, the colloquial dialec-
tal Finnish deviates greatly from the standard nor-
mative Finnish, a fact that lowers the performance
of the existing NLP tools for processing Finnish
on such text.

2 Related work

Automated normalization has been tackled in the
past many times especially in the case of histori-
cal text normalization. A recent meta-analysis on
the topic (Bollmann, 2019) divides the contempo-
rary approaches into five categories: substitution
lists like VARD (Rayson et al., 2005) and Norma
(Bollmann, 2012), rule-based methods (Baron
and Rayson, 2008; Porta et al., 2013), edit dis-
tance based approaches (Hauser and Schulz, 2007;
Amoia and Martinez, 2013), statistical methods
and most recently neural methods.

For statistical methods, the most prominent re-
cent ones have been different statistical machine
translation (SMT) based methods. These methods
often assimilate the normalization process with a
regular translation process by training an SMT
model on a character level. Such methods have
been used for historical text (Pettersson et al.,
2013; Hamildinen et al., 2018) and contemporary
dialect normalization (Samardzic et al., 2015).

Recently, many normalization methods utilized
neural machine translation (NMT) analogously to
the previous SMT based approaches on a char-
acter level due to its considerable ability in ad-
dressing the task. Bollmann and Sggaard (2016)
have used a bidirectional long short-term mem-
ory (bi-LSTM) deep neural network to normalize
historical German on a character level. The au-
thors have also tested the efficiency of the model

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 141-146
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when additional auxiliary data is used during the
training phase (i.e. multi-task learning). Based on
their benchmarks, normalizations using the neural
network approach outperformed the ones by con-
ditional random fields (CRF) and Norma, where
models trained with the auxiliary data generally
had the best accuracy.

Tursun and Cakici (2017) test out LSTM and
noisy channel model (NCM), a method commonly
used for spell-checking text, to normalize Uyghur
text. In addition to the base dataset (=~ 200
sentences obtained from social networks, auto-
matically and manually normalized), the authors
have generated synthetic data by crawling news
websites and introducing noise in it by substitut-
ing characters with their corresponding corrupted
characters at random. Both of the methods have
normalized the text with high accuracy which il-
lustrates the their effectiveness. Similarly, Man-
dal and Nanmaran (2018) had employed an LSTM
network and successfully normalized code-mixed
data with an accuracy of 90.27%.

A recent study on historical English letters
(Haméldinen et al., 2019) compares different
LSTM architectures finding that bi-directional re-
current neural networks (BRNN) work better than
one-directional RNNs, however different attention
models or deeper architecture do not have a posi-
tive effect on the results. Also providing additional
data such as social metadata or century informa-
tion makes the accuracy worse. Their findings
suggest that post-processing is the most effective
way of improving a character level NMT normal-
ization model. The same method has been suc-
cessfully applied in OCR post-correction as well
(Hamaéldinen and Hengchen, 2019).

3 Data

Finnish dialect materials have been collected sys-
tematically since late 1950s. These materials are
currently stored in the Finnish Dialect Archive
within Institute for the Languages of Finland, and
they amount all in all 24,000 hours. The ini-
tial goal was to record 30 hours of speech from
each pre-war Finnish municipality. This goal was
reached in the 70s, and the work evolved toward
making parts of the materials available as pub-
lished text collections. Another approach that was
initiated in the 80s was to start follow-up record-
ings in the same municipalities that were the tar-
gets of earlier recording activity.

142

Later the work on these published materials has
resulted in multiple electronic corpora that are cur-
rently available. Although they represent only a
tiny fraction of the entire recorded material, they
reach remarkable coverage of different dialects
and varieties of spoken Finnish. Some of these
corpora contain various levels of manual annota-
tion, while others are mainly plain text with as-
sociated metadata. Materials of this type can be
characterized by an explicit attempt to represent
dialects in linguistically accurate manner, having
been created primarily by linguists with formal
training in the field. These transcriptions are usu-
ally written with a transcription systems specific
for each research tradition. The result of this type
of work is not simply a text containing some di-
alectal features, but a systematic and scientific
transcription of the dialectal speech.

The corpus we have used in training and testing
is the Samples of Spoken Finnish corpus (Institute
for the Languages of Finland, 2014). It is one of
the primary traditional Finnish dialect collections,
and one that is accompanied with hand-annotated
normalization into standard Finnish. The size of
corpus is 696,376 transcribed words, of which
684,977 have been normalized. The corpus cov-
ers 50 municipalities, and each municipality has
two dialect samples. The materials were originally
published in a series between 1978-2000. The
goal was to include various dialects systematically
and equally into the collection. The modern dig-
ital corpus is released under CC-BY license, and
is available with its accompanying materials and
documentation in the Language Bank of Finland.'

The data has been tokenized and the normative
spellings have been aligned with the dialectal tran-
scriptions on a token level. This makes our task
with normalization model easier as no preprocess-
ing is required. We randomly sort the sentences in
the data and split them into a training (70% of the
sentences), validation (15% of the sentences) and
test (15% of the sentences) sets.

4 Dialect normalization

Our approach consists of a character level NMT
model that learns to translate the dialectal Finnish
to normative spelling. We experiment with two
different model types, one being an LSTM based
BRNN (bi-directional recurrent neural network)
approach as taken by many in the past, and the

Ihttp://urn.fi/l;l:lfn:nbn:fi:l}:>7201407141



other is a transformer model as it has been reported
to outperform LSTMs in many other sequence-to-
sequence tasks.

For the BRNN model, we use mainly the Open-
NMT (Klein et al., 2017) defaults. This means that
there are two layers both in the encoder and the de-
coder and the attention model is the general global
attention presented by Luong et al. (2015). The
transformer model is that of Vaswani et al. (2017).
Both models are trained for the default 100,000
training steps.

We experiment with three different ways of
training the models. We train a set of models on
a word level normalization, which means that the
source and target consist of single words split into
characters by white spaces. In order to make the
models more aware of the context, we also train a
set of models on chunked data. This means that
we train the models by feeding in 3 words at a
time; the words are split into characters and the
word boundaries are indicated with an underscore
character (_). Lastly we train one set of models
on a sentence level. In this case the models are
trained to normalize full sentences of words split
into characters and separated by underscores.

In terms of the size of the training data, the word
level data consists of 590k, the chunk level of 208k
and the sentence level of 35k parallel rows. All of
the models use the same split of training, testing
and validation datasets as described earlier. The
only difference is in how the data is fed into the
models.

5 Results & Evaluation

We evaluate the methods by counting the word er-
ror rate” (WER) of their output in comparison with
the test dataset. WER is a commonly used metric
to assess the accuracy of text normalization.
Table 1 shows the WERs of the different meth-
ods. The initial WER of the non normalized di-
alectal text in comparison with the normalized text
is shown in the column No normalization. As we
can see from this number, the dialectal text is very
different from the standardized spelling. Both the
word level and chunk level normalization methods
reach to a very high drop in the WER meaning that
they manage to normalize the text rather well. Out
of these, the chunk level BRNN achieves the best
results. The performance is the worst in the sen-

’We use the implementation in

https://github.com/nsmartinez/WERpp

provided
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tence level models, even to a degree that the trans-
former model manages to make the WER higher
than the original.

5.1 Error analysis

Table 2 illustrates the general performance of the
model, with errors marked in bold. The example
sentence fragments are chosen by individual fea-
tures they exhibit, as well as by how well they rep-
resent the corpus data.

Since the model accuracy is rather high, the er-
rors are not very common in the output. We can
also see clearly that the chunk model is able to pre-
dict the right form even when form is reduced to
one character, as on line 5.

Since the dialectal variants often match the stan-
dard Finnish, over half of the forms need no
changes. The model learns this well. Vast ma-
jority of needed changes are individual insertions,
replacements or deletions in the word end, as il-
lustrated in Table 2 at lines 2, 4, 6, 7, 15, 16, 17
and 18. However, also word-internal changes are
common, as shown at lines 11 and 12. Some dis-
tinct types of common errors can be detected, and
they are discussed below.

In some cases the errors are clearly connected
to the vowel lengthening that does not mark or-
dinary phonological contrast. Line 3 shows how
the dialectal pronoun variant of e ‘he / she’, het,
is occasionally present in dialect material as heet,
possibly being simply emphasized in a way that
surfaces with an unexpected long vowel. This kind
of sporadic vowel lengthening is rare, but seems to
lead regularly to a wrong prediction, as these pro-
cesses are highly irregular. This example also il-
lustrates that when the model is presented a rare or
unusual form, it seems to have a tendency to return
prediction that has overgone no changes at all.

The model seems to learn relatively well the
phonotactics of literary Finnish words. However,
especially with compounds it shows a trait to clas-
sify word boundaries incorrectly. A good exam-
ple of this is ratapolokyntervaaus” ’kon ‘railroad
tie treatment machine’, for which the correct anal-
ysis would be ‘rata#polkyn#tervaus#kone’3, but
the model proposes ‘rata#pdlkyn#fterva#fuskoinen’
which roughly translates as ‘railroad tie creosote
believer’. The latter variant is semantically quite
awkward, but morphologically possible. This

3Here # is used for the illustrative purpose to indicate
word boundaries within the compound



No normalization Words Chunks of 3 Sentences
BRNN | Transformer | BRNN | Transformer | BRNN | Transformer
WER 52.89 6.44 6.34 5.73 6.1 46.52 53.23
Table 1: The word error rates of the different models in relation to the test set
source correct target | prediction There are cases where dialectal wordforms are
1| joo joo joo ambiguous without context, i.e. standard Finnish
2| ette ettd ettd cases adessive (-lla) and allative (-lle) are both
3| heet he heet marked with single character (-1). Various sandhi-
4| uskovah uskovat uskovat phenomena at the word boundary also blurren the
5| n niin niin picture by introducing even more possible inter-
6| ette etti etti pretations, such as vuoristol laitaa, where the cor-
71 sinn sinne sinne rect underlying form of the first element would
81 ei ei ei be vuoriston ‘mountain-GEN’. The decision about
9 vole ole ole correct form cannot be done with information pro-
0 vided only by single forms in isolation. The chunk
111 kukhaan Kukaan Kukaan level n.lodel shows smal'l t.)ut consistent improve-
— — — ments in these cases. This is expected, as the word
12| ymmairtdnny | ymmirtinyt | ymméirtdnyt )
= = = level model simply has no context to make the cor-
13| menni menni menni o
i rect prediction.
5] Argjirvey Artjarven Artjarven . It ¥s 1dmporlt.ant Fo 'note that. s.1nce t.he mofdel
16 Kirkolt Kirkolta Kirkolta is tra1n§ on .1ngu1stlc trgnscrlptlons, its perfor-
= mance is also limited to this context. For example,
17| mennéh mennéin menniin ] L
- . . in the transcriptions all numbers, such as years and
18] sinneh SIne SINNe dates, are always written out as words. Thereb
19| Hiitelah Hiitelazn Hiitelassa ’ Y ' y

Table 2: Examples from input, output and prediction

phonotactic accuracy makes selection of correct
analysis from multiple predicted variants more dif-
ficult, as it is not possible to easily detect mor-
phologically valid and invalid forms. The longer
words such as this also have more environments
where normalization related changes have to be
done, which likely makes their correct prediction
increasingly difficult.

In word level model there are various errors re-
lated to morphology that has eroded from the di-
alectal realizations of the words, or correspond to
a more complicated sequences. Long vowel se-
quences in standard Finnish often correspond to
diphthongs or word internal -h- characters, and
these multiple correspondence patterns may be
challenging for the model to learn. Chunk model
performs few percentages better than word model
in predictions where long vowel sequences are
present, which could hint that the model bene-
fits from wider syntactic window the neighbouring
words can provide. On line 19 a case of wrongly
selected spatial case is illustrated.
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the model has never seen a number, and is doesn’t
process them either. Improving the model with
additional training data that accounts this phe-
nomena should, on the other hand, be relatively
straightforward. Similarly the model has had only
very limited exposure to upper case characters and
some of the punctuation characters used in ordi-
nary literary language, which should all be taken
into account when attempting to use the model
with novel datasets.

6 Conclusion & Future work

The normalization method we have proposed
reaches remarkable accuracy with this dialectal
transcription dataset of spoken Finnish. The er-
ror rate is so low that even if manual normaliza-
tion would be the ultimate target, doing this in
combination with our approach would make the
work manifold faster. We have tested the results
with large enough material that we assume simi-
lar method would work in other conditions where
same preliminary conditions are met. These are
sufficiently large amount of training data and sys-
tematic transcription system used to represent the
dialectal speech.



Future work needs to be carried out to evaluate
the results on different dialectal Finnish datasets,
many of which have been created largely within
the activities described earlier, but which are also
continuously increasing as research on Finnish is a
very vibrant topic in Finland and elsewhere. This
method could also be a very efficient in increas-
ing the possibilities for natural language process-
ing of other contemporary spoken Finnish texts.
Our method could also be easily used within OCR
correction workflows, for example, as a step after
automatic error correction.

Situation is essentially similar, to our knowl-
edge, also in other countries with comparable his-
tory of dialectal text collection. Already within
Finnish archives there are large collections of di-
alectal transcriptions in Swedish, as well as in the
endangered Karelian and Sami languages. Apply-
ing our method into these resources would also di-
rectly improve their usability. However, it has to
be kept in mind that our work has been carried out
in a situation where the manually annotated train-
ing data is exceptionally large. In order to under-
stand how widely applicable our method is for an
endangered language setting, it would be impor-
tant to test further how well the model performs
with less data.

The performance with less data is especially
crucial with low-resource languages. Many en-
dangered languages around the world have text
collections published in the last centuries, which,
however, customarily use a linguistic transcription
system that deviates systematically from the cur-
rent standard orthography. Such a legacy data can
be highly useful in language documentation work
and enrich modern corpora, but there are chal-
lenges in normalization and further processing of
this data (Blokland et al., 2019). The approach
presented in our paper could be applicable into
such data in various language documentation sit-
uations, and the recent interest the field has dis-
played toward language technology creates good
conditions for further integration of these methods
(Gerstenberger et al., 2016).

We have released the chunk-level BRNN nor-
malization model openly on GitHub as a part of an
open-source library called Murre*. We hope that
the normalization models developed in this paper
are useful for other researchers dealing with a va-
riety of downstream Finnish NLP tasks.

*https://github.com/mikahama/murre
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Abstract

In relevance classification, we hope to
judge whether some utterances expressed
on a topic are relevant or not. A usual
method is to train a specific classifier
respectively for each topic. However, in
that way, it easily causes an underfitting
problem in supervised learning model,
since annotated data can be insufficient for
every single topic. In this paper, we explore
the common features beyond different
topics and propose our cross-topic
relevance embedding aggregation
methodology (CREAM) that can expand
the range of training data and apply what
has been learned from source topics to a
target topic. In our experiment, we show
that our proposal could capture common
features within a small amount of
annotated data and improve the
performance of relevance classification
compared with other baselines.

1 Introduction

Relevance classification is a task of automatically
distinguishing relevant information for a specific
topic (Kimura et al., 2019). It can be regarded as a
preprocessing task of stance detection, since
potential stances should be refined into relevant

Topic: we should move Tsukiji Market to Toyosu.

Utterancel: I do not agree to move Tsukiji Market
because of its long history. Relevance: relevant

Utterance2: The number of foreign tourists to Japan
has been on the rise. Relevance: irrelevant

Table 1: An example of relevance classification.

ones to improve accuracy and efficiency. In Table
1, we show a simple example of relevance
classification task in NTCIR-14.

Here utterancel is relevant to the topic not only
for the contained topic words but also for its related
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semantics, and then we could leverage its features
available for further stance detection. On the
contrary, utterance? is irrelevant to the topic, and
its further calculation of stance detection is
meaningless. Previously, the relevance task could
be approached in an unsupervised way by
calculating pairwise semantic distances between
topic and utterance (Achananuparp et al., 2008;
Kusner et al., 2015). However, in most instances,
their performance is not as good as a supervised
approach. As to the supervised method,
traditionally, a specific topic-oriented classifier
could be trained for prediction on a single topic
(Hasan and Ng, 2013; Y Wang et al., 2017), but this
method actually builds up an isolation among
different topics and wastes existing annotated data
for new predictions.

Cross-topic classification, which enables the
classifier to adapt different topics even in different
domains, is an alternative to a supervised approach
(Augenstein et al., 2016; Xu et al., 2018). It allows
the model to assimilate the common features from
existing topics and make inferences for a new topic.
For example, in the NTCIR-14 relevance
classification task, we could start with an existing
classifier containing a well-prepared set of ground-
truth data from some other Tsukiji Market history
or economic topics, to give a prediction about
Tsukiji Market relocation topic.

In this paper, aiming to alleviate insufficient
annotated data problems for a specific topic, we
have concentrated on cross-topic relevance
classification by our novel CREAM proposal. The
basic idea of the CREAM method is to capture the
common pairwise features between existing topic
and utterance, and then apply them to relevance
prediction on a target topic. By analyzing F1-
scores in experiment results, we have known that
CREAM has shown its better performance on a
known topic’s relevance classification compared
with baselines. In addition, an associated value to

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 147-152
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



the unknown topic relevance has also been
evaluated.

2 Related Work

To establish a cross-topic relevance classification
model for supervised learning, here we regard it as
a two-step procedure including pairwise text
embedding and binary text classifier. Besides, the
literatures around stance detection bright us
inspiration as well.

2.1 Text Embedding

There are 3 well-known embedding methods
named Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014) and fastText (Joulin et al.,
2016) for word-level representation. Although
GloVe and fastText show higher performance on
some specific aspects, there's no escaping the fact
that Word2Vec (CBOW, Skip-Gram) is most
popular and widely used among different
languages.

As to sentence-level embeddings, the Word2 Vec
inventor Mikolov proposed doc2vec (Quoc et al.,
2014), as its name implies, to learn sentence or
document embeddings. What’s more, averaged
word embeddings (Han and Baldwin, 2016) is also
a common sentence-level embedding method.

2.2 Text Classifier

There are several classical ML/DL models utilized
for text classification such as Support Vector
Machine (SVM) (Vapnik, 1998; Vapnik, 2013),
and an RNN variant Long Short-term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). It is
noteworthy that SVM has an advantage in
processing low-resource data.

Besides, nowadays we also could utilize a pre-
trained model such as BERT (Devlin et al., 2018)
or ELMO (Matthew et al., 2018) as a contextual
text classifier. However, note that they are always
pre-trained by a tremendous amount of open data
(E.X. Wikipedia), we still need fine-tuning data on
a large scale for root domain recognition.

2.3 Stance Detection

Stance detection, which is the task of classifying
the attitude expressed in text towards a target, also
provides us with valuable inspiration on text
classification. = For  example,  Augenstein
(Augenstein et al., 2016) tried to utilize conditional
LSTM encoding to build a representation for
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Prediction Layer

Cross Topic SVM Layer

Subtraction

Sentence Aggregation
Layer

Word Embedding
Layer

Topic T Utterance U

Figure 1: The overall architecture of CREAM.

stance and target independently, and an end-to-end
memory network (Mohtarami et al., 2018), which
integrates CNN with LSTM, has also been
presented to solve this classification task. What’s
more, a simple but tough-to-beat baseline (Riedel
et al., 2017) shows the potential of TF-IDF and
cosine similarity on this pairwise classification
task. Note that relevance classification can be
regarded as a preprocessing of stance detection,
since irrelevant stances should be excluded before
being classified into support, against or even a
neutral stance.

3 Methodology

In this section, we would like to give a
comprehensive introduction about our proposed
cross-topic method CREAM, for supervised
relevance classification. The overall architecture of
CREAM is depicted in Figure 1. As described in
the previous section, we briefly divide the whole
model into 2 parts including text embedding and
text classifier. In the text embedding part, we have
implemented Word Embedding Layer and
Sentence Aggregation Layer, and as to the text
classifier, the SVM Layer and Prediction Layer
would achieve their functions. The expected input
includes a pair of topic text and topic-oriented
utterance in the same domain, and the output
would be predicted binary relevance label. In the
following, we would illustrate the implementation
details of each layer in CREAM.

3.1 Word Embedding Layer

Here we adopt pre-trained Word2Vec embeddings
to represent each word of two inputs (a topic text 7’
containing » words and a topic-oriented utterance
U, e.g., topic and utterancel in Table 1). Note that
utterance could be much longer than topic text, so
here we select the same number of words as topic
T from utterance U. For each selected word of 7,



we select one word with the highest Word2Vec
similarity from U. The outputs of this layer are two
sequences of word vectors with the same length
T = {1y tn} A0 U={ur,itn) -

3.2

The sentence aggregation layer is the key to our
cross-topic method CREAM. Here we manage to
aggregate topic and utterance vectors by two steps
to represent common features.

Separated Aggregation: In this step, we aim to
provide a sentence-level embedding for 7 and U

Sentence Aggregation Layer

respectively. Here we separately aggregate |T |

word vectors for topic and utterance by averaged
word embeddings:

20 G2t (M
n n
Topic-Utterance Aggregation: Here we further

concentrate on applying an aggregation between
topic and utterance to represent the common
features of relevance. As we have known there
ex1sts a classmal conclusmn from Word2Vec:
klng man+ woman queen we could get an inference
that there exist some common features between
word pairs (king, man) and (queen, woman) since
king—man = queen —woman 1s still workable.

As to sentence-level relevance classification,
here we also conduct a vector subtraction between
topic 7 and utterance ¢ to represent relevance
vector g as below.

—

T =

—

U =

r-u

7l

It is noteworthy that here we normalize each
dimension value of relevance vector g by
dividing |7l to limit the subtraction result in the
same range. Therefore, assuming that we have a
relevance vector R, (topicl) and R, (topic2), they
would be treated equally for the same cross-topic
training if they all denote the same relevant
relationship (e.g., R, represents a utterance is
relevant to topicl, R, represents another utterance
is relevant to topic2).

3.3 Cross-Topic SVM Layer

R= )

In this layer, we decide to adopt a supervised
learning model SVM for cross-topic binary
classification. The reason is because of low-
resource data we have stated in chapter 2.2. In our
case, SVM can efficiently perform a non-linear
classification using kernel function (Mark et al.,
1964) to fit the maximum-margin hyperplane in a
transformed feature space. Here the following
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sigmoid kernel function for relevance vectors g
and 7 makes SVM acted as multi-layer neural
networks even they are different topics.
K(R.,R,)=tanh(a R R,~b) 3)
After applying the kernel function, the target
function of maximum-margin hyperplane could be
written in:
v =sign( e 1,K (R\x)=h)
ieS
Here h*, a* are optimal parameters to distinguish
binary hyperplane, and ¢ is the correct class label
for training,.

“)

3.4 Prediction Layer

We predict the relevance label of each topic-
utterance pair via sigmoid-fitting method:
1
" 1+ exp(Ay,+B) ®)
Where we apply the sigmoid operation to get the
predicted probability for relevant and irrelevant
classes with parameters 4 and B.

4 Experiments

In this section, we would introduce the evaluation
results of our proposed methodology. We have
evaluated our CREAM on the NTCIR-14 QALab
dataset (Kimura et al., 2019). Note that NTCIR-14
QALab dataset maybe is the first dataset focusing
on relevance classification besides fact-check and
stance detection. Besides our own method, we
have also taken three baseline approaches to cross-
topic relevance classification.

Word Mover’s Distance (WMD): this classical
unsupervised learning method is often utilized to
calculate a word travel cost between two
documents. Here we predict the relevance label
based on switch cost boundary from utterance to its
topic.

Bidirectional LSTM (BiLSTM): this approach
receives encoded-word sequences (topic and
utterance) and makes a concatenation to merge
them into one sequence. Finally, the concatenated
vector would be fed into its prediction layer to give
a relevance label prediction.

BERT: There is no doubt that BERT is the state-
of-the-art model to solve NLP issues such as text
classification. It is well-known that BERT could
receive pairwise texts as inputs and output the label
between them. Therefore, BERT is also applicable
to this relevance classification theoretically. Here
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Figure 2: The averaged precision recall and F1-
score of CREAM and baselines in experiment 1.

we beforehand input labelled topic and utterance
separately into pre-trained BERT for fine-tuning.

4.1 Experiment dataset

NTCIR-14 QALab: This dataset is a Japanese
collection for the relevance classification task,
which contains around 10000 topic-oriented
utterances on 14 different topics. Although task
organizers do manual labeling by crowdsourcing,
it is still difficult to provide an even larger amount
of labeled dataset for each topic. Therefore, the
traditional method with low-resource data would
easily cause an underfitting problem.

4.2 Experiment Setup

Our initial word embeddings are obtained from the
pre-trained Wikipedia word vectors (Suzuki et al.,
2016).

In experiment 1, we divide our dataset into
training data (1620) and test data (180) with the
proportion 9:1. Note that there is no new topic in
test data of experiment 1 since all topics have been
included for training in the learning phase.

In experiment 2, we hope to verify the
performance of our method compared with others
on unknown topic relevance prediction. Therefore,
we extract 13 topics’ data for training to predict the
last one topic in cross-validation.

4.3 Experiment Results

We mainly use F1-score to evaluate classification
performance. Figure 2 illustrates the F1-score and
averaged precision/recall as well among four
methods in experiment 1, and the averaged
evaluation results of cross-validation in
experiment 2 have been summarized in Figure 3.
Furthermore, the relationship between the
threshold of word mover’s distance and F1 score is

1 H Precision
H Recall

Fl-score
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Figure 3: The averaged precision recall and F1-
score of CREAM and baselines in experiment 2.

shown as an example in Figure 4. We just go
through all the potential thresholds to find out the
optimal one on the peak point to give a prediction
for test data.

5 Discussion

As shown in Figure 2, we have known our
CREAM has improved performance of relevance
classification through experiment 1 since its F1-
score is higher than others. The potential reasons
of improvement are listed in the below.

e The sentence aggregation layer could extract
common features between topic-utterance
pairs and demonstrate the pairwise relevance
degree by sentence aggregation processing.

e The cross-topic SVM layer shows high
performance especially in low-resource data
even compared with BiLSTM and BERT
model. The BERT model pre-trained with
open data perhaps is limited by the fine-
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Figure 4: The relationship between the threshold
of word mover’s distance and F1 score.

tuning need for larger-scale data.

As to the unknown topic’s relevance prediction
in experiment 2, the result of our method is close
to the unsupervised WMD method which shows a



powerful predictive power to new data. We believe
our CREAM method has an associated value on
relevance prediction for unknown topics since the
impact of a specific topic has been deducted by
topic-utterance aggregation across different topics.

6 Conclusion and Future Work

In this paper, we have proposed a novel cross-topic
aggregation model named CREAM to generalize
the common features for solving low-resource data
problems in relevance classification. Experiment
results show its excellent performance on a known
topic’s relevance classification by F1-score over
baselines. Meanwhile, we have also known that
CREAM has an associated value to the unknown
topic relevance prediction.

In the future, CREAM for relevance
classification deserves more experiments with
different datasets. For example, we could evaluate
our methodology on multilingual datasets, in order
to make it more impressive. Moreover, we could
also input extern synonyms from the domain-based
thesaurus to expand topic texts. Finally, self-
attention mechanisms can be a promising
improvement for imbalance length problems
between topic and utterance instead of Word2Vec-
style extraction.
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Abstract

We study methods for learning sentence em-
beddings with syntactic structure. We focus
on methods of learning syntactic sentence-
embeddings by using a multilingual parallel-
corpus augmented by Universal Parts-of-
Speech tags. We evaluate the quality of the
learned embeddings by examining sentence-
level nearest neighbours and functional dis-
similarity in the embedding space. We also
evaluate the ability of the method to learn syn-
tactic sentence-embeddings for low-resource
languages and demonstrate strong evidence for
transfer learning. Our results show that syntac-
tic sentence-embeddings can be learned while
using less training data, fewer model parame-
ters, and resulting in better evaluation metrics
than state-of-the-art language models.

1 Introduction

Recent success in language modelling and repre-
sentation learning have largely focused on learn-
ing the semantic structures of language (Devlin
et al., 2018). Syntactic information, such as part-
of-speech (POS) sequences, is an essential part
of language and can be important for tasks such
as authorship identification, writing-style analysis,
translation, etc. Methods that learn syntactic rep-
resentations have received relatively less attention,
with focus mostly on evaluating the semantic in-
formation contained in representations produced
by language models.

Multilingual embeddings have been shown to
achieve top performance in many downstream
tasks (Conneau et al., 2017; Artetxe and Schwenk,
2018). By training over large corpora, these mod-
els have shown to generalize to similar but unseen
contexts. However, words contain multiple types
of information: semantic, syntactic, and morpho-
logic. Therefore, it is possible that syntactically
different passages have similar embeddings due
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to their semantic properties. On tasks like the
ones mentioned above, discriminating using pat-
terns that include semantic information may result
in poor generalization, specially when datasets are
not sufficiently representative.

In this work, we study methods that learn
sentence-level embeddings that explicitly capture
syntactic information. We focus on variations
of sequence-to-sequence models (Sutskever et al.,
2014), trained using a multilingual corpus with
universal part-of-speech (UPOS) tags for the tar-
get languages only. By using target-language
UPOS tags in the training process, we are able
to learn sentence-level embeddings for source lan-
guages that lack UPOS tagging data. This prop-
erty can be leveraged to learn syntactic embed-
dings for low-resource languages.

Our main contributions are: to study whether
sentence-level syntactic embeddings can be
learned efficiently, to evaluate the structure of
the learned embedding space, and to explore the
potential of learning syntactic embeddings for
low-resource languages.

We evaluate the syntactic structure of
sentence-level embeddings by performing
nearest-neighbour (NN) search in the embedding
space. We show that these embeddings exhibit
properties that correlate with similarities between
UPOS sequences of the original sentences.
We also evaluate the embeddings produced by
language models such as BERT (Devlin et al.,
2018) and show that they contain some syntactic
information.

We further explore our method in the few-shot
setting for low-resource source languages without
large, high quality treebank datasets. We show its
transfer-learning capabilities on artificial and real
low-resource languages.

Lastly, we show that training on multilingual
parallel corpora significantly improves the learned

Proceedings of the 2019 EMNLP Workshop W-NUT: The 5th Workshop on Noisy User-generated Text, pages 153—-159
Hong Kong, Nov 4, 2019. (©2019 Association for Computational Linguistics



syntactic embeddings. This is similar to exist-
ing results for models trained (or pre-trained) on
multiple languages (Schwenk, 2018; Artetxe and
Schwenk, 2018) for downstream tasks (Lample
and Conneau, 2019).

2 Related Work

Training semantic embeddings based on multilin-
gual data was studied by MUSE (Conneau et al.,
2017) and LASER (Artetxe and Schwenk, 2018) at
the word and sentence levels respectively. Multi-
task training for disentangling semantic and syn-
tactic information was studied in (Chen et al.,
2019). This work also used a nearest neigh-
bour method to evaluate the syntactic properties
of models, though their focus was on disentangle-
ment rather than embedding quality.

The syntactic content of language models was
studied by examining syntax trees (Hewitt and
Manning, 2019), subject-object agreement (Gold-
berg, 2019), and evaluation on syntactically al-
tered datasets (Linzen et al., 2016; Marvin and
Linzen, 2018). These works did not examine mul-
tilingual models.

Distant supervision (Fang and Cohn, 2016;
Plank and Agic, 2018) has been used to learn POS
taggers for low-resource languages using cross-
lingual corpora. The goal of these works is to learn
word-level POS tags, rather than sentence-level
syntactic embeddings. Furthermore, our method
does not require explicit POS sequences for the
low-resource language, which results in a simpler
training process than distant supervision.

3 Method

3.1 Architecture

We iterated upon the model architecture pro-
posed in LASER (Artetxe and Schwenk, 2018).
The model consists of a two-layer Bi-directional
LSTM (BiLSTM) encoder and a single-layer
LSTM decoder. The encoder is language agnos-
tic as no language context is provided as input. In
contrast to LASER, we use the concatenation of
last hidden and cell states of the encoder to initial-
ize the decoder through a linear projection.

At each time-step, the decoder takes an embed-
ding of the previous POS target concatenated with
an embedding representing the language context,
as well as a max-pooling over encoder outputs.
Figure 1 shows the architecture of the proposed
model.
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Table 1: Hyperparameters

Parameter Value
Number of encoder layers 2
Encoder forward cell size 128
Encoder backward cell size 128
Number of decoder layers 1
Decoder cell size 512
Input BPE vocab size 40000
BPE embedding size 100
UPOS embedding size 100
Language embedding size 20
Dropout rate 0.2
Learning rate le-4
Batch size 32

The input embeddings for the encoder were cre-
ated using a jointly learned Byte-Pair-Encoding
(BPE) vocabulary (Sennrich et al., 2016) for all
languages by using sentencepiece’

3.2 Training

Training was performed using an aligned paral-
lel corpus. Given a source-target aligned sentence
pair (as in machine translation), we:

1. Convert the sentence in the source language
into BPE

Look up embeddings for BPE as the input to
the encoder

Convert the sentence in a target language into
UPOS tags, in the tagset of the target lan-
guage.

Use the UPOS tags in step 3 as the targets for
a cross-entropy loss.

Hence, the task is to predict the UPOS sequence
computed from the translated input sentence.

The UPOS targets were obtained using Stand-
fordNLP (Qi et al., 2018) 2. Dropout with a drop
probability of 0.2 was applied to the encoder. The
Adam optimizer (Kingma and Ba, 2015) was used
with a constant learning rate of 0.0001. Table 1
shows a full list of the hyperparameters used in
the training procedure.

3.3 Dataset

To create our training dataset, we followed an ap-
proach similar to LASER. The dataset contains 6

"https://github.com/google/sentencepiece
*https://stanfordnlp.github.io/stanfordnlp/index.html
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Figure 1: Proposed architecture.

languages: English, Spanish, German, Dutch, Ko-
rean and Chinese Mandarin. These languages use
3 different scripts, 2 different language orderings,
and belong to 4 language families.

English, Spanish, German, and Dutch use a
Latin-based script. However, Spanish is a Roman-
tic language while the others are Germanic lan-
guages. Chinese Mandarin and Korean are in-
cluded because they use non-latin based scripts
and originate from language families distinct from
the other languages. Although the grammatical
rules vary between the selected languages, they
share a number of key characteristics such as
the Subject-Verb-Object ordering, except Korean
(which mainly follows the Subject-Object-Verb or-
der). We hope to extend our work to other lan-
guages with different scripts and sentence struc-
tures, such as Arabic, Japanese, Hindi, etc. in the
future.

The dataset was created by using translations
provided by Tatoeba® and OpenSubtitles* (Lison
and Tiedemann, 2016). They were chosen for their
high availability in multiple languages.

Statistics of the final training dataset are shown
in Table 2. Rows and columns correspond to
source and target languages respectively.

3.3.1 Tatoeba

Tatoeba is a freely available crowd-annotated
dataset for language learning. We selected all sen-
tences in English, Spanish, German, Dutch, and
Korean. We pruned the dataset to contain only
sentences with at least one translation to any of
the other languages. The final training set contains
1.36M translation sentence pairs from this source.

3https://tatoeba.org/eng/
*http://opus.nlpl.eu/OpenSubtitles-v2018.php
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3.3.2 OpenSubtitles

We augmented our training data by using the 2018
OpenSubtitles dataset. OpenSubtitles is a publicly
available dataset based on movie subtitles (Lison
and Tiedemann, 2016). We created our training
dataset from selected aligned subtitles by taking
the unique translations among the first million sen-
tences, for each aligned parallel corpus. We fur-
ther processed the data by pruning to remove sam-
ples with less than 3 words, multiple sentences,
or incomplete sentences. The resulting dataset
contains 1.9M translation sentence pairs from this
source.

4 Experiments

We aim to address the following questions:

1. Can syntactic structures be embedded? For

multiple languages?

Can parallel corpora be used to learn syntac-

tic structure for low-resource languages?

. Does multilingual pre-training improve syn-
tactic embeddings?

We address question 1 in Secs. 4.1 and 4.2 by
evaluating the quality of syntactic and semantic
embeddings in several ways. Questions 2 and 3
are addressed in Sec. 4.3 by studying the transfer-
learning performance of syntactic embeddings.

4.1 Quality of Syntactic Embeddings

We studied the quality of the learned syntactic
embeddings by using a nearest-neighbour (NN)
method.

First, we calculated the UPOS sequence of all
sentences in the Tatoeba dataset by using a tagger.
Sentences were then assigned to distinct groups
according to their UPOS sequence, i.e., all sen-
tences belonging to the same group had the same



Table 2: Training Dataset Statistics

English German Spanish Chinese Korean Dutch
English - 521.87k 19451k 41.33k  31.81k 190.86k
German 520.64k - 217.96k 5.67k 021k 12.20k
Spanish  193.01k 217.46k - 159.67k 28.68k  144.82k
Chinese 40.79k  5.62k 159.73k - 0.05k  0.32k
Korean 31.05k  1.37k 28.89k  0.07k - 56.93k
Dutch 215.18k 25.75k  155.35k 0.66k 56.92k -

UPOS sequence.

For all languages except Korean, a held-out test
set was created by randomly sampling groups that
contained at least 6 sentences. For Korean, all
groups containing at least 6 sentences were kept
as the test set since the dataset is small.

During evaluation, we applied max-pooling to
the outputs of the encoder to obtain the syntactic
embeddings of the held-out sentences”.

For each syntactic embedding, we find its top
nearest neighbour (1-NN) and top-5 nearest neigh-
bours (5-NN) in the embedding space for the held-
out sentences, based on their UPOS group.

Given n sentences S {s0,...,Sn—1} and
their embeddings F = {eq,...,e,—_1}, for each
s; there is a set of k gold nearest neighbours
G(i, k) = {90,---,9k-1}, G(i, k) C S such that
d(si,g) < d(s;,s)forallg € G(i,k)ands €
S\ G(i, k), where d(-, -) is the cosine distance.

Given embedding e;, we calculate cosine dis-
tances {d(e;,e;) fore; € E,e; # e;} and sort
them into non-decreasing order d;, < dj; < --- <
d;,_,. We consider the ordering to be unique as
the probability of embedding cosine distances be-
ing equal is very small.

The set of embedded k-nearest neighbours of s;
is defined as

N(i, k) = {sj forj € {jo, ., k-1}}

Finally, the k-nearest neighbours accuracy for s;
is given by

|N(i, k) N G(i, k)|
k

A good embedding model should cluster the
embeddings for similar inputs in the embedding
space. Hence, the 5-NN test can be seen as an in-
dicator of how cohesive the embedding space is.

SEvaluation data will be hosted at

https://github.com/ccliu2/syn-emb

156

Table 3: Syntactic Nearest-Neighbour Accuracy (%)

ISO 1-NN/5-NN Total/Groups
English en  97.27/93.36 2784/160
German de  93.45/86.77 1282/91
Spanish es 93.81/86.24  1503/81
Chinese zh  71.26/61.44 167/22
Korean ko  28.27/18.40 527/40
Dutch nl 74.17/51.71  3171/452

The results are shown in Table 3. The differ-
ences in the number of groups in each language
are due to different availabilities of sentences and
sentence-types in the Tatoeba dataset.

The high nearest neighbours accuracy indicates
that syntax information was successfully captured
by the embeddings. Table 3 also shows that the
syntactic information of multiple languages was
captured by a single embedding model.

4.1.1 Language Model

A number of recent works (Hewitt and Man-
ning, 2019; Goldberg, 2019) have probed lan-
guage models to determine if they contain syn-
tactic information. We applied the same nearest
neighbours experiment (with the same test sets)
on a number of existing language models: Uni-
versal Sentence Encoder (USE) (Cer et al., 2018),
LASER, and BERT. For USE we used models
available from TensorHub®. For LASER we used
models and created embeddings from the official
repository ’.

For BERT, we report the results using max
(BERT),,,4;) and average-pooling (BERT ), ob-
tained from the BERT embedding toolkit® with
the multilingual cased model (104 languages, 12-
layers, 768-hidden units, 12-heads), and “pooled-
output’ (BERT y¢py¢) from the TensorHub version

®https://www.tensorflow.org/hub
"https://github.com/facebookresearch/LASER
8https://github.com/imgarylai/bert-embedding



of the model with the same parameters.

We computed the nearest neighbours experi-
ment for all languages in the training data for
the above models. The results are shown in Ta-
ble 4. The results show that general purpose
language models do capture syntax information,
which varies greatly across languages and models.

The nearest neighbours accuracy of our syn-
tactic embeddings in Table 3 significantly outper-
forms the general purpose language models. Ar-
guably these language models were trained using
different training data. Howeyver, this is a reason-
able comparison because many real-world appli-
cations rely on released pre-trained language mod-
els for syntactically related information. Hence,
we want to show that we can use much smaller
models trained with direct supervision, to obtain
syntactic embeddings with similar or better qual-
ity. Nonetheless, the training method used in this
work can certainly be extended to architectures
similar to BERT or USE.

4.2 Functional Dissimilarity

The experiments in the previous section showed
that the proposed syntactic embeddings formed
cohesive clusters in the embedding space, based
on UPOS sequence similarities. We further stud-
ied the spatial relationships within the embed-
dings.

Word2Vec (Mikolov et al., 2013) examined spa-
tial relationships between embeddings and com-
pared them to the semantic relationships between
words. Operations on vectors in the embedding
space such as King — Man+ Woman = Queen
created vectors that also correlated with similar
operations in semantics. Such semantic compar-
isons do not directly translate to syntactic embed-
dings. However, syntax information shifts with
edits on POS sequences. Hence, we examined
the spatial relationships between syntactic embed-
dings by comparing their cosine similarities with
the edit distances between UPOS sequence pairs.

Given n UPOS sequences U = {ug, ..., Up—1},
we compute the matrix L € R™*", where [;; =
I(u;, u;), the complement of the normalized Lev-
enshtein distance between u; and ;.

Given the set of embedding vectors
{eo,...,en—1} where e; is the embedding for
sentence s;, we also compute D € R™*"™ where
di;j = d(e;,ej). We further normalize d;; to be
within [0, 1] by min-max normalization to obtain

D = minMax(D).
Following (Yin and Shen, 2018), we define the
functional dissimilarity score by

|L - Dl|p
—_—

Intuitively, UPOS sequences that are similar
(smaller edit distance) should be embedded close
to each other in the embedding space, and embed-
dings that are further away should have dissimilar
UPOS sequences. Hence, the functional dissimi-
larity score is low if the relative changes in UPOS
sequences are reflected in the embedding space.
The score is high if such changes are not reflected.

The functional dissimilarity score was com-
puted using sentences from the test set in CoNLL
2017 Universal Dependencies task (Nivre et al.,
2017) for the relevant languages with the provided
UPOS sequences. Furthermore, none of the evalu-
ated models, including the proposed method, were
trained with CoNLL2017 data.

We compared the functional dissimilarity scores
of our syntactic representations against embed-
dings obtained from BERT and LASER, to further
demonstrate that simple network structures with
explicit supervision may be sufficient to capture
syntactic structure. All the results are shown in
Table 5. We only show the best (lowest) results
from BERT.

4.3 Transfer Performance of Syntactic
Embeddings

Many NLP tasks utilize POS as features, but hu-
man annotated POS sequences are difficult and ex-
pensive to obtain. Thus, it is important to know if
we can learn sentences-level syntactic embeddings
for low-sources languages without treebanks.

We performed zero-shot transfer of the syntac-
tic embeddings for French, Portuguese and In-
donesian. French and Portuguese are simulated
low-resource languages, while Indonesian is a true
low-resource language. We reported the 1-NN and
5-NN accuracies for all languages using the same
evaluation setting as described in the previous sec-
tion. The results are shown in Table 6 (top).

We also fine-tuned the learned syntactic embed-
dings on the low-resource language for a varying
number of training data and languages. The results
are shown in Table 6 (bottom). In this table, the
low-resource language is denoted as the ‘source’,
while the high-resource language(s) is denoted as
the ‘target’. With this training method, no UPOS
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Table 4: Syntactic Nearest-Neighbour for Language Models (%)

English German Spanish Chinese Korean Dutch
Model 1-NN/5-NN  1-NN/5-NN 1-NN/5-NN 1-NN/5-NN 1-NN/5-NN  1-NN/5-NN
USE 71.83/55.68 59.87/44.26 53.05/38.06 39.23/30.18 21.22/12.43 28.66/12.77
BERT,, . 90.19/86.36  83.66/77.63 83.89/79.92 67.96/68.40 20.30/11.92 37.67/19.51
BERT,4 89.06/84.70 79.54/74.82 78.24/75.61 65.75/67.07 20.30/11.47 37.04/19.46
BERT output  77.75/63.44  66.20/51.89  65.21/50.41 52.49/46.34 16.39/10.98 24.27/10.67
LASER 86.33/76.66 76.56/62.88 72.49/59.72 56.89/45.15 26.63/15.90 50.75/31.00
Table 5: Functional Dissimilarity Scores (Lower is Better)

Model English German Spanish Chinese Korean Dutch

BERT,4 0.3463 0.3131 0.2955 0.2935 0.3001 0.3131

LASER 0.1602 0.1654 0.2074 0.3099 0.2829 0.1654

Proposed Work 0.1527 0.1588  0.1588  0.2267  0.2533 0.1588

tag information was provided to the model for
the ‘source’ languages, where supervising infor-
mation comes solely from parallel sentences and
UPOS tags in high-resource languages.

The results show that for a new language
(French and Portuguese) that is similar to the fam-

Table 6: Syntactic Nearest-Neighbour on New lan-
guages (%)

ily of pre-training languages, there are two ways
to achieve higher 1-NN accuracy.

Lang (ISO) 1-NN/5-NN  Total/Group
French (fr) 35.86/22.11 6816/435
Protuguese (pt) 48.29/23.15 4608/922
Indonesian (id) 21.00/35.92  657/59

If the num-

Number of Parallel Sentence Pairs

ber of unique sentences in the new language is
small, accuracy can be improved by increasing the
size of the parallel corpora used to fine-tune. If
only one parallel corpus is available, accuracy can
be improved by increasing the number of unique
sentence-pairs used to fine-tune.

For a new language that is dissimilar to the fam-
ily of pre-training languages, e.g. Indonesian in
Table 6, the above methods only improved nearest
neighbours accuracy slightly. This may be caused
by differing data distribution or by tagger inaccu-
racies. The results for Indonesian do indicate that
some syntactic structure can be learned by using
our method, even for a dissimilar language.

A future direction is to conduct a rigorous anal-
ysis of transfer learning between languages from
the same versus different language families.

5 Conclusion

We examined the possibility of creating syntactic
embeddings by using a multilingual method based
on sequence-to-sequence models. In contrast to
prior work, our method only requires parallel cor-
pora and UPOS tags in the target language.

We studied the quality of learned embeddings
by examining nearest neighbours in the embed-
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Source -Target(s) 2k 10k

ISO I-NN/5-NN  1-NN/5-NN
fr-en 47.37/32.18 58.41/42.87
fr-(en,es) 46.82/31.92 58.01/42.65
pt-en 56.75/30.14 64.52/36.94
pt-(en,es) 57.94/30.63  65.00/37.06
id-en 27.09/47.64 31.35/56.01

ding space and investigating their functional dis-
similarity. These results were compared against
recent state-of-the-art language models. We also
showed that pre-training with a parallel corpus
allowed the syntactic embeddings to be trans-
ferred to low-resource languages via few-shot
fine-tuning.

Our evaluations indicated that syntactic struc-
ture can be learnt by using simple network archi-
tectures and explicit supervision. Future direc-
tions include improving the transfer performance
for low-resource languages, disentangling seman-
tic and syntactic embeddings, and analyzing the
effect of transfer learning between languages be-
long to the same versus different language fami-
lies.
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Abstract

We propose a Chinese spell checker — FASPell
based on a new paradigm which consists of
a denoising autoencoder (DAE) and a de-
coder. In comparison with previous state-
of-the-art models, the new paradigm allows
our spell checker to be Faster in computa-
tion, readily Adaptable to both simplified and
traditional Chinese texts produced by either
humans or machines, and to require much
Simpler structure to be as much Powerful in
both error detection and correction. These four
achievements are made possible because the
new paradigm circumvents two bottlenecks.
First, the DAE curtails the amount of Chi-
nese spell checking data needed for super-
vised learning (to <10k sentences) by lever-
aging the power of unsupervisedly pre-trained
masked language model as in BERT, XLNet,
MASS etc. Second, the decoder helps to elim-
inate the use of confusion set that is deficient
in flexibility and sufficiency of utilizing the
salient feature of Chinese character similarity.

1 Introduction

There has been a long line of research on detect-
ing and correcting spelling errors in Chinese texts
since some trailblazing work in the early 1990s
(Shih et al., 1992; Chang, 1995). However, de-
spite the spelling errors being reduced to substitu-
tion errors in most researches! and efforts of mul-
tiple recent shared tasks (Wu et al., 2013; Yuet al.,
2014; Tseng et al., 2015; Fung et al., 2017), Chi-
nese spell checking remains a difficult task. More-
over, the methods for languages like English can
hardly be directly used for the Chinese language
because there are no delimiters between words,
whose lack of morphological variations makes the
syntactic and semantic interpretations of any Chi-
nese character highly dependent on its context.

"Likewise, this paper only covers substitution errors.
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1.1 Related work and bottlenecks

Almost all previous Chinese spell checking mod-
els deploy a common paradigm where a fixed set
of similar characters of each Chinese character
(called confusion set) is used as candidates, and a
filter selects the best candidates as substitutions for
a given sentence. This naive design is subjected to
two major bottlenecks, whose negative impact has
been unsuccessfully mitigated:

o overfitting to under-resourced Chinese
spell checking data. Since Chinese spell
checking data require tedious professional
manual work, they have always been under-
resourced. To prevent the filter from over-
fitting, Wang et al. (2018) propose an auto-
matic method to generate pseudo spell check-
ing data. However, the precision of their spell
checking model ceases to improve when the
generated data reaches 40k sentences. Zhao
et al. (2017) use an extensive amount of ad
hoc linguistic rules to filter candidates, only
to achieve worse performance than ours even
though our model does not leverage any lin-
guistic knowledge.

inflexibility and insufficiency of confusion
set in utilizing character similarity. The
feature of Chinese character similarity is very
salient as it is related to the main cause of
spelling errors (see subsection 2.2). How-
ever, the idea of confusion set is troublesome
in utilizing it:

1. inflexibility to address the issue that
confusing characters in one scenario
may not be confusing in another. The
difference between simplified and tradi-
tional Chinese shown in Table 1 is an
example. Wang et al. (2018) also sug-
gest that confusing characters for ma-
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chines are different from those for hu-
mans. Therefore, in practice, it is very
likely that the correct candidates for sub-
stitution do not exist in a given confu-
sion set, which harms recall. Also, con-
sidering more similar characters to pre-
serve recall will risk lowering precision.

2. insufficiency in utilizing character simi-
larity. Since a cut-off threshold of quan-
tified character similarity (Liu et al.,
2010; Wang et al., 2018) is used to pro-
duce the confusion set, similar charac-
ters are actually treated indiscriminately
in terms of their similarity. This means
the information of character similarity
is not sufficiently utilized. To compen-
sate this, Zhang et al. (2015) propose a
spell checker that has to consider many
less salient features such as word seg-
mentation, which add more unnecessary
noises to their model.

1.2 Motivation and contributions

The motivation of this paper is to circumvent the
two bottlenecks in subsection 1.1 by changing the
paradigm for Chinese spell checking.

As a major contribution and as exemplified by
our proposed Chinese spell checking model in Fig-
ure 1, the most general form of the new paradigm
consists of a denoising autoencoder’ (DAE) and a
decoder. To prove that it is indeed a novel contri-
bution, we compare it with two similar paradigms
and show their differences as follows:

1. Similar to the old paradigm used in previous
Chinese spell checking models, a model un-
der the DAE-decoder paradigm also produces
candidates (by DAE) and then filters the can-
didates (by the decoder). However, candi-
dates are produced on the fly based on con-
texts. If the DAE is powerful enough, we
should expect that all contextually suitable
candidates are recalled, which prevent the in-
flexibility issue caused by using confusion
set. The DAE will also prevent the overfit-
ting issue because it can be trained unsuper-
visedly using a large number of natural texts.
Moreover, character similarity can be used by
the decoder without losing any information.

2the term denoising autoencoder follows the same sense
used by Yang et al. (2019), which is arguably more general
than the one used by Vincent et al. (2008).

2. The DAE-decoder paradigm is sequence-
to-sequence, which makes it resemble the
encoder-decoder paradigm in tasks like ma-
chine translation, grammar checking, etc.
However, in the encoder-decoder paradigm,
the encoder extracts semantic information,
and the decoder generates texts that embody
the information. In contrast, in the DAE-
decoder paradigm, the DAE provides candi-
dates to reconstruct texts from the corrupted
ones based on contextual feature, and the de-
coder? selects the best candidates by incorpo-
rating other features.

Besides the new paradigm per se, there are two
additional contributions in our proposed Chinese
spell checking model:

e we propose a more precise quantification
method of character similarity than the ones
proposed by Liu et al. (2010) and Wang et al.
(2018) (see subsection 2.2);

e we propose an empirically effective decoder
to filter candidates under the principle of get-
ting the highest possible precision with mini-
mal harm to recall (see subsection 2.3).

1.3 Achievements

Thanks to our contributions mentioned in subsec-
tion 1.2, our model can be characterized by the fol-
lowing achievements relative to previous state-of-
the-art models, and thus is named FASPell.

e Our model is Fast. It is shown (subsection
3.3) to be faster in filtering than previous
state-of-the-art models either in terms of ab-
solute time consumption or time complexity.

e Our model is Adaptable. To demonstrate this,
we test it on texts from different scenarios
— texts by humans, such as learners of Chi-
nese as a Foreign Language (CFL), and by
machines, such as Optical Character Recog-
nition (OCR). It can also be applied to both
simplified Chinese and traditional Chinese,
despite the challenging issue that some er-
roneous usages of characters in traditional
texts are considered valid usages in simpli-
fied texts (see Table 1). To the best of our
knowledge, all previous state-of-the-art mod-
els only focus on human errors in traditional
Chinese texts.

3The term decoder here is analogous as in Viterbi decoder
in the sense of finding the best path along candidates.



Table 1: Examples on the left are considered valid
usages in simplified Chinese (SC). Notes on the right
are about how they are erroneous in traditional Chi-
nese (TC) and suggested corrections. This inconsis-
tency is because multiple traditional characters were
merged into identical characters in the simplification
process. Our model makes corrections for this type of
errors only in traditional texts. In simplified texts, they
are not detected as errors.

SC Examples Notes on TC usage
JH7R (weekend) J& — 38 J& only in HF, etc.
JRIE (trip) % — % 5% only in JHFiK, etc.
3% (make) il — B ) only in H1E, etc.

e Our model is Simple. As shown in Fig-
ure 1, it has only a masked language model
and a filter as opposed to multiple feature-
producing models and filters being used in
previous state-of-the-art proposals. More-
over, only a small training set and a set of
visual and phonological features of charac-
ters are required in our model. No extra data
are necessary, including confusion set. This
makes our model even simpler.

Our model is Powerful. On benchmark
data sets, it achieves similar F1 performances
(subsection 3.2) to those of previous state-of-
the-art models on both detection and correc-
tion level. It also achieves arguably high pre-
cision (78.5% in detection and 73.4% in cor-
rection) on our OCR data set.

2 FASPell

As shown in Figure 1, our model uses masked lan-
guage model (see subsection 2.1) as the DAE to
produce candidates and confidence-similarity de-
coder (see subsection 2.2 and 2.3) to filter can-
didates. In practice, doing several rounds of the
whole process is also proven to be helpful (sub-
section 3.4).

2.1

Masked language model (MLM) guesses the to-
kens that are masked in a tokenized sentence. It
is intuitive to use MLM as the DAE to detect and
correct Chinese spelling errors because it is in line
with the task of Chinese spell checking. In the
original training process of MLM in BERT (De-
vlin et al., 2018), the errors are the random masks,
which are the special token [MASK] 80% of the

Masked language model
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Figure 1: A real example of how an erroneous sentence
which is supposed to have the meaning of "A famous
international radio broadcaster" is successfully spell-
checked with two erroneous characters 77 and =F being
detected and corrected using FASPell. Note that with
our proposed confidence-similarity decoder, the final
choice for substitution is not necessarily the candidate
ranked the first.

time, a random token in the vocabulary 10% of
the time and the original token 10% of the time. In
cases where a random token is used as the mask,
the model actually learns how to correct an erro-
neous character; in cases where the original tokens
are kept, the model actually learns how to detect if
a character is erroneous or not. For simplicity pur-
poses, FASPell adopts the architecture of MLM as
in BERT (Devlin et al., 2018). Recent variants —
XLNet (Yang et al., 2019), MASS (Song et al.,
2019) have more complex architectures of MLM,
but they are also suitable.

However, just using a pre-trained MLM raises
the issue that the errors introduced by random
masks may be very different from the actual errors
in spell checking data. Therefore, we propose the
following method to fine-tune the MLM on spell
checking training sets:

e For texts that have no errors, we follow the
original training process as in BERT;

e For texts that have errors, we create two types
of training examples by:



1. given a sentence, we mask the erroneous
tokens with themselves and set their tar-
get labels as their corresponding correct
characters;

. to prevent overfitting, we also mask to-
kens that are not erroneous with them-
selves and set their target labels as them-
selves, too.

The two types of training examples are bal-
anced to have roughly similar quantity.

Fine-tuning a pre-trained MLM is proven to be
very effective in many downstream tasks (Devlin
et al., 2018; Yang et al., 2019; Song et al., 2019),
so one would argue that this is where the power of
FASPell mainly comes from. However, we would
like to emphasize that the power of FASPell should
not be biasedly attributed to MLM. In fact, we
show in our ablation studies (subsection 3.2) that
MLM itself can only serve as a very weak Chinese
spell checker (its performance can be as poor as
F1 being only 28.9%), and the decoder that uti-
lizes character similarity (see subsection 2.2 and
2.3) is also significantly indispensable to produc-
ing a strong Chinese spell checker.

2.2 Character similarity

Erroneous characters in Chinese texts by humans
are usually either visually (subsection 2.2.1) or
phonologically similar (subsection 2.2.2) to corre-
sponding correct characters, or both (Chang, 1995;
Liu et al., 2010; Yu and Li, 2014). It is also true
that erroneous characters produced by OCR pos-
sess visual similarity (Tong and Evans, 1996).

We base our similarity computation on two
open databases: Kanji Database Project* and Uni-
han Database® because they provide shape and
pronunciation representations for all CJK Unified
Ideographs in all CJK languages.

2.2.1 Visual similarity

The Kanji Database Project uses the Unicode
standard — Ideographic Description Sequence
(IDS) to represent the shape of a character.

As illustrated by examples in Figure 2, the IDS
of a character is formally a string, but it is essen-
tially the preorder traversal path of an ordered tree.

4http://kanji—database.sourceforge.
net/

Shttps://unicode.org/charts/unihan.
html
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Figure 2: The IDS of a character can be given in dif-
ferent granularity levels as shown in the tree forms in
®-® for the simplified character 71 (meaning poor).
In FASPell, we only use stroke-level IDS in the form
of a string, like the one above the dashed ruling line.
Unlike using only actual strokes (Wang et al., 2018),
the Unicode standard Ideographic Description Charac-
ters (e.g., the non-leaf nodes in the trees) describe the
layout of a character. They help us to model the sub-
tle nuances in different characters that are composed of
identical strokes (see examples in Table 2). Therefore,
IDS gives us a more precise shape representation of a
character.

In our model, we only adopt the string-form
IDS. We define the visual similarity between two
characters as one minus normalized® Levenshtein
edit distance between their IDS representations.
The reason for normalization is twofold. Firstly,
we want the similarity to range from O to 1 for the
convenience of later filtering. Secondly, if a pair
of more complex characters have the same edit dis-
tance as a pair of less complex characters, we want
the similarity of the more complex characters to be
slightly higher than that of the less complex char-
acters (see examples in Table 2).

We do not use the tree-form IDS for two rea-
sons even as it seems to make more sense intu-
itively. Firstly, even with the most efficient algo-
rithm (Pawlik and Augsten, 2015, 2016) so far, tree
edit distance (TED) has far greater time complex-
ity than edit distance of strings (O(mn(m + n))
vs. O(mn)). Secondly, we did try TED in prelimi-
nary experiments, but there was no significant dif-
ference from using edit distance of strings in terms
of spell checking performance.

®Since the maximal value of Levenshtein edit distance is
the maximum of the lengths of the two strings in question, we
normalize it simply by dividing it by the maximum length.



Table 2: Examples of the computation of character similarities. IDS is used to compute visual similarity (V-sim)
and pronunciation representations in Mandarin Chinese (MC), Cantonese Chinese (CC), Japanese On’yomi (JO),
Korean (K) and Vietnamese (V) are used to compute phonological similarity (P-sim). Note that the normalization
of edit distance gives us the desired fact that less complex character pair (4, 4) has smaller visual similarity than
more complex character pair (FH, Hi) even though both of their IDS edit distances are 1. Also, note that “f- and
£ have more similar pronunciations in some languages than in others; the combination of the pronunciations in

multiple languages gives us a more continuous phonological similarity.

MC CC JO K A% V-sim P-sim
T (noon) wud o ngs  go o ngo 0.857 0.280
4 (cow) niu2  ngaud gyuu wu  nguu
H (field) tian2  tin4 den cen dién
H (from) you2 jau4d yuu yu do 0.889 0.090

2.2.2 Phonological similarity

the original characters.

For those that are dif-

Different Chinese characters sharing identical pro-
nunciation is very common (Yang et al., 2012),
which is the case for any CJK language. Thus, If
we were to use character pronunciations in only
one CJK language, the phonological similarity of
character pairs would be limited to a few discrete
values. However, a more continuous phonologi-
cal similarity is preferred because it can make the
curve used for filtering candidates smoother (see
subsection 2.3).

Therefore, we utilize character pronunciations
of all CJK languages (see examples in Table 2),
which are provided by the Unihan Database. To
compute the phonological similarity of two char-
acters, we first calculate one minus normalized
Levenshtein edit distance between their pronunci-
ation representations in all CJK languages (if ap-
plicable). Then, we take the mean of the results.
Hence, the similarity should range from O to 1.

2.3 Confidence-Similarity Decoder

Candidate filters in many previous models are
based on setting various thresholds and weights for
multiple features of candidate characters. Instead
of this naive approach, we propose a method that
is empirically effective under the principle of get-
ting the highest possible precision with minimal
harm to recall. Since the decoder utilizes contex-
tual confidence and character similarity, we refer
to it as the confidence-similarity decoder (CSD).
The mechanism of CSD is explained, and its ef-
fectiveness is justified as follows:

First, consider the simplest case where only one
candidate character is provided for each original
character. For those candidates that are the same
as their original characters, we do not substitute
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ferent, we can draw a confidence-similarity scat-
ter graph. If we compare the candidates with the
ground truths, the graph will resemble the plot
@ of Figure 3. We can observe that the true-
detection-and-correction candidates are denser to-
ward the upper-right corner; false-detection candi-
dates toward the lower-left corner; true-detection-
and-false-correction candidates in the middle area.
If we draw a curve to filter out false-detection
candidates (plot @ of Figure 3) and use the rest
as substitutions, we can optimize character-level
precision with minimal harm to character-level
recall for detection; if true-detection-and-false-
correction candidates are also filtered out (plot ®
of Figure 3), we can get the same effect for cor-
rection. In FASPell, we optimize correction per-
formance and manually find the filtering curve us-
ing a training set, assuming its consistency with its
corresponding testing set. But in practice, we have
to find two curves — one for each type of similarity,
and then take the union of the filtering results.

Now, consider the case where there are ¢ > 1
candidates. To reduce it into the previously de-
scribed simplest case, we rank the candidates for
each original character according to their contex-
tual confidence and put candidates that have the
same rank into the same group (i.e., ¢ groups in
total). Thus, we can find a filter as previously de-
scribed for each group of candidates. All c filters
combined further alleviate the harm to recall be-
cause more candidates are taken into account.

In the example of Figure 1, there are ¢ = 4
groups of candidates. We get a correct substitution
F — = from the group whose rank = 1, another
one ¥ — % from the group whose rank = 2, and
no more from the other two groups.
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All four plots show the same confidence-similarity graph of candidates categorized by being true-

detection-and-true-correction (T-d&T-c), true-detection-and-false-correction (T-d&F-c) and false-detection (F-d).
But, each plot shows a different way of filtering candidates: in plot @, no candidates are filtered; in plot @, the
filtering optimizes detection performance; in plot ®, as adopted in FASPell, the filtering optimizes correction
performance; in plot @, as adopted by previous models, candidates are filtered out by setting a threshold for
weighted confidence and similarity (0.8 x con fidence + 0.2 x similarity < 0.8 as an example in the plot). Note
that the four plots use the actual first-rank candidates (using visual similarity) for our OCR data (T'rn,.,) except
that we randomly sampled only 30% of the candidates to make the plots more viewable on paper.

3 Experiments and results

‘We first describe the data, metrics and model con-
figurations adopted in our experiments in subsec-
tion 3.1. Then, in subsection 3.2, we show the per-
formance on spell checking texts written by hu-
mans to compare FASPell with previous state-of-
the-art models; we also show the performance on
data that are harvested from OCR results to prove
the adaptability of the model. In subsection 3.3,
we compare the speed of FASPell and three state-
of-the-art models. In subsection 3.4, we investi-
gate how hyper-parameters affect the performance
of FASPell.

3.1 Data, metrics and configurations

We adopt the benchmark datasets (all in traditional
Chinese) and sentence-level’ accuracy, precision,

"Note that although we do not use character-level metrics
(Fung et al., 2017) in evaluation, they are actually important
in the justification of the effectiveness of the CSD as in sub-
section 2.3
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Table 3: Statistics of datasets.

Dataset # erroneous sent  #sent  Avg. length
Trngs 350 700 41.8
Trnyg 3432 3435 49.6
Trnis 2339 2339 31.3
T'st13 996 1000 74.3
T'stia 529 1062 50.0
T'stys 550 1100 30.6
Trioer 3575 3575 10.1
T'stoer 1000 1000 10.2

recall and F1 given by SIGHANI13 - 15 shared
tasks on Chinese spell checking (Wu et al., 2013;
Yu et al., 2014; Tseng et al., 2015). We also har-
vested 4575 sentences (4516 are simplified Chi-
nese) from OCR results of Chinese subtitles in
videos. We used the OCR method by Shi et al.
(2017). Detailed data statistics are in Table 3.

We use the pre-trained masked language



Table 4: Configurations of FASPell. FT means the
training set for fine-tuning; CSD means the training set
for CSD; r means the number of rounds and ¢ means
the number of candidates for each character. U is the
union of all the spell checking data from SIGHANI13 -
15.

FT CSD  Testset r ¢ FT steps
U — TSt13 Trnlg T8t13 1 4 10k
U — TSt14 Trn14 T8t14 3 4 10k
U — TSt15 T’r‘n15 T8t15 3 4 10k
(') Trnoc’r TStoc’r 2 4 (‘)

model® provided by Devlin et al. (2018). Set-
tings of its hyper-parameters and pre-training
are available at https://github.com/
google-research/bert. Other configura-
tions of FASPell used in our major experiments
(subsection 3.2 - 3.3) are given in Table 4. For
ablation experiments, the same configurations are
used except when CSD is removed, we take the
candidates ranked the first as default outputs. Note
that we do not fine-tune the mask language model
for OCR data because we learned in preliminary
experiments that fine-tuning worsens performance
for this type of data’.

3.2 Performance

As shown in Table 6, FASPell achieves state-of-
the-art F1 performance on both detection level and
correction level. It is better in precision than the
model by Wang et al. (2018) and better in recall
than the model by Zhang et al. (2015). In compar-
ison with Zhao et al. (2017), It is better by any met-
ric. It also reaches comparable precision on OCR
data. The lower recall on OCR data is partially be-
cause many OCR errors are harder to correct even
for humans (Wang et al., 2018).

Table 6 also shows that all the components of
FASPell contribute effectively to its good perfor-
mance. FASPell without both fine-tuning and
CSD is essentially the pre-trained mask language
model. Fine-tuning it improves recall because
FASPell can learn about common errors and how
they are corrected. CSD improves its precision
with minimal harm to recall because this is the un-

$https://storage.googleapis.com/bert_
models/2018_11_03/chinese_L-12_H-768_
A-12.zip

? It is probably because OCR errors are subject to random
noise in source pictures rather than learnable patterns as in

human errors. However, since the paper is not about OCR,
we do not elaborate on this here.
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Table 5: Speed comparison (ms/sent). Note that the
speed of FASPell is the average in several rounds.

Test set FASPell Wang et al. (2018)
Tst13 446 680
TSt14 284 745
TSt15 177 566

derlying principle of the design of CSD.

3.3 Filtering Speed!'’

First, we measure the filtering speed of Chinese
spell checking in terms of absolute time consump-
tion per sentence (see Table 5). We compare the
speed of FASPell with the model by Wang et al.
(2018) in this manner because they have reported
their absolute time consumption'!. Table 5 clearly
shows that FASPell is much faster.

Second, to compare FASPell with models
(Zhang et al., 2015; Zhao et al., 2017) whose ab-
solute time consumption has not been reported,
we analyze the time complexity. The time com-
plexity of FASPell is O(scmn + sclogc), where
s is the sentence length, c is the number of can-
didates, mn accounts for computing edit distance
and clogc for ranking candidates. Zhang et al.
(2015) use more features than just edit distance, so
the time complexity of their model has additional
factors. Moreover, since we do not use confusion
set, the number of candidates for each character of
their model is practically larger than ours: x x 10
vs. 4. Thus, FASPell is faster than their model.
Zhao et al. (2017) filter candidates by finding the
single-source shortest path (SSSP) in a directed
graph consisting of all candidates for every token
in a sentence. The algorithm they used has a time
complexity of O(|V' |+ |E|) where |V| is the num-
ber of vertices and | F| is the number of edges in
the graph (Eppstein, 1998). Translating it in terms
of s and ¢, the time complexity of their model is
O(sc+ ¢*). This implies that their model is expo-
nentially slower than FASPell for long sentences.

Considering only the filtering speed is because the
Transformer, the Bi-LSTM and language models used by pre-
vious state-of-the-art models or us before filtering are already
well studied in the literature.

' 'We have no access to the 4-core Intel Core i5-7500 CPU
used by Wang et al. (2018). To minimize the difference of
speed caused by hardware, we only use 4 cores of a 12-core
Intel(R) Xeon(R) CPU E5-2650 in the experiments.



Table 6: This table shows spell checking performances on both detection and correction level. Our model —
FASPell achieves similar performance to that of previous state-of-the-art models. Note that fine-tuning and CSD
both contribute effectively to its performance according to the results of ablation experiments. (— FT means

removing fine-tuning; — CSD means removing CSD.)

Detection Level

Correction Level

Test set Models

Acc. (%) Prec. (%) Rec.(%) F1(%) Acc.(%) Prec.(%) Rec.(%) F1 (%)

Wang et al. (2018) (-) 54.0 69.3 60.7 (-) -) (-) 52.1

Yeh et al. (2013) (-) -) (-) (-) 62.5 70.3 62.5 66.2

Tstys FASPell 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2

: FASPell — FT 40.9 75.5 40.9 53.0 39.6 73.2 39.6 51.4

FASPell — CSD 41.0 42.3 41.1 41.6 31.3 322 31.3 31.8

FASPell — FT — CSD 479 65.2 47.8 55.2 35.6 48.4 354 40.9

Zhao et al. (2017) (-) -) (-) (-) (-) 55.5 39.1 459

Wang et al. (2018) (-) 51.9 66.2 58.2 (-) ) (-) 56.1

Tstiy FASPell 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4

FASPell — FT 57.8 54.5 18.1 27.2 57.7 53.7 17.8 26.7

FASPell — CSD 49.0 31.0 423 35.8 44.9 25.0 342 28.9

FASPell — FT — CSD 56.3 38.4 26.8 31.6 52.1 26.0 18.0 21.3

Zhang et al. (2015) 70.1 80.3 53.3 64.0 69.2 79.7 51.5 62.5

Wang et al. (2018) (-) 56.6 69.4 62.3 (-) ) (-) 57.1

Tstys FASPell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6

° FASPell — FT 61.5 74.1 25.5 37.9 61.3 72.5 24.9 37.1

FASPell — CSD 65.5 49.3 59.1 53.8 60.0 40.2 48.2 43.8

FASPell — FT — CSD 63.7 59.1 35.3 44.2 57.6 38.3 22.7 28.5

Tt FASPell 18.6 78.5 18.6 30.1 17.4 73.4 17.4 28.1

ocr FASPell — CSD 34.5 65.8 34.5 45.3 18.9 36.1 18.9 24.8

3.4 Exploring hyper-parameters

First, we only change the number of candidates
in Table 4 to see its effect on spell checking per-
formance. As illustrated in Figure 4, when more
candidates are taken into account, additional de-
tections and corrections are recalled while max-
imizing precision. Thus, increase in the number
of candidates always results in the improvement of
F1. The reason we set the number of candidates
c = 4 in Table 4 and no larger is because there is a
trade-off with time consumption.

Second, we do the same thing to the number of
rounds of spell checking in Table 4. We can ob-
serve in Figure 4 that the correction performance
on T'sty4 and T'stys reaches its peak when the
number of rounds is 3. For T'st13 and T'st,,, that
number is 1 and 2, respectively. A larger num-
ber of rounds sometimes helps because FASPell
can achieve high precision in detection in each
round, so undiscovered errors in last round may be
detected and corrected in the next round without
falsely detecting too many non-errors.

4 Conclusion

We propose a Chinese spell checker — FASPell that
reaches state-of-the-art performance. It is based
on DAE-decoder paradigm that requires only a

small amount of spell checking data and gives up
the troublesome notion of confusion set. With
FASPell as an example, each component of the
paradigm is shown to be effective. We make our
code and data publically available at https://
github.com/igiyi/FASPell.

Future work may include studying if the DAE-
decoder paradigm can be used to detect and cor-
rect grammatical errors or other less frequently
studied types of Chinese spelling errors such as
dialectical colloquialism (Fung et al., 2017) and
insertion/deletion errors.

Tst13 Tst1a Tstis Tistocr

06 4 oel 0s
e —
0.55 |- < o5 - o | o5 + o2s 8

"o 1 2 3 4 s s o
Number of candidates

Tst13 Tstis Tstis Tstocr

.

Number of rounds

Figure 4: The four plots in the first row show how
the number of candidates for each character affects F1
performances. The four in the second row show the
impact of the number of rounds of spell checking.
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Abstract

The Princeton WordNet is a powerful tool
for studying language and developing nat-
ural language processing algorithms. With
significant work developing it further, one
line considers its extension through aligning
its expert-annotated structure with other lex-
ical resources. In contrast, this work ex-
plores a completely data-driven approach to
network construction, forming a wordnet us-
ing the entirety of the open-source, noisy, user-
annotated dictionary, Wiktionary. Compar-
ing baselines to WordNet, we find compelling
evidence that our network induction process
constructs a network with useful semantic
structure. With thousands of semantically-
linked examples that demonstrate sense usage
from basic lemmas to multiword expressions
(MWESs), we believe this work motivates fu-
ture research.

1 Introduction

Wiktionary is a free and open-source collaborative
dictionary! (Wikimedia). With the ability for any-
one to add or edit lemmas, definitions, relations,
and examples, Wiktionary has the potential to be
larger and more diverse than any printable dic-
tionary. Wiktionary features a rich set of exam-
ples of sense usage for many of its lemmas which,
when converted to a usable format, supports lan-
guage processing tasks such as sense disambigua-
tion (Meyer and Gurevych, 2010a; Matuschek
and Gurevych, 2013; Miller and Gurevych, 2014)
and MWE identification (Muzny and Zettlemoyer,
2013; Salehi et al., 2014; Hosseini et al., 2016).
With natural alignment to other languages, Wik-
tionary can likewise be used as a resource for ma-
chine translation tasks (Matuschek et al., 2013;
Borin et al., 2014; Gohring, 2014). With these
uses in mind, this work introduces the creation

"https://www.wiktionary.org/

Jake Ryland Williams
Department of Information Science
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of a network—much like the Princeton Word-
Net (Miller, 1995; Fellbaum, 1998)—that is con-
structed solely from the semi-structured data of
Wiktionary. This relies on the noisy annotations
of the editors of Wiktionary to naturally induce a
network over the entirety of the English portion of
Wiktionary. In doing so, the development of this
work produces:

e an induced network over Wiktionary, en-
riched with semantically linked examples,
forming a directed acyclic graph (DAG);

e an exploration of the task of relationship dis-
ambiguation as a means to induce network
construction; and

o an outline for directions of expansion, includ-
ing increasing precision in disambiguation,
cross-linking example usages, and aligning
English Wiktionary with other languages.

We make our code freely available?, which in-
cludes code to download data, to disambiguate
relationships between lemmas, to construct net-
works from disambiguation output, and to interact
with networks produced through this work.

2 Related work
2.1 WordNet

The Princeton WordNet, or WordNet as it’s more
commonly referred to, is a lexical database orig-
inally created for the English language (Miller,
1995; Fellbaum, 1998). It consists of expert-
annotated data, and has been more or less contin-
ually updated since its creation (Harabagiu et al.,
1999; Miller and Hristea, 2006). WordNet is built
up of synsets, collections of lexical items that all

2 Code will be available at https://github.com/
hunter-heidenreich/lsni-paper
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have the same meaning. For each synset, a def-
inition is provided, and for some synsets, usage
examples are also presented. If extracted and at-
tributed properly, the example usages present on
Wiktionary could critically enhance WordNet by
filling gaps. While significant other work has been
done in utilizing Wiktionary to enhance WordNet
for purposes like this (discussed in the next sec-
tions), this work takes a novel step by constructing
a wordnet through entirely computational means,
i.e. under the framing of a machine learning task
based on Wiktionary’s data.

2.2 Wiktionary

Wiktionary is an open-source, Wiki-based, open
content dictionary organized by the WikiMedia
Foundation (Wikimedia). It has a large and active
volunteer editorial community, and from its noisy,
crowd-sourced nature, includes many MWEs, col-
loquial terms, and their example usages, which
could ultimately fill difficult-to-resolve gaps left
in other linguistic resources, such as WordNet.

Thus, Wiktionary has a significant history of ex-
ploration for the enhancement of WordNet, includ-
ing efforts that extend WordNet for better domain
coverage of word senses (Meyer and Gurevych,
2011; Gurevych et al., 2012; Miller and Gurevych,
2014), automatically derive new lemmas (Jurgens
and Pilehvar, 2015; Rusert and Pedersen, 2016),
and develop the creation of multilingual word-
nets (de Melo and Weikum, 2009; Gurevych et al.,
2012; Bond and Foster, 2013). While these works
constitute important steps in the usage of extracted
Wiktionary contents for the development of Word-
Net, none before this effort has attempted to utilize
the entirety of Wiktionary alone for the construc-
tion of such a network.

Most similarly, Wiktionary has been used
in a sense-disambiguated fashion (Meyer and
Gurevych, 2012b) and to construct an ontology
(Meyer and Gurevych, 2012a). Our work does
not create an ontology, but instead attempts to
create a semantic wordnet. In this context, our
work can be viewed as building on notions of
sense-disambiguating Wiktionary to construct a
WordNet-like resource.

2.3 Relation Disambiguation

The task of taking definitions, a semantic relation-
ship, and sub-selecting the definitions that belong
to that relationship is one of critical importance to
our work. Sometimes called sense linking or rela-
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tionship anchoring, this task has been previously
explored in the creation of machine-readable dic-
tionaries (Krovetz, 1992), ontology learning (Pan-
tel and Pennacchiotti, 2006, 2008), and German
Wikitionary (Meyer and Gurevych, 2010b).

As mentioned above, Meyer and Gurevych ex-
plore relationship disambiguation in the context
of Wiktionary, motivating a sense-disambiguated
Wiktionary as a powerful resource (Meyer and
Gurevych, 2012a,b). This task is frequently
viewed as a binary classification: Given two linked
lemmas, do these pairs of definitions belong to the
relationship? While easier to model, this fram-
ing can suffer from a combinatorial explosion as
all pairs of definitions must be compared. This
work attempts to model the task differently, dis-
ambiguating all definitions in the context of a re-
lationship and its lemmas.

3 Model

3.1 Framework

This work starts by identifying a set of lemmas,
W, and a set of senses, S. It then proceeds, as-
suming that .S forms the vertex set of a Directed
Acyclic Graph (DAG) with edge set I/, organizing
S by refinement of specificity. That is, if senses
s,t € S have a link (t,s) € E—to s—then s is
one degree of refinement more specific than ¢.

Next, we suppose a lemma u € W has relation
~ (e.g., synonymy) indicated to another lemma
v € W. Assuming ~ is recorded from u to v (e.g.,
from u’s page), we call u the source and v the
sink. Working along these lines, the model then
assumes a given indicated relation ~ is qualified
by a sense s; this semantic equivalence is denoted
u .

Like others (Landauer and Dumais, 1997; Blei
et al., 2003; Bengio et al., 2003), this work as-
sumes senses exist in a latent semantic space. Pro-
cessing a dictionary, one can empirically discover

relationships like v ~ v and v X w. But for a
larger network structure one must know if s = t—
that is, do s and ¢ refer to the same relationship—
and often neither s nor ¢ are known, explicitly.
Hence, this work sets up approximations of s and
t for comparison. Given a lemma, u € W, sup-
pose a set of definitions, D,,, exists and form the
basis for disambiguation of a lemma’s senses. We
then assume that for any d € D,, there exists one
or more senses, s € .S, such that d = s, that is,
the definition d conveys the sense s.



Having assumed a DAG structure for S, this
work denotes specificity of sense by using the for-
malism of a partial order, <, which, for senses
s,t € S having s =< t, indicates that the sense s
is comparable to ¢ and more specific. Note that—
as with any partial order—senses can be, and are
often non-comparable.

Intuitively, a given definition d might convey
multiple senses d =—> s,t of differing speci-
ficities, s < t. So for a given definition d, the
model’s goal is to find the sense ¢ that is least spe-
cific in being conveyed. Satisfying this goal im-
plies resolving the sense identification function,
f+ D — S, for which any lemma v € W and
definition d € D, withd = s € S, itis as-
sured that s < f(d). Since no direct knowledge of
any s € S is assumed known for any annotated re-
lationship between lemmas, systems must approx-
imate senses according to the available resources,
e.g., definitions or example usages.

3.2 Task development

On Wiktionary, every lemma has its own page.
Each page is commonly broken down into sec-
tions such as languages, etymologies, and parts-
of-speech (POS). Under each POS, a lemma fea-
tures a set of definitions that can be automatically
extracted. An example of the word induce on En-
glish Wiktionary can be seen in Figure 1.

A significant benefit of using Wiktionary as a
resource to build a wordnet lies in the wealth of
examples it offers. Examples come in two fla-
vors: basic usage and usage from reference mate-
rial. Currently, each example is linked to its orig-
ination definition and lemma, however, in future
works, these examples could be segmented and
sense disambiguated, offering new network links
and densely connected example usages.

For each lemma, Wiktionary may offer relation-
ship annotations between lemmas. These relation-
ships span many categories including acronyms,
alternative forms, anagrams, antonyms, com-
pounds, conjugations, derived terms, descendants,
holonyms, hypernyms, hyponyms, meronyms, re-
lated terms, and synonyms. For this work’s pur-
poses, only antonyms and synonyms are consid-
ered, exploiting their more typical structure on
Wiktionary and clear theoretical basis in semantic
equivalence to induce a network. Exploring more
of these relationships is of interest in future work.

Additionally, a minority of annotations present
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‘gloss’ labels, which indicate the definitions that
apply to relationships. So from the data there is
some knowledge of exact matching, but due to
their limited, noisy, and crowd-sourced nature, the
labelings may not cover all definitions that belong.

We assume annotations exhibit relationships be-
tween lemmas. Finding one: u ~ w, if u is
the source, we assume there exists some defini-
tion d € D, that implies the appropriate sense:
d = s. This good practice assumption mod-
els editor behavior as a response to exposure to a
particular definition on the source page. Provided
this, an editor won’t necessarily annotate the rela-
tionship on the sink page—even if the sink page
has a definition that implies the sense s. Thus, our
task doesn’t require identification of a definition
on the sink’s page. More precisely, no d € D,
might exist that implies s (d = s) for an anno-
tated relationship, u ~ v.

Altogether, for an annotated relationship the
task aims to identify the sense-conveying subset:

D . ={deD,UD,|d = s}

for which at least one definition must be drawn
from D,. Note that the model does not assume
that arbitrary d, de D . map through the sense
identification function to the same most general
sense. Presently, these details are resolved by a
separate algorithm (developed below), leaving di-
rect modeling of the sense identification function
to future work.’

3.3 Semantic hierarchy induction

This section outlines preliminary work inferring a
semantic hierarchy from pairwise relationships. If
A is the set of relationships, a model’s output, C,
will be a collection of sense-conveying subsets,
D s, . in one-to-one correspondence: A« C.
So, for all D € P(C), one has a covering of
(some) senses by pairwise relationships, D s €
D.

Under our assumptions, any collection of sense
conveying subsets D € P(C') with non-empty in-
tersection restricts to a set of definitions that must
convey at least one common sense, s’. Notably,
s’ must be at least as general as any qualifying
a particular annotated relationship, i.e., s =< &
for any s (implicitly) defining any D s € D.

3 A major challenge to this approach is the increased com-
plexity required for the development of evaluation data.



Verb [edit]

induce (third-person singular simple present induces, present participle inducing, simple past and past participle induced)

1. (transitive) To lead by persuasion or influence; incite or prevail upon. [quotations V]

2. (transitive) To cause, bring about, lead to. [quotations V]

His meditation induced a compromise. Opium induces sleep.

transitive, logic) To infer by induction.

3.
4.
5. (transitive, obsolete) To lead in, bring in, introduce.
6.

(
(
(
(

Synonyms [ edit]

physics) To cause or produce (electric current or a magnetic state) by a physical process of induction.

transitive, obsolete) To draw on, place upon. (Can we add an example for this sense?)

o (lead by persuasion or influence): entice, inveigle, put someone up to something
« (fo cause): bring about, instigate, prompt, stimulate, trigger, provoke

Antonyms [ edit]

e (logic): deduce

Figure 1: The Verb section of the induce page on English Wiktionary. Definitions are enumerated, with example
usages as sub-elements or drop-down quotations. Relationships for this page are well annotated, with gloss labels

to indicate the definition that prompted annotation.

So this work induces the sense-identification func-
tion, f, through pre-images: forD € P(C), an im-
plicit sense, s, is assumed such that that f~1(s) C
Mo D s, . Now, if a covering D' > D exists with
non-empty intersection, then its (smaller) intersec-
tion comprises definitions that convey a sense, s’
which is more-general than s. So to precisely re-
solve f through pre-images the model must ‘hole
punch’ the more-general definitions, constructing
the hierarchy by allocating the more general defi-
nitions in the intersection of D’ to the more general
senses:

i) =

ﬂDurS@v \ ﬂ ﬂDu/iv/ ’

D D’'>D D’

This allocates each definition to exactly one im-
plicit sense approximation, ¢, which is the most
general sense indicated by the definition. Addi-
tionally, all senses then fall under a DAG hierarchy
(excepting the singletons, addressed below) as set
inclusion, D' O DD defines a partial order. This
deterministic algorithm for hierarchy induction is
presented in Algorithm 1.

Considering the output of a model, C, if d is
not covered by C' the model assumes a singleton
sense. These include definitions not selected dur-
ing relationship disambiguation as well as the def-
initions of lemmas that feature no relationship an-
notations. Singletons are then placed in the DAG
at the lowest level, disconnected from all other
senses. Figure 2 visually represents this full se-
mantic hierarchy.

Algorithm 1 Construction of semantic hierarchy
through pairwise collection.
Require: C': Collection of D s
levels « List()
prev < C
while prev # () do
next < List()
defs <0
for p,p’ € prev do
ifp £ p’ and p N p’ # 0 then
Append(next,p N p')
Union(defs,pNyp’)
end if
end for
filtered < List()
for p € prev do
Append( filtered,p \ defs)
end for
Append(levels, filtered)
prev < next
end while
return levels




go
move

proceed

go + move

go + proceed
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100000

Figure 2: A visualization of 3 lemmas intersecting to
create a semantic hierarchy.

4 Evaluation

4.1 Characteristics of Wiktionary data

Data was downloaded from Wiktionary on 1/23/19
using the Wikimedia Rest API*. To evaluate per-
formance, a ‘gold’ dataset was created to com-
pare modeling strategies. In totality, 298,377
synonym and 44,758 antonym links were gener-
ated from Wiktionary. ‘Gold’ links were ran-
domly sampled, selecting 400 synonym and 100
antonym links. For each link, source and sink
lemmas were considered independently. Defini-
tions were included if they could plausibly refer
to the other lemma. This process is supported
by the available examples, testing if one lemma
can replace the other lemma in the example us-
ages. This dataset was constructed in contrast
to other Wiktionary relationship disambiguation
tasks due to the modeling differences and desire
for more synonym- and antonym-specific evalua-
tions (Meyer and Gurevych, 2012a,b).

4.2 Evaluation strategy

This work’s evaluation considers precision, recall,
and variants of the Fg score (biasing averages of
precision and recall). As there is selection on both
source and sink sides, we consider several averag-
ing schemes. For a final evaluation, each sample
is averaged at the side-level and averaged across
all relationships. Macro-averages compute an un-
weighted average, while micro-averages weight

*https://en.wikipedia.org/api/rest_vl/
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performance based on the number of definitions
involved in the selection process. Intuitively, mi-
cro metrics weight based on size, while macro
metrics ignore size (treating all potential links and
sides as equal).

4.3 Setting up baselines

For baselines, we present two types of models,
which we refer to as return all and vector simi-
larity. The return all baseline model assumes that
for a given relationship link, all definitions be-
long. This is not intended as a model that could
produce a useful network as many definitions and
lemmas would be linked that clearly do not belong
together. This achieves maximum recall at the ex-
pense of precision, demonstrating a base level of
precision that must be exceeded.

The vector similarity baseline model takes
advantage of semantic vector representations
for computing similarity (Bengio et al., 2003;
Mikolov et al., 2013; Pennington et al., 2014;
Joulin et al., 2017). It computes the similarity be-
tween lemmas and definitions, utilizing thresholds
that flag to either retain similarities above (max),
below (min), or with magnitude above the thresh-
old (abs).

Wiktionary features many MWEs and uncom-
mon lemmas requiring use of a vectorization strat-
egy that allows for handling of lemmas not ob-
served in the representation’s training. Thus, Fast-
Text was selected for its ability to represent out-of-
vocabulary lemmas through its bag-of-character n-
gram modeling (Bojanowski et al., 2017). To com-
pute similarity between lemmas and definitions,
this model aggregates word vectors of the individ-
ual tokens present in a definition. Following other
work (Lilleberg et al., 2015; Wu et al., 2018), TF-
IDF weighted averages of word vectors were uti-
lized in a very simple averaging scheme.

Initial results indicated that a simple cosine sim-
ilarity with a linear kernel performed marginally
above the return all baseline®. Thus, kernel tricks
(Cristianini and Shawe-Taylor, 2000) were ex-
plored (to positive effect). The Gaussian kernel
is often recommended as a good initial kernel to
try as a baseline (Scholkopf et al., 1995; Joachims,

3 This is interesting to note, since previous work has found
that word embeddings like GloVe and word2vec contain a
surprising amount of word frequency effects that pollute sim-
ple cosine similarity (Schnabel et al., 2015). This may ex-
plain why vanilla cosine similarity performed poorly with
FastText vectors here and provides more evidence against us-
ing it as the default similarity measure.



1998). It is formulated using a radial basis func-
tion (RBF), only dependent on a measure of dis-
tance. The Laplacian kernel is a slight variation of
the Gaussian kernel, measuring distance as the L1
distance where the Gaussian measures distance as
L2 distance. Both kernels fall in the RBF category
with a single regularization parameter, -y, and were
used in comparison to cosine similarity.

For these kernels, a grid search over v was con-
ducted from 1073 to 103 at steps of powers of 10.
Similarly, similarity comparison thresholds were
considered from —1.0 to 1.0 at steps of 0.05 for
all 3 thresholding schemes (min, max, abs).

When selecting a final model, F} scores were
not considered as recall scores outweighed preci-
sion under a simple harmonic mean. This resulted
in models with identical performance to the return
all model or worse. Instead, models were consid-
ered against full-precision and Fp 1 scores.

4.4 Semantic Structure Correlation

Creating a wordnet solely from Wiktionary’s
noisy, crowd-sourced data begs the question:
Does the generated network structure resemble
the structure present in Princeton’s WordNet? To
get a sense of this, we compare the capacities
of each of these resources as a basis for seman-
tic similarity modeling (using Pearson correlation
(Pearson, 1895)). This work considers three no-
tions of graph-based semantic similarity that are
present in WordNet: path similarity (PS), Lea-
cock Chodorow similarity (LCH) (Leacock and
Chodorow, 1998), and Wu Palmer similarity (WP)
(Wu and Palmer, 1994).

The point of this experiment is not to enforce
a notion that this network should mirror the struc-
ture of WordNet. Given Wiktionary’s size, it likely
possesses a great deal of information not repre-
sented by WordNet (resolved our other experiment
on word similarity, Sec. 5.3). But if there is some
association between the semantic representation
capacities of these two networks we may possi-
bly draw some insight into a more basic question:
“has this model produced some relevant semantic
structure?”

For this experiment, only nouns and verbs are
considered as they are the only POS for which
WordNet defines these metrics.  Additionally,
these metrics are defined at the synset level. There
is no direct mapping between synsets in our net-
work and WordNet, therefore, scores are consid-
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ered at a lemma level. By computing values of
all pairs of synsets between lemmas, three values
per metric are generated: minimum, maximum,
and average. Additionally, only lemmas that differ
in minimum and maximum similarity are retained,
restricting the experiment to the most polysemous
portions of the networks.

5 Results

5.1 Baseline model performance

Table 1 shows baseline model performance on the
relationship disambiguation task and highlights
model parameters. During evaluation, the Lapla-
cian kernel was found to consistently outperform
the Gaussian kernel. For this reason, this work
presents the scores from the return all baseline and
two variants of the Laplacian kernel model—one
optimized for precision and the other for Fg ;.

Note that in the synonym case, max-threshold
selection performed best, while in the antonym
case min- and abs-threshold fared better. This
aligns well with the notion that while synonyms
are semantically similar, antonyms are seman-
tically anti-similar—an interesting consideration
for future model development.

Overall, from the scores in Table 1 one can see
that the vector similarity models improve over the
return all, but that there is much work to be done
to further improve precision and recall.

5.2 Comparison against WordNet

WordNet publishes several statistics® that one can
use for quantitative comparison with the network
constructed herein. Reviewing the count statis-
tics shows that Wiktionary is an order of magni-
tude larger than WordNet and that Wiktionary fea-
tures 344,789 linked example usages to WordNet’s
68,411.

Polysemy. Table 2 report polysemy statistics.
Despite the difference in creation processes, the
induced networks do not have polysemy averages
drastically different from WordNet.

In comparing the three networks induced, there
is a common theme of increase in polysemy when
shifting from recall to precision. This makes sense
due to the fact that the return all model will merge
all possible lemmas that overlap in relationship an-
notations resulting in lower polysemy statistics,

6 Statistics are taken from WordNet’s website for Word-
Net 3.0, last accessed on 8/11/2019: https://wordnet.
princeton.edu/documentation/wnstats7wn



Synonyms Antonyms
Model Thresh. Recall Precision Thresh. Recall Precision
Macro Micro | Macro Micro Macro Micro | Macro Micro
Ret. All 1.000 1.000 | 0.602 0.268 1.000 1.000 | 0.527 0.280
Precision | maxgss | 0433 0258 | 0.847 0.541 | min_g35 | 0.266 0.196 | 0.820 0.600
Fyq maxgso | 0.535 0404 | 0.814 0.532 | absg.os 0.730 0.763 | 0.619 0.397

Table 1: Model performance with threshold selection. All v = 0.1, except for antonym precision where v = 100.

whereas a precision-based model will result in
pair-wise clusters that do not overlap as broadly,
resulting in more complex hierarchies.
Structural differences. Intentionally, the pre-
sented notion of a semantic hierarchy functions
similarly to the hypernym connections within
WordNet. Moving up the semantic hierarchy pro-
duces sense approximations from definitions that
are more general, and moving down the hierarchy
produces more specific senses. However, in the
induced networks, this is a notion applied to every
POS—WordNet only produces these connections
for nouns and verbs. An example taken from the
Fop.1 network is that of the adjective good (refer-
ring to Holy) being subsumed by a synset featur-
ing the adjective proper (referring to suitable, ac-
ceptable, and following the established standards).

5.3 Word Similarity

In previous works, WordNet and Wiktionary have
been used to create vector representations of
words. A common method for evaluating the qual-
ity of word vectors is performance on word simi-
larity tasks. Performance on these tasks is evalu-
ated through Spearman’s rank correlation (Spear-
man, 2010) between cosine similarity of vector
representations and human annotations.

Using Explicit Semantic Analysis (ESA), a
technique based on concept vectors, our network
constructs vectors using a word’s tf-idf scores
over concepts, as has been done in prior works
(Gabrilovich and Markovitch, 2007; Zesch et al.,
2008; Meyer and Gurevych, 2012b). We define
our concepts as senses of the Fy 1 network and
compute cosine similarity in this representation.

We compare performance against other ESA
methods (Zesch et al., 2008; Meyer and Gurevych,
2012b) on common datasets: Rubenstein and
Goodenough’s 65 noun pairs (1965, RG-65),
Miller and Charles’s 30 noun pairs (1991, MC-
30), Finklestein et. al’s 353 word similarity pairs
(2002, WS-353, split into Fin-153 and Fin-200
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due to different annotators), and Yang and Pow-
ers’s 130 verb pairs (2006, YP-130). Our results
are summarized in Table 3.

We also compare Fp ; against latent word vector
representations like word2vec’s continuous bag-
of-words (CBOW) and skip-grams (SG) (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
FastText (Bojanowski et al., 2017). These results
are presented in Table 4.

In analyzing these results, the Fj ; network per-
forms well. Against other ESA methods, it is
highly competitive, achieving the highest perfor-
mance in two datasets. When strictly comparing
performance against ESA with WordNet as the
source, it has approximately equal or better per-
formance in all datasets except YP-130. We hy-
pothesize that this is due to a lack of precision in
verb disambiguation, reinforced by the low pol-
ysemy seen above. Additionally, the work from
Zesch et al. (2008) evaluated on subsets of the
data in which all three resources had coverage. In
their work, YP-130 performance is computed for
only 80 of the 130 pairs.

Comparing Fp 1 to latent word vectors, it has
the highest performance on noun datasets and is
competitive on WS-353. While not directly com-
parable, it achieves this through 26 million tokens
of structured text in contrast to billions of tokens
of unstructured text that train latent vectors.

5.4 Network Correlation Results

Table 5 displays correlation values between graph-
based semantic similarity metrics of Fp; and
WordNet. Pairs of 1,009 verb and 1,303 noun lem-
mas were considered. In generating similarities,
disconnected lemma pairs were discarded, produc-
ing 31,373 verb and 16,530 noun pairs. The table
shows that for nouns, the two networks produce
similarity values that are weakly to moderately
correlated, however, verbs produce values that are,
at most, very weakly correlated, if at all.

Due to the fact that Fj ; produced better results




With Monosemous Words Without Monosemous Words
POS WordNet Fyg; Precision Return All | WordNet Fy o1 Precision Return All
Noun 1.24  1.17 1.18 1.10 2779  2.94 2.99 2.66
Verb 2.17 1.20 1.22 1.10 3.57 3.18 3.33 2.78
Adjective 1.18 1.18 1.18 1.10 2.71  2.59 2.62 2.33
Adverb 1.25 1.11 1.12 1.08 250 234 2.36 2.25
Table 2: Average polysemy statistics.
Dataset RG-65 MC-30 Fin-153 Fin-200 YP-130
Fy1 0.831 0.849 0.723 0.557 0.687
WordNet* (Zesch et al., 2008) 0.82 0.78 0.61 0.56 0.71
Wikipedia* (Zesch et al., 2008) 0.76 0.68 0.70 0.50 0.29
Wiktionary* (Zesch et al., 2008) 0.84 0.84 0.70 0.60 0.65
Wiktionary (Meyer and Gurevych, 2012b) | - - - - 0.73

Table 3: Spearman’s rank correlation coefficients on word similarity tasks. Best values are in bold.

Dataset RG-65 MC-30 WS-353
Foq 0.831 0.849 0.669
FastText - - 0.73
CBOW (6B) 0.682  0.656 0.572

SG (6B) 0.697  0.652 0.628
GloVe (6B) 0.778 0.727 0.658
GloVe (42B) 0.829  0.836 0.759
CBOW (100B) | 0.754  0.796 0.684

Table 4: Spearman’s correlation on word similarity

tasks. Best values are in bold. Number of tokens in
training data is featured in parentheses, if reported.
FastText is reported from (Bojanowski et al., 2017),
and all others are from (Pennington et al., 2014).

Noun | Verb
PS min 0.266 | 0.132
PS max 0.495 | 0.189
PS avg 0.448 | 0.082
LCH min | 0.207 | 0.120
LCH max | 0.384 | 0.056
LCHavg | 0.359 | -0.013
WP min 0.116 | 0.090
WP max | 0.219 | 0.005
WP avg 0.226 | -0.025

Table 5: Correlations between F 1 and WordNet simi-
larity metrics: path similarity (PS), Leacock Chodorow
similarity (LCH), and Wu Palmer similarity (WP).

on noun similarity tasks, we hypothesize that this
indicates better semantic structure for nouns than
for verbs, further emphasizing that a possible lim-
itation of the current baseline produced is its lack
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of precision when it comes to polysemous verbs.
However, the positive correlation values seen for
nouns, coupled with noun similarity performance,
offer strong indications that the Fj ; does provide
useful semantic structure that can be further in-
creased through better modeling.

6 Future work

Here, several directions are highlighted along
which we see this work being extended.

Better models. The development of more accu-
rate models for predicting definitions involved in
the pair-wise relations will produce more interest-
ing and useful networks, especially with the mag-
nitude of examples of sense usage. Precision of
verb relations seems to be a critical component of
a better model.

Supervision. Relationship prediction is cur-
rently unsupervised. While it is an interesting task
to model in this fashion, crowd sourcing the an-
notation of this data would be possible through
services like Amazon Mechanical Turk. This
would allow for the potential of exploring su-
pervised models for predicting relationship links,
particularly for relationships like synonymy and
antonymy which are familiar concepts for a broad
community of potential annotators.

WordNet semi-supervision. Another logical
transformation of this task would be to use Word-
Net to inform the induction of a network in a semi-
supervised fashion. There are many ways to go
about this such as using statistics from WordNet
to create a loss function, or using the structure of



WordNet as a base. As this work aimed to create a
network solely from the data of Wiktionary, these
ideas were not explored. However, using WordNet
in this fashion is one of the directions of greatest
interest for exploration in the future.

Sense usage examples. The examples present
in Wiktionary have only begun to be used in this
work. When examples are pulled, the source def-
inition and lemma are linked. However, these ex-
amples have the potential to be linked to other
senses and lemmas. This would an immense
amount of structured, sense-usage data that could
be used for many machine learning tasks.

Multilingual networks Wiktionary has been
explored as a multilingual resource in previous
works (de Melo and Weikum, 2009; Gurevych
et al., 2012; Meyer and Gurevych, 2012b; Bond
and Foster, 2013) largely due to the natural align-
ment across languages. Extending this approach to
a multilingual setting could prove to be extremely
useful for machine translation, and could allow
low resource languages to benefit from alignment
with other languages that have more annotations.

7 Conclusion

This paper introduced the idea of constructing a
wordnet solely using the data from Wiktionary.
Wiktionary is a powerful resource, featuring mil-
lions of pages that describe lemmas, their senses,
example usages, and the relationships between
them. Previous work has explored aligning re-
sources like this with other networks like the
Princeton WordNet. However, no work has fully
explored the idea of building an entire network
from the ground up using just Wiktionary.

This work explores simple baselines for con-
structing a network from Wiktionary through
antonym and synonym relationships and com-
pares induced networks with WordNet to find sim-
ilar structures and statistics that appear to high-
light strong future directions of particular inter-
est, including but not limited to improving net-
work modeling, linking more semantic exam-
ples, and reinforcing network construction using
expert-annotated networks, like WordNet.

As conducted, this work is an initial step in
transforming Wikitionary from an open-source
dictionary into a powerful tool, dataset, and frame-
work, with the hope of driving and motivating fur-
ther work at endeavors studying languages and de-
veloping language processing systems.
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Abstract

Contemporary datasets on tobacco consump-
tion focus on one of two topics, either pub-
lic health mentions and disease surveillance,
or sentiment analysis on topical tobacco prod-
ucts and services. However, two primary con-
siderations are not accounted for, the language
of the demographic affected and a combina-
tion of the topics mentioned above in a fine-
grained classification mechanism. In this pa-
per, we create a dataset of 3144 tweets, which
are selected based on the presence of collo-
quial slang related to smoking and analyze it
based on the semantics of the tweet. Each
class is created and annotated based on the
content of the tweets such that further hierar-
chical methods can be easily applied.

Further, we prove the efficacy of standard text
classification methods on this dataset, by de-
signing experiments which do both binary as
well as multi-class classification. Our experi-
ments tackle the identification of either a spe-
cific topic (such as tobacco product promo-
tion), a general mention (cigarettes and related
products) or a more fine-grained classification.
This methodology paves the way for further
analysis, such as understanding sentiment or
style, which makes this dataset a vital contri-
bution to both disease surveillance and tobacco
use research.

1 Introduction

As Twitter has grown in popularity to 330 million
monthly active users, researchers have increas-
ingly been using it as a source of data for tobacco
surveillance (Lienemann et al., 2017). Tobacco-
related advertisements, tweets, awareness posts,
and related information is most actively viewed
by young adults (aged 18 to 29), who are ex-
tensive users of social media and also represent
the largest population of smokers in the US and

181

Canada !. Furthermore, it allows us to understand
patterns in ethnically diverse and vulnerable au-
diences (Lienemann et al., 2017). Social media
provides an active and useful platform for spread-
ing awareness, especially dialog platforms, which
have untapped potential for disease surveillance
(Platt et al., 2016). These platforms are useful in
stimulating the discussion on societal roles in the
domain of public health (Platt et al., 2016). Sharpe
et al. (2016) has shown the utility of social media
by highlighting that the number of people using
social media channels for information about their
illnesses before seeking medical care.

Correlation studies have shown that the most
probable leading cause of preventable death glob-
ally is the consumption of tobacco and tobacco
products (Prochaska et al., 2012). The disease
most commonly associated with tobacco con-
sumption is lung cancer, with two million cases
reported in 2018 alone 2. While cigarettes are
condemned on social media, this has been rivaled
by the rising popularity and analysis of the sup-
posed benefits of e-cigarettes (Dai and Hao, 2017).
Information pertaining to new flavors and inno-
vations in the industry and surrounding culture
have generated sizable traffic on social media as
well (Hilton et al., 2016). Studies show that so-
cial acceptance is a leading factor to the use and
proliferation of e-cigarettes, with some reports
claiming as many as 2.39 million high school and
0.63 million middle school students having used
an e-cigarette at least once (Malik et al., 2019;
Mantey et al., 2019). However, there are strong
claims suggesting the use of e-cigarettes as a ’gate-
way’ drug for other illicit substances (Unger et al.,

"https://www.cdc.gov/tobacco/data_
statistics/fact_sheets/adult_data/cig_
smoking/

https://www.wcrf.org/dietandcancer/
cancer—trends/lung-cancer—statistics
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7,246,442 tweets

nicotine

smoking

"done smoking"

e-cig

"I run on BBQ
nachos and nicotine
tbh"

"Come vape

with me®) ..."

"Sweetness in e-cigs
like Juul might keep
teens vaping"

Preprocessing

Figure 1: Procedure for Data Collection. We started out with approximately 7 million Tweets which were mined
based on 24 slang terms. These were pre-processed to select relevant tweets with decent traction on Twitter. A
final cleaned dataset of 3144 tweets is presented.

2016). ment analysis of Tobacco-related Twitter posts and
In this paper, we aim at classifying tweets relat-  performed analysis using machine learning clas-
ing to cigarettes, e-cigarettes, and other tobacco-  sifiers for the detection of tobacco-relevant posts

related products into distinct classes. This classifi- ~ with a particular focus on emerging products like
cation is fine-grained in order to assist in the anal-  e-cigarettes and hookah. Their work depends on a
ysis of the type of tweets which affect the users triaxial classification along and uses basic statisti-
the most for each product or category. The exten-  cal classifiers. However, their feature-engineered
sive, manually annotated dataset of 3144 tweets  keyword-based systems do not account for slang
pertains to tobacco use classification into adver-  associated with tobacco consumption.
tisement, general information, personal informa- Vandewater et al. (2018) performs a classifica-
tion, and non-tobacco drug classes. Such classifi-  tion study based on identifying brand associated
cation provides insight into the type of tweet and  with a post using basic text analytics using key-
associated target audience. For example, present  words and image-based classifiers to determine
cessation programs target users who are ready to  the brands that were most responsible to posting
quit rather than people who use it regularly, which  about their brands on social media. Cortese et al.
can be solved using twitter and other online so-  (2018) does a similar analysis on the consumer
cial media (Prochaska et al., 2012). Unlike many  side, for female smokers on Instagram, targeting
previous studies, we also include common slang  the same age group, but based entirely on feature
terms into the classification scheme so as to be extraction on images, particularly selfies.
able to work with the social media discourse of More recently, Malik et al. (2019) explored pat-
the target audience. terns of communication of e-cigarette company
Finally, we present several text-classification  jyul use on Twitter. They categorized 1008 ran-
models for the fine-grained classification tasks  domly selected tweets across four dimensions,
pertaining to tobacco-related tweets on the re-  pamely, user type, sentiment, genre, theme. How-
leased dataset®. In doing so, we extend the work ever, they explore the effects of only Juul, and
in topical Twitter content analysis as well as the ot other cigarettes or e-cigarettes, further limit-
study of public health mentions on Twitter. ing their experiment to only Juul-based analysis
2 Related Work and inferences. . .
In the domain of Disease Surveillance, Aramaki
Myslin et al. (2013) explored content and senti- et al. (2011) explored the problem of identifying
mgithub . com/kartikeypant / influenza epidemics using machine-learning based
smokeng-tobacco-classification tweet classifiers along with search engine trends
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Name Label Annotation
Class
Mention of Non-Tobacco Drugs OD -1
Unrelated or Ambiguous Mention | UM 0
Personal or Anecdotal Mention PM 1
Informative or Advisory Mention IM 2
Advertisements AD 3

Table 1: Label and ID associated with each class.

for medical keywords and medical records for the
disease in a local environment. For doing so, they
use SVM based classifiers for extracting tweets
that mention actual influenza patients. However,
since they use only SVM based classifiers, they
are limited in their accuracy in classification.

Dai et al. (2017) also focuses on public health
surveillance, and uses word embeddings on a topic
classifier in order to identify and capture seman-
tic similarities between medical tweets by disease
and tweet type for a more robust yet very filtered
classification, not accounting for the variety of lin-
guistic features in tweets such as slang, abbrevia-
tions and the like in the keyword-based classifica-
tion mechanism. Jiang et al. (2018) works on a
similar problem using machine learning solutions
such as an LSTM classifier.

3 Dataset Creation

In this section, we explain the development of the
dataset that we present along with this paper. We
summarize the methods for collecting and filter-
ing through the tweets to arrive at the final dataset
and provide some examples of the types of tweets
and features we focused on. We also provide the
dataset annotation schema and guidelines.

3.1 Data Collection

Using the Twitter Application Programming Inter-
face (API*), we collected a sample of tweets be-
tween 1st October 2018 and 7th October 2018 that
represented 1% of the entire Twitter feed. This 1%
sample consisted of an average 1,035,206 million
tweets per day. Out of the 7,246,442 tweets, only
tweets written in English and written by users with
more than 100 followers have selected for the next
step in order to clear spam written by bots.

In order to extract tobacco related tweets from
this dataset, we constructed a list of keywords rel-
evant to general tobacco usage, including hookah

*https://developer.twitter.com/en/products/tweets/sample.html
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and e-cigarettes. Our initial list consisted of 32
such terms compiled from online slang dictionar-
ies, but we pruned this list to 24 terms. These
were smoking, cigarette, e-cig*, cigar, tobacco,
hookah, shisha, e-juice, e-liquid, vape, vaping,
cheroot, cigarillo, roll-up, ashtray, baccy, rollies,
claro, chain-smok*, vaper, ciggie, nicotine, non-
smoker, non-smoking.

By taking the dataset for a full week, we thus
avoided potential bias based on the day of the
week, which has been observed for alcohol related
tweets, which spike in positive sentiment on Fri-
days and Saturdays (Cavazos-Rehg et al., 2015).
For each of the 7 days, all tweets matching any
of the listed keywords were included. Tweets
matching these tobacco related keywords reflected
0.00043% of all tweets in the Twitter API 1%
sample. The resulting final dataset thus contained
3144 tweets, with a mean of 449 tweets per day.

3.2 Data Annotation

The collected data was then annotated based on the
categories mentioned in Table 1. These categories
were chosen on the basis of frequency of occur-
rence, motivated by the general perception of to-
bacco and non-tobacco drug related tweets. These
included advertisements as well anecdotes, infor-
mation and cautionary tweets. We further noticed
that a similar pattern was seen for e-cigarettes and
also pertained to some other drugs. While we
have explored e-cigarettes in this classification, we
have marked the mention of other drugs that were
tagged with the same keywords.

A formal definition of each of the categories is
given below.

e Unrelated or Ambiguous Mention: This
category of tweets contain tweets containing
information unrelated to tobacco or any other
drug, or pertaining to ambiguity in the intent
of the tweet, such as sarcasm.



Label Examples
UM ”What are you smoking bruh ?”
”The smoking gun on Kavanaugh! URL ”
PM ”im smoking and doing whats best for me”
”I haven’t had a cigarette in SNUMBERS$ months why do I want one so bad now??”
™M ”Obama puffed. Clinton did cigar feel. Churchill won major wars on whisky.”
”The FDA’s claim of a teen vaping addiction epidemic doesn’t add up. #ecigarette #health”
AD ”Which ACID Kuba Kuba are you aiming for? #De4L #ExperienceAcid #cigar #cigars URL”
”Spookah Lounge: A concept - a year round Halloween-themed hookah lounge”
oD ”Making my money and smoking my weed”
”Mobbin in da Bentley smoking moonrocks.”

Table 2: Examples for each category represented by its label.

e Personal or Anecdotal Mention: Tweets are
classified as containing a personal or anecdo-
tal mention if they imply either personal use
of tobacco products or e-cigarettes, or pro-
vide instances of use of the products by them-
selves or others.

o Informative or Advisory Mention: This
class of tweets consist of a broad range of
topics such as:

— mention or discussion on statistics of to-
bacco and e-cigarette use or consump-
tion

— mention associated health risks or bene-
fits

— portray the use of tobacco products or e-
cigarettes by a public figure

— emphasize social campaigns for anti-
smoking, smoking cessation and related
products such as patches

Advertisements: All tweets written with the
intent of the sale of tobacco products, e-
cigarettes and associated products or services
are marked advertisements. In this classifica-
tion, intent is considered using the mention of
price as an objective measure.

Mention of Non-Tobacco Drugs: Tweets
which mention the use, sale, anecdotes
and information about drugs other than e-
cigarettes or tobacco products are annotated
in this category.

3.3 Inter-annotator Agreement

Annotation of the dataset to detect the presence of
tobacco substance use was carried out by two hu-
man annotators having linguistic background and
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proficiency in English. A sample annotation set
consisting of 10 tweets per class was selected ran-
domly from all across the corpus. Both annota-
tors were given the selected sample annotation set.
These sample annotation set served as a reference
baseline of each category of the text.

In order to validate the quality of annotation, we
calculated the Inter-Annotator Agreement (IAA)
for the fine-grain classification between the two
annotation sets of 3,144 tobacco-related tweets us-
ing Cohen’s Kappa coefficient (Fleiss and Cohen,
1973). The Kappa score of 0.791 indicates that the
quality of the annotation and presented schema is
productive.

4 Methodology

In this section we describe the classifiers designed
for this task of fine grained classification. The
classifier architecture is based upon a combina-
tion of choosing word representations, along with
a discriminator that is compatible with that rep-
resentation. We use the TF-IDF for the suport
vector machines and GloVe embeddings (Penning-
ton et al., 2014) with our convolutional neural
network architecture and recurrent architectures
(LSTM and Bi-LSTM). We also used FastText and
BERT embeddings (both base and large) with their
native classifiers to note the change in the accura-
cies.

4.1 Support Vector Machines (SVM)

The first learning model used for classification
in our experiment was Support Vector Machines
(SVM) (Cortes and Vapnik, 1995). We used term
frequency-inverse document frequency (TF-IDF)
as a feature to classify the annotated tweets in our
data set (Salton and Buckley, 1988). TF-IDF cap-




tures the importance of the given the word in a
document, defined in Equation 1.

N
tfidf(t,d, D) = f(t,d) x log {deD - ted}] (1)
where f(t, d) indicates the number of times term ¢
appears in context, d and [V is the total number of
documents |deD : ted| represents the total number
of documents where ¢ occurs.
The SVM classifier finds the decision boundary
that maximizes the margin by minimizing ||w|| to
find the optimal hyperplane for all the classifica-

tion tasks:
5lwl?

min f :

s.t. 1=1,....m
)

where w is the weight vector, x is the input vec-
tor and b is the bias.

4.2 Convolutional Neural Networks (CNN)

In this subsection, we outline the Convolutional
Neural Networks (Fukushima, 1988) for classifi-
cation and also provide the process description for
text classification in particular. Convolutional neu-
ral networks are multistage trainable neural net-
works architectures developed for classification
tasks (Lecun et al., 1998). Each of these stages
consist of the types of layers described below:

e Embedding Layer: The purpose of an em-
bedding layer is to transform the text inputs
into a form which can be used by the CNN
model. Here, each word of a text document is
transformed into a dense vector of fixed size.

Convolutional Layers: A Convolutional
layer consists of multiple kernel matrices that
perform the convolution mathematical oper-
ation on their input and produce an output
matrix of features upon the addition of a bias
value.

Pooling Layers: The purpose of a pooling
layer is to perform dimensionality reduction
of the input feature vectors. Pooling layers
use sub-sampling to the output of the convo-
lutional layer matrices combing neighbour-
ing elements. We have used the commonly
used max-pooling function for the pooling.
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e Fully-Connected Layer: It is a classic fully
connected neural network layer. It is con-
nected to the Pooling layers via a Dropout
layer in order to prevent overfitting. Softmax
activation function is used for defining the fi-
nal output of this layer.

The following objective function is commonly
used in the task:

1 BN
L 2
By = n Z Z(Oj,p — Yjp) 3
p=1j=1
where P is the number of patterns, oJLp is the out-

put of j** neuron that belongs to L'" layer, Ny, is
the number of neurons in output of L layer, y; ,
is the desirable target of j** neuron of pattern p
and y; is the output associated with an input vec-
tor x; to the CNN.

We use Adam Optimizer (Kingma and Ba,
2014) to minimize the cost function E,.

4.3 Recurrent Neural Architectures

Recurrent neural networks (RNN) have been em-
ployed to produce promising results on a variety
of tasks, including language model and speech
recognition (Mikolov et al., 2010, 2011; Graves
and Schmidhuber, 2005). An RNN predicts the
current output conditioned on long-distance fea-
tures by maintaining a memory based on history
information.

An input layer represents features at time ¢.
One-hot vectors for words, dense vector features
such as word embeddings, or sparse features usu-
ally represent an input layer. An input layer has
the same dimensionality as feature size. An out-
put layer represents a probability distribution over
labels at time ¢ and has the same dimensionality
as the size of the labels. Compared to the feed-
forward network, an RNN contains a connection
between the previous hidden state and current hid-
den state. This connection is made through the re-
current layer, which is designed to store history in-
formation. The following equation is used to com-
pute the values in the hidden, and output layers:

h(t) = f(Ux(t) + Wh(t — 1)). (€]

y(t) = g(Vh(1)), (5)

where U, W, and V are the connection weights
to be computed during training, and f(z) and g(z)



Model/Experiment Personal Health Mentions Tobacco-related Mentions
SV M 82.17% 83.44%
CNN 84.08% 82.48%

LSTM 84.39% 83.32%
BiLSTM 83.92% 82.97%
FastText 83.76% 81.05%

BERTByse 85.19% 85.50%
BERTarge 87.26% 85.67%

Table 3: Binary Classification accuracies for specific topic (Personal Health Mention) or general theme (Tobacco-

related Mentions).

are sigmoid and softmax activation functions as
follows.

1
1) = = (6)
erm
n) = s 7

In this paper, we apply Long Short Term Mem-
ory (LSTM) and Bidirectional Long Short Term
Memory(Bi-LSTM) to sequence tagging (Hochre-
iter and Schmidhuber, 1997; Graves and Schmid-
huber, 2005; Graves et al., 2013).

LSTM networks use purpose-built memory
cells to update the hidden layer values. As a re-
sult, they may be better at finding and exploiting
long-range dependencies in the data than a stan-
dard RNN. The following equation implements
the LSTM model:

it = 0(Waize + Whihe—1 + Weice—1 + b)) (8)

ft = o(Wapai + Whphi—1 +Wepei—1 +by) (9)

o = U(onl't + Whohtfl + Weoct + bo) (10)

hy = ogtanh(c;) (11)

In sequence tagging task, we have access to
both past and future input features for a given time.
Thus, we can utilize a bidirectional LSTM net-
work (Bi-LSTM) as proposed in (Graves et al.,
2013).

4.4 FastText

FastText classifier has proven to be efficient for
text classification (Joulin et al., 2016). It is often at

par with deep learning classifiers in terms of accu-
racy, and much faster for training and evaluation.
FastText uses bag of words and bag of n-grams
as features for text classification. Bag of n-grams
feature captures partial information about the lo-
cal word order. FastText allows updating word
vectors through back-propagation during training
allowing the model to fine-tune word representa-
tions according to the task at hand (Bojanowski
etal., 2016). The model is trained using stochastic
gradient descent and a linearly decaying learning
rate.

4.5 BERT

While previous studies on word representations
focused on learning context-independent repre-
sentations, recent works have focused on learning
contextualized word representations. One of the
more recent contextualized word representation is
BERT (Devlin et al., 2019).

BERT is a contextualized word representation
model, pre-trained using bidirectional transform-
ers(Vaswani et al., 2017). It uses a masked lan-
guage model that predicts randomly masked in a
sequence. It uses the task of next sentence predic-
tion for learning the embeddings with a broader
context. It outperforms many existing techniques
on most NLP tasks with minimal task-specific ar-
chitectural changes. It is pretrained on 3.3B words
from various sources including BooksCorpus and
the English Wikipedia.

Based on the transformer architecture used,
BERT is classified into two types: BERT gy, and
BERTarge- BERTBgse uses a 12-layered trans-
former with 110M parameters. BERTT g4 uses
a 24-layered transformer with 340M parameters.
We use the cased variant of both models.
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Methods Accuracy F1 Score Recall
SVM 65.45% 0.678 0.657
CNN 66.72% 0.668 0.599
LSTM 64.97% 0.641 0.583
BiLSTM 65.29% 0.643 0.597
FastText 69.43% 0.696 0.669
BERTBgse 70.86% 0.708 0.709
BERTqrge  71.34% 0.714 0.713

Table 4: Evaluation scores for the Fine-grained classification experiment.

S Experiments

In this section, we describe three experiments on
the dataset created in the section above. The ex-
periments are designed to show how well existing
models perform on the naive binary classification
based on this dataset as well as the fine-grained
five-class classification system. The first experi-
ment is based on detecting just personal or anec-
dotal mentions. The second is based on identify-
ing whether a tweet is about tobacco or not. The
last experiment is a full fine-grained classification
experiment.

The following experiments were conducted
keeping an 80-20 split between training and test
data, with 2517 tweets in the training dataset and
629 tweets in the test dataset. All tweets were
shuffled randomly before the train-test split.

BERTY,qrge Was observed to perform the best
in all three experiments, followed closely by
BERTBgse in all the experiments that were con-
ducted.

5.1 Experiment 1: Detecting Personal
Mentions of Tobacco Use

The first experiment in the study was to detect
tweets containing personal mentions of tobacco
use. Tweets containing personal mentions of to-
bacco use are the ones marking implicit or ex-
plicit use of a tobacco substance by the poster.
The objective of this experiment is to analyze the
best method to identify tweets which talk about
tobacco in an anecdotal manner, which can be
used to understand the semantic similarity be-
tween such tweets. Table 3 illustrates the results
for this experiment.

5.2 Experiment 2: Identifying
Tobacco-related Mentions

The next experiment in the study was to detect all
tobacco-related tweets related. These include the
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following categories of tweets: personal mentions
of tobacco-use, general information about tobacco
or its use, advertisements. Thus, the experiment
was to determine whether the tweet belonged to
one of the above categories or not. The objec-
tive here is also to gauge semantic information in
tweets with mentions of tobacco, suggesting that
tweets using the similar slang might be talking
about other drugs or ambiguous or unrelated in-
formation. Table 3 illustrates the results for this
experiment.

5.3 Experiment 3: Performing Fine-grained
Classification of Tobacco-related
Mentions

The last experiment conducted in the study was
to classify the tweets into all five categories: UM,
PM, IM, AD, OD. Table 4 illustrates the results of
the experiment. This is essentially the fine grained
classification experiment which relies on semantic
information as well as lexical choice. We see that
models from all the three experiments perform dif-
ferently given the type of task. Table 4 illustrates
the results for this experiment.

6 Discussion

In this section, we analyze our contributions from
the perspective of advancing work in the fields of
topical content analysis as well as the study of
public health mentions in tweets, with regards to
tobacco products, as well as e-cigarettes and re-
lated products. Given the effects of both as well as
the significant overlap in the demographic of con-
sumers of tobacco products and Twitter users, we
found it necessary to understand the nature of the
tweets produced and consumed by them.

Our dataset, a collection of 3144 tweets, ac-
cumulated and filtered over the period of just a
week, implies that tobacco and related drugs are
tweeted about and spoken of quite frequently, but
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Figure 2: Distribution of tweets among different cate-
gories

Category Retweets Favorites
UM 1079.05  0.794
PM 12171.60  0.904
IM 680.24 3.918
AD 140.81 4.586
oD 873.08 0.868

Table 5: Average retweets and favorites across classes

the linguistic cues common among these tweets
was not considered until now. The inclusion of
tweets into the corpus based on slang terminology
is an attempt to analyze the Twitter landscape in
the language of the audience which most highly
correlates with the demographic of consumers for
the aforementioned products. To the best of our
knowledge, using common slang as a basis of
dataset creation and filtration for this task has not
been attempted before.

Contemporary methods in the field focus on two
basic characterizations, user based and sentiment
based. User based classification such as Malik
et al. (2019) and Jo et al. (2016) are based on
the analyzing activity from a particular user or set
of users, while sentiment based analyses such as
Paul and Dredze (2011); Allem et al. (2018) and
Myslin et al. (2013) are based on understanding
the sentiment of the users on the basis of a new
product, category or a more generalized percep-
tion of smoking in general. On the other hand,
public health mention research such as Jawad et al.
(2015) focuses on effect of a particular type of
tweet, generally health campaigns. Fundamen-
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tally, the classes we have chosen for the collected
data are based on the same principle as the data
collection mechanism, with the aim to bridge the
gap between the classification studies and the pub-
lic health surveillance research. This is because
our categories cover the breadth of the tweets
evenly, directed towards semantically understand-
ing the nature of the tweets. This information is
vital for addressing the validity and reach of cam-
paigns, advertisements and other efforts.

Figure 2 shows the distribution of the number
of tweets in each class. We see that in the span
of a week, informative or advisory and personal
mentions are the most widely posted. The tweets
that provide general information about smokers or
the habits of smoking tobacco or e-cigarettes are
generated the most, implying that a larger section
of the population tweets of smoking in an anecdo-
tal manner. Similarly, Table 5 shows an interest-
ing trends for the favorites. Advertisements have
a higher average favorite count than most other
classes, while anecdotal and advisory tweets are
the most retweeted on average. This difference is
an interesting observation, primarily because on
further work such as sentiment analysis and do-
ing short text style transfer (Luo et al., 2019) for
these categories may provide an effective strategy
for advertisers and campaigners alike.

7 Conclusion and Future Work

In this paper, we created a dataset of tweets and
classified them in order to understand the social
media atmosphere around tobacco, e-cigarettes
and other related products. Our schema for cat-
egorization targets posts on public health as much
as tobacco related products, therefore allowing us
to know the number and type of tweets used in
public health surveillance for the above mentioned
products. Most importantly, we consider slang as a
very important aspect of our data collection mech-
anism, which has allowed us to factor in the con-
tent which is circulated and exposed to the major-
ity of the consumers of social media and the afore-
mentioned products both.

This contribution can be further extended by
working with other social media platforms, where
the methods introduced above can be easily repli-
cated. Social media specific slang can be taken
into account to make a more robust dataset for this
task. Furthermore, on the public health surveil-
lance aspect, more metadata using the tweets can



be extracted, which gives an idea of the type of
tweets or posts needed to grab the attention of
a wider audience on topics of public health and
awareness for the grave topic of tobacco products
and e-cigarettes.
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Abstract

In the context of document quality assessment,
previous work has mainly focused on predict-
ing the quality of a document relative to a pu-
tative gold standard, without paying attention
to the subjectivity of this task. To imitate peo-
ple’s disagreement over inherently subjective
tasks such as rating the quality of a Wikipedia
article, a document quality assessment system
should provide not only a prediction of the ar-
ticle quality but also the uncertainty over its
predictions. This motivates us to measure the
uncertainty in document quality predictions, in
addition to making the label prediction. Ex-
perimental results show that both Gaussian
processes (GPs) and random forests (RFs)
can yield competitive results in predicting the
quality of Wikipedia articles, while provid-
ing an estimate of uncertainty when there is
inconsistency in the quality labels from the
Wikipedia contributors. We additionally eval-
uate our methods in the context of a semi-
automated document quality class assignment
decision-making process, where there is asym-
metric risk associated with overestimates and
underestimates of document quality. Our ex-
periments suggest that GPs provide more reli-
able estimates in this context.

1 Introduction

The volume of textual web content generated col-
laboratively — through sites such as Wikipedia,
or community question answering platforms such
as Stack Overflow — has been growing progres-
sively. Such collaborative paradigms give rise to
a problem in quality assessment: how to ensure
documents are reliable and useful to end users.
Given the volume of such documents, and
velocity with which they are being produced,
there has been recent interest in automatic qual-
ity assessment using machine learning techniques
(Dang and Ignat, 2016a; Dalip et al., 2017; Shen
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Figure 1: A screenshot of the “Warden Head Light”
Talk page. Wikipedia Project Lighthouses as-
signs a B-class quality label to this article, while
Wikipedia Project Australia assigns a Start-class
quality label.

et al., 2017). However, previous work has treated
this problem using off-the-shelf predictors, which
fail to take into account two key aspects. First,
any quality rating is inherently subjective: differ-
ent end users can heavily disagree on the quality of
a document. For example, as shown in Figure 1,
the Wikipedia article Warden Head Light' is as-
signed to different labels from different Wikipedia
Projects:> B (in the green block) by Wikipedia
Project Lighthouses, and Start (in the orange
block) by Wikipedia Project Australia;> among a
30K datatset we collected, there are 7% such arti-
cles (even including high-quality articles), where
contributors disagree over the article quality. Sec-
ond, previous work has ignored decision-making

"https://en.wikipedia.org/w/index.php?
title=Warden_Head_Light&oldid=759074867

2 A Wikipedia Project is a group of Wikipedia contributors
who work together to improve Wikipedia articles that they are
interested in.

3We return to describe the full label set in Section 2.
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procedures (such as expert reviewing, and featur-
ing articles on the Wikipedia main page) that are
impacted by the results of the prediction, which
can vary in non-trivial ways.

In this work, we address these two gaps by
modelling the uncertainty