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Preface by General and Program Chairs

It is our pleasure to welcome you to the EMNLP-CoNLL 2012 conference, a joint meeting of the
Conference on Empirical Methods in Natural Language Learning (EMNLP) and the Conference on
Computational Natural Language Learning (CoNLL). After the successful first collaboration in 2007,
EMNLP-CoNLL 2012 is being jointly organized by the SIGDAT and SIGNLL special interest groups
of the Association of Computational Linguistics.

This time, EMNLP-CoNLL is co-located with, and immediately after ACL’s 50th anniversary
conference. The choice of the location is an opportunity for the ACL community to return to
the beautiful Jeju Island, Korea, following a seven-year hiatus since the Second International Joint
Conference on Natural Language Processing (IJICNLP 2005) was held here.

Out of 606 submissions received by EMNLP-CoNLL this year, a total of 36 submissions were
eventually withdrawn or rejected without review. From the remaining submissions, 99 were accepted
for oral presentation and 40 for poster presentation, for a combined acceptance rate of 24.8%. As in
recent editions of EMNLP, authors were given the opportunity to provide supplementary material in
conjunction with their submissions, which the program committee could but was not required to take
into account during reviewing. Also as in recent editions, authors of accepted papers were offered
an additional page in the camera-ready version of their submissions, so that comments received from
reviewers could be more easily addressed.

The papers submitted to the conference were subject to a rigorous reviewing process, made possible
by efforts of a team of 525 primary and 66 secondary reviewers, acting under the guidance of 22
area chairs. Presence of unsupported claims, or failure to properly compare with previous work, were
likely serious obstacles, on the path from initial submission to acceptance and then publication in our
proceedings. Luckily, our preface has a guaranteed placement in the proceedings. Therefore, without
access to insider data and impressions from previous editions of the conference, we will still go on a
limb here, and make the unsupported claim that our team of area chairs has been the greatest. That their
expertise, dedication and willingness to go beyond the call of duty had a positive impact on a timely
reviewing process and a high-quality conference program, would be an understatement. It has been a
pleasure to interact and work with our area chairs.

The schedule of our conference is strengthened by two invited speakers, Eric Xing and Patrick Pantel,
who we were very happy to have accept our invitation; and by the CoNLL Shared Task, an annual
tradition for the CoNLL conferences. This year’s CoNLL Shared Task is Modeling Multilingual
Unrestricted Coreference in OntoNotes, and its proceedings and detailed schedule are available
separately.

We would like to thank all authors who submitted to our conference, for their willingness to share their
knowledge with the rest of us. It may take a few weeks or many years, for the knowledge distilled into
the present proceedings to have a measurable impact on our field and beyond. An impact that would not
be possible without countless hours spent by authors, from developing ideas to running experiments to
building usable systems - steps that often fail, and sometimes succeed.

We would also like to thank all members of the program committee, for their willingness to offer
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feedback that sometimes reaches extraordinary levels of detail and value to authors. To recognise some
of the most dedicated reviewers, we include the Best Reviewer awards a little later in these proceedings.

Naoaki Okazaki, Publications Chair, deserves our special thanks. He brought in a healthy dose of rigor
to the planning and preparation of not only this proceedings but also conference materials, matched
only by his dedication to deliver under tight scheduling constraints.

If the combination of oral presentations, posters and invited talks that make up EMNLP-CoNLL 2012 is
considered a success, it is because it benefited from the touch of many people. Francesco Figari easily
kept tabs on our salvos of large and small requests for updates to our conference website. Rich Gerber,
Paolo Gai and the larger team managing the conference submission system were quick to offer answers
to all our questions. The publication chairs and local arrangements committee of ACL 2012, including
Michael White, Maggie Li, Jong Park and especially Gary Geunbae Lee, covered significant tasks on
behalf of EMNLP-CoNLL, all with a smile. Chin-Yew Lin, Miles Osborne, Eric Fosler-Lussier, Dekang
Lin, Rada Mihalcea, Regina Barzilay, Ulrich Germann and David Yarowsky offered high-level advice or
answered detailed questions, drawing upon their experience as organizers of previous ACL-sponsored
conferences.

We are grateful to our sponsors (Baidu, Google and Microsoft), for their support of best paper awards
and support of student travel in particular, and the financial well-being of the conference in general. It
has been an honor to be of service to the conference, for which we would like to thank the community
and those who offered us this opportunity. We hope that you enjoy the conference, and have a productive
and pleasant stay in South Korea!

Jun’ichi Tsujii, General Chair
James Henderson and Marius Pagca, Program Chairs
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Invited Talks:

“On Learning Sparse Structured Input-Output Models”
Eric Xing, Carnegie Mellon University

In many modern problems across areas such as natural language processing, computer vision,
and social media inference, one is often interested in learning a Sparse Structured Input-Output
Model (SIOM), in which the input variables of the model such as lexicons in a document bear rich
structures due to the syntactic and semantic dependences between them in the text; and the output
variables such as the elements in a multi-way classification, a parse, or a topic representation
are also structured because of their interrelatedness. A SIOM can nicely capture rich structural
properties in the data and in the problem, but it also raises severe computational and theoretical
challenge on sparse, consistent, and tractable model identification and inference.

In this talk, I will present models, algorithms, and theories that learn Sparse SIOMs of various
kinds in very high dimensional input/output space, with fast and highly scalable optimization
procedures, and strong statistical guarantees. I will demonstrate application of our approach to
problems in large-scale text classification, topic modeling, and dependency parsing.

“The Appification of the Web and the Renaissance of Conversational User Interfaces”
Patrick Pantel, Microsoft Research

The appification of the Web is triggering a fundamental shift in how users access information. We
are moving from centralized access points, such as search engines, towards highly specialized,
and yet fragmented, functionalities in disconnected apps. This talk explores an entity-centric con-
versational interface as a mechanism to overcome this fragmentation, highlighting the numerous
associated NLP challenges and opportunities that lie ahead.

Consider mobile scenarios, where the traditional search engine paradigm is being cannibalized by
search and browse functionalities built directly into specialized apps. For example, while users
can search for restaurants and products using their mobile browser, they are increasingly turn-
ing directly to applications such as Yelp, Urbanspoon and Amazon. However, interoperability
between applications and lacking generalized interfaces to their functionalities pose serious scal-
ability challenges. In this talk, we argue for an entity-centric conversational interface in which
natural user interactions with entities are paired with actions that can be performed on the entities,
thus enabling the brokering of web pages and applications that can satisfy the intended action.
In this vision, the broker is aware of all entities and actions of interest to its users, understands
the intent of the user, and provides direct actionable results through APIs with external providers
satisfying the intent. The user saves clicks and time to accomplish her intended action and can
discover related actions. New revenue streams open up from paid action placement and lead gen-
eration opportunities. At the forefront of this direction are a number of NLP challenges in the
areas of entity recognition, entity linking, knowledge extraction, intent recognition, and dialog
modeling, to name a few.

We end by proposing one particular technique for learning and mapping user intents in a search
interface. In an annotation study conducted over a traffic sample of web usage logs, we found that
a large proportion of user queries involve actions on entities, calling for an automatic approach
to identifying relevant actions for entity-bearing queries. We pose the problem of finding actions
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that can be performed on entities as the problem of doing probabilistic inference in a graphical
model that captures how entity-bearing information requests are generated. Given a large collec-
tion of real-world queries and clicks from a commercial search engine, the models are learned
efficiently through maximum likelihood estimation using an EM algorithm. Given a new query,
inference enables the recommendation of a set of pertinent actions and providers. We propose
an evaluation methodology for measuring the relevance of our recommended actions, and show
empirical evidence of the quality and the diversity of the discovered actions.
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Abstract

We consider the problem of using a bilingual
dictionary to transfer lexico-syntactic infor-
mation from a resource-rich source language
to a resource-poor target language. In con-
trast to past work that used bitexts to trans-
fer analyses of specific sentences at the token
level, we instead use features to transfer the
behavior of words at a type level. In a dis-
criminative dependency parsing framework,
our approach produces gains across a range
of target languages, using two different low-
resource training methodologies (one weakly
supervised and one indirectly supervised) and
two different dictionary sources (one manu-
ally constructed and one automatically con-
structed).

1 Introduction

Building a high-performing parser for a language
with no existing treebank is still an open problem.
Methods that use no supervision at all (Klein and
Manning, 2004) or small amounts of manual su-
pervision (Haghighi and Klein, 2006; Cohen and
Smith, 2009; Naseem et al., 2010; Berg-Kirkpatrick
and Klein, 2010) have been extensively studied, but
still do not perform well enough to be deployed
in practice. Projection of dependency links across
aligned bitexts (Hwa et al., 2005; Ganchev et al.,
2009; Smith and Eisner, 2009) gives better perfor-
mance, but crucially depends on the existence of
large, in-domain bitexts. A more generally appli-
cable class of methods exploits the notion of univer-
sal part of speech tags (Petrov et al., 2011; Das and

m

. the senators demand strict new ethics rules ...
DT NNS VBP 1 JJ. NNS NNS

Gewerkschaften  verlangen Verzicht auf die Reform
NN VVFIN NN APPR ART NN
Unions demand  abandonment  on the  reform

N N

Figure 1: Sentences in English and German both contain-
ing words that mean “demand.” The fact that the English
demand takes nouns on its left and right indicates that the
German verlangen should do the same, correctly suggest-
ing attachments to Verzicht and Gewerkschaften.

Petrov, 2011) to train parsers that can run on any lan-
guage with no adaptation (McDonald et al., 2011)
or unsupervised adaptation (Cohen et al., 2011).
While these universal parsers currently constitute
the highest-performing methods for languages with-
out treebanks, they are inherently limited by operat-
ing at the coarse POS level, as lexical features are
vital to supervised parsing models.

In this work, we consider augmenting delexical-
ized parsers by transferring syntactic information
through a bilingual lexicon at the word type level.
These parsers are delexicalized in the sense that, al-
though they receive target language words as input,
their feature sets do not include indicators on those
words. This setting is appropriate when there is too
little target language data to learn lexical features di-
rectly. Our main approach is to add features which
are lexical in the sense that they compute a function
of specific target language words, but are still un-
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lexical in the sense that all lexical knowledge comes
from the bilingual lexicon and training data in the
source language.

Consider the example English and German sen-
tences shown in Figure 1, and suppose that we wish
to parse the German side without access to a Ger-
man treebank. A delexicalized parser operating at
the part of speech level does not have sufficient in-
formation to make the correct decision about, for ex-
ample, the choice of subcategorization frame for the
verb verlangen. However, demand, a possible En-
glish translation of verlangen, takes a noun on its
left and a noun on its right, an observation that in this
case gives us the information we need. We can fire
features in our German parser on the attachments
of Gewerkschaften and Verzicht to verlangen indi-
cating that similar-looking attachments are attested
in English for an English translation of verlangen.
This allows us to exploit fine-grained lexical cues to
make German parsing decisions even when we have
little or no supervised German data; moreover, this
syntactic transfer is possible even in spite of the fact
that demand and verlangen are not observed in par-
allel context.

Using type-level transfer through a dictionary in
this way allows us to decouple the lexico-syntactic
projection from the data conditions under which we
are learning the parser. After computing feature val-
ues using source language resources and a bilingual
lexicon, our model can be trained very simply us-
ing any appropriate training method for a supervised
parser. Furthermore, because the transfer mecha-
nism is just a set of features over word types, we are
free to derive our bilingual lexicon either from bitext
or from a manually-constructed dictionary, making
our method strictly more general than those of Mc-
Donald et al. (2011) or Tackstrom et al. (2012), who
rely centrally on bitext. This flexibility is potentially
useful for resource-poor languages, where a human-
curated bilingual lexicon may be broader in cover-
age or more robust to noise than a small, domain-
limited bitext. Of course, it is an empirical question
whether transferring type level information about
word behavior is effective; we show that, indeed,
this method compares favorably with other transfer
mechanisms used in past work.

The actual syntactic information that we transfer
consists of purely monolingual lexical attachment
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statistics computed on an annotated source language
resource.! While the idea of using large-scale sum-
mary statistics as parser features has been consid-
ered previously (Koo et al., 2008; Bansal and Klein,
2011; Zhou et al., 2011), doing so in a projection set-
ting is novel and forces us to design features suitable
for projection through a bilingual lexicon. Our fea-
tures must also be flexible enough to provide benefit
even in the presence of cross-lingual syntactic dif-
ferences and noise introduced by the bilingual dic-
tionary.

Under two different training conditions and with
two different varieties of bilingual lexicons, we
show that our method of lexico-syntactic projection
does indeed improve the performance of parsers that
would otherwise be agnostic to lexical information.
In all settings, we see statistically significant gains
for a range of languages, with our method providing
up to 3% absolute improvement in unlabeled attach-
ment score (UAS) and 11% relative error reduction.

2 Model

The projected lexical features that we propose in this
work are based on lexicalized versions of features
found in MSTParser (McDonald et al., 2005), an
edge-factored discriminative parser. We take MST-
Parser to be our underlying parsing model and use it
as a testbed on which to evaluate the effectiveness of
our method for various data conditions.” By instanti-
ating the basic MSTParser features over coarse parts
of speech, we construct a state-of-the-art delexical-
ized parser in the style of McDonald et al. (2011),
where feature weights can be directly transferred
from a source language or languages to a desired
target language. When we add projected lexical fea-
tures on top of this baseline parser, we do so in a
way that does not sacrifice this generality: while
our new features take on values that are language-
specific, they interact with the model at a language-
independent level. We therefore have the best of

"Throughout this work, we will use English as the source
language, but it is possible to use any language for which the
appropriate bilingual lexicons and treebanks exist. One might
expect to find the best performance from using a source lan-
guage closely related to the target.

>We train MSTParser using the included implementation of
MIRA (Crammer and Singer, 2001) and use projective decoding
for all experiments described in this paper.
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Figure 2: Computation of features on a dependency arc. DELEX features are indicators over characteristics of depen-
dency links that do not involve the words in the sentence. PROJ features are real-valued analogues of DELEX features
that do contain words. We form a query from each stipulated set of characteristics, compute the values of these queries
heuristically, and then fire a feature based on each query’s signature. Signatures indicate which attachment properties
were considered, which part of the query was lexicalized (shown by brackets here), and the POS of the query word.
This procedure yields a small number of real-valued features that still capture rich lexico-syntactic information.

two worlds in that our features can be learned on
any treebank or treebanks that are available to us,
but still exploit highly specific lexical information
to achieve performance gains over using coarse POS
features alone.

2.1 DELEX Features

Our DELEX feature set consists of all of the unlexi-
calized features in MSTParser, only lightly modified
to improve performance for our setting. McDonald
et al. (2005) present three basic types of such fea-
tures, ATTACH, INBETWEEN, and SURROUNDING,
which we apply at the coarse POS level. The AT-
TACH features for a given dependency link consist of
indicators of the tags of the head and modifier, sep-
arately as well as together. The INBETWEEN and
SURROUNDING features are indicators on the tags
of the head and modifier in addition to each inter-
vening tag in turn (INBETWEEN) or various com-
binations of tags adjacent to the head or modifier
(SURROUNDING).3

MSTParser by default also includes a copy of
each of these indicator features conjoined with
the direction and distance of the attachment it de-
notes. These extra features are important to getting

3As in Koo et al. (2008), our feature set contains more
backed-off versions of the SURROUNDING features than are de-
scribed in McDonald et al. (2005).

good performance out of the baseline model. We
slightly modify the conjunction scheme and expand
it with additional backed-off conjunctions, since
these changes lead to features that empirically trans-
fer better than the MSTParser defaults. Specifically,
we use conjunctions with attachment direction (left
or right), coarsened distance,* and attachment direc-
tion and coarsened distance combined.

We emphasize again that these baseline features
are entirely standard, and all the DELEX feature set
does is recreate an MSTParser-based analogue of the
direct transfer parser described by McDonald et al.
(2011).

2.2 PRroJ Features

We will now describe how to compute our projected
lexical features, the PROJ feature set, which con-
stitutes the main contribution of this work. Recall
that we wish our method to be as general as possible
and work under many different training conditions;
in particular, we wish to be able to train our model
on only existing treebanks in other languages when
no target language trees are available (discussed in
Section 3.3), or on only a very small target language
treebank (Section 3.4). It would greatly increase
the power of our model if we were able to include
target-language-lexicalized versions of the ATTACH

*Our five distance buckets are {1,2,3-5,6—10, 11+}.



features, but these are not learnable without a large
target language treebank. We instead must augment
our baseline model with a relatively small number of
features that are nonetheless rich enough to transfer
the necessary lexical information.

Our overall approach is sketched in Figure 2,
where we show the features that fire on two pro-
posed edges in a German dependency parse. Fea-
tures on an edge in MSTParser incorporate a sub-
set of observable properties about that edge’s head,
modifier, and context in the sentence. For sets of
properties that do not include a lexical item, such
as VERB—NOUN, we fire an indicator feature from
the DELEX feature set. For those that do include a
lexical item, such as verlangen—NOUN, we form a
query, which resembles a lexicalized indicator fea-
ture. Rather than firing the query as an indicator
feature directly, which would result in a model pa-
rameter for each target word, we fire a broad feature
called an signature whose value reflects the specifics
of the query (computation of these values is dis-
cussed in Section 2.2.2). For example, we abstract
verlangen—NOUN to [VERB]—CHILD, with square
brackets indicating the element that was lexicalized.
Section 2.2.1 discusses this coarsening in more de-
tail. The signatures are agnostic to individual words
and even the language being parsed, so they can be
learned on small amounts of data or data from other
languages.

Our signatures allow us to instantiate features at
different levels of granularity corresponding to the
levels of granularity in the DELEX feature set. When
a small amount of target language data is present,
the variety of signatures available to us means that
we can learn language-specific transfer characteris-
tics: for example, nouns tend to follow prepositions
in both French and English, but the ordering of ad-
jectives with respect to nouns is different. We also
have the capability to train on languages other than
our target language, and while this is expected to be
less effective, it can still teach us to exploit some
syntactic properties, such as similar verb attachment
configurations if we train on a group of SVO lan-
guages distinct from a target SVO language. There-
fore, our feature set manages to provide the training
procedure with choices about how much syntactic
information to transfer at the same time as it prevents
overfitting and provides language independence.

2.2.1 Query and Signature Types

A query is a subset of the following pieces of in-
formation about an edge: parent word, parent POS,
child word, child POS, attachment direction, and
binned attachment distance. It must contain exactly
one word.> We experimented with properties from
INBETWEEN and SURROUNDING features as well,
but found that these only helped under some circum-
stances and could lead to overfitting.°

A signature contains the following three pieces of
information:

1. The non-empty subset of attachment properties
included in the query

2. Whether we have lexicalized on the parent or
child of the attachment, indicated by brackets

3. The part of speech of the included word

Because either the parent or child POS is included
in the signature, there are three meaningful proper-
ties to potentially condition on, of which we must se-
lect a nonempty subset. Some multiplication shows
that we have 7 x 2 x 13 = 182 total PROJ features.

As an example, the queries

verlangen — NOUN
verlangen — ADP

sprechen — NOUN
all share the signature [VERB]—CHILD, but

verlangen — NOUN,RIGHT
Verzicht — ADP
VERB — Verzicht

have [VERB]—CHILD,DIR, [ADP]—CHILD, and
PARENT—[NOUN] as their signatures, respectively.

The level of granularity for signatures is a param-
eter that simply must be engineered. We found some
benefit in actually instantiating two signatures for
every query, one as described above and one that

SBilexical features are possible in our framework, but we do
not use them here, so for clarity we assume that each query has
one associated word.

%0One hypothesis is that features looking at the sentence con-
text are more highly specialized to a given language, since they
examine the parent, the child, and one or more other parts of
speech or words.
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Figure 3: Computation of query values. For each occurrence of a given source word, we tabulate the attachments it
takes part in (parents and children) and record their properties. We then compute relative frequency counts for each
possible query type to get source language scores, which will later be projected through the dictionary to obtain target
language feature values. Only two query types are shown here, but values are computed for many others as well.

does not condition on the part of speech of the word
in the signature. One can also imagine using more
refined signatures, but we found that this led to over-
fitting in the small training scenarios under consid-
eration.

2.2.2 Query Value Estimation

Each query is given a value according to a gener-
ative heuristic that involves the source training data
and the probabilistic bilingual lexicon.” For a par-
ticular signature, a query can be written as a tu-
ple (z1, 2, ..., w;) where wy is the target language
query word and the x; are the values of the included
language-independent attachment properties. The
value this feature takes is given by a simple gener-
ative model: we imagine generating the attachment
properties x; given w; by first generating a source

"Lexicons such as those produced by automatic aligners in-
clude probabilities natively, but obviously human-created lexi-
cons do not. For these dictionaries, we simply assume that each
word translates with uniform probability into each of its pos-
sible translations. Tweaking this method did not substantially
change performance.

word ws from w; based on the bilingual lexicon,
then jointly generating the z; conditioned on ws.
Treating the choice of source translation as a latent
variable to be marginalized out, we have

wt)

= plws|w)p(ar, 22, ... |ws)

Ws

value = p(x1, z9, ..

The first term of the sum comes directly from our
probabilistic lexicon, and the second we can esti-
mate using the maximum likelihood estimator over
our source language training data:

c(x1, T2, .., Ws)

c(ws)

ey

p(x1, @2, ... Jws) =

where c¢(-) denotes the count of an event in the
source language data.

The final feature value is actually the logarithm
of this computed value, with a small constant added
before the logarithm is taken to avoid zeroes.



3 Experiments

3.1 Data Conditions

Before we describe the details of our experiments,
we sketch the data conditions under which we eval-
uate our method. As described in Section 1, there is
a continuum of lightly supervised parsing methods
from those that make no assumptions (beyond what
is directly encoded in the model), to those that use
a small set of syntactic universals, to those that use
treebanks from resource-rich languages, and finally
to those that use both existing treebanks and bitexts.

Our focus is on parsing when one does not have
access to a full-scale target language treebank, but
one does have access to realistic auxiliary resources.
The first variable we consider is whether we have
access to a small number of target language trees or
only pre-existing treebanks in a number of other lan-
guages; while not our actual target language, these
other treebanks can still serve as a kind of proxy for
learning which features generally transfer useful in-
formation (McDonald et al., 2011). We notate these
conditions with the following shorthand:

BANKS: Large treebanks in other target languages
SEED: Small treebank in the right target language

Previous work on essentially unsupervised meth-
ods has investigated using a small number of target
language trees (Smith and Eisner, 2009), but the be-
havior of supervised models under these conditions
has not been extensively studied. We will see in
Section 3.4 that with only 100 labeled trees, even
our baseline model can achieve performance equal
to or better than that of the model of McDonald et
al. (2011). A single linguist could plausibly anno-
tate such a number of trees in a short amount of time
for a language of interest, so we believe that this is
an important setting in which to show improvement,
even for a method primarily intended to augment un-
supervised parsing.

In addition, we consider two different sources for
our bilingual lexicon:

AUTOMATIC: Extracted from bitext

MANUAL: Constructed from human annotations

Both bitexts and human-curated bilingual dictionar-
ies are more widely available than complete tree-
banks. Bitexts can provide rich information about
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lexical correspondences in terms of how words are
used in practice, but for resource-poor languages,
parallel text may only be available in small quan-
tities, or be domain-limited. We show results of our
method on bilingual dictionaries derived from both
sources, in order to show that it is applicable under a
variety of data conditions and can successfully take
advantage of such resources as are available.

3.2 Datasets

We evaluate our method on a range of languages
taken from the CoNLL shared tasks on multilingual
dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007). We make use of dependency
treebanks for Danish, German, Greek, Spanish, Ital-
ian, Dutch, Portuguese, and Swedish, all from the
2006 shared task.

For our English resource, we use 500,000 En-
glish newswire sentences from English Gigaword
version 3 (Graff et al., 2007), parsed with the Berke-
ley Parser (Petrov et al., 2006) and converted to a
dependency treebank using the head rules of Collins
(1999).8 Our English test set (used in Section 3.4)
consists of the first 300 sentences of section 23 of the
Penn treebank (Marcus et al., 1993), preprocessed
in the same way. Our model does not use gold fine-
grained POS tags, but we do use coarse POS tags
deterministically generated from the provided gold
fine-grained tags in the style of Berg-Kirkpatrick
and Klein (2010) using the mappings of Petrov et
al. (2011).° Following McDonald et al. (2011), we
strip punctuation from all treebanks for the results of
Section 3.3. All results are given in terms of unla-
beled attachment score (UAS), ignoring punctuation
even when it is present.

We use the Europarl parallel corpus (Koehn,
2005) as the bitext from which to extract the AUTO-
MATIC bilingual lexicons. For each target language,
we produce one-to-one alignments on the English-
target bitext by running the Berkeley Aligner (Liang
et al., 2006) with five iterations of IBM Model 1 and

8Results do not degrade much if one simply uses Sections 2-
21 of the Penn treebank instead. Coverage of rare words in the
treebank is less important when a given word must also appear
in the bilingual lexicon as the translation of an observed German
word in order to be useful.

Note that even in the absence of gold annotation, such tags
could be produced from bitext using the method of (Das and
Petrov, 2011) or could be read off from a bilingual lexicon.



This work Past work
MANUAL AUTOMATIC MPH11* TMU12%*
DELEX | DELEX+PROJ A DELEX+PROJ A Multi-dir ~ Multi-proj A || No clusters ~ X-lingual A
DA 41.3 43.0 1.67 % 43.6 2307 48.9% 0.6* 36.7%* 2.0%*
DE 58.5 58.7 0.20 59.5 0.94 1 56.7* -0.1% 48.9%* 1.8%*
EL 57.9 59.9 1.99 § 60.5 2.55% 60.1°* 5.0% 59.5%* 3.5%%
ES 64.2 65.4 1.20 % 65.7 1.52 % 64.2% 0.3%* 60.2%* 2.7k
IT 65.9 66.5 0.58 67.4 1.54 1 64.1%* 0.9* 64.6%* 4.2%%
NL 57.0 57.5 0.52 58.8 1.88 1 55.8% 9.9% 52.8%* 1.5%%
PT 75.4 77.2 1.83 % 78.7 3291 74.0%* 1.6%* 66.8%* 4.2k
Y 64.5 66.1 1.61% 66.9 2341 65.3* 2.7* 55.4%* 1.5%*
AVG 60.6 61.8 1.20 62.6 2.05 61.1%* 2.7% 55.6%* 2.7k

Table 1: Evaluation of features derived from AUTOMATIC and MANUAL bilingual lexicons when trained on a con-
catenation of non-target-language treebanks (the BANKS setting). Values reported are UAS for sentences of all lengths
in the standard CoNLL test sets, with punctuation removed from training and test sets. Daggers indicate statistical
significance computed using bootstrap resampling; a single dagger indicates p < 0.1 and a double dagger indicates
p < 0.05. We also include the baseline results of McDonald et al. (2011) and Tackstrom et al. (2012) and improve-
ments from their best methods of using bitext and lexical information. These results are not directly comparable to
ours, as indicated by * and **. However, we still see that the performance of our type-level transfer method approaches
that of bitext-based methods, which require complex bilingual training for each new language.

five iterations of the HMM aligner with agreement
training. Our lexicon is then read off based on rel-
ative frequency counts of aligned instances of each
word in the bitext.

We also use our method on bilingual dictionar-
ies constructed in a more conventional way. For
this purpose, we scrape our MANUAL bilingual lex-
icons from English Wiktionary (Wikimedia Founda-
tion, 2012). We mine entries for English words that
explicitly have foreign translations listed as well as
words in each target language that have English def-
initions. We discard all translation entries where
the English side is longer than one word, except
for constructions of the form “to VERB”, where we
manually remove the “to” and allow the word to be
defined as the English infinitive. Finally, because
our method requires a dictionary with probability
weights, we assume that each target language word
translates with uniform probability into any of the
candidates that we scrape.

3.3 BANKS

We first evaluate our model under the BANKS data
condition. Following the procedure from McDonald
et al. (2011), for each language, we train both our
DELEX and DELEX+PROIJ features on a concate-
nation of 2000 sentences from each other CoNLL
training set, plus 2000 sentences from the Penn

Treebank. Again, despite the values of our PROJ
queries being sensitive to which language we are
currently parsing, the signatures are language in-
dependent, so discriminative training still makes
sense over such a combined treebank. Training our
PRror7 features on the non-English treebanks in this
concatenation can be understood as trying to learn
which lexico-syntactic properties transfer “univer-
sally,” or at least transfer broadly within the families
of languages we are considering.

Table 1 shows the performance of the DELEX fea-
ture set and the DELEX+PROT7 feature set using both
AUTOMATIC and MANUAL bilingual lexicons. Both
methods provide positive gains across the board that
are statistically significant in the vast majority of
cases, though MANUAL is slightly less effective;
we postpone until Section 4.1 the discussion of the
shortcomings of the MANUAL lexicon.

We include for reference the baseline results of
McDonald et al. (2011) and Tackstrom et al. (2012)
(multi-direct transfer and no clusters) and the im-
provements from their best methods using lexi-
cal information (multi-projected transfer and cross-
lingual clusters). We emphasize that these results
are not directly comparable to our own, as we
have different training data (and even different train-
ing languages) and use a different underlying pars-
ing model (MSTParser instead of a transition-based



AUTOMATIC
100 train trees 200 train trees 400 train trees

DELEX DELEX+PROIJ A DELEX DELEX+PROIJ A DELEX DELEX+PROJ A
DA 67.2 69.5 2321 69.5 72.3 277 % 71.4 74.6 3.16 %
DE 72.9 73.9 0.97 75.4 76.5 1.09 1 773 78.5 1251
EL 70.8 72.9 2.07 72.6 74.9 2301 74.3 76.7 2411
ES 72.5 73.0 0.46 74.1 75.4 1.29 1 75.3 772 1.811
IT 73.3 75.4 2.13 % 74.7 773 2.54 % 76.0 78.7 274 %
NL 63.0 65.8 2.82 1 64.7 67.6 2.86 1 66.1 69.2 3.06 1
PT 78.1 79.5 1451 79.5 81.1 1.66 1 80.7 82.4 1.63 1
SV 76.4 78.1 1.69 1 78.1 80.2 2021 79.6 81.7 207 %

AVG 71.8 73.5 1.74 73.6 75.7 2.07 75.1 77.4 2.27

] EN \ 74.4 81.5 7.06 1 \ 76.6 83.0 6.351 \ 78.3 84.1 5.801 \
MANUAL

DA 67.2 68.1 0.88 69.5 70.9 144 1 71.4 73.3 1.921
DE 72.9 73.4 0.44 75.4 76.2 0.77 77.3 78.4 1.12 %
EL 70.8 71.9 1.06 f 72.6 74.1 148 § 74.3 75.8 1.56 ¢
ES 72.5 71.9 -0.64 74.1 74.3 0.23 75.3 76.4 1.04
IT 73.3 74.3 1.01 7 74.7 76.4 1.66 1 76.0 78.0 2.01¢%
NL 63.0 65.4 2431 64.7 67.5 2.76 1 66.1 69.0 2911
PT 78.1 78.2 0.13 79.5 80.1 0.62 80.7 81.5 0.82 1
SV 76.4 76.6 0.25 78.1 79.1 1.01 7 79.6 81.0 1.40 1

AVG 71.8 72.5 0.70 73.6 74.8 1.25 75.1 76.7 1.60

] EN \ 74.4 81.5 7.06 1 \ 76.6 83.0 6.351 \ 78.3 84.1 5.80 1 \

Table 2: Evaluation of features derived from AUTOMATIC and MANUAL bilingual lexicons when trained on various
small numbers of target language trees (the SEED setting). Values reported are UAS for sentences of all lengths on
our enlarged CoNLL test sets (see text); each value is based on 50 sampled training sets of the given size. Daggers
indicate statistical significance as described in the text. Statistical significance is not reported for averages.

parser (Nivre, 2008)). However, our baseline is com-
petitive with theirs,'® demonstrating that we have
constructed a state-of-the-art delexicalized parser.
Furthermore, our method appears to approach the
performance of previous bitext-based methods, and
because of its flexibility and the freedom from com-
plex cross-lingual training for each new language, it
can be applied in the MANUAL case as well, a capa-
bility which neither of the other methods has.

3.4 SEED

We now turn our attention to the SEED scenario,
where a small number of target language trees are
available for each language we consider. While it
is imaginable to continue to exploit the other tree-
banks in the presence of target language trees, we
found that training our DELEX features on the seed
treebank alone gave higher performance than any

The baseline of Téckstrom et al. (2012) is lower because it
is trained only on English rather than on many languages.

attempt to also use the concatenation of treebanks
from the previous section. This is not too surpris-
ing because, with this number of sentences, there is
already good monolingual coverage of coarse POS
features, and attempting to train features on other
languages can be expected to introduce noise into
otherwise accurate monolingual feature weights.

We train our DELEX+PROJ model with both AU-
TOMATIC and MANUAL lexicons on target language
training sets of size 100, 200, and 400, and give re-
sults for each language in Table 2. The performance
of parsers trained on small numbers of trees can
be highly variable, so we create multiple treebanks
of each size by repeatedly sampling from each lan-
guage’s train treebank, and report averaged results.
Furthermore, this evaluation is not on the standard
CoNLL test sets, but is instead on those test sets with
a few hundred unused training sentences added, the
reason being that some of the CoNLL test sets are
very small (fewer than 200 sentences) and appeared



to give highly variable results. To compute statistical
significance, we draw a large number of bootstrap
samples for each training set used, then aggregate all
of their sufficient statistics in order to compute the fi-
nal p-value. We see that our DELEX+PROJ method
gives statistically significant gains at the 95% level
over DELEX for nearly all language and training set
size pairs, giving on average a 9% relative error re-
duction in the 400-tree case.

Because our features are relatively few in number
and capture heuristic information, one question we
might ask is how well they can perform in a non-
projection context. In the last line of the table, we
report gains that are achieved when PROJ features
computed from parsed Gigaword are used directly
on English, with no intermediate dictionary. These
are not comparable to the other values in the table
because we are using our projection strategy mono-
lingually, which removes the barriers of imperfect
lexical correspondence (from using the lexicon) and
imperfect syntactic correspondence (from project-
ing). As one might expect, the gains on English are
far higher than the gains on other languages. This
indicates that performance is chiefly limited by the
need to do cross-lingual feature adaptation, not in-
herently low feature capacity. We delay further dis-
cussion to Section 4.2.

One surprising thing to note is that the gains given
by our PROT7 features are in some cases larger here
than in the BANKS setting. This result is slightly
counterintuitive, as our baseline parsers are much
better in this case and so we would expect dimin-
ished returns from our method. We conclude that ac-
curately learning which signatures transfer between
languages is important, and it is easier to learn good
feature weights when some target language data is
available. Further evidence supporting this hypothe-
sis is the fact that the gains are larger and more sig-
nificant on larger training set sizes.

4 Discussion

4.1 AUTOMATIC versus MANUAL

Overall, we see that gains from using our MANUAL
lexicons are slightly lower than those from our AU-
TOMATIC lexicons. One might expect higher per-
formance because scraped bilingual lexicons are not
prone to some of the same noise that exists in auto-
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AUTOMATIC MANUAL

Voc OCC | Voc OCC
DA | 324K 0091 22K 0.64
DE | 320K 0.89 58K 0.55
EL | 196K 0.94 23K 043
ES | 165K 0.89 | 206K 0.74
IT | 158K 091 78K  0.65
NL | 251K  0.87 50K  0.72
PT | 165K 0.85 46K  0.53
sv | 307K 0.93 28K  0.60

Table 3: Lexicon statistics for all languages for both
sources of bilingual lexicons. “Voc” indicates vocabulary
size and “OCC” indicates open-class coverage, the frac-
tion of open-class tokens in the test treebanks with entries
in our bilingual lexicon.

matic aligners, but this is empirically not the case.
Rather, as we see in Table 3, the low recall of our
MANUAL lexicons on open-class words appears to
be a possible culprit. The coverage gap between
these and the AUTOMATIC lexicons is partially due
to the inconsistent structure of Wiktionary: inflected
German and Greek words often do not have their
own pages, so we miss even common morphologi-
cal variants of verb forms in those languages. The
inflected forms that we do scrape are also mapped
to the English base form rather than the correspond-
ing inflected form in English, which introduces fur-
ther noise. Coverage is substantially higher if we
translate using stems only, but this did not empir-
ically lead to performance improvements, possibly
due to conflating different parts of speech with the
same base form.

One might hypothesize that our uniform weight-
ing scheme in the MANUAL lexicon is another
source of problems, and that bitext-derived weights
are necessary to get high performance. This is not
the case here. Truncating the AUTOMATIC dictio-
nary to at most 20 translations per word and setting
the weights uniformly causes a slight performance
drop, but is still better than our MANUAL lexicon.
This further demonstrates that these problems are
more a limitation of our dictionary than our method.
English Wiktionary is not designed to be a bilingual
dictionary, and while it conveniently provided an
easy way for us to produce lexicons for a wide array



TN T N

Women want to continue to fight for the quota

NNP VBP TO VB TO VB IN DT NN
Frauen wollen weiter ﬁir d{e Quote kdmpfen
NN VMFIN ADV APPR ART NN VVINF
Women want further for  the quota fight

Figure 4: Example of a German tree and a parallel En-
glish sentence with high levels of syntactic divergence.
The English verb want takes fundamentally different chil-
dren than wollen does, so properties of the sort we present
in Section 2.2 will not transfer effectively.

of languages, it is not the resource that one would
choose if designing a parser for a specific target lan-
guage. Bitext is not necessary for our approach to
work, and results on the AUTOMATIC lexicon sug-
gest that our type-level transfer method can in fact
do much better given a higher quality resource.

4.2 Limitations

While our method does provide consistent gains
across a range of languages, the injection of lexical
information is clearly not sufficient to bridge the gap
between unsupervised and supervised parsers. We
argued in Section 3.4 that the cross-lingual transfer
step of our method imposes a fundamental limitation
on how useful any such approach can be, which we
now investigate further.

In particular, any syntactic divergence, especially
inconsistent divergences like head switching, will
limit the utility of transferred structure. Consider
the German example in Figure 4, with a parallel En-
glish sentence provided. The English tree suggests
that want should attach to an infinitival o, which has
no correlate in German. Even disregarding this, its
grandchild is the verb continue, which is realized in
the German sentence as the adverb weiter. While
it is still broadly true that want and wollen both
have verbal elements located to their right, it is less
clear how to design features that can still take advan-
tage of this while working around the differences we
have described. Therefore, a gap between the per-
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formance of our features on English and the perfor-
mance of our projected features, as is observed in
Table 2, is to be expected in the absence of a more
complete model of syntactic divergence.

5 Conclusion

In this work, we showed that lexical attachment pref-
erences can be projected to a target language at the
type level using only a bilingual lexicon, improving
over a delexicalized baseline parser. This method
is broadly applicable in the presence or absence
of target language training trees and with bilingual
lexicons derived from either manually-annotated re-
sources or bitexts. The greatest improvements arise
when the bilingual lexicon has high coverage and a
number of target language trees are available in or-
der to learn exactly what lexico-syntactic properties
transfer from the source language.

In addition, we showed that a well-tuned discrim-
inative model with the correct features can achieve
good performance even on very small training sets.
While unsupervised and existing projection meth-
ods do feature great versatility and may yet pro-
duce state-of-the-art parsers on resource-poor lan-
guages, spending time constructing small supervised
resources appears to be the fastest method to achieve
high performance in these settings.
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Abstract

In this paper, we address the problem of build-
ing a multilingual transliteration system using
an interlingual representation. Our approach
uses international phonetic alphabet (IPA) to
learn the interlingual representation and thus
allows us to use any word and its IPA repre-
sentation as a training example. Thus, our ap-
proach requires only monolingual resources: a
phoneme dictionary that lists words and their
IPA representations.! By adding a phoneme
dictionary of a new language, we can readily
build a transliteration system into any of the
existing previous languages, without the ex-
pense of all-pairs data or computation. We
also propose a regularization framework for
learning the interlingual representation, which
accounts for language specific phonemic vari-
ability, and thus it can find better mappings
between languages. Experimental results on
the name transliteration task in five diverse
languages show a maximum improvement of
29% accuracy and an average improvement of
17% accuracy compared to a state-of-the-art
baseline system.

1 Introduction

Because of the wide usage of English, many natu-
ral language processing (NLP) tasks have bilingual
resources from English into other languages. For ex-
ample, significantly larger parallel texts are available

't is arguable that getting words and their IPA representa-
tion require knowledge about both words and IPA symbols, but
it still is specific to one language and, in this sense, we refer to
it as a monolingual resource.
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between English and other languages. Similarly,
bilingual dictionaries and transliteration data sets are
more accessible from a language into English than
into a different language. This situation has caused
the NLP community to develop approaches which
use a resource rich language () say English) as pivot
to build resources/applications between a new lan-
guage pair P and R. Previous studies in machine
translation (Utiyama and Isahara, 2007; Paul and
Sumita, 2011), transliteration (Khapra et al., 2010),
and dictionary mining (Saralegi et al., 2011) show
that these bridge language approaches perform com-
petitively with approaches that use resources be-
tween P and R. In this paper, we propose a regular-
ization framework for bridge language approaches
and show its effectiveness for name transliteration
task. The key idea of our approach is that it accounts
for language specific variation in the bridge lan-
guage resources (i.e. between P < ) and (Q < R)
and aims to minimize this variation as much as pos-
sible. Though our technique is general, for clarity
we describe it in the context of named entity (NE)
transliteration.

Named entity (NE) transliteration involves
transliterating a name in one language into another
language and is shown to be crucial for machine
translation (MT) (Knight and Graehl, 1998; Al-
Onaizan and Knight, 2002; Hermjakob et al.,
2008; Li et al., 2009) and cross-lingual information
retrieval (CLIR) (AbdulJaleel and Larkey, 2003;
Mandl and Womser-Hacker, 2005; Udupa et al.,
2009). There exists a large body of literature in
transliteration, especially in the bilingual setting,
well summarized by Ravi and Knight (2009). We

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 12-23, Jeju Island, Korea, 12-14 July 2012. (©2012 Association for Computational Linguistics



English Bulgarian
Word IPA Word IPA
bashful /'beeffel/ || mmbam /'fibom/
tuesday /'tu:zder/ || myk /luk/
craft [kaaeft/ KakK /kak/
book /bok/ My3el /mo'zej/
head /hed/ cuneka /spe'ks/

Table 1: Example phoneme dictionaries in English and
Bulgarian. The English translations for the Bulgarian
words are switch, onion, how, museum, and spekle.

summarize the approaches that are most relevant to
us in Sec. 5. In this paper, we operate in the context
of transliteration mining (Klementiev and Roth,
2006; Sproat et al., 2006) where we assume that we
are given a source language name and a list of target
language candidate transliterations and the task is to
identify the correct transliteration.

Given a set of [ languages, we address the prob-
lem of building a transliteration system between
every pair of languages. A straight forward su-
pervised learning approach would require training
data of name pairs between every pair of languages
(Knight and Graehl, 1998) or a set of common
names transliterated from every language into a
pivot language. Though it is relatively easy to ob-
tain names transliterated into a pivot language (such
as English), it is unlikely that such data sets contain
the same names. Bridge language approaches over-
come the need for common names and build translit-
eration systems for resource poor languages (Khapra
et al., 2010). However, such approaches still require
training data consisting of bilingual name translit-
erations (orthographic name-to-name mappings). In
this paper, we relax the need for name translitera-
tions by using international phonetic alphabet (IPA)
in a manner akin to a “bridge language.”

2 IPA for Transliteration

We assume that we have a list of words and their
IPA representations in each of the [ languages. The
words in different languages need not have any rela-
tionship to each other. Table 1 shows few words and
their IPA representations in English and Bulgarian
languages. We refer to the set of (word, IPA) pairs
as phoneme dictionary in this paper. Notice that the
common symbols in the IPA sequences indicate a
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vague phonetic correspondence between the charac-
ter sequences of English and Bulgarian. For exam-
ple, both the words ‘bashful’ and ‘mwu6am’ have the
symbol ‘f’ in their IPA sequences which indicate a
possible mapping between the character sequences
‘sh’ and ‘mr’.

The use of IPA as the bridge language offers mul-
tiple advantages. As shown in Table 1, it allows us
to include any (word, IPA) pair in the training data
and thus it relaxes the need for name pairs as the
training data. Since we only need a phoneme dic-
tionary in each language, our approach does not re-
quire any bilingual resources to build the transliter-
ation system. Moreover, since our training data can
contain any word (not only the NEs), it is easier to
obtain such a resource, for e.g. the phoneme dic-
tionaries obtained from Wiktionary contain at least
2000 words in 21 languages and we will see in Sec. 6
that we can build a decent transliteration system with
2000 words.” Finally, unlike other transliteration ap-
proaches, by simply adding a phoneme dictionary of
(I41)%" language we can readily get a transliteration
system into any of the existing / languages and thus
avoid the need for all-pairs data or computation.

Using IPA as the bridge language poses some
new challenges such as the language specific phone-
mic inventory. For example, Mandarin doesn’t
have /v/, so it is frequently substituted with /w/ or
/f/. Similarly, !X60 (Southern Khoisan, spoken in
Botswana) has 122 consonants, mostly consisting
of a large inventory of different word-initial click
sounds (Haspelmath et al., 2005), many of which
do not exist in any other documented languages.
Besides this language specific phonemic inventory,
names have different IPA representations in differ-
ent languages. For example, as shown in Table 2,
the IPA sequences for ‘China’ in English and Dutch
have common IPA symbols but the English IPA se-
quence has additional symbols. Moreover, a name
can have multiple pronunciations with in a language,
e.g. ‘France’ has two different IPA sequences in En-
glish (Table 2).

In order to handle this phonemic diversity, our
method explicitly models language-specific variabil-
ity and attempts to minimize this phonemic variabil-

2In our experiments, we consider languages with small
(2000) and big (>30K) phoneme dictionaries.



Word IPA sequence

China /'tfar.na/ (En), /'fina/ (Du), /'ci:na:/ (De)
America | /o'merika/ (En), /a'me.ri.ka/ (Ro)
France ['fia:ns/ (En), /'fieents/ (En), /fyas/ (Fr)

Table 2: IPA sequences of few words in different lan-
guages indicated using language codes in the parenthesis
(‘En’ for English, ‘Du’ for Dutch, ‘De’ for German, ‘Ro’
for Romanian, and ‘Fr’ for French).

ity as much as possible. At a high level, our ap-
proach uses the phoneme dictionaries of each lan-
guage to learn mapping functions into an interlin-
gual representation (also referred as common sub-
space). Subsequently, given a pair of languages, a
query name in one of the languages and a list of
candidate transliterations in the other language, we
use the mapping functions of those two language to
identify the correct name transliteration. The map-
ping functions explicitly model the language specific
variability and thus account for fine grained differ-
ences. Our experimental results on four language
pairs from two different language families show a
maximum improvement of 29% accuracy and an av-
erage improvement of 17% accuracy compared to
a state-of-the-art baseline approach. An important
advantage of our approach is that, it extends eas-
ily to more than two languages and in fact adding
phoneme dictionary from a different, but related,
language improves the accuracies of a given lan-
guage pair. Our main contributions are: 1) build-
ing a transliteration system using (word, IPA) pairs
and hence using only monolingual resources and 2)
proposing a regularization framework which is more
general and applies to other bridge language applica-
tions such as lexicon mining (Mann and Yarowsky,
2001).

3 Low Dimensional Projections

Our approach is inspired by the Canonical Correla-
tion Analysis (CCA) (Hotelling, 1936) and its appli-
cation to transliteration mining (Udupa and Khapra,
2010).

First, we convert the phoneme dictionary of each
language into feature vectors, i.e. we convert each
word into a feature vector of n-gram character se-
quences and similarly, we also, convert the IPA
representations into feature vectors of n-gram IPA
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symbol sequences. For example, if we use uni-
gram and bigram sequences as features, then the
feature vectors of ‘head’ and its IPA sequence
“hed' are given by {h,e,a,d,#h, he,ea,ad,d$}
and {h,e,d,#h, he,ed,d$}. For brevity, we refer
to the spaces of n-gram character and IPA symbol
sequences as character and phonemic spaces respec-
tively. The character space is specific to each lan-
guage while the phonemic space is shared across all
the languages. Since we use IPA as bridge, even
though two languages share orthography (e.g. En-
glish and French) it is irrelevant for our approach.

Then, for each language, we find mappings (AZ-
and Ui) from the character and phonemic spaces
into a common k-dimensional subspace such that the
correct transliterations lie closer to each other in this
subspace. Before moving into the details of our ap-
proach, we will describe the notation and then give
an overview of the process by which our approach
finds the transliteration.

3.1 Notation

Let Xgm) € R% and pgm) € R be the feature vec-
tors of the m!* word and its IPA sequence in the
ith (1 e l) language, where d; is the size (i.e. no. of
features) of the character space of the language and
c is the size of the common phonemic space. Let
X; (d; x n;) and P; (¢ x n;) denote the i*" language
data matrices with XZ(»m) and pgm) m =1---n;asthe
columns respectively. We consistently use subscript
to indicate the language and superscript to indicate
the index of an example point.

3.2 Method Overview

During the training stage, for each language, we find
mappings (or projection directions) A; € R(®ixk)
and U; € R(®*%) from the character and phonemic
spaces into a k-dimensional subspace (or an interlin-
gual representation) such that a name gets mapped
to the same k-dimensional vector irrespective of the
language. That is, given a name X; it gets mapped
to the vector AT'x; and similarly its IPA sequence
p, gets mapped to UZ-T p,. During the testing stage,
given a name X; in the source (i*") language, we find
its transliteration in the target (j**) language x; by
solving the following decoding problem:
argmin L (x;, X;) (1)

X



Bridge-CCA

Gandhi
O

Regularized
Projections

Figure 1: A single name (Gandhi) is shown in all the in-
put feature spaces. The alignment between the character
and phonemic space is indicated with double dimensional
arrows. Bridge-CCA uses a single mapping function U
from the phonemic space into the common subspace (the
2-dimensional green space at the top), where as our ap-
proach uses two mapping functions U; and Us, one for
each language, to map the IPA sequences into the com-
mon subspace.

where L(xi, xj) is given by
min |47 — U/pl* +114;%; - Ufpl* @

This formulation uses the source language mappings
(A; and U) to find the TPA sequence p that is clos-
est to the source name and then uses it, along with
the target language mappings (A; and Uj), to iden-
tify the correct transliteration from a list of candidate
transliterations.

At a high level, existing bridge language ap-
proaches such as Bridge-CCA (Khapra et al., 2010)
assume that U; = Uj; thus ignoring the language
specific variation. To understand its implication
consider the example shown in Fig. 1. The mid-
dle portion of the Fig. shows the name Gandhi
(represented as point) in the character spaces of
English and Hindi, three-dimensional spaces, and
its IPA sequences in the phonemic space (the two-
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dimensional space in the middle). Notice that, be-
cause of the phonemic variation, the same name is
represented by two distinct points in the common
phonemic space.®> Now, since Bridge-CCA uses a
single mapping function for both the IPA sequences,
it fails to map these two distinct points into a com-
mon point in the interlingual subspace.

Our new formulation, as explained above, relaxes
this hard constraint and learns different mapping
functions (U; and Uj) and hence our approach can
potentially map both the distinct IPA sequences into
a single point. As a result our approach success-
fully handles the language specific phonemic vari-
ation. At the same time we constrain the projec-
tion directions such that they behave similarly for
the phonemic sounds that are observed in majority
of the languages. In the example shown in Fig. 1,
our model (called Regularized Projections) finds two
different mapping functions U; and Us, one for each
language, from the phonemic space into the com-
mon two-dimensional space at the bottom.

3.3 Regularized Projections

In this section we first formulate the problem of find-
ing the mapping functions (A; and U;) of each lan-
guage as an optimization problem. In the following
section (Sec. 4), we develop a method for solving the
optimization problem and also derive closed form
solution for the prediction problem given in Eq. 1.
For simplicity, we describe our approach in terms of
single projection vectors, a; € R% and u; € R,
rather than full matrices, but the generalization is
trivial.

Inspired by the Canonical Correlation Analysis
(CCA) (Hotelling, 1936), we find projection direc-
tions in the character and phonemic spaces of each
language such that, after projection, a word is closer
to its aligned IPA sequence. To understand this, as-
sume that we have a name (say “Barack Obama”) in
all the languages* and its feature vectors are given
by x; and p; ¢ = 1---[ in the character and phone-

3In reality, as explained in the previous section, the phone-
mic variation that is commonly observed is that different fea-
tures are triggered for different languages. But for visualization
purpose, we showed the IPA sequences as if they differ in the
feature values.

*Our model does not require same names in different lan-
guages; this is used only for easier understanding.



min
a;,u,r; £

mic spaces respectively. Then, we might try to find
projection directions a; in each language and u in
the common phonemic space such that:

argminz ((xi,ai> - (pi,u>)2 3)

!
au o

where (-,-) denotes the dot product between two
vectors. This model assumes that the projection di-
rection u is same for the phonemic space of all the
languages. This is a hard constraint and does not
handle the language specific variability as discussed
in the previous section. We model the language
specificity by relaxing this hard constraint.

In our model, intuitively, the parameters corre-
sponding to the phonemic sounds that occur in ma-
jority of the languages are shared across the lan-
guages while the parameters of the language spe-
cific sounds are modeled per each language. This
is achieved by modeling the projection directions of
the #*" language phonemic space u; < u + r;. The
vector u € R€ is common to the phonemic spaces
of all the languages and thus handles sounds that
are observed in multiple languages while r; € R,
the residual vector, is specific to each language and
accounts for the language specific phonemic varia-
tions. Then the new formulation is given by:

l
argmin Y || (x;,a;) — (p;, u+1:)||* + A(p;, rs)?

a,ur g

where A is the residual parameter. The first term of
this summation ensures that a word and its IPA se-
quence gets mapped to closer points in the subspace
while the second term forces the residual vectors to
be as small as possible. By enforcing the residual
vectors to be small, this formulation encourages the
sounds that occur in majority of the languages to be
accounted by u and the sounds that are specific to the
given language by r;. The final optimization prob-
lem is obtained by summing these terms over all the
examples and all the languages and is given by:

l

(”XiTai — Bl (u+r)]?
ni

F AP E?) @)

1 l
1 1

S.L. E ;||XiTaz‘H2 =land E ;HPZ‘T“HQ =1
=1t i=1 """
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The constraints of the above optimization problem
avoid the trivial solution of setting all the vectors to
zero and are referred to as length constraints.

4 Model Optimization

In this section, we derive the solutions for the opti-
mization problems presented in the previous section.

4.1 Training the Model

We follow the standard procedure of forming the La-
grangian and setting its derivative to zero. The La-
grangian L of the optimization problem in Eq. 4 is
given by:

1
L= Z n*iHXzTai—PiT(u—Fri)HZ-i-/\Z HPiTrZ-H2

ra( 3 X 1) +5( 3 PTul?-1)

K3
where « and (3 are Lagrangian multipliers corre-
sponding to the length constraints. Differentiating £
with respect to a;, r; and u and setting the derivatives
to zero yields the following equations, respectively:

(1 + a)XZXzTaZ — Xif)iTl‘i
—PX[a; + (14 \n;)P,Pl'r;

2.

X; Pl

1

1

1
(PiXiT ai—PiPiTri) = (148) Y —PPlu
. (]
K3

We can rewrite these equations in matrix form, as
shown in Egs. 5 and 6, since the solution becomes
clear in this form. For brevity, let E; (14
) X; X!, F, = -X;Pl and G; = (1 + An;) PP
Then, u can be solved for using the generalized
eigenvalue problem shown in Eq. 7. This step in-
volves computing an inverse of a (d; 4 ¢) matrix and
an eigenvalue problem of size ¢ which can be ex-
pensive since solving each of these problems involve
cubic time. This can be reduced further into a prob-
lem of smaller size by using inverse of a partitioned
matrix as shown in Eq. 8. This identity reduces the
matrix inverse computation from a problem of size
d; + c into two smaller problems of size d; and ¢
each. This reduces the time complexity considerably
since the inverse computation is cubic in the size of
the matrix.
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Substituting Eq. 8 into Eq. 7 and further simplify-
ing results in the following eigenvalue problem for
solving u:
5 Gi+ (M) *FF M F,
- ni(1+ An;)?

RPT

ng

=1+9)

7

where M; = (E; — FiGi_lFZT)*l. Notice that the
term E; = (1+ ) X; X ZT depends on the Lagrangian
multiplier . Because of this, we cannot solve for
both the parameters and the Lagrangian multipliers
at the same time. One possible approach is to do an
alternate optimization over the parameters and La-
grangian multipliers, but in this paper we fix o and
solve for u. The value of o denotes the correlation
and its maximum value is 1. In practice, we often
observe that the top few correlations take the value
of 1. Based on this observation we fix the value of «
to 1 (Sec. 6).

Subsequently, we use u to solve for a; and r; as
follows:

)\nzM F;

i = 9
a 1+ An; " ©)
MG M, — 1
po= MG u  (10)
1+ Any

In order to increase the stability of the system we
regularize G; and F; by adding 71. We use the top k
eigenvectors u and their corresponding a; and r; vec-
tors as columns and form the mappings U, A; and R;
respectively. These mappings are used in predicting
the transliteration of a name in one language into
any other language, which will be described in the
following section.
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4.2 Transliteration Mining (Prediction)

During the testing phase, given a source name and
a list of candidate transliterations, we solve the de-
coding problem shown in Eq. 1 to find the appropri-
ate target language transliteration. Formally, given
a word x; in i*" language we find its transliteration
into j*" language X;, by solving the optimization
problem shown in Eq. 1, where U; = U + R; and
U; = U + R;. Similar to the previous case, the
closed form solution can be found by computing the
first derivative with respect to the unknown phoneme
sequence and the target language transliteration and
setting it to zero. First, the IPA sequence p* that
minimizes L(xi, Xj) is given by:

p* = C;;' (UiA] xi + U; AT ;) (11)
where C;; = UiUZ-T+UjUf. We substitute this back
in Eq. 2 and then solve for x;, the best transliteration
in the j" language, as:

Aj([—UjTCiglUj)A?Xj = AJUJTcleZAZTXZ (12)

Since U; and Uj; are not full rank matrices, to in-
crease the numerical stability of the prediction step,
weuse C;; = UiUiT—FUjUjT—i—O.OOl I where I is an
identity matrix. Notice that this solution doesn’t de-
pend on the p* and hence we don’t need to compute
it explicitly.

5 Related Work

There is a large body of the literature in named entity
transliteration, so we will describe only the most rel-
evant ones to our approach. In transliteration, gener-
ative approaches aim to generate the target language



transliteration of a given source name (Knight and
Graehl, 1998; Jung et al., 2000; Haizhou et al., 2004;
Al-Onaizan and Knight, 2002) while discriminative
approaches assume a list of target language names,
obtained from other sources, and try to identify the
correct transliteration (Klementiev and Roth, 2006;
Sproat et al., 2006). The effectiveness of the dis-
criminative approaches depend on the list of target
language candidates. Sproat et al. (2006) report an
oracle accuracy of 85%, but it depends on the source
of the candidate transliterations. Nevertheless, all
these approaches require either bilingual name pairs
or phoneme sequences to learn to transliterate be-
tween two languages. Thus, if we want to build
a transliteration system between every pair of lan-
guages in a given set of languages then these ap-
proaches need resources between every pair of lan-
guages which can be prohibitive.

Bridge language approaches propose an alterna-
tive and use a resource rich language such as English
as common language (Khapra et al., 2010) but they
still need bilingual resources. Moreover Bridge-
CCA (Khapra et al., 2010) uses a single mapping
function for the phonemic space of all the languages
and thus it can not handle language specific variabil-
ity. In the original setting, authors use English as the
pivot and since the feature space of English is fixed,
irrespective of the target language, this may not be a
serious concern but it becomes crucial when we use
IPA as the bridge language.

Approaches that map words in different languages
into the common phonemic space have also been
well studied. But most of these approaches use lan-
guage specific resources such as CMU pronuncia-
tion dictionary (Gao et al., 2004) or a carefully con-
structed cost matrices for addition, substitution, and
deletion of phonemes between a pair of languages
(Tao et al., 2006; Yoon et al., 2007). Variants of
soundex algorithm (Odel and Russel, 1918) such as
Kodex (Kang and Choi, 2000) use hand constructed
consonant to soundex code tables for name translit-
eration. Similar to our approach these variants only
require soundex mappings of a new language to
build transliteration system, but our model does not
require explicit mapping between n-gram characters
and the IPA symbols instead it learns them auto-
matically using phoneme dictionaries. Alternatively
unsupervised approaches have also been explored

18

(Ravi and Knight, 2009), but their accuracies are
fairly low compared to the supervised and weekly
supervised approaches.

6 Experiments

Our experiments are designed to evaluate the follow-
ing three aspects of our model, and of our approach
to transliteration in general:

IPA as bridge: Unlike other phonemic based ap-
proaches (Sec. 5), we do not explicitly model the
phoneme modifications between pairs of languages.
Moreover, the phoneme dictionary in each language
is crawled from Wiktionary (Sec. 6.1), which is
likely to be noisy. So, the first aspect we want
to evaluate is the effectiveness of using IPA as the
bridge language. Here, we also compare our method
with other bridge language approaches and establish
the importance of modeling language specific vari-
ance.

Multilinguality: In our method, simply adding a
phoneme dictionary of a new language allows us to
extend our transliteration system into any of the ex-
isting languages. We evaluate the effect of data from
a different, but related, languages on a transliteration
system between a given pair.

Complementarity: Using IPA as bridge language
allows us to build transliteration system into re-
source poor languages. But we also want to eval-
uate whether such an approach can help improving
a transliteration system trained directly on bilingual
name-pairs.

6.1 Data Sets

We use data sets from five languages in order to eval-
uate the effectiveness of our approach. The phoneme
dictionaries (list of words and their IPA represen-
tations as shown in Table 1) are obtained from
Wiktionary. The Wiktionary dump downloaded in
October 2011 has at least 2000 (word, IPA) pairs
in 21 languages which also includes some resource
poor languages (e.g. Armenian, Taiwanese, Turkish,
etc.).

In principle, our method allows us to build
transliteration system into any of these language
pairs without any additional information. But, in this
paper, we use English (En), Bulgarian (Bg), Rus-
sian (Ru), French (Fr), and Romanian (Ro) for eval-



’ ‘ En. ‘ Bg. Ru. ‘ Fr. Ro. ‘
| Train | 31K [ 36K 1141 [ 36K 5211 |
Dev. - | 1264 2000 | 2717 430
Test — | 1264 2000 | 2717 431
| #Features | 5000 [ 3998 2900 | 5000 3465 |
Table 3: Statistics of different data sets. Training

data is monolingual phoneme dictionaries while develop-
ment/test sets are bilingual name pairs between English
and the respective language.

uation purposes, as they suffice to showcase all the
three aspects mentioned in the previous section. Ta-
ble 3 shows the sizes of phoneme dictionaries used
for training the models. The phoneme dictionar-
ies of English, Bulgarian, and Russian contain more
than 30K (word,IPA) pairs while the remaining two
languages have smaller phoneme dictionaries. The
development and test sets between English and the
remaining language pairs are obtained from geon-
ames data base.’> These are geographic location
names from different countries written in multiple
languages.

6.2 Experimental Setup

We convert the phoneme dictionaries of each lan-
guage into feature vectors. We use unigram and
bigram features in the phonemic space and uni-
gram, bigram and trigram features in the character
space. An example for feature generation is shown
in Sec. 3. After converting the data into feature vec-
tors, we retain the most frequent 5000 features. We
only keep the frequent 5000 features since we ob-
served, elsewhere, that including infrequent features
leads CCA based methods to learn projection direc-
tions with perfect correlations which are not effec-
tive for downstream applications. The last row of
Table 3 shows the number of features in the char-
acter space of each of the languages. The phone-
mic space is common to all the languages and has
3777 features. Though the phonemic features are
common to all the languages, as discussed in Sec. 2,
only a subset of features will be observed in a given
language. For example, in our data sets, of the total
3777 common phonetic features only 3312, 882, and
1009 features are observed in English, Bulgarian,

Shttp://www.geonames.org/
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Figure 2: Performance of transliteration system with
residual parameter A on English-Bulgarian development
data set.

and Russian languages respectively. This indicates
the diversity in the phonemic inventory of different
languages.

We compare our approach against Bridge-CCA, a
state-of-the-art bridge language transliteration sys-
tem which is known to perform competitively with
other discriminative approaches (Khapra et al.,
2010). We use the phoneme dictionaries in each lan-
guage to train our approach, as well as the baseline
system. The projection directions learnt during the
training are used to find the transliteration for a test
name as described in Sec. 4.2. We report the perfor-
mance in terms of the accuracy (exact match) of the
top ranked transliteration and the mean reciprocal
rank (MRR) of the correct transliteration. We find
transliterations in both the directions (i.e. target lan-
guage transliterations given a source name and vice
versa) and report average accuracies. The regular-
ization parameter (7) and the size of the interlingual
representation (k) in both our approach and Bridge-
CCA are tuned on the development set.

6.3 Description of Results
In this section we report experimental results on the
three aspects mentioned above.

6.3.1 TPA as Bridge

Fig. 2 shows the performance of our system with
the residual parameter A (in Eq. 4) on the develop-



En-Bg En-Ru En-Fr En-Ro
Acc. MRR | Acc. MRR || Acc. MRR | Acc. MRR
| 1 | Bridge-CCA | 68.83 77.22[44.50 5322 [ 4155 52.890 [ 71.69 79.59
2 | Ours (cosine) 67.68 76.52 | 45.07 53.63 || 42.45 53.06 | 74.13 81.28
3 | Ours (Eq. 12) 83.70 8832 | 63.47 73.01 || 70.68 78.13 | 77.38 84.22
4 | Ours (cosine + Multi.) || 68.91 77.44 [ 49.15 57.20 || 4255 53.02 | 7749 84.04
5 | Ours (Eq. 12+ Multi.) || 84.45 88.43 | 66.70 75.85 || 71.09 78.43 | 77.49 84.04

Table 4: Results of our approach and the baseline system on the test set. The second block shows the results when our
approach is trained only on phoneme dictionaries of the language pair, the third block shows results when we include

other language data as well.

ment data set. When A is small, the model does not
attempt to constrain the projection directions U;’s
and hence they tend to map names to completely
unrelated vectors. As we increase the residual pa-
rameter, it forces the residual vectors (RR;) to be
smaller and thus the subspaces identified for each
language are closely tied together. Thus, it models
the commonalities across languages and also the lan-
guage specific variability. Based on the performance
curves on the development data, we fix A = 50 in the
rest of the experiments.

Table 4 shows the results of Bridge-CCA and our
approach on the four language pairs. We report the
results of our approach with the decoding proposed
in Sec. 4.2 and a simple cosine similarity measure
in the common-subspace, i.e. cos (AZTXZ',A?X]‘).
Comparison of the accuracies in rows 1, 2 and 3,
shows that simply using cosine similarity performs
almost same as the Bridge-CCA approach. How-
ever, using the decoding suggested in Eq. 12 gives
significant improvements. To understand why the
cosine angle between A7x; and A;fpxj is not the ap-
propriate measure, assume that the vectors x; and
x; are feature vectors of same name in two lan-
guages and let p be its true IPA representation. Then,
since our model learns projection directions such
that ATx; ~ Ul'p,

cos(AiTxi, A?xj) = cos ((U—FRZ-)Tp, (U—i—Rj)Tp)

The additional residual matrices R; and R; make
the cosine measure inappropriate. At the same time,
our model forces the residual matrices to be small
and this is probably the reason why it performs
competitively with the Bridge-CCA. On the other
hand, our decoding method, as shown in Eq. 1, in-
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tegrates over the best possible phoneme sequence
and thus yields significant improvements. In the rest
of the paper, we report results with the decoding
in Eq. 12 unless specified explicitly. Our approach
achieves a maximum improvement of 29.13% ac-
curacy over Bridge-CCA in English-French and on
an average it achieves 17.17% and 15.19% improve-
ment in accuracy and MRR respectively. Notice that
even though our Russian phoneme dictionary has
only 1141 (word, IPA) pairs, our approach is able
to achieve an accuracy of 63.47% and an MRR of
73% indicating that the correct name transliteration
is, on an average, at rank 1 or 2.

6.3.2 Multilinguality

The fourth and fifth rows of Table 4 also show the
multilingual results. In particular, we train our sys-
tem on data from the three languages En, Bg, and
Ru and test it on En-Bg and En-Ru test sets. Simi-
larly, we train a different system on data from En, Fr
and Ro and evaluate it on En-Fr and En-Ro test sets.
We split the languages based on the language family,
Russian and Bulgarian are Slavonic languages while
French and Romanian are Romance languages, and
expect that languages in same family have similar
pronunciations. Comparing the performance of our
system with and without the multilingual data set, it
is clear that having data from other languages helps
improve the accuracy.

6.3.3 Complementarity

In the final experiment, we want to compare
the performance of our approach, which uses only
monolingual resources, with a transliteration system
trained using bilingual name pairs. We train a CCA
based transliteration system (Udupa and Khapra,



En-Bg En-Fr
Acc. MRR | Acc. MRR
CCA 95.57 96.76 | 95.82  96.67
Ours+CCA 95.69 96.90 | 96.14  96.90
AErr | 27% 42% | 75%  6.8%
Ours+CCA(t) | 95.80 96.95 | 96.34 97.04
AErr | 54% 58% | 12.3% 11.3%

Table 5: Comparison with a system trained on bilingual
name pairs. The (t) in the third row indicates parame-
ters are tuned for test set. We also show the percentage
error reduction achieved by a linear combination of our
approach and CCA.

2010) on a training data of 3792 and 8151 location
name pairs. Notice that the training and test data for
this system are from the same domain and thus it has
an additional advantage over our approach, which is
trained on whatever happens to be on Wiktionary.

The second row of Table 5 shows the results of
CCA on English-Bulgarian and English-French lan-
guage pairs. CCA achieves high accuracies even
though the training data is relatively small, most
likely because of the domain match between train-
ing and test data sets. As another baseline, we tried
using Google machine translation API to transliter-
ate the English names of the En-Bg test set. We
hoped that since these are names, the translation en-
gine would simply transliterate them and return the
result. Of the output, we observed that about 500
names are passed through the MT system unchanged
and so we ignore them. On the remaining names,
it achieved an accuracy of 76.15% and the average
string edit distance of the returned transliteration to
the true transliteration is about 3.74. These accura-
cies are not directly comparable to the results shown
in Table 5 because, presumably, it is a transliteration
generation system unlike CCA which is a transliter-
ation mining approach. For lack fair comparison, we
don’t report the accuracies of the Google transliter-
ation output in Table 5.

Table 5 also shows the results of our system when
combined with the CCA approach. For a given En-
glish word, we score the candidate transliterations
using our approach and then linearly combine their
scores with the scores assigned by CCA. We per-
form a line search between [0, 1] for the appropriate
weight combination. The third and fourth rows of
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Table 5 show the results of the linear combination
when the weight is tuned for the development and
test sets respectively. The improvements, though
not significant, are encouraging and suggest that a
sophisticated way of combining these different sys-
tems may yield significant improvements. This ex-
periment shows that a transliteration system trained
on word and IPA representations can actually aug-
ment a system trained on bilingual name pairs lead-
ing to an improved performance.

7 Conclusion

In this paper we proposed a regularization technique
for the bridge language approaches and showed
its effectiveness on the name transliteration task.
Our approach learns interlingual representation us-
ing only monolingual resources and hence can be
used to build transliteration system between re-
source poor languages. We show that, by account-
ing the language specific phonemic variation, we
can get a significant improvements. Our experimen-
tal results suggest that a transliteration system built
using IPA data can also help improve the accuracy
of a transliteration system trained on bilingual name
pairs.

Thought we used IPA as a bridge language there
are other viable options. For example, as shown
in Khapra et al. (2010) we can use English as the
bridge language. Since name transliteration prob-
lem is being studied for a considerable time, many
resources already exist between English and other
languages. So, one can argue the appropriateness of
IPA as bridge language compared to, say, English.
While this is an important question, in this paper,
we are primarily interested in showing the impor-
tance of handling language specific phenomenon in
the bridge language approaches. In future, we would
like to study the appropriateness of IPA vs. English
as the bridge language and also the generalizability
of our technique to other scenarios.
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Abstract

This paper proposes a novel method for lex-
icon extraction that extracts translation pairs
from comparable corpora by using graph-
based label propagation. In previous work,
it was established that performance drasti-
cally decreases when the coverage of a seed
lexicon is small. We resolve this problem
by utilizing indirect relations with the bilin-
gual seeds together with direct relations, in
which each word is represented by a distri-
bution of translated seeds. The seed distri-
butions are propagated over a graph repre-
senting relations among words, and transla-
tion pairs are extracted by identifying word
pairs with a high similarity in the seed dis-
tributions. We propose two types of the
graphs: a co-occurrence graph, representing
co-occurrence relations between words, and
a similarity graph, representing context sim-
ilarities between words. Evaluations using
English and Japanese patent comparable cor-
pora show that our proposed graph propaga-
tion method outperforms conventional meth-
ods. Further, the similarity graph achieved im-
proved performance by clustering synonyms
into the same translation.

Introduction

}@nict.go.jp

from comparable corpora, in which documents were
not direct translations but shared a topic or dorhain
The use of comparable corpora is motivated by the
fact that large parallel corpora are only available for
a few language pairs and for limited domains.

Most of the previous methods are based on as-
sumption (I), that a word and its translation tend to
appear in similar contexts across languages (Rapp,
1999). Based on this assumption, many methods
calculate word similarity using context and then ex-
tract word translation pairs with a high-context sim-
ilarity. We call these methods context-similarity-
based methods. The context similarities are usu-
ally computed using a seed bilingual lexicon (e.qg.
a general bilingual dictionary) by mapping contexts
expressed in two different languages into the same
space. In the mapping, information not represented
by the seed lexicon is discarded. Therefore, the
context-similarity-based methods could not find ac-
curate translation pairs if using a small seed lexicon.

Some of the previous methods tried to alleviate
the problem of the limited seed lexicon size (Koehn
and Knight, 2002; Morin and Prochasson, 2011,
Hazem et al., 2011), while others did not require any
seed lexicon (Rapp, 1995; Fung, 1995; Haghighi et
al., 2008; Ismail and Manandhar, 2010; Dauth
and Jagarlamudi, 2011). However, they suffer the

Bilingual lexicons are important resources for bilin-Problems of high computational cost (Rapp, 1995),
gual tasks such as machine translation (MT) angensitivity to parameters (Hazem et al., 2011),
cross-language information retrieval (CLIR). Therelow accuracy (Fung, 1995; Ismail and Manandhar,
fore, the automatic building of bilingual lexicons2010), and ineffectiveness for language pairs with

from corpora is one of the issues that have attract

edl

Although Vulic et al. (2011) regarded document-aligned

many researchers. As a solution, a number of press such as texts on Wikipedia as comparable corpora, we do
vious works proposed extracting bilingual lexiconsot limit comparable corpora to these kinds of texts.
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different types of characters (Koehn and KnightThe popular similarity-based methods consist of the
2002; Haghighi et al., 2008; Dawnlll and Jagar- following steps: modeling contexts, calculating con-
lamudi, 2011). text similarities, and finding translation pairs.

In face of the above problems, we propose a nov8tep 1. Modeling contexts The context of each
method that uses a graph-based label propagatiamord is generally modeled by a vector where each
technique (Zhu and Ghahramani, 2002). The pradimension corresponds to a context word and each
posed method is based on assumption (1), which @imension has a value indicating occurrence cor-
derived by recursively applying assumption (l) to thecelation. Various definitions for the context have
“contexts”: a word and its translation tend to havébeen used: distance-based context (e.g. in a sen-
similar co-occurrence (direct and indirect) relationsence (Laroche and Langlais, 2010), in a para-
with all bilingual seeds across languages. graph (Fung and McKeown, 1997), in a predefined

Based on assumption (Il), we propose a threavindow (Rapp, 1999; Andrade et al., 2010)), and
step approach: (1) constructing a graph for eacéyntactic-based context (e.g. predecessors and suc-
language with each edge indicating a direct coeessors in dependency trees (Garera et al., 2009),
occurrence relation, (2) representing every word ascertain dependency position (Otero and Campos,
seed translation distribution by iteratively propagat2008)). Some treated context words equally re-
ing translated seeds in each graph, (3) finding twgardless of their positions (Fung and Yee, 1998),
words in different languages with a high similaritywhile others treated the words separately for each
with respect to the seed distributions. By propagaposition (Rapp, 1999). Various correlation mea-
ing all the seeds on the graph, indirect co-occurrencires have been used: log-likelihood ratio (Rapp,
relations are also considered when computing bilint999; Chiao and Zweigenbaum, 2002), tf-idf (Fung
gual relations, which have been neglected in prevand Yee, 1998), pointwise mutual information
ous methods. In addition to the co-occurrence-baséBMI) (Andrade et al., 2010), context heterogene-
graph construction, we propose a similarity graphty (Fung, 1995), etc.
which also takes into account context similarities be- Shao and Ng (2004) represented contexts using

tween words. language models. Andrade et al. (2010) used a
The main contributions of this paper are as folset of words with a positive association as a con-
lows: text. Andrade et al. (2011a) used dependency re-

e We propose a bilingual lexicon extractionl@tions instead of context words. Ismail and Man-
method that captures co-occurrence relatior@’dhar (2010) used only in-domain words in con-
with all the seeds, including indirect rela-t€Xts. Pekar et al. (2006) constructed smoothed con-
tions, using graph-based label propagatioﬁ.eXt vectors for rare words. Laws et al. (2010) used
In our experiments, we confirm that thedraphs in which vertices correspond to words and

proposed method outperforms conventiondtdges indicate three types of syntactic relations such

context-similarity-based methods (Rapp, 19992 adjectival modification.

Andrade et al., 2010), and works well even ifot€P 2. Calculating context similarities The con-
the coverage of a seed lexicon is low. texts which are expressed in two different languages

are mapped into the same space. Previous methods
» We propose a similarity graph which representgenerally use a seed bilingual lexicon for this map-
context similarities between words. In our exping. After that, similarities are calculated based
periments, we confirm that a similarity graphon the mapped context vectors using various mea-
is more effective than a co-occurrence-baseglres: city-block metric (Rapp, 1999), cosine sim-
graph. ilarity (Fung and Yee, 1998), weighted jaccard in-
2 Context-Similarity-based Extraction dex (Hazem et al., 2011), Jensen-Shannon diver-
Method gence (Pekar et al., 2006), the number of over_lap—
ping context words (Andrade et al., 2010), Sim-
The bilingual lexicon extraction from comparableRank (Laws et al., 2010), euclidean distance (Fung,
corpora was pioneered in (Rapp, 1995; Fung, 1995)995), etc.
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Japanese English the context vectors become sparser and its discrim-

Query — Context Word | Association| | Query — Context Word | Association | . - .
E5=7 —7<J 08 Cranha — Amazon 08 inative capability becomes lower, leading to extrac-
(piranha) (Qmazom) | o6 piranha — jungle 06 | tion of incorrect translation equivalents.
T : iranha — freshwater 0.5 . . .
(Pianha) (ungo) o5 || anaconda— Amazon | 08 Consider the example in Figure 1, where a
(iranha) (reshwater)| ff:;cvcv’gtd; - llfiigg'e 82 context-similarity-based method and our proposed
KK - A . _ i . . .
(freshwater) (fish) method find translation equivalents of the Japanese
Seed Lexicon (Japanese — English) : WOI’d ‘Ooo0oo (pll’anha)" Thel’e are thl’ee con-
7YY - Amazon, Zv> N —jungle, & - fish text words for the query. However, the informa-
[Context—similarity-based Method] tion on co-occurrence witht? O (freshwater)” dis-
Amazon jungle Amazon jungle similarity appears after the context vector is mapped, because

E5=7(0.8,0.6) piranha (0.8,0.6) E5=7 —piranha 1.0 i i = -
P ratonda (0.5, 06) |:>E§:7_anaconda1_o the seed lexicon does not includg T (freshwa

N ter)”. The same thing happens with the English word
Japanese ! Er;g;Sh Amazon jungle fish | “piranha”. As a result, the pair of 100 0 (pi-
A : 05, 03, 02 ranha)” and “anaconda” could be wrongly identified
as a translation pair.

Some previous work focused on the problem
of seed lexicon limitation. Morin and Prochas-
piep— son (2011).complemented the seed lexicon with
055 . 0.4 . 0.05 bilingual lexicon extracted from parallel sentences.
Koehn and Knight (2002) used identically-spelled
_ . words in two languages as a seed lexicon. However,
F:)gsuerg :Ae'?r:‘oixample ofa Previous Method and our Prog,q ethod is not applicable for language pairs with
P different types of characters such as English and

Japanese. Hazem et al. (2011) exploikedgearest
Andrade et al. (2011b) performed a linear transwords for a query, which is very sensitive to the pa-

) . . rameterk.
formation of context vectors in accordance with the . . .
Some previous work did not require any seed lex-

notion that importance varies by context positions. .
b y P on. Rapp (1995) proposed a computationally de-

Gaussier et al. (2004) mapped context vectors vig di tri tati thod which i
latent classes to capture synonymy and polysemy I o [T oe Wen e

a seed lexicon. Ber et al. (2011) and Kaji (2005) €3 Ia similarity Ibetwg;en g?\;loccur(rj?]ncezrgiglges
calculated 2-way similarities. in two languages. Ismail and Manandhar (2010) in-

. . : : tr imilarity m r ween two words in
Step 3. Finding translation pairs. A pair of words oduced a similarity measure between two words

is treated as a translation pair when their conteﬂ'ﬁerent languages without requiring any seed lex-

LT T . icon. Fung (1995) used context heterogeneity vec-

similarity is high. Various clues have been con- . o

. . T ors where each dimension is independent on lan-
sidered when computing the similarities: concep .

: : : o guage types. However, their performances are worse

class information obtained from a multilingual the- . .

than those of conventional methods using a small

saurus ([jean et al., 2002), co-occurrence models ed lexicon. Haghighi et al. (2008) and Daum

. S
generated from aligned documents (Prochasson an‘ﬁ and Jagarlamudi (2011) proposed a generative

Fung, 2011), and transliteration information (Sha?nodel based on probabilistic canonical correlation
and Ng, 2004).

analysis, where words are represented by context
features and orthographic featutesiowever, their
experiments showed that orthographic features to be

Most of previous methods used a seed bilingual leXmportant for effectiveness, which means low per-
icon for mapping modeled contexts in two differen

. . 2In Haghighi et al. (2008) and Daumlll and Jagarla-
languages into the same space. The mapping he%\lﬁdi (2011), indirect relations with seeds are considered topo-

ily relies on the entries in a given bilingual lexicon.|ggically, but our method utilizes degrees of indirect correla-
Therefore, if the coverage of the seed lexicon is lowjons with seeds.

VE VP PACYIE:
05, 03, 02

2.1 Problems from Previous Works
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formance for language pairs with different character Algorithm 1 Bilingual Lexicon Extraction
Require: comparable corpor®° and D/,

types. a seed lexicor§ consists of5¢ andS/
Ensure: Output translation pair&
3 Lexicon Extraction Based on Label 1-1: G¢ = {E°, V¢, W¢} — construct-graphD°)
Propagation 1-2:Gf = {Ef, v, W'} « construct-graphD/)

2-1:Ge = {E°, V¢, W*, Q°} — propagate-see(7*, S°)
As described in Section 2, the performance of previ- 2-2: G/ = {E/,V/,W/,Q'} — propagate-seed:/, S7)
e g . 3: T — extract-translatioiQ¢, Q/, S)
ous work is significantly degraded when used with a
small seed lexicon. This problem could be resolved

by incorporating indirect relations with all the seed§ion for each language, (2) seed propagation in each
when identifying translation pairs. For example, in ’

Figure 1, ‘00 0 0O (piranha)” has some degree ofgraph, (3) translation pair extraction.
association with the seedl” - fish” through ‘' 00 3.1 Graph Construction

(freshwater)” in both the Japanese side and the EQ\'/e construct a graph representing the association

glish side, although™ 0O O O (piranha)” and ©J .
N : between words for each language. Each graph is an
(fish)” do not co-occur in the same contexts. More- ~ . L
B Y ) . . undirected graph because the association does not
over, “anaconda” has very little association with th

seed T - fish” in the English side. Therefore %ave direction. The graphs are constructed as fol-

. . . e " lows:
the |'nd|.rec_t relation with the se“eqi] f'?,h hel‘!:)s Step 1. Vertex assignmentextracts words from
to discriminate from between “piranha” and “ana- .
! . . .. _each corpus, and assigns a vertex to each of the ex-
conda” and could be an important clue for identify-
. . . tracted words. LeV = {vi,---,v,} be a set of
ing a correct translation pair.

vertices.

To utilize indirect relations, we introduce assUMPg;00 5 Edge weight calculatiorcalculates associ-

tion (11): a word and its translation tend to have SiMi-_ion strength between two words as the weights of

lar co-occurrence (direct and indirect) relations Witrédges LetZ and W be a set of edges and that of
all bilingual seeds across languagjeBased on as- the weights respectively, and; € E links v; and

sumptlon'(ll), W_e propqse to identify aword_ pair asv,’ andw;; € W is the weight ofe;;. Note that
a translation pair when its co-occurrence (direct an%| — W]

indirect) relations with all the seeds are similar.

i i ) Step 3. Edge pruning excludes edges whose
To obtain co-occurrence relations with all theyeignts are lower than threshold, in order to reduce

seeds, including indirect relations, we focus on e computational cost during seed propagations.

graph-based label propagation (LP) technique (Zhu We propose two types of graphs that differ in the

and Ghahramar_li, 2002). LP transfers Igbels frossociation measure used in Step 2: a co-occurrence
labeled data points to unlabeled data points. In tr@faph and a similarity gragh

process, all vertices have soft labels that can be inter-
preted as label distributions. We apply LP to bilin-3.1.1 Co-occurrence Graph

gual lexicon extraction by representing each word as A co-occurrence graph directly encodes assump-
a vertex in a graph with each edge encoding a diregibn (11). Each edge in the graph indicates correlation

co-occurrence relation. Translated seeds are propgrength between occurrences of two linked words.
gated as labels, and seed distributions are obtain@ag example is shown in Figure 1.

for each word. From the seed distributions, we iden- |n edge weight calculation the co-occurrence

tify translation pairs. frequencies are first computed for each word pair in
In summary, our proposed method consists ahe same context, and then the correlation strength is
three steps (see Algorithm 1): (1) graph construaestimated. There are various definitions of a context

TR A N _ _ or correlation measures that can be used (e.g. the
Assumption (l) indicates direct co-occurrence relations be-

tween a word and its context words are preserved across differ- “We can combine the association measures used in a co-
ent languages. Therefore, assumption (l1) is derived by recuoccurrence graph and a similarity graph. We will leave this
sively applying assumption (l) to the “context words”. combination approach for future work.
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approaches used for modeling contexts in contexpaper:
similarity-based methods). In this paper, we use L.
words in a predefined window (window size is 10 Wi — Cos(f» f) _ sz : fi
in our experiments) as the context and PMI as the N R AT
correlation measure: . .
where f; (or f;) is the correlation vector of; (or

p(vi, vj) v;). Then, inedge pruning we preserve the edges

wij = PMI(vi, v) = logp(vi) p(v;)] with top 100 weight for each vertex.

3.2 SeedP ti
wherep(v;) (or p(v;)) is the probability that; (or eed Fropagation

v;) occurs in a context, ane(v;, v;) is the probabil- P is a graph-based technique which transfers the
ity that v; andw; co-occur within the same context, [abels from labeled data to unlabeled data in or-
We estimateP M I(v;,v;) by the Bayesian method der to infer labels for unlabeled data. This is pri-

proposed by Andrade et al.(2010). Then ec|ger§1arily used when there is scarce labeled data but
with a negative associatio®MI(v;,v;) < 0, are abundant unlabeled data. LP has been success-

pruned inedge pruning fully applied in common natural I_angua_ge process-
ing tasks such as word sense disambiguation (Niu
3.1.2 Similarity Graph et al., 2005; Alexandrescu and Kirchhoff, 2007),

N multi-class lexicon acquisition (Alexandrescu and

_Co-occurrer_me graphs are very sensitive t0 ag;rchhoff, 2007), and part-of-speech tagging (Das
cidental relation caused by lower frequent Cozng petrov, 2011). LP iteratively propagates la-
occurrence. Thus, we propose a similarity grapRe| information from any vertex to nearby vertices
where context similarities are employed as weightg,rogh weighted edges, and then a label distribu-

of edges instead of simple co-occurrence-based CQjg, for each vertex is generated where the weights
relations. Since the context similarities are COMaf all labels add up to 1.

puted by the global correlation among words which \we adopt LP to obtain relations with all bilingual

co-occur, a similarity graph is less subject 0 acCigeeqs including indirect relations by treating each
dental co-occurrence. The use of a similarity grapBeeq as a label. First, each translated seed is assigned
is inspired by assumption (lll): a word and its transzg 4 label, and then the labels are propagated in the
lation tend to have similar context similarities Withgraph described in Section 3.1.
all bilingual seeds across languages The seed distribution for each word is initialized

In edge weight calculation we first construct a s follows:
correlation vector representing co-occurrence rela-

tions for each word. The correlation vectors are con- 1 if vi€Vsandz=v
structed in the same way as the context vectors used % (2) = § 0 if vi€Vsandz# v ,
in context-similarity-based methods (see Section 2), u(z) otherwise

where gontext v_voro_ls are words in a_predefined Wir‘/'vhereVs is the set of vertices corresponding to
dOW. (yvlndow siz€ 13 4 In our experiment), the aSy 5 nq|ateq seeds, is a uniform distributiong? (i =
sociation measure is PMI, and_gontext words _aria_”W‘) is the seed distribution far, after’ prop-
treated separately for each position. A correlatlog%,[ion andj*(z) is the weight of a label (i.e., a
vector for each position is computed separately, thqpanslat’ed seédz) in ¢ ,

.

concatenated into a single vector within the window. After initialization, we iteratively propagate the

Secondly, we calculate similarities between correlas—eeds through weighted edges. In each propagation
t'r?n vectgrs. Tt:jere Zre various §I|m!lar_|ty me;_surﬁ_;éeeds are probabilistically propagated from linked
that can be used, and cosine similarity Is used In thig, j-e< ynder the condition that larger edge weights

5This assumption is justified because context similarities arg”OW seeds to travel through easier. Thus, the closer

based on co-occurrence relations that are preserved across ¥rtices are, the more likely they have similar seed
ferent languages. distributions. In Figure 1, the balloons attached to
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vertices in the graphs show examples of the seed dis- Pair | Japanese Word English Word

tributions generated by propagations. For example,Lexs | 2,742 2,566 2,326

the English word “piranha” has the seed distribution Lexy | 28,053 18,587 12,893

where the weights of the seeds “Amazon”, “jungle”,

and “fish” are 0.5, 0.3, and 0.2, respectively. Specif- Table 1: Size of Seed Lexicons

ically, each of seed distributions is updated as fol-

lows: development data used in the NTCIR-8 patent trans-
O (2) if vieV, lation task, which is calledNTCIR parallel data

¢ (z) = > N ) Wi .q;_wfl(z) o hereafter) in the patent data. However, a preliminary

otherwise

examination showed that the NTCIR parallel data
covers less than 3% of all words because there are

whereN (v;) is the set of vertices linking to;. We @ number of technical terms and neologisms. There-
ran this procedure for 10 iterations in our experi.fore, the patent translation task is a task that I’equiI’eS

Zvj €N (v;) Wi

ments. bilingual lexicon extraction from non-parallel data.
' ' ' We selected documents belonging to pig/sics
3.3 Translation Pair Extraction domain from each monolingual corpus based on In-

After label propagations, we treat a pair of words iférnational Patent Classification (IPC) cBdand
different languages with similar seed distributions af1en used them as a comparable corpus in our ex-
a translation pair. Seed distribution can be regarddfriments. As a result, we used 1,479,831 Japanese
as a vector where each dimension corresponds @cuments and 438,227 English documents. The
each translated seed and each dimension has tigason for selecting thehysicsdomain is that this
dated weight through label propagations. A simdomain contains the most documents of all the do-
ilarity between seed distributions can therefore bEains.

calculated in the same way as a context-similarity- The Japanese texts were segmented and part-of-
based method. In this paper, we use the cosine sispeech tagged by ChaSerand the English texts

ilarity defined by the following: were tokenized and part-of-speech tagged by Tree-
Tagger (Schmid, 1994). Next, function words were
Yses qg{(v,f) - qy(vf) removed since function words with little seman-

Cos(qf,q) = - . . .
x o tic information spuriously co-occurred with man
Yaes(@ )2/, es (@ (v9))? P y y

words. As a result, the number of distinct words

7 ) o in Japanese corpus and English corpus amounted to
whereg; (or g;) is the seed distribution foraword 1 111 302 and 4.099 885respectively
(or y) in the source language (or target language), ~ ... o '

is the seed lexicon whosgeh entrys; is a pairing of
a translated seed in the source Ianguq@and one
in the target language .

We employed seed lexicons from two sources:
(1) EDR bilingual dictionary (EDR, 1990), (2)
automatic word alignments generated by running
GIZA++ (Och and Ney, 2003) with the NTCIR par-

4 Experiment allel data consisting of 3,190,654 parallel sentences.
From each source, we extracted pairs of nouns ap-
4.1 Experiment Data pearing in our corpus. From (2), we excluded word

We used English and Japanese patent documeR@irs where the average of 2-way translation proba-
published betwee_n 1993 and 2005 by the US PateNtsgr~110N Gof IPC code indicates thehysicsdomain.

& Trademark Office and the Japanese Patent Of- 7hip://chasen-legacy.sourceforge.jp/

fice respectively, which were a part of the data used ®The English words contain words in tables or mathematical
in the NTCIR-8 patent translation task (Fujii et al. formula but the Japanese words do not because the data format

2010). Note that these documents are not aligned.dlﬁers petween Engllsh and Japanese. This is why the number
of English words is larger than that of Japanese words, even

There are over three million English-Japanesgough the number of English documents is smaller than that of
parallel sentences (e.g. training data, test data, anghbanese documents.
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bilities was lower than 0.5. The pairs from (1) and Lexg Lexy,

(2) amounted to 27,353 and 2,853 respectively, and Accy | Accao | Acer | Aceyo
the two sets were not exclusive. In order to mea-| Rapp 1.5% | 3.8% | 4.8% | 17.6%
sure the impact of seed lexicon size, we prepared Andrade | 1.9% | 4.2% | 5.6% | 17.6%
two seed lexiconsLex, a large seed lexicon thatis | Cooc 3.2% | 8.6% | 9.2% | 28.3%
a union of all the extracted word pairs, ahéxg, a Sim 4.1% | 11.5%| 10.8% | 30.6%

small seed lexicon that is a union of a random sam-
pling one-tenth of the pairs from (1) and one-tenthTable 2: Performance on Bilingual Lexicon Extraction
of the pairs from (2). Table 1 shows the size of each

seed lexicon. Note that our seed lexicons includ% Wi h ; bil |
one-to-many or many-to-one translation pairs. exs). We measure the performance on bilingua

We randomly selected 1,000 Japanese words IC0N extraction as Top N accuracydex), which
our test data which were identified as either a noul? thg number of t?St words whose top N trans_laﬂon
or an unknown by ChaSen and were not covered gandidates contain a correct translation equivalent
ther by the EDR bilingual dictionary or by the NT- over the total number of test words (=1,000). Table

CIR parallel data. This is because the purpose of o&rShOWS Top 1 and Top 20_ accuragy. We man@_ally
method is to complement existing bilingual dictio-€valuated whether translation candidates contained a
naries or parallel data. Note that the Japanese worgrrect translation equivalent. We did not use recall

in our test data may not have translation equivalenfECause we do not know if the translation equiva-
in the English side lents of a test word appear in the corpus.

Table 2 shows that the proposed methods outper-
4.2 Competing Methods form the baselines both when usihgxs and using

We evaluated two types of our label propagatioﬁ*exb The improvements are statistically significant
based methods against two baselingSooc em- in the sign-test with 1% significance-level. The re-
ploys co-occurrence graphs afén uses similarity sults show that capturing the relations with all the

graphs when constructing graphs for label propagé—eeds including indirect relations is effective.
tion as described in Section 3. The accuracies of the baselines in Table 2 are

Rapp is a typical context-similarity-based Worse than the previous reports: 14%c, and 46%

method described in Section 2 (Rapp, 1999)lccio (Andrade etal., 2010), and 72%rc, (Rapp,
Context words are words in a window (window sizel999).  This is because previous works evalu-
is 10) and are treated separately for each positioﬁ'.[ed only the queries whose translation equivalents
Associations with context words are computed@Xisted in the experiment data, which is not al-
using the log-likelihood ratio (Dunning, 1993). TheWays true in our experiments. Moreover, previous
similarity measure between context vectors is th&/orks evaluated only high-frequency words: com-
city-block metric. mon nouns (Rapp, 1999) and words with a docu-
Andrade is a sophisticated method in context-ment frequency of at least 50 (Andrade et al., 2010).
similarity-based methods (Andrade et al., 2010)(_)urtest data, on the other hand, includes many low-
Context is a set of words with a positive associatioff€duency words. It is generally true that translation
in a window (window size is 10). The associatiorPf high-frequency words is much easier than that of
is calculated using the PMI estimated by a Bayesid@W frequency words. We discuss the impact of test
method, and a similarity between contexts is estivord frequencies in detail in Section 5.3.
mated based on the number of overlapping words Table 2 also shows thatim outperformsCooc

(see the original paper for details). both when usinglexrs and usingLexy. The im-
_ provements ofdccy are statistically significant in
4.3 Experiment Results the sign-test with 5% significance-level.

Table 2 shows the performance of each method us- ®We could not evaluate using existing dictionaries because

ing Lexs or Lexy. Hereafter, Method(L) (OF most of the test data are technical terms and neologisms not
Method(S)) denotes thellethod using Lexy, (Or included in the dictionaries.
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Sim(L) (2) Cooc(L) (5) Andrade(L) (181) | indirectly-related seeds are also important clues, and
1 psychosis polynephropathy disease -
2 | manic-depression neuroleptic bowel our proposed method can utilize these.
3 epilepsy iridocyclitis disorder . .
4 insomnia Tic symptom 5.2 Impact of Seed Lexicon Size
5 dementia manic-depression sclerosis . . .
Sim(5) 074) | Cooc(s) (1652) | Andrade(s) (1747)| 1aPle 2 shows that a reduction of seed lexicon size
1 ulceration dyslinesia bulimia degrades performance. This is natural for the base-
2 ulcer encephalomyelopath spasticity line methods becaudeez g cannot translate most of
8| naphthol ganglionic Parkinson context words, which are necessary for word charac-
4 dementia corticobasal Asymmetric ! y
5 gastritis praecox anorexia terization. ConsideAndrade(L) and Andrade(S)

in the example in Section 5.1. Table 4 shows that
Table 3: Translation Candidates faf 0 O (manic- Andrade(S) uses less relevant seeds with the query,

depression) and has to express the query by seeds with less as-
sociation. For example,[* 0 O (psychosis)” can-
ooo .
Coocl ) Andrade(L) CooclS) Andrade(s) | NOt be used iMndrade(S) beqal_JseLea:g d(_)gs not
1] 00012 | 00078 00 .o016) | 000 | have the seed. Therefore, it is more difficult for
narcotic narcotic dementia posteriori . . .
2| 000 (0.41) 00 (6.3) oo ©o1a) | oo@y | Andrade(S) to find correct translation pairs.
psychosis old alien,stepchild | dementia The proposed methods also share the same ten-
3| 00O (0.08) 000 (6.3) 00 (0.012) 00 (3.2) .
neurosis psychosis posteriori ulcer dency, although each word is expressed by all the
400800005 D000 Ge) | 0B (0012 000029 seeds in the seed lexicon. Considésoc(L) and
hormone bronchitis electropositivity period .
5| 0OD (0.04) 0o (5.0) oo o1y | oo @es | Cooc(S) in the above example. Table 4 shows that
insomnia posteriori ulcer seriousness | Clooc(S) expresses the query by a smooth seed dis-
manic-depression . . . . . . ..
Cooc(L) Andrade(L) Cooc(S) Andrade(s) | tribution, which is difficult to discriminate from oth-
1 iliness iliness ganja galop ers. This is becausgexg does not have relevant
(0.15) (8.6) (0.012) (7.0) L.
2 neurosis psychotherapeutics ~ carbanilide madness seeds for the query. This is W@000(5') cannot
(0.11) (7.0) (0.011) (54) find the correct translation equivalent. On the other
3 seizure galop paludism libido . N " .
(0.07) (7.0) (0.011) (5.2) hand,Cooc(L) characterizes[ O O ” and “manic-
4 ps()(;cgg)sm pszlggt)ms re(solgonfé')on V'(E'll'g;) depression” by strongly relevant seeds (e.gl [t
5 insomnia somnambulism galop dementia O (psychosis)”,f1 0 0O (neurosis)”), and then finds
(0.04) €n (0.009) (43 the correct translation equivalent.

To examine the robustness-to-seed lexicon size,
we calculated the reduction rate df:cyg with the
following expression: fccyy With Lexy — Accag

Table 4: Seeds with the Highest Weight

5 Discussion with Lexg) / Accog With Lez . The reduction rates
) ) ) of Rapp, Andrade, Cooc, and Sim are 78.4%,
5.1 Effectof Indirect Relations with Seeds 76.1%, 69.6%, and 62.4% respectively. Moreover,

Table 3 shows a list of the top 5 translation canthe difference between degradatior(inoc and that
didates for the Japanese wordl 1 O (manic- in Andrade is statistically significantin the sign-test
depression)” for each method, where the ranks of theith 1% significance-level. These results indicate
correct translations are shown in parentheses nextttat the proposed methods are more robust to seed
method names. Table 4 shows the top 5 translatéekicon size than the baselines. This is because the
seeds which characterize the query, where the valfoposed methods can utilize seeds with indirect re-
ues in parentheses indicate weight. Table 3 shoveations while the baselines utilize only seeds in the
that Cooc(L) can find the correct translation equiv-context.

alent butAndrade(L) cannot. Table 4 shows that To verify our claim, we examined the number
Cooc(L) can utilize more seeds closely tied to theof test words which occurred with no seeds in the
query (e.g. T 00O (neurosis)”, § 00O (insom- context. There were 570 such words Rapp(S),
nia)”), which did not occur in the context of the 387 in Rapp(L), 572 in Andrade(S), and 388 in
query in the experiment data. The result shows thatndrade(L). The baselines cannot find their trans-
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Low Freq. High Freq. 5.4 Effect of Similarity Graphs
Accy | Aceog | Acer | Aceog

We examinedAccy for synonyms of translated
Rapp(L) 05% ] 2.4% | 7.2% | 25.6%|  goaqs in Japanese. THec; and Accy of Sim(I)
Andrade(L) | 0.3% | 1.8% | 8.6% | 26.3%| .0 15 604 and 56.3%, respectively, and those of
CF’OC(L) 0.8%] 4.3% | 13.9%]| 40.7% | (1,50(L) are 9.4% and 37.5%, respectively. The
Sim(L) 2.2%| 6.7% | 15.0%| 42.0%| (egyits show that similarity graphs are effective for
clustering synonyms into the same translation equiv-
Table 5: Comparison between Performance for High angla s For exampleSim (L) extracted the correct
Low Frequency Words translation pair of the English word “iodine” and
the Japanese word*00 O O O ", a synonym of the
translated seed® 0 O (iodine)” in Japanese. This
lation equivalents. Words such as this occur even i because synonyms tend to be linked in the similar-
using Lezr,, and that number increases wheaws ity graph and have similar seed distributions. On the
is used. On the other hand, the proposed methodther hand, in the co-occurrence graph, synonyms
are able to utilize all the seeds in order to find equivtend to be indirectly linked through mutual context
alents for words such as these. Therefore, the prarords, so the seed distributions of the two could be
posed methods work well even if the coverage of gar away from each other.
seed lexicon is low. There are in particular many loanwords in patent
documents, which are spelled in different ways from
person to person. For example, the loan word for the
5.3 Impact of Word Frequencies English word “user” is often written as(*'J O ",
but it is sometimes written a§00 O O ", with an

Our test data includes many low-frequency wordgdoIItIOnal prolonged sound mark. Therefof&

which are not covered by the EDR bilingual dic-S particularly effective for the experiment data.

tionary or the NTCIR parallel data. 624 words ap- :
. . 5.5 Error Analysis
pear in the corpus less than 50 times. Table 5 shows
Accy usingLez, for 624 low-frequency words and We discuss errors of the proposed methods except
376 high-frequency words. Table 5 shows that pethe errors for low-frequency words (see Section
formance for low-frequency words is much worseb.3). Our test data includes words whose transla-
than that for high-frequency words. This is becauston equivalents inherently cannot be found. The
translation of high-frequency words utilizes abunfirst of these types are words whose equivalent does
dant and reliable context information, while the connot exist in the English corpus. This is an unavoid-
text information for low-frequency words is statis-able problem for methods based on comparable cor-
tically unreliable. In the proposed methods, edgegora. The second one are words whose English
linking rare words are sometimes generated baseguivalents are compound words. The Japanese
on accidental co-occurrences, and then unrelatégorphological analyzer tends to group a compound
seed information is transferred through the edgeword into a single word, while the English text an-
Therefore, even our label propagation based methlyzer does not perform a collocation of words di-
ods, especially fo€ooc, could not identify the cor- vided by the delimitespace For example, the sin-
rect translation equivalents for rare wordsim al- gle Japanese wordI[0" is equivalent to “palm
leviated the problem by using a similarity graph inpattern” or “palm print”, which is composed of
which edges are generated based on global corref#0 words. This case was counted as an error
tion among words, as indicated by Table 5. Tableven though the proposed methods found the word
5 also suggests that top 20 translation candidates fgralm” as a equivalent of(] O ”.
high-frequency words have potential to contribute to A main reason of errors other than those above
bilingual tasks such as MT and CLIR although thés word sense ambiguity, which is different in ev-
overall performance is still low. ery language. For example, the Japanese wart “
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means “right” and “conservatism” in English. Thedissimilar translations.

proposed methods merge different senses by prop-All the methods mentioned above may poten-

agating seeds through these polysemous words tially extract translation pairs more precisely than

only one language side. This is why translation pairsur comparable corpora approach when their under-
could have wrong seed distributions and then thiging assumptions are satisfied. We might improve
proposed methods could not identify correct tranghe performance of our method by augmenting a
lation pairs. We will leave this word sense disamseed lexicon with translation pairs extracted using

biguation problem for future work. the above methods, as experimented with in Section
4, in which additional lexical entries are included
6 Related Work from parallel data.

Besides the comparable corpora approach discuss?d
in Section 2, many alternatives have been proposed

for bilingual lexicon extraction. The firstis a methodwe proposed a novel bilingual lexicon extraction
that finds translation pairs in parallel corpora (Wimethod using label propagation for alleviating the
and Xia, 1994; Fung and Church, 1994; Och anfimited seed lexicon size problem. The proposed
Ney, 2003). However, large parallel corpora are onlynethod captures relations with all the seeds in-
available for a few language pairs and for limitectluding indirect relations by propagating seed in-
domains. Moreover, even the large parallel corporyrmation. Moreover, we proposed using similar-
are relatively smaller than comparable corpora. ity graphs in propagation process in addition to co-
The second is a method that exploits the Web. Loccurrence graphs. Our experiments showed that the
et al. (2004) extracted translation pairs by miningproposed method outperforms conventional context-
web anchor texts and link structures. As an altesimilarity-based methods (Rapp, 1999; Andrade et
native, mixed-language web pages are exploited k., 2010), and the similarity graphs improve the
first retrieving texts including both source and tarperformance by clustering synonyms into the same
get languages from the web by using a search etranslation.
gine or simple rules, and then extracting transla- We are planning to investigate the following open
tion pairs from the mixed-language texts utilizingproblems in future work: word sense disambigua-
various clues: Zhang and Vines (2004) used cQjon and translation of compound words as described
occurrence statistics, Cheng et al. (2004) used cgy (Daille and Morin, 2005; Morin et al., 2007).
occurrences and context similarity information, angn addition, indirect relations have also been used
Huang et al. (2005) used phonetic, semantic ang other tasks, such as paraphrase acquisition from
frequency-distance features. Lin et al. (2008) probilingual parallel corpora (Kok and Brockett, 2010).
posed a method for extracting parenthetically transpye will utilize their random walk approach or other
lated terms, where a word alignment algorithm igjraph-based techniques such as modified adsorp-
used for establishing the correspondences betwegsn (Talukdar and Crammer, 2009) for generating
in-parenthesis and pre-parenthesis words. Howeveged distributions. We are also planning an end-to-

those methods cannot find translation pairs wheshd evaluation, for instance, by employing the ex-
they are not connected with each other through linggcted bilingual lexicon into an MT system.

structures, or when they do not co-occur in the same
text. Acknowledgments
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Abstract
We present a system for automatic
identification of schizophrenic patients

and healthy controls based on narratives
the subjects recounted about emotional
experiences in their own life. The focus of the
study is to identify the lexical features that
distinguish the two populations. We report the
results of feature selection experiments that
demonstrate that the classifier can achieve
accuracy on patient level prediction as high as
76.9% with only a small set of features. We
provide an in-depth discussion of the lexical
features that distinguish the two groups and
the unexpected relationship between emotion
types of the narratives and the accuracy of
patient status prediction.

1 Introduction

Recent studies have shown that automatic language
analysis can be successfully applied to detect
cognitive impairment and language disorders. Our
work further extends this line of investigation with
analysis of the lexical differences between patients
suffering from schizophrenia and healthy controls.
Prior work has reported on characteristic
language peculiarities exhibited by schizophrenia
patients. There are more repetitions in speech
of patients compared to controls (Manschreck et
al., 1985). Patients also tend to repeatedly refer
back to themselves (Andreasen., 1986). Deviations
from normal language use in patients on different
levels, including phonetics and syntax, have been
documented (Covington et al., 2005), however
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lexical differences have not been investigated in
detail.

In this paper we introduce a dataset of
autobiographical narratives told by schizophrenic
patients and by healthy controls. The narratives
are related to emotional personal experiences of the
subjects for five basic emotions: ANGER, SAD,
HAPPY, DISGUST, FEAR. We train an SVM
classifier to predict subject status. Our good results
on the relatively small dataset indicate the potential
of the approach. An automatic system for predicting
patient status from autobiographical narratives can
aid psychiatrists in tracking patients over time and
can serve as an easy way to administer large
scale screening. The detailed feature analysis we
performed also pinpoints key differences between
the two populations.

We study a range of lexical features including
individual words, repetitions as well as classes
of words defined in specialized dictionaries
compiled by psychologists (Section 4). We use
several approaches for feature analysis to identify
statistically significant differences in the two
populations. There are 169 significant features
among all of the 6057 features we examined.
Through feature selection we are able to obtain a
small set of 25 highly predictive features which
lead to status classification accuracy significantly
better than chance (Section 6.3). We also show
that differences between patients and controls are
revealed best in stories related to SAD and ANGRY
narratives, they are decent in HAPPY stories, and
that distinctions are poor for DISGUST and FEAR
(Section 6.5).

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 37-47, Jeju Island, Korea, 12-14 July 2012. (©2012 Association for Computational Linguistics



2 Related Work

Research in psychometrics has studied patterns
of lexical usage in a large variety of scenarios.
A popular tool used for psychometric analysis
is Linguistic Inquiry and Word Count (LIWC)
(Pennebaker et al., 2007). One of the most
interesting discoveries in that line of research is that
people with physical or emotional pain are likely to
use first-person singular pronouns more often than
the general population (Rude et al., 2004). In the
view of therapy, Pennebaker discovered that writing
emotional experiences can be helpful in therapeutic
process (Pennebaker, 1997). It has also been shown
that the usage of pronouns and function words can
be indicators of writing styles, physical health and
other distinctions (Tausczik and Pennebaker, 2010).

The combination of natural language processing
(NLP) and machine learning (ML) has been
explored in many psychology related projects,
and is gaining popularity. It has been shown
that features from language models (LMs) can
be used to detect impairment in monolingual
and bilingual children (Gabani et al., 2009).
Even better results are achieved when features
derived from LMs are combined with other surface
features to predict language impairment. Similarly,
studies on child language development and autism
have shown that n-gram cross-entropy from LMs
representative of healthy and impaired subjects is
a highly significant feature predictive of language
impairment (Prud’hommeaux et al., 2011). The
feasibility of making use of lexical features
to analyze language dominance among bilingual
children has also been confirmed (Solorio et al.,
2011).

In non-medically related research, LIWC and
lexical features have been used to recognize
different personalities such as introvert vs extrovert,
openness VS experience, conscientiousness VS
unconscientiousness, etc. (Mairesse et al., 2007).
Similar features have been applied to differentiate
author personality of e-mails (Gill et al., 2006),
blogs (Gill et al., 2009) and other documents.

Speech-related features and interactional aspects
of dialog behavior such as pauses, fillers, etc,
have also been found helpful in identifying autistic
patients (Heeman et al., 2010).
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Variables Schizophrenia Control

(# Subjects) (n=23) (n=16)
Mean age (SD) 33.81 (9.65) 32.29 (6.59)
Mean number of

words per story (SD) 192.22 (122.4) | 180.79 (95.87)

Table 1: Basic demographic information

Syntax features have been used in approaches
of automatic detection of neurological problems.
Parsing texts produced by subjects and using
bag of rules as features have been applied in
analyzing language dominance (Solorio et al.,
2011). Methods that quantify syntactic complexity
like Yngve score and Fraizer score have been used
to analyze autism (Prud’hommeaux et al., 2011).
Moreover, there has been research on detecting mild
cognitive impairment, which could be an earlier
state of Alzheimer’s disease: five different ways
of evaluating syntactic complexity measures were
introduced in their paper (Roark et al., 2011).

In our own work, we focus our analysis
exclusively on lexical features. Similarly to prior
work, we present the most significant features
related to differences between schizophrenic
patients and healthy controls. Unlike prior work,
instead of doing class ablation studies we perform
feature selection from the full set of available
features and identify a small set of highly predictive
features which are sufficient to achieve the top
performance we report. Such targeted analysis
is more helpful for medical professionals as they
search to develop new therapies and ways to track
patient status between visits.

3 Data

For our experiments we collected autobiographical
narratives from 39 speakers. The speakers are
asked to tell their experience involving the following
emotions: HAPPY, ANGER, SAD, FEAR and
Di1sGUST, which comprise the set of the five basic
emotions (Cowie, 2000). Most subjects told a single
story for each of the emotions, some told two. The
total number of stories in the dataset is 201.

The stories were narrated in the doctor’s office.
The recordings of the narratives were manually
transcribed in plain text format. We show age and
length in words of the told stories for the two groups



in Table 1. There are 23 patients with schizophrenia
and 16 healthy controls, telling 120 and 81 stories
respectively.

4 Features

Here we introduce the large set of lexical features
that we group in three classes: a large class of
features computed for individual lexical items, basic
features, features derived on the basis of pre-existing
dictionaries and language model features. We also
detail the way we performed feature normalization
and feature selection.

4.1 Surface Features

4.1.1 Basic Features

Basic features include token to type ratio to
capture vocabulary diversity, letters per word, words
per sentence, sentences per document and words
per document. These features describe the general
properties of the language used by the subject,
without focus on specific words.

Repetitions, revisions, large amount of fillers
or disfluencies can be indicators for language
impairment. In our basic features we detect the
number of repetitions in words, punctuations and
sentences for each transcript. Then these three
measures are normalized by total number of words
or sentences.

We define repetitions as the occurrence of the
same token in a sliding window of five items
within the same sentence. We count repetitions of
words and punctuation separately. The repetition
of punctuation, mostly commas and full-stops, are
indicative of phrasing in speech which has been
indirectly captured in the transcript. Repetition of
any word is counted, regardless of which specific
word was repeated. For example, for the sentence /
am, am, afraid, that something bad would happen.
am is counted as repeated once, and comma is
counted as repeated twice.  Finally, sentence
repetition captures the amount of overlapping at the
beginning of two adjacent sentences, defined as the
number of tokens from the beginning of the sentence
until the first token where the two sentences differ.

4.1.2 Lexical Features

For words in the vocabulary: we use a real
value feature equal to the word frequency for each
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document. Of particular interest we track the use
of pronouns because early research has reported that
people with cognitive impairment have a tendency
to use subjective words or referring to themselves
(Rude et al., 2004).

In addition, for each word in the vocabulary,
we apply the presence of the repetition about one
particular word.

4.1.3 Perplexity from Language Models

Inspired by the predictive power of language
model reported in prior work, we also include
several language model features. We build language
models on words as well as part-of-speech (POS)
tags from Stanford POS-tagger (Toutanova et al.,
2003). We tried unigram, bigram and trigram
language models by word and POS tag. Experiments
showed that bigram performed better than random,
and the other two performed below random. Thus
in the experiments we report later we train one
model for patients and one for controls and use the
perplexity of a given text according to the bigram
language models on word and POS as features in
prediction.

4.2 Dictionaries: LIWC and Diction

Text analysis packages have been widely used in
research related to personality analysis, sentimental
analysis and psychometric studies. We use two
dictionary-based systems, LIWC (Pennebaker et al.,
2007)! and Diction?, which both give scores to
transcripts based on broad categories.

4.2.1 Linguistic Inquiry&Word Count(LIWC)

LIWC calculates the degree to which people use
different categories of words. Several manually
compiled dictionaries are at the heart of the
application. Each word or word stem could be in
one or more word categories or sub-dictionaries.
For instance, the word “cried” is part of the
following categories: sadness, negative emotion,
overall affect, verb, and past tense verb. When
a narrative contains the word “cried”, the scale
scores corresponding to these five subcategories are
incremented. The final output for each narrative is a
real value score for each of the 69 categories.

'See http://www.liwc.net
2See http://www.dictionsoftware.com



Because of the elaborate development of
dictionaries and categories, LIWC has been used
for predicting emotional and cognitive problems
from subject’s spoken and written samples.
Representative  applications include studying
attention focus through personal pronouns, studying
honesty and deception by emotion words and
exclusive words and identifying thinking styles
(Tausczik and Pennebaker, 2010). Thus it is
reasonable to expect that LIWC derived features
would be helpful in identifying schizophrenia
patients. In Section 6.4 we discuss in more detail
the features which turned out to be significantly
different between patients and controls within
LIWC.

4.2.2 Diction

We also use Diction to analyze the lexical
characteristics of the transcripts. Similar to
LIWC, Diction scores are computed with reference
to manually compiled dictionaries. The master
variable scores in Diction include activity, certainty,
commonality, optimism and realism. These five
main scores are computed with 33 dictionaries that
define pertinent subcategories. The master variable
scores are constructed as follows: Sy, = > | a; —
Z;”:l sj, where a; are additive traits, s; are
subtractive traits (giving positive/negative evidence
for the presence of the feature, respectively).
For example, Certainty and Realism scores are
calculated as follows:

Realism = [Familiarity + Spatial Awareness +
Temporal Awareness + Present Concern + Human
Interest + Concreteness] - [Past Concern +
Complexity]

Certainty = [Tenacity + Leveling + Collectives +
Insistence] - [Numerical Terms + Ambivalence +
Self Reference + Variety]

We also give definitions for some important
categories. The complete description of categories
is available in the Diction manual (Hart, 2000).
Cognition: Words referring to cerebral processes,
both functional and imaginative.

Satisfaction:  Terms associated with positive
affective states.
Insistence: A measure of code-restriction and

contentedness, with the assumption that the
repetition of key terms indicates a preference for a
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limited, ordered world.

Diversity: Words describing individuals or groups
of individuals differing from the norm.

Familiarity: Consisted of the most common words
in English.

Certainty:  Language indicating resoluteness,
inflexibility, and completeness and a tendency to
speak ex cathedra.

Realism: Language describing tangible, immediate,
recognizable matters that affect people’s everyday
lives.

4.3 Feature normalization

We use two feature normalization approaches:
projection normalization and binary normalization.
Both of the two approaches are applied to basic
features, dictionary features and word features. As
for repetition, we don’t use normalization, because
it is in itself binary. For transcript ¢, we denote
the value of the jth feature as v;;. We denote
min;j, max;, average; as the minimum, maximum
and average value for each feature in the training
corpus, respectively. Thus for each feature j,
we have: average; = 137 v, min; =
min;{v;; }, max; = max;{v;;}.

4.3.1 Projection Normalization

Here we simply normalize all feature values to a
range of [0, 1], where O corresponds to the smallest
observed value and 1 to the largest observed value

across all transcripts. Then we could have p;; =
vi]-—minj
maz;—min;’

normalization.

where p;; is the feature value after

4.3.2 Binary normalization

Here all features are converted to binary values,
reflecting whether the value falls below or above the
average value for that feature observed in training.
The value p;; of j-th feature for the i-th instance is

as below:
Dij = {

4.3.3 Prediction on the Test Set

All of the previous values, average;, max; and
min; are derived from the training set. While
doing classification, for a new testing instance, we
denote the feature vector as f = (f1, fo,... fn)-

1 n
0 vy < 5 2oiq Vi
1 otherwise



fj is then compared with average; to do binary

mazj—min;
projection normalization. If p; < 0, we change p;
into 0; if p; > 1, we change p; into 1. For the
words or features that are not seen in training, we

just ignore this dimension.

normalization. We also use p; =

4.4 Feature selection

All lexically based analysis is plagued by data
sparsity problems. In the medical domain this
problem is even more acute because collecting
patient data is difficult. The number of features
we defined outnumbers our samples by orders
of magnitude. Therefore, in our classification
procedure, we perform feature selection by doing
two-sided T-test to compare the values of features
in the patient and control groups. The features with
p-value < 0.05 are considered as indicative and are
selected for later machine learning experiments, in
which 169 out of 6057 features have been selected.
We discuss the significant features in the full set in
Section 6.4 .

Note however that we don’t use the features
selected on the full dataset for machine learning
experiments because when T-tests are applied
on the full dataset feature selection decisions
would include information about the test set as
well. Therefore, we adopt a leave-one-subject-out
(LOSO) evaluation approach instead. In each
iteration, we set aside one subject as test set. The
data from the remaining subjects form the training
set. Feature selection is done on the training set only
and a model is trained. The predictions are tested on
the held out subject. The procedure is repeated for
every subject as test set.

The choice of p-value cut-off allows us to relax
and tighten the requirement on significance of the
features and thus the size of the feature set. We
report results with different p-values in Table 3.
We also explore alternative feature ranking and
feature selection procedures in Section 6.3. In
each fold different features may be selected. For
ease of discussing feature differences we present
a discussion of the 169 significant features on the
entire dataset.
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5 Our approach

The goal of our system is to classify the person who
told a story in one of two categories: Schizophrenia
group (SC) and Control group (CO). In order to
do this, we give labels to the stories told by each
subject. Therefore we could use our model to
identify the status of the person who told each
individual story, the task is to answer the question
“Was the subject who told this story a patient or
control?”. Then we combine the predictions for
stories to predict status of each subject, and the
task becomes answering the question “Is this subject
a patient or control given that they told these five
stories?”. Thus in story level prediction we use no
information about the fact that subjects told more
than one story, while in subject-level prediction we
do use this information.

First we present an experiment that relies only
on language models for the prediction. Then we
present the complete learning-based system that
uses the full set of features. Finally, we describe
the decision making approach to combine the story
level predictions to derive a subject-level prediction.

5.1 Language Model

Language models have been used previously for
language impairment on children (Gabani et al.,
2009) and language dominance prediction (Solorio
et al.,, 2011). Patients with speaking disorder
or cognitive impairment express themselves in
atypical ways. Language models (LMs) give a
straightforward way of estimating the probability
of the productions of a given subject. We expect
that the approach would be useful for the study of
schizophrenia as well and so start with a description
of the LM experiments.

We use LMs on words to recognize the difference
between patients and controls in vocabulary use.
We also trained a LM on POS tags because
it could reduce sparsity and focus more on
grammatical patterns. Two separate LMs are
trained on transcripts of schizophrenia and controls
respectively, using leave-one-subject-out protocol.

Story-level decisions are made by assigning the
class whose language model yields lower perplexity:

s(t) = {

SC PERsc(t) < PERco(t)
CO otherwise



by Story (%) SC-F CO-F Accuracy Macro-F
Random 544 446 50.0 49.5
Majority 74.8 0.0 59.7 37.4
2-gram 62.5 44.4 55.2 53.5
2-gram-Pos 62.2 53.3 58.2 57.8
by Subject (%) SC-F CO-F Accuracy Macro-F
Random 54.1 45.1 50.0 49.6
Majority 74.2 0.0 59.1 37.1
2-gram 652 500 58.9 57.6
2-gram-Pos 66.7 54.5 61.5 60.6

Table 2: Language model performance

Here t means a transcript from a subject, while
PERgsc and PERco are perplexities for patients
and controls, respectively. We experimented with
unigram, bigram and trigram LMs on words and
POS tags. Laplace smoothing is used when
generating word probabilities.

5.2 Classification Phase

Language models are convenient because they
summarize information from patterns in lexical and
POS use into a single number. However, most of the
successful applications of LMs require large amount
of training data while our dataset is relatively small.
Moreover, we would like to analyze more specific
differences between the patient and control group
and this would be more appropriately done using a
larger set of features.

We have described our features and feature
selection process in Section 4. We use SVM-light
(Joachims, 1999) for our machine learning
algorithm, as its effectiveness has been proved in
various learning-based clinical tasks compared to
other classifiers (Gabani et al., 2009) .

5.3 Status Decision

Story level predictions are made for each transcript
either based on LM perplexity or SVM prediction.
The most intuitive way to obtain a subject-level
prediction is by voting from story-level predictions
between the stories told by the particular subject.
The subject-level prediction is simply set to equal
the majority prediction from individual stories. On
the few occasions where there are equal votes for
schizophrenia and control, the system makes a
preference towards schizophrenia, because it is more
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P-value cut-off by Story by Subject  # Features
0.15 59.0 58.9 450
0.10 61.7 64.1 341
0.05 62.7 64.1 169
0.01 57.7 65.4 44
0.005 64.2 71.6 32
0.001 65.7 75.6 18
0.0005 61.7 66.7 14

Table 3: Performance by subject after T-test feature
selection in different confidence levels.

dangerous to omit a potential patient.

6 Experiments and Results

We perform our experiments on the 201 transcripts
of the 39 speakers. The two baselines we
compare with are doing random assignments and
majority class, which for our datasets correspond to
predicting all subjects into the Schizophrenia group.

We report precision, recall and F-measure for
both patient and control groups, as well as overall
accuracy and Macro-F value. We get predictions
in leave-one-subject-out fashion and compute the
results over the complete set of predictions.

6.1 Language Model Performance

Our first experiment relies only on the perplexity
from language models to make the prediction.
We use the 1,2,3-gram models on word and POS
sequences. From the result in Table 2 we can
see bigram LM performed better than random
baseline for both story and subject level prediction.
3-gram and 1-gram LM did not give a credible
performance, with results worse than that of the
baselines. Because of space constraints we do not
report the specific numbers.

6.2 Classification Result after Feature Selection

Next we evaluate the performance of classification
with different number of features from the classes
we define in Section 4. As discussed above, we
performed feature selection by choosing different
levels of significance for the p-value cut-off. Feature
selection is performed 39 times for each LOSO
training fold. On the standard cut-off p-value <
0.05, our system could achieve 62.7% accuracy on
story and 64.1% on patient level prediction. The best
performance is achieved when the cut-off p-value is



Schizophrenia Control General

Measurement | P(%) R (%) F (%) | P(%) R (%) F (%) Accuracy (%) Macro-F (%)
Story Random 59.7 50.0 54.4 40.5 50.0 44.6 50.0 49.5
Majority 59.7 100.0  74.8 NA 0.0 0.0 (NA) 59.7 37.4
25-Features | 68.7 75.0 71.7 57.1 494 52.9 64.7 62.3
Subject Random 59.0 50.0 54.1 41.0 50.0 45.0 50.0 49.6
Majority 59.0 100.0 742 NA 0.0 0.0 (NA) 59.0 37.1
25-Features | 75.0 91.3 824 81.8 56.3 66.7 76.9 74.6

Table 4: Performance on best feature-set by feature ranking using signal to noise

stricter, 0.001, where an accuracy of 75.6% can be
reached. In this case only about 18 features are used
for the classification. Detailed results are shown in
Table 3.

6.3 Performance with Different Feature Size

Next we investigate the relationship between feature
set size and accuracy of prediction. We are
interested in identifying the smallest possible set
of features which gives performance close to the
one reported on the full set of significant features.
Narrowing the feature set as much as possible will
be most useful for clinicians as they understand
the differences between the groups and look for
indicators of the illness they need to track during
regular patient visits. Physicians and psychologists
are also interested to know the most significant
lexical differences revealed by the stories.

As an alternative to ranking features by p-value,
we use the Challenge Learning Object Package
(CLOP) 3 (Guyon et al., 2006) . It is a toolkit
with a combination of preprocessing and feature
selection. We experiment with signal-to-noise (s2n),
Gram-Schmidt orthogonalization and Recursive
Feature Elimination for finding a subset of indicative
features (Guyon and Elisseeff, 2003). The
signal-to-noise method gives better results than the
other two by at least 6% for the top performance
feature set. Thus we pick the best k& features
according to the s2n result and use only those &
features for classification.

Figure 1 shows how prediction accuracy changes
with feature sets of different sizes. From the plot
we clearly see that our top performance is achieved
with 25 to 40 features, after which performance
drops. The peak performance is achieved when

3See http://clopinet.com/CLOP/
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Accoracy changing with feature set size
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Figure 1: Story and Subject prediction accuracy

there are 25 features, where we could reach 75.0%
precision, 91.3% recall, 82.4% F-measure for
patient, and 76.9% accuracy for overall, as shown
in Table 4. Detailed information about the top
30 features can be found in Table 5. ‘4’ and ‘-’
means more prevalent for patient and control, while
‘prj’ and ‘01’ correspond to the two normalization
approaches in Section 4.3, projection and binary
respectively.

6.4 Analysis of Significant Features

In this section we discuss the specific features that
were revealed as most predictive by the feature
selection methods that we employed. We have seen
that it only requires about 25-40 features to obtain
peak performance.

First we briefly review the features that turned
out to be statistically significant (for 0.05 p-value
cut-off). Table 7 provides a list of the features
with higher values for Schizophrenia and Control
respectively. * We group the significant features
according to the feature classes we introduced in

“LMI is defined as the ratio of CO perplexity and
SC perplexity from LMs, LM7 comes from projection
normalization of LM1. If LM perplexity for CO is smaller than
that of SC, then we set LM3 as 1; otherwise we set LM4 as 1.



Rank  Feature Category  P-value
1 Prj-Self + Diction  5.33E-06
2 01-Self + Diction  7.34E-06
3 Prj-punctuation - Basic 1.33E-05
4 01-I+ LIWC 2.73E-05
5 01-sorry - Lexical 0.007
6 01-money + Lexical  6.95E-05
7 01-punctuation - Basic 4.88E-05
8 prj-1 + LIWC 5.12E-05
9 01-extremely + Lexical ~ 5.10E-05
10 prj-mildly + Lexical 0.0006
11 prj-sorry - Lexical 0.011
12 prj-1 + Lexical 0.0002
13 LM1 + LM 0.0002
14 LM7 + LM 0.0002
15 I+ Repeat 0.0003

Rank  Feature Category  P-value
16 and + Repeat 0.0002
17 01-mildly + Lexical 0.0004
18 prj-adverb - LIWC 0.0006
19 01-relationship - Lexical 0.024
20 01-late - Lexical 0.024
21 prj-comma - Lexical 0.001
22 Repeat word - Basic 0.001
23 prj-late - Lexical 0.034
24 prj-very - Lexical 0.007
25 prj-extremely + Lexical 0.001
26 0l-couldn’t + Lexical 0.001
27 prj-relationship -  Lexical 0.037
28 very - Repeat 0.007
29 prj-? + Lexical 0.002
30 prj-moderately +  Lexical 0.006

Table 5: Table of the top 30 features by signal-to-noise ranking

Section 4. Of the 169 significant features, 111 are
more prevalent in patients, 58 are more prevalent
among the controls. If a feature was significant with
both normalizations we use, we list it only once in
Table 7.

Among the words indicative of schizophrenia,
subjective words such as I and LIWC category
self are among the most significant. This finding
conforms with prior research that patients with
mental disorders refer to themselves more often than
regular people. Patients produce more questions (as
indicated by the significance of the question mark
as a feature). It is possible that this indicates a
disruption in their thought process and they forget
what they are talking about. Further work will be
needed to understand this difference better.

In terms of words, patients talked more about
money, trouble, and used adverbs like moderately
and basically. Repetition in language is also a
revealing characteristic of the patient narratives.
There is a substantial difference in the appearance
of repetitions between the two groups, as well as
repetition of specific words: I, and, and repetition
of filled pauses um. As patients focus more on their
own feelings, they talked a lot about their family,
using words such as son, grandfather and even dogs.

Diction features revealed some unexpected
differences. The schizophrenia group scores
higher in the Self, Cognition, Past, Insistence and
Satisfaction categories. This indicates that they are
more likely to talk about past experience, using
cognitive terms and having a repetition of key
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terms. We were particularly curious to understand
why patients score higher on Satisfaction ratings.
On closer inspection we discovered that patients’
stories were rated higher in Satisfaction when
they were telling SAD stories. This finding has
important clinical implications because one of the
diagnostic elements for the disease is inappropriate
emotion expression. Our study is the first to apply
an automatic measure to detect such anomaly in
patients’ emotional narratives. Prompted by this
discovery, we take a closer look at the interaction
between the emotion expressed in a story and the
accuracy of status prediction in the next section.

The control group exhibited more word
complexity, sentence complexity and thoughtfulness
in their stories. They use more adverbs and exclusive
words (e.g. but, without, exclude) on general trend.
They use the word sorry significantly more often
than patients.

6.5 Status Prediction by Emotion

We also investigate if classification accuracy differs
depending on the type of conveyed emotion.
Accuracy per emotion with three feature selection
methods is shown in Table 6. When using
signal-to-noise, we can see that on SAD stories the
two groups can be distinguished better. Story-level
accuracies on HAPPY stories reach 72.5%, and
that the accuracy on HAPPY stories is the next
highest one. ~When applying the 0.05 p-value
cut-off to select significant features, ANGER stories
become the ones for which the status of a subject



Accuracy (%) s2n(25) T-test (0.05) T-test (0.001) Types Significant features more common in SCH
Happy 66.7 59.0 71.8 Basic repeat-word, sentence/document
Disgust 63.4 61.0 51.2 LIWC I, insight, personal-pronoun
Anger 61.0 70.7 70.7 Diction | self, cognition, past, insistence, satisfaction
Fear 60.0 55.0 67.5 Lexical | ?, ain’t, alone, at, aw, become, before, behind
Sad 72.5 60.0 67.5 care, chance, confused, couldn’t, December, dog
Story 64.7 62.9 65.7 dogs, extreme, extremely, feeling, forty, friends
Patient 76.9 64.1 74.4 god, got, grandfather, guess, guy, hand, hanging
Majority 59.0 59.0 59.0 hearing, hundred, increased, looking, loved
mental, met, mild, mildly, moderate, moderately
Table 6: Accuracy per emotion by different feature-sets money, my, myself, outside, paper, passed, piece
remember, sister, son, stand, step, story, take
taken, throwing, took, trouble, use, wake
can be predicted most accurately.  Using the wannd, way
. i Repeat a, and, I, um, was
threshold of 0.001 for selection gives the best overall M LML, LM4, LM7
prediction. In that case, HAPPY and ANGER are — :
the emotions for which recognition is best. The Types | Significant features more common in co
K . . Basic length/word, words/sentence
Changes in the recognition accuracy dependmg on LIWC >6-letters, adverb, exclusive words, inhibitive
feature selection suggests that in future studies it Diction | certainty, cooperation, diversity

may be more beneficial to perform feature selection
only on stories from a given type because obviously
indicative features exist at least for the SAD, ANGER
and HAPPY stories.

Regardless of the feature selection approach, it
is more difficult to tell the two groups apart when
they tell DISGUST and FEAR stories. These results
seem to indicate that when talking about certain
emotions patients and controls look much more alike
than when other emotions are concerned. Future
data acquisition efforts can focus only on collecting
autobiographical narratives relevant to the emotions
for which patients and controls differ most.

Number of significant features changing with p-value per emotion
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Figure 2: Number of significant features by P-value
selection on different thresholds (per emotion)

In future work we would like to use only stories
from a given emotion to classify between patients
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familiarity, realism

Lexical | ”,’, able, actually, are, basically, be, being, get’s
in, late, not, really, relationship, result, she’s
sleep, sorry, tell, their, there’s, very, weeks

IIED)

very, ",
LM3

Repeat
LM

Table 7: Significant features (p-value < 0.05)

and controls. Doing this with our current dataset
is not feasible because there are only about 40
transcripts per emotion. Therefore, we use our
data to identify significant features that distinguish
patients from controls only on narratives from a
particular emotion. For example, we compare the
differences of SAD stories told by patients and
controls. ~ We count the number of significant
features between patients and controls with 11
different p-value cut-offs, and provide a plot that
visualizes the results in Figure 2. From the graph,
it is clear that there are many more differences
between the two groups in ANGER and SAD
narratives. HAPPY comes next, then DISGUST and
FEAR. However, at lower confidence levels, HAPPY
has equal number of significant features as ANGER
and SAD, which is in line with the result in Table 6.

The feature analysis performed by emotion
reveals more differences between patients and
controls, beyond common features such as self,
I, etc. For HAPPY stories, patients talk more
about their friends and relatives; they also have a



higher tendency of being ambivalent. For DISGUST
stories, patients are more disgusted with dogs, and
they talk more about health. The control group
shows a higher communication score, referring to
a better social interaction. ANGER is one of the
emotions that best reveals the differences between
groups, and schizophrenia patients show more
aggression and cognition while talking, according
to features derived from Diction. The control
group sometimes talks more about praise. In FEAR
stories patients talk about money more often than
controls. Meanwhile, the control group uses more
inhibition words, for instance: block, constrain and
stop. An interesting phenomenon happens in SAD
narratives. When talking about sad experiences,
patients sometimes show satisfaction and insistence,
while the controls talked more about working
experiences.

7 Conclusion

In this paper, we analyzed the predictive power
of different kinds of features for distinguishing
schizophrenia patients from healthy controls. We
provided an in-depth analysis of features that
distinguish patients from controls and showed that
the type of emotion conveyed by the personal
narratives is important for the distinction and that
stories for different emotions give different sets
indicators for subject status. We report classification
results as high as 76.9% on the subject level,
with 75.0% precision and 91.3% on recall for
schizophrenia patients.

We consider the results presented here to be
a pilot study. We are currently collecting and
transcribing additional stories from the two groups
which we would like to use as a definitive test
set to verify the stability of our findings. We
plan to explore syntactic and coherence models to
analyze the stories, as well as emotion analysis of
the narratives.
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Streaming Analysis of Discourse Participants
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Abstract

Inferring attributes of discourse participants
has been treated as a batch-processing task:
data such as all tweets from a given author
are gathered in bulk, processed, analyzed for
a particular feature, then reported as a result
of academic interest. Given the sources and
scale of material used in these efforts, along
with potential use cases of such analytic tools,
discourse analysis should be reconsidered as
a streaming challenge. We show that un-
der certain common formulations, the batch-
processing analytic framework can be decom-
posed into a sequential series of updates, us-
ing as an example the task of gender classifi-
cation. Once in a streaming framework, and
motivated by large data sets generated by so-
cial media services, we present novel results in
approximate counting, showing its applicabil-
ity to space efficient streaming classification.

1 Introduction

The rapid growth in social media has led to an
equally rapid growth in the desire to mine it for use-
ful information: the content of public discussions,
such as found in tweets, or in posts to online forums,
can support a variety of data mining tasks. Infer-
ring the underlying properties of those that engage
with these platforms, the discourse participants, has
become an active topic of research: predicting indi-
vidual attributes such as age, gender, and political
preferences (Rao et al., 2010), or relationships be-
tween communicants, such as organizational domi-
nance (Diehl et al., 2007). This research can bene-
fit areas such as: (A) commercial applications, e.g.,

48

improved models for advertising placement, or de-
tecting fraudulent or otherwise unhelpful product re-
views (Jindal and Liu, 2008; Ott et al., 2011); and
(B) in enhanced models of civic discourse, e.g., in-
expensive, large-scale, passive polling of popular
opinion (O’Connor et al., 2010).

Classification with streaming data has usually
been taken in the computational linguistics commu-
nity to mean individual decisions made on items that
are presented over time. For example: assigning
a label to each newly posted product review as to
whether it contains positive or negative sentiment,
or whether the latest tweet signals a novel topic that
should be tagged for tracking (Petrovic et al., 2010).

Here we consider a distinct form of stream-based
classification: we wish to assign, then dynamically
update, labels on discourse participants based on
their associated streaming communications. For in-
stance, rather than classifying individual reviews as
to their sentiment polarity, we might wish to classify
the underlying author as to whether they are gen-
uine or paid-advertising, and then update that deci-
sion as they continue to post new reviews. As the
scale of social media continues to grow, we desire
that our model be aggressively space efficient, which
precludes a naive solution of storing the full commu-
nication history for all users.

In this paper we make two contributions: (1) we
make explicit that a standard bag-of-words classifi-
cation model for predicting latent author attributes
can be simply decomposed into a series of stream-
ing updates; then (2) show how the randomized al-
gorithm, Reservoir Counting (Van Durme and Lall,
2011), can be extended to maintain approximate av-

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 48-58, Jeju Island, Korea, 12-14 July 2012. (©2012 Association for Computational Linguistics



erages, allowing for significant space savings in our
classification model. Our running example task is
gender prediction, based on spoken communication
and microblogs/Twitter feeds.

2 Model

Assume that each discourse participant (e.g.,
speaker, author) a has an associated stream of com-
munications (e.g., tweets, utterances, emails, etc.):
(¢;) = C. Then let C¢ = (ci, ..., ct) represent the
first ¢ elements of C.

Assume access to a pretrained classifier ®:!

() { 1 ifw-fgo) >0,

0 otherwise,

which we initially take to be linear: author labels are
determined by computing the sign of the dot product
between a weight vector w, and feature vector f(C'),
each of dimension d. Note that f(C) is a feature
vector over the entire set of communications from a
given author.

For example, & might be trained to classify author

gender:
Gender(a) = { Male —ifw- f(C) =0,
Female otherwise.

We now make explicit how under certain common
restrictions on the feature space, the classification
decision can be decomposed into a series of decision
updates over the elements of C'.

Define f(c;) to be the vector containing the lo-
cal, count-based feature values of communication
c;.2 For convenience let us assume that flei) e Ne.
Where |v|; = ), |v;] is the L1-norm of vector v, let
z¢ be the normalizing constant at t:

t
= 1f (el
i=1
Now define f;(C'), the j-th entry of f(C), as:
2lim1 fj(cz‘)

Zn

fi(C) =

Thus f(C) represents the global relative fre-
quency of each local, count-based feature. This al-
lows us to rearrange terms:

"While here we assume binary decision tasks, dynamic clas-
sification in a multiclass, or regression, setting is an interesting
avenue of exploration, for which these definitions generalize.

ZAs seen later in Table 1, we have in mind features such as
the frequency of the n-gram my wife.
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d

> w; £5(C)

j=1
1 d no

= 2w file)
" j=1 i=1
1 n d A

= > Q_wfie)

=1 j=1
Let (s¢, z¢) be the current state of the classifier:

t d

(s¢,2¢) = (Z Z wy, fr(cj), zt)

i=1 k=1

which pairs the observed rolling sum, s; with the
feature stream length z;.

The classifier decision after seeing everything up
to and including communication ¢, is thus a simple

average:
oSt
1 if A 2 O,

@ =
(@) { 0 otherwise.
Finally we reach the observation that:

St = St—1tw- f(Ct)
ze—1 + \f(Ct)h

zZt =

which means that from an engineering standpoint we
can process a stream of communication one element
at a time, without the need to preserve the history
explicitly. That is: for each author, for each attribute
being analyzed, an online system only need main-
tain a state pair (s¢, z¢) by extracting and weighting
features locally for each new communication. Be-
yond the computational savings of not needing to
store communications nor explicit feature vectors in
memory, there are potential privacy benefits as well:
analytic systems need not have a lasting record of
discourse, they can instead glean whatever signal is
required locally in the stream, and then discard the
actual communications.

Log-linear Rather than a strictly linear ®, such as
instantiated via perceptron or SVM with linear ker-
nel, many prefer log-linear models as their classifi-
cation framework:

> 0.5,

: 1
oa) = { ! 1 Teprwroy =
0 otherwise.



Co G

350% 9% 5%
Q@50%  10%

95%

85% 86%
15% 14%

Figure 1: A streaming analytic model should update its decision with each new communication, becoming more

stable in its prediction as evidence is acquired.

In either setting, the state of the classifier is suf-
ficiently captured by the pair (s¢, 2z¢), under the re-
strictions on f.3

2.1 Validation

As an example of a model decomposed into a
stream, we revist the task of gender classifica-
tion based on speech transcripts, as explored by
Boulis and Ostendorf (2005) and later Garera and
Yarowsky (2009). In the original problem definition,
one would collect all transcribed utterances from a
given speaker in a corpus such as Fisher (Cieri et
al., 2004) or Switchboard (Godfrey et al., 1992),
known as a side of the conversation. Then by col-
lapsing these utterances into a single document, one
could classify it as to whether it was generated by a
male or female. Here we define the task as: starting
from scratch, report the classifier probability of the
speaker being male, as each utterance is presented.
Intuitively we would expect that as more utter-
ances are observed, the better our classification ac-
curacy. Researchers such as Burger et al. (2011)
have considered this point, but by comparing the
classification accuracy based on the volume of batch
data available per author (in that case, tweets): the
more prolific the author had been, the better able
they were to correctly classify their gender. We con-
firm here this can be reframed: as a speaker (author)
continues to emit a stream of communication, a dy-
namic model tends to improve its online prediction.
Our collection based on Switchboard consisted
of 520 unique speakers (240 female, 280 male),
with a total of roughly 400k utterances. Simi-
lar to Boulis and Ostendorf, we extracted unigram
and bigram counts as features, but without further

3Note that some non-linear kernels can be maintained online

in a similar fashion. For instance, a polynomial kernel of degree
p decomposes as: (f(Cy) - w)? = (£=2)P.
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Figure 2: Accuracy on Switchboard gender classifica-
tion, reported at every fifth utterance, using a dynamic
log-linear model with 10-fold cross validation.

TFIDF reweighting. Ngrams were required to oc-
cur at least 10 times in the training set, recom-
puted for each split of 10-fold cross validation.
Weights were computed under a log-linear model
using LibLinear (Fan et al., 2008), with 5% of
training held out for tuning an L2 regularizing term.
Feature extraction and dynamic aspects were han-
dled through additions to the Jerboa package (Van
Durme, 2012). Similar to previous work, we found
intuitive features such as my husband to be weighted
heavily (see Table 1), along with certain non-lexical
vocalizations such as transcribed laughter.

Table 1: Top ten features by gender.

Male a, wife, is, my wife, right, of, the, uh, ac-
tually, [vocalized-noise]
Female have, and, [laughter], my husband, really,

husband, children, are, would
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Figure 3: Streaming analysis of eight randomly sam-
pled speakers, four per gender (red-solid: female, blue-
dashed: male). Being a log-linear model, the decision
boundary is marked at y = 0.5.

As seen in Figure 2, accuracy indeed improves
as more content is emitted. Figure 3 highlights the
streaming perspective: individual speakers can be
viewed as distinct trajectories through [0, 1], based
on features of their utterances.

3 Randomized Model

Now situated within a streaming context we exact
space savings through approximation, extending the
approach of Van Durme and Lall (2011), there con-
cerned with online Locality Sensitive Hashing, here
initially concerned with taking averages.

When calculating the average over a sequence of
values, X,, = (x1,...,x,), we divide the sum of
the sequence, sum(X,,) = Y I, z;, by its length,
length(X,,) = | X,|:

avg(X,) = ICSE;%

Our goal in this section is to maintain a space ef-
ficient approximation of avg(X}), as ¢ increases, by
using a bit-saving approximation of both the sum,
and the length of the sequence.

We begin by reviewing the method of Reservoir
Counting, then extend it to a new notion we refer to
as Reservoir Averaging. This will allow in the sub-
sequent section to map our analytic model to a form
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Figure 4: Social media platforms such as Facebook or
Twitter deal with a very large number of individuals, each
with a variety of implicit attributes (such as gender). This
motivates a desire for online space efficiency.

explicitly amenable to keeping an online average.

3.1 Reservoir Counting

Reservoir Counting plays on the folklore algorithm
of reservoir sampling, first described in the literature
by Vitter (1985). As applied to a stream of arbitrary
elements, reservoir sampling maintains a list (reser-
voir) of length k, where the contents of the reser-
voir represents a uniform random sample over all el-
ements 1...t observed thus far in the stream.

When the stream is a sequence of positive
and negative integers, reservoir counting implicitly
views each value as being unrolled into a sequence
made up of either 1 or -1. For instance, the sequence:
(3, -2, 1) would be viewed as:

(1,1, 1,-1,-1, 1)

Since there are only two distinct values in this
stream, the contents of the reservoir can be char-
acterized by knowing the fixed value k, and then
s: how many elements in the reservoir are 1.*
This led to Van Durme and Lall defining a method,
ReservoirUpdate, here abbreviated to ResUp,
that allows for maintaining an approximate sum, de-
fined as t(% — 1), through updating these two pa-
rameters ¢ and s with each newly observed element.
Expected accuracy of the approximation varies with
the size of the sample, k. Reservoir Counting ex-
ploits the fact that the reservoir need only be con-
sidered implicitly, where s represented as a b-bit un-
signed integer can be used to characterize a reser-
voir of size k = 2° — 1. This allowed those authors
to show a 50% space reduction in the task of online

4 As the number of -1 values is simply: k — s.



Locality Sensitive Hashing, at similar levels of accu-
racy, by replacing explicit 32-bit counting variables
with approximate counters of smaller size. See (Van
Durme and Lall, 2011) for further details.

3.2 Reservoir Averaging

For a given integer x, let m = |z| be the magnitude
of z, and o = sign(x). For a given sequence, let m*
be the largest such value of m.

Modifying the earlier implicit construction, con-
sider the sequence (3, -2, 1), with m* = 3, mapped
to the sequence:

(13 19 13 19 13 17 -la '17 '13 '1’ '17 1’ 19 1’ 13 17 _l’ _1)

where each value x is replaced with m* + m ele-
ments of o, and m* —m elements of —c. This views
x as a sequence of length 2m*, made up of 1s and
-1s, where each z in the discrete range [—m*, m*|
has a unique number of 1s.

Now recognize that the average over the original

sequence, here % = %, is proportional to the
average over the implicit sequence, % =

4 _ 2( 1 )
8~ 3\m*
Generally for a sequence (331, ey Ty

1
defined, the average time pro

), with m* as

*+m; m*—m;
Z@: Iy 1 n m i i
BRI = (X a2 o)
=1
_ > i1 M0
nm*

where n2m* is the total number of 1s and -1s
observed in the implicit stream, up to and including
the mapping of element z,. If applying Reser-
voir Counting, s would then record the sampled
number of 1s, as per norm, where ¢ maintained as
the implicit stream length can also be viewed as
storing t = n2m*. At any point in the stream, the
average over the original value sequence can then
be approximated as: (1) the approximate sum of the
implicit stream; divided by (2) the implicit stream
length; times (3) m™ to cancel th

2s 1 2s

(= = Dh(alm)s = (5 = m

Granularity As defined this scheme operates on
streams of integers. We extend the definition to work

52

with a stream of fixed precision floating point vari-
ables. Let g be a positive integer that we refer to
as the granularity. Modify the mapping of value x
from a sequence of length 2m*, to a sequence of
length g, comprised of m ™ g instances of o, and
( QO*m )g instances of -0. As seen in line 4 of Al-
gorithm 1, a random coin flip determines placement
of the remainder.

For example, the value 1.3, with m* = 3, and
g = 10, would now be represented as a sequence
of %g = 7.16 € (7,8) instances of 1, followed
by however many instances of -1 that lead to a
sequence of length g, after probabilistic rounding.
The possible sequences are thus:

1,1,1,1,1,1,-1, -1, -1)
(1’ 1, 1’ 19 13 19 1’ 19 _1’ _1)
with the former more likely.
At this point we have described the framework

captured by Algorithm 1, where Van Durme and Lall
(2011) defined ResUp.

s Ly Ly Ly

Algorithm 1 UPDATEAVERAGE(n, k, m, m*, 0, g, s)
Parameters:

n : size of stream

k : size of reservoir, also maximum value of s

m : magnitude of update

m* : maximum magnitude of all updates

o : sign of update

g : granularity

s : current value of reservoir

1: if m = 0 or 0 = 0 then
Return without doing anything

. ._ m+m*
PUE e Y

2

3

4: v := [v] with probability v — |v], |v] otherwise
5. s’ := ResUp(ng, k,v,0,s)

6: s’ :=ResUp((ng +v),k,g—

7. Return s’

v,—0,s)

Log-scale Counting For additional space savings
we might approximate the length parameter ¢ with
a small bit representation, using the approximate
counting scheme of Morris (1978). The method en-
ables counting in log-scale by probabilistically in-
crementing a counter, where it becomes less and
less likely to update the counter after each incre-
ment. This scheme is popularly known and used
in a variety of contexts, recently in the community
by Talbot (2009) and Van Durme and Lall (2009)
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Figure 5: Results on averaging randomly generated se-
quences, with m* = 100,g = 100, and using an 8 bit
Morris-style counter of base 2. Larger reservoir sizes lead
to better approximation, at higher cost in bits.

to provide a streaming extension to the Bloom-filter
based count-storage mechanism of Talbot and Os-
borne (2007a) and Talbot and Osborne (2007b). See
(Flajolet, 1985) for a detailed analysis of Morris-
style counting.

3.3 Experiment

We show through experimentation on synthetic data
that this approach gives reasonable levels of accu-
racy at space efficient sizes of the length and sum
parameter. Random sequences of 1,000 values were
generated by: (1) fix a value for m*; (2) draw a po-
larity bias term g uniformly from the range [0,1];
then (3) for each value, z: (a) o was positive with
probability y; (b) m was drawn from [0, m™*]. Fig-
ure 5 shows results for varying reservoir sizes (us-
ing 4, 8 or 12 bits) when ¢ = 100, m* = 100, and
the length parameter was represented with an 8 bit
Morris-style counter of base 2.

3.4 Justification

Before we close this section, one might ask why this
extension is needed in the first place. As Reservoir
Counting already allows for keeping an online sum,
and pairs it with a length parameter, then this would
presumably be what is needed to get the average we
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are focussed on. Unfortunately that is not the case:
the parameter recording the current stream length,
here called ¢, tracks the length of the implicit stream
of 1s and -1s, it does not track the length of the origi-
nal stream of values that gave rise to the mapped ver-
sion. As an example, consider again the sequence:
(3, -2, 1), as compared to: (2,1,-1,-1,1). Both have
the same sum, and would therefore be viewed the
same under the pre-existing Reservoir Counting al-
gorithm, giving rise to implicit streams of the same
length. But critically the sequences have different
averages: % #* %, which we cannot detect based on
the original counting algorithm.

Finally, we restate the constraint: for the sequence
to averaged, one must know m* ahead of time.

4 Application to Classification

Going back to our streaming analysis model, we
have a situation that can be viewed as a sequence
of values, such that we do know m™*. First reinter-
pret the fraction j—z equivalently as the normalized
sum of a stream of elements sampled from w:

d filci)
St 1 —
-t = § § w;
2t z2t “ -
i=1 j=1 [=1

The value m* is then: m* = max; |w;|, over a
sequence of length z;. Rather than updating s; and
z¢ through basic addition, we can now use a smaller
bit-wise representation for each variable, and update
via Reservoir Averaging.

4.1 Problems in Practice

Reconsidering the earlier classification experiment,
we found this approximation method led to terri-
ble results: while our experiments on synthetic data
worked well, those sequences were sampled some-
what uniformly over the range of possible values. As
seen in Figure 6, sequences arising from observed
feature weights in a practical setting may not be so
broadly distributed. In brief: the more the maxi-
mum possible update, m*, can be viewed as an out-
lier, then the more the resulting implicit encoding
of g elements per observed weight becomes domi-
nated by “filler”. As few observed elements will in
that case require the provided range, then the im-
plicit representation will be a mostly balanced set of
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Figure 6: Frequency of individual feature weights ob-
served over a full set of communications by a single ex-
ample speaker. Most observed features have relatively
small magnitude weight. The mean value is 1.3, with
1%%1-3 = 0.79 > 0.5, which properly classifies the
speaker as MALE.

1 and -1 values. These mostly balanced encodings
make it difficult to maintain an adequate approxima-
tion of the true average, when reliant on a small, im-
plicit uniform sample. Here we leave further analy-
sis aside, focusing instead on a modified solution for
the classification model under consideration.

4.2 Rewriting History

Practically we would like to restrict our range to the
dense region of weight updates, while at the same
time not throwing away or truncating larger weights
that appear outside a reduced window. We do this
by fitting a replacement to m*: m’ < m*, based on
the classifier’s training data, such that too-large ele-
ments will be accommodated into the stream by im-
plicitly assuming that the portion of a value that falls
outside the restricted window is “spread out” over
the previously observed values. That is, we mod-
ify the contents of the implicit reservoir by rewriting
history: pretending that earlier elements were larger
than they were, but still within the reduced window.
As long as we don’t see too many values that are
overly large, then there will be room to accommo-
date the overflow without any theoretical damage to
the implicit stream: all count mass may still be ac-

54

counted for. If a moderately high number of overly
large elements are observed, then we expect in prac-
tice for this to have a negligible impact on down-
stream performance. If an exceptional number of
elements are overly large, then the training data was
not representative of the test set.

The newly introduced parameter m’ is used in
MODIFIEDUPDATEAVERAGE (MUA), which relies
on REWRITEHISTORY. Note that MUA uses the
same value of n when calling REWRITEHISTORY
as it does in the subsequent line calling UPDATEAV-
ERAGE: we modify the state of the reservoir without
incrementing the stream length, taking the current
overflow and pretending we saw it earlier, spread
out across previous elements. This happens by first
estimating the number of 1 values seen thus far in
the stream: Zn, then adding in twice the overflow
value, which represents removing o instances of —o
from the stream, and then adding o instances of o.
We probabilistically round the resultant fraction to
achieve a modified version of s, which is returned.

Algorithm 2 MUA (n, k,m,m/, o, g, s)

1: if m < m’ then

2:  Return UPDATEAVERAGE(n, k,m,m’, o, g, s)
3: s’ := REWRITEHISTORY(n, k,m,m’, 0, g, s)

4: Return UPDATEAVERAGE(n, k,m',m’, 0, g, s)

Algorithm 3 REWRITEHISTORY (n, k, m, m/, 0, g, 5)
Parameters:
o : overflow to be accommodated

m,—TTLI

I: 0= 579

2: if 0 > 0 then

3:  if s = k then

4: Return s

5. p:=min(1.0, 2 + 22)

6: else

7. if s = 0 then

8: Return s

9:  p:=max(0.0,% - %)
10: Return [pk] with prob. pk — |pk], |pk| otherwise

4.3 Experiment

Figure 7 compares the results seen in Figure 2 to
a version of the experiment when using approxima-
tion. Parameters were: g = 100; k = 255; and a
Morris-style counter for stream length using 8 bits
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Figure 7: Comparison between using explicit count-
ing and approximation on the Switchboard dataset, with
bands reflecting 95% confidence.

and a base of 1.3. The value m’ was fit indepen-
dently for each split of 10-fold cross validation, by
finding through simple line search that which mini-
mized the number of prediction errors on the origi-
nal training data (see Figure 8). This result shows
our ability to replace 2 variables of 32 bits (sum
and length) with 2 approximation variables of 8 bits
(reservoir status s, and stream length n), leading to
a 75% reduction in the cost of maintaining online
classifier state, with no significant cost in accuracy.

5 Real World Stream: Twitter

5.1 Setup

Based on the tweet IDs from the data used by
Burger et al. (2011), we recovered 2,958,107 of their
roughly 4 million original tweets.> These tweets
were then matched against the gender labels estab-
lished in that prior work. As reported by Burger
et al., the dominant language in the collection is
English (66.7% reported), followed by Portuguese
(14.4%) then Spanish (6.0%), with a large variety of
other languages with small numbers of examples.

SStandard practice in Twitter data exchanges is to share only
the unique tweet identifications and then requery the content
from Twitter, thus allowing, e.g., the individual authors the abil-
ity to delete previous posts and have that reflected in future data
collects. While respectful of author privacy, it does pose a chal-
lenge for scientific reproducibility.
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Figure 8: Summed 0/1 loss over all utterances by each
speaker in the Switchboard training set, across 10 splits.
A value of m’ = 5 was on average that which minimized
the number of mistakes made.

Content was lowercased, then processed by regu-
lar expression to collapse the following into respec-
tive single symbols: emoticons; URLs; usernames
(@mentions); and hashtags. Any content deemed
to be a retweet (following the characters RT) was
removed. Text was then tokenized according to a
modified version of the Penn TreeBank tokenization
standard® that was less English-centric.

5.2 Experiment

A log-linear classifier was built using all those au-
thors in the training set’ with at least 10 tweets.
Similar to the previous experiment, unigrams and
bigrams features were used exclusively, with the pa-
rameter m/ fit on the training data.

As seen in Figure 9, results were as in Switch-
board: accuracy improves as more data streams in
per author, and our approximate model sacrifices
perhaps a point of accuracy in return for a 75% re-
duction in memory requirements per author.

Table 2 gives the top features per gender. We
see similarities to Switchboard in terms such as my

SSuch as codified in http://www.cis.upenn.edu/
~treebank/tokenizer.sed

"The same training, development and test set partitions were
used as by Burger et al. (2011), minus those tweets we were
unable to retrieve (as previously discussed).
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Figure 9: Comparison between using explicit counting
and approximation, on the Twitter dataset, with bands re-
flecting 95% confidence.

wife, along with terms suggesting a more youthful
population. Foreign terms are recognized by their
parenthetical translation and 1st- or 2nd-person +
Male/Female gender marking. For example, the Por-
tuguese obrigado can be taken to be literally saying:
I’'m obliged (thank you), and I'm male.

6 Related Work

Streaming algorithms have been developed within
the applied communities of networking, and (very
large) databases, as well as being a popular topic in
the theoretical computer science literature. A sum-

Table 2: Top thirty-five features by gender in Twitter.

Male obrigado (thank you [1M]), wife, my wife,
bro, cansado (fired [1M]), gay, mate, dude,
[@username] why, buddy, windows, album,
dope, beer, [ @username] yo, sir, ps3, comics,
galera (folks/people), amigo (friend [2M]),

man !, fuckin, omg omg, cheers, ai n’t

obrigada (thank you [1F]), hubby, husband,
cute, my husband, ?, cansada (tired [1F]),
hair, dress, soooo, lovely, etsy, boyfriend,
jonas, loved, book, sooo, girl, sé (I),
lindo (cute), shopping, amiga (friend [2F]),
yummy, ppl, cupcakes

Female
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mary of the streaming algorithms community is be-
yond the scope of this work: interested readers are
directed to Muthukrishnan (2005) as a starting point.

Within computational linguistics interest in
streaming approaches is a more recent development;
we provide here examples of representative work,
beyond those described in previous sections. Leven-
berg and Osborne (2009) gave a streaming variant of
the earlier perfect hashing language model of Talbot
and Brants (2008), which operated in batch-mode.
Using a similar decomposition to that here, Van
Durme and Lall (2010) showed that Locality Sen-
sitive Hash (LSH) signatures (Indyk and Motwani,
1998; Charikar, 2002) built using count-based fea-
ture vectors can be maintained online, as compared
to their earlier uses in the community (Ravichandran
et al., 2005; Bhagat and Ravichandran, 2008). Fi-
nally, Goyal et al. (2009) applied the frequent items®
algorithm of Manku and Motwani (2002) to lan-
guage modeling.

For further background in predicting author at-
tributes such as gender, see (Garera and Yarowsky,
2009) for an overview of previous work and (non-
streaming) methodology.

7 Conclusions and Future Work

We have taken the predominately batch-oriented
process of analyzing communication data and shown
it to be fertile territory for research in large-scale
streaming algorithms. Using the example task of au-
tomatic gender detection, on both spoken transcripts
and microblogs, we showed that classification can
be thought of as a continuously running process, be-
coming more robust as further communications be-
come available. Once positioned within a stream-
ing framework, we presented a novel approximation
technique for compressing the streaming memory
requirements of the classifier (per author) by 75%.
There are a number of avenues to explore based
on this framework. For instance, while here we as-
sumed a static, pre-built classifier which was then
applied to streaming data, future work may consider
the interplay with online learning, based on meth-
ods such as by Crammer et al. (2006). In the appli-

8See the survey by Cormode and Hadjieleftheriou (2009) for
approaches to the frequent items problem, otherwise known as
finding heavy hitters.



cations arena, one might take the savings provided
here to run multiple models in parallel, either for
more robust predictions (perhaps “triangulating” on
language ID and/or domain over the stream), or pre-
dicting additional properties, such as age, national-
ity, political orientation, and so forth. Finally, we
assumed here strictly count-based features; stream-
ing log-counting methods, tailored Bloom-filters for
binary feature storage, and other related topics are
assuredly applicable, and should give rise to many
interesting new results.
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Abstract

A mixture of positive (friendly) and nega-
tive (antagonistic) relations exist among users
in most social media applications. However,
many such applications do not allow users to
explicitly express the polarity of their interac-
tions. As a result most research has either ig-
nored negative links or was limited to the few
domains where such relations are explicitly
expressed (e.g. Epinions trust/distrust). We
study text exchanged between users in online
communities. We find that the polarity of the
links between users can be predicted with high
accuracy given the text they exchange. This
allows us to build a signed network represen-
tation of discussions; where every edge has
a sign: positive to denote a friendly relation,
or negative to denote an antagonistic relation.
We also connect our analysis to social psy-
chology theories of balance. We show that the
automatically predicted networks are consis-
tent with those theories. Inspired by that, we
present a technique for identifying subgroups
in discussions by partitioning singed networks
representing them.

1 Introduction

Most online communities involve a mixture of pos-
itive and negative relations between users. Positive
relations may indicate friendship, agreement, or ap-
proval. Negative relations usually indicate antago-
nism, opposition, or disagreement.

Most of the research on relations in social media
applications has almost exclusively focused on pos-
itive links between individuals (e.g. friends, fans,
followers, etc.). We think that one of the main rea-
sons, of why the interplay of positive and negative
links did not receive enough attention, is the lack of
a notion for explicitly expressing negative interac-
tions. Recently, this problem has received increas-
ing attention. However, all studies have been limited
to a handful of datasets from applications that allow
users to explicitly label relations as either positive or
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negative (e.g. trust/distrust on Epinion (Leskovec et
al., 2010b) and friends/foes on Slashdot (Kunegis et
al., 2009)).

Predicting positive/negative relations between
discussants is related to another well studied prob-
lem, namely debate stance recognition. The ob-
jective of this problem is to identify which partic-
ipants are supporting and which are opposing the
topic being discussed. This line of work does not
pay enough attention to the relations between par-
ticipants, rather it focuses on participant’s stance to-
ward the topic. It also assumes that every partici-
pant either supports or opposes the topic being dis-
cussed. This is a simplistic view that ignore the
nature of complex topics that has many aspects in-
volved which may result in more than two subgroups
with different opinions.

In this work, we apply Natural Language Pro-
cessing techniques to text correspondences ex-
changed between individuals to identify the under-
lying signed social structure in online communities.
We present a method for identifying user attitude
and for automatically constructing a signed social
network representation of discussions. We apply
the proposed methods to a large set of discussion
posts. We evaluate the performance using a manu-
ally labeled dataset. We also conduct a large scale
evaluation by showing that predicted links are con-
sistent with the principals of social psychology the-
ories, namely the Structural Balance Theory (Hei-
der, 1946). The balance theory has been shown to
hold both theoretically (Heider, 1946) and empiri-
cally (Leskovec et al., 2010c) for a variety of social
community settings. Finally, we present a method
for identifying subgroups in online discussions by
identifying groups with high density of intra-group
positive relations and high density of inter-group
negative relations. This method is capable of identi-
fying subgroups even if the community splits into
more than two subgroups which is more general
than stance recognition which assumes that only two
groups exist.

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 59-70, Jeju Island, Korea, 12—14 July 2012. (©2012 Association for Computational Linguistics



Source Target Sign Evidence from Text

A Ef I have to disagree with what you are saying.

G You are missing the entire point, he is putting lives at risk.
D | - and you manufacture lies for what reason?

E G +  you have explained your position very well.

© H + lam neutral on this, but | agree with your assessment!

Figure 1: An example showing a signed social network
along with evidence from text that justifies edge signs.

The input to our algorithm is a set of text corre-
spondences exchanged between users (e.g. posts or
comments). The output is a signed network where
edges signify the existence of an interaction between
two users. The resulting network has polarity asso-
ciated with every edge. Edge polarity is a means for
indicating positive or negative affinity between two
individuals.

Figure 1 shows a signed network representation
for a subset of posts from a long discussion thread.
The thread discussed the November 2010 Wikileaks
cable release. We notice that participants split into
two groups, one supporting and one opposing the
leak. We also notice that most negative edges are
between groups, and most positive edges are within
groups. It is worth mentioning that networks gen-
erated from larger datasets (i.e. with thousands of
posts) have much more noise compared to this ex-
ample.

The rest of the paper is structured as follows. In
section 2, we review some of the related prior work
on mining sentiment from text, mining online dis-
cussions, extracting social networks from text, and
analyzing signed social networks. We define our
problem and explain our approach in Section 3. Sec-
tion 4 describes our dataset. Results and discussion
are presented in Section 5. We present a method for
identifying subgroups in online discussions in Sec-
tion 3.3. We conclude in Section 6.

2 Related Work

In this section, we survey several lines of research
that are related to our work.
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2.1

Our general goal of mining attitude from one indi-
vidual toward another makes our work related to a
huge body of work on sentiment analysis. One such
line of research is the well-studied problem of iden-
tifying the polarity of individual words (Hatzivas-
siloglou and McKeown, 1997; Turney and Littman,
2003; Kim and Hovy, 2004; Takamura et al., 2005).
Subjectivity analysis is yet another research line that
is closely related to our general goal of mining at-
titude. The objective of subjectivity analysis is to
identify text that presents opinion as opposed to ob-
jective text that presents factual information (Wiebe,
2000; Hatzivassiloglou and Wiebe, 2000; Banea et
al., 2008; Riloff and Wiebe, 2003). Our work is dif-
ferent from subjectivity analysis because we are not
only interested in discriminating between opinions
and facts. Rather, we are interested in identifying
the polarity of interactions between individuals. Our
method is not restricted to phrases or words, rather it
generalizes this to identifying the polarity of an in-
teraction between two individuals based on several
posts they exchange.

Mining Sentiment from Text

2.2 Stance Classification

Perhaps the closest work to this paper is the work on
stance classification. We notice that most of these
methods focus on the polarity of the written text as-
suming that anyone using positive text belongs to
one group and anyone using negative text belongs
to another. This works well for single-aspect topics
or entities like the ones used in (Tan et al., 2011)
(e.g. Obama, Sara Palin, Lakers, etc.). In this sim-
ple notion of topics, it is safe to assume that text
polarity is a good enough discriminator. This unfor-
tunately is not the case in online discussions about
complex topics having many aspects (e.g. abortion,
health care, etc.). In such complex topics, people use
positive and negative text targeting different aspects
of the topic, for example in the health care bill topic,
discussants expressed their opinion regarding many
aspects including: the enlarged coverage, the insur-
ance premiums, Obama, socialism, etc. This shows
that simply looking at text polarity is not enough to
identify groups.

Tan et al. (2011) studied how twitter following re-
lations can be used to improve stance classification.
Their main hypothesis is that connected users are
more likely to hold similar opinions. This may be
correct for the twitter following relations, but it is
not necessarily correct for open discussions where



no such relations exist. The only criterion that can be
used to connect discussants is how often they reply
to each other’s posts. We will show later that while
many people reply to people with similar opinions,
many others reply to people with different opinions
as well.

Thomas et al. (2006) address the same problem
of determining support and opposition as applied to
congressional floor-debates. They assess the agree-
ment/disagreement between different speakers by
training a text classifier and applying it to a win-
dow surrounding the names of other speakers. They
construct their training data by assuming that if two
speaker have the same vote, then every reference
connecting them is an agreement and vice versa.
We believe this will result in a very noisy train-
ing/testing set and hence we decided to recruit hu-
man annotators to create a training set. We found
out that many instances with references to other
discussants were labeled as neither agreement nor
disagreement regardless of whether the discussants
have similar or opposing positions. We will use this
system as a baseline and will show that the exis-
tence of positive/negative words close to a person
name does not necessarily show agreement or dis-
agreement with that person.

Hassan et al. (2010) use a language model based
approach for identifying agreement and disagree-
ment sentences in discussions. This work is limited
to sentences. It does not consider the overall rela-
tion between participants. It also does not consider
subgroup detection. We will use this method as a
baseline for one of our components and will show
that the proposed method outperforms it.

Murakami and Raymond (2010) present another
method for stance recognition. They use a small
number of hand crafted rules to identify agreement
and disagreement interactions. Hand crafted rules
usually result in systems with very low recall caus-
ing them to miss many agreement/disagreement in-
stances (they report 0.26 recall at the 0.56 preci-
sion level). We present a machine learning system
to solve this problem and achieve much better per-
formance. Park et al. (2011) propose a method for
finding news articles with different views on con-
tentious issues. Mohit et al. (2008) present a set
of heuristics for including disagreement informa-
tion in a minimum cut stance classification frame-
work. Galley et al. (2004) show the value of us-
ing durational and structural features for identify-
ing agreement and disagreement in spoken conver-
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sational speech. They use features like duration of
spurts, speech rate, speaker overlap, etc. which are
not applicable to written language.

Our approach is different from agree-
ment/disagreement identification because we
not only study sentiment at the local sentiment
level but also at the global level that takes into
consideration many posts exchanged between
participants to build a signed network representation
of the discussion. Research on debate stance
recognition attempts to perform classification under
the “supporting vs. opposing” paradigm. However
such simple view might not always be accurate
for discussions on more complex topics with
many aspects. After building the signed network
representation of discussions, we present a method
that can detect how the large group could split into
many subgroups (not necessarily two) with coherent
opinions.

2.3 Extracting Social Networks from Text

Little work has been done on the front of extracting
social relations between individuals from text. El-
son et al. (2010) present a method for extracting so-
cial networks from nineteenth-century British nov-
els and serials. They link two characters based on
whether they are in conversation or not. McCal-
lum et al. (2007) explored the use of structured data
such as email headers for social network construc-
tion. Gruzd and Hyrthonthwaite (2008) explored the
use of post text in discussions to study interaction
patterns in e-learning communities. Extracting so-
cial power relations from natural language (i.e. who
influences whom) has been studied in (Bramsen et
al., 2011; Danescu-Niculescu-Mizil et al., 2011).

Our work is related to this line of research because
we employ natural language processing techniques
to reveal embedded social structures. Despite sim-
ilarities, our work is uniquely characterized by the
fact that we extract signed social networks with both
positive and negative links from text.

2.4 Signed Social Networks

Most of the work on social networks analysis has
only focused on positive interactions. A few recent
papers have taken the signs of edges into account.
Brzozowski et al. (2008) study the positive and
negative relationships between users of Essembly.
Essembly is an ideological social network that dis-
tinguishes between ideological allies and nemeses.
Kunegis et al. (2009) analyze user relationships in



the Slashdot technology news site. Slashdot allows
users of the website to tag other users as friends or
foes, providing positive and negative endorsements.
Leskovec et al. (2010b) study signed social networks
generated from Slashdot, Epinions, and Wikipedia.
They also connect their analysis to theories of signed
networks from social psychology. A similar study
used the same datasets for predicting positive and
negative links given their context (Leskovec et al.,
2010a).

All this work has been limited to analyzing a
handful of datasets for which an explicit notion of
both positive and negative relations exists. Our work
goes beyond this limitation by leveraging the power
of natural language processing to automate the dis-
covery of signed social networks using the text em-
bedded in the network.

The research presented in this paper extends this
previous work in a number of ways: (i) we present
a method based on linguistic analysis that finds in-
stances of showing positive or negative attitude be-
tween participants (ii) we propose a technique for
representing discussions as signed networks where a
sign is associated with every edge to denote whether
the relation is friendly or antagonistic (iii) we eval-
uate the proposed methods using human annotated
data and also conduct a large scale evaluation based
on social psychology theories; (iv) finally we present
a method for identifying subgroups that globally
splits the community involved in the discussion by
utilizing the dynamics of the local interactions be-
tween participants.

3 Approach

3.1 Identifying Attitude from Text

To build a signed network representation of discus-
sants, we start by trying to identify sentences that
show positive or negative attitude from the writer to
the addressee. The first step toward identifying at-
titude is to identify words with positive/negative se-
mantic orientation. The semantic orientation or po-
larity of a word indicates the direction the word devi-
ates from the norm (Lehrer, 1974). We use Opinion-
Finder (Wilson et al., 2005a) to identify words with
positive or negative semantic orientation. The polar-
ity of a word is also affected by the context where
the word appears. For example, a positive word that
appears in a negated context should have a negative
polarity. Other polarized words sometimes appear as
neutral words in some contexts. To identify contex-

62

tual polarity of words, a large set of features is used
including words, sentences, structure, and other fea-
tures similar to the method described in (Wilson et
al., 2005b).

Our overall objective is to find the direct attitude
between participants. Hence after identifying the se-
mantic orientation of individual words, we move on
to predicting which polarized expressions target the
addressee and which do not.

Text polarity alone cannot be used to identify at-
titude between participants. Sentences that show
an attitude are different from subjective sentences.
Subjective sentences are sentences used to express
opinions, evaluations, and speculations (Riloff and
Wiebe, 2003). While every sentence that shows an
attitude is a subjective sentence, not every subjective
sentence shows an attitude toward the recipient.

In this method, we address the problem of iden-
tifying sentences with attitude as a relation detec-
tion problem in a supervised learning setting. We
study sentences that has mentions to the addressee
and polarized expressions (negative/positive words
or phrases). Mentions could either be names of other
participants or second person pronouns (you, your,
yours) used in text posted as a reply to another par-
ticipant. Reply structure (i.e. who replies to whom)
is readily available in many discussion forums. In
cases where reply structure is not available, we can
use a method like the one in (Lin et al., 2009) to re-
cover it.

We predict whether the mention is related to the
polarized expression or not. We regard the mention
and the polarized expression as two entities and try
to learn a classifier that predicts whether the two en-
tities are related or not.

The text connecting the two entities offers a very
condensed representation of the information needed
to assess whether they are related or not. For ex-
ample the two sentences “you are completely un-
qualified” and “you know what, he is unqualified ...”
show two different ways the words “you”, and “un-
qualified” could appear in a sentence. In the first
case the polarized word “unqualified” refers to the
word “you”. In the second case, the two words are
not related. The information in the shortest path
between two entities in a dependency tree can be
used to assert whether a relationship exists between
them (Bunescu and Mooney, 2005).

The sequence of words connecting the two enti-
ties is a very good predictor of whether they are re-
lated or not. However, these paths are completely



lexicalized and consequently their performance will
be limited by data sparseness. To alleviate this prob-
lem, we use higher levels of generalization to rep-
resent the path connecting the two tokens. These
representations are the part-of-speech tags, and the
shortest path in a dependency graph connecting the
two tokens. We represent every sentence with sev-
eral representations at different levels of generaliza-
tion. For example, the sentence “your ideas are very
inspiring” will be represented using lexical, polar-
ity, part-of-speech, and dependency information as
follows:

LEX: “YOUR ideas are very POS”
POS: “YOUR NNS VBP RB JJ_POS”
DEP: “YOUR poss nsubj POS”

The set of features we use are the set of unigrams,
and bigrams representing the words, part-of-speech
tags, and dependency relations connecting the two
entities. For example the following features will be
set for the previous example:

YOUR _ideas,
poss_nsubj, ....

YOUR_NNS, YOUR _ poss,
, etc.

We use Support Vector Machines (SVM) as a
learning system because it is good with handling
high dimensional feature spaces.

3.2 Extracting the Signed Network

In this subsection, we describe the procedure we
used to build the signed network given the compo-
nent we described in the previous subsection. This
procedure consists of two main steps. The first is
building the network without signs, and the second
is assigning signs to different edges.

To build the network, we parse our data to identify
different threads, posts and senders. Every sender is
represented with a node in the network. An edge
connects two nodes if there exists an interaction be-
tween the corresponding participants. We add a di-
rected edge A — B, if A replies to B’s posts at least
n times in m different threads. We set m, and n to
2 in all of our experiments. The interaction infor-
mation (i.e. who replies to whom) can be extracted
directly from the thread structure. Alternatively, as
mentioned earlier, we can use a method similar to
the one presented in (Lin et al., 2009) to recover the
reply structure if it is not readily available.

Once we build the network, we move to the more
challenging task in which we associate a sign with
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Participant Features

Number of posts per month for A (B)

Percentage of positive posts per month for A (B)
Percentage of negative posts per month for A (B)

gender

Interaction Features

Percentage/number of positive (negative) sentences per post
Percentage/number of positive (negative) posts per thread
Discussion Domain (e.g. politics, science, etc.)

Table 1: Features used by the Interaction Sign Classifier.

every edge. We have shown in the previous section
how sentences with positive and negative attitude
can be extracted from text. Unfortunately the sign
of an interaction cannot be trivially inferred from the
polarity of sentences. For example, a single negative
sentence written by A and directed to B does not
mean that the interaction between A and B is neg-
ative. One way to solve this problem would be to
compare the number of negative sentences to posi-
tive sentences in all posts between A and B and clas-
sify the interaction according to the plurality value.
We will show later, in our experiments section, that
such a simplistic method does not perform well in
predicting the sign of an interaction.

As a result, we decided to pose the problem as a
classical supervised learning problem. We came up
with a set of features that we think are good predic-
tors of the interaction sign, and we trained a classi-
fier using those features on a labeled dataset. Our
features include numbers and percentages of pos-
itive/negative sentences per post, posts per thread,
and so on. A sentence is labeled as positive/negative
if a relation has been detected in this sentence be-
tween a mention referring to the addressee and a
positive/negative expression. A post is considered
positive/negative based on the majority of relations
detected in it. We use two sets of features. The first
set is related to A only or B only. The second set
is related to the interactions between A and B. The
features are summarized in Table 1.

3.3 Sub-Group Detection

In any discussion, different subgroups may emerge.
Members of every subgroup usually have a common
focus (positive or negative) toward the topic being
discussed. Each member of a group is more likely
to show positive attitude to members of the same
group, and negative attitude to members of opposing
groups. The signed network representation could
prove to be very useful for identifying those sub-
groups. To detect subgroups in a discussion thread,



we would like to partition the corresponding signed
network such that positive intra-group links and neg-
ative inter-group links are dense.

This problem is related to the constrained cluster-
ing (Wagstaff et al., 2001) and the correlation clus-
tering problem (Bansal et al., 2004). In constrained
clustering, a pairwise similarity metric (which is
not available in our domain), and a set of must-
link/cannot-link constraints are used with a standard
data clustering algorithm. Correlation clustering op-
erates in a scenario where given a signed graph
G = (V, E) where the edge label indicates whether
two nodes are similar (+) or different (-), the task
is to cluster the vertices so that similar objects are
grouped together. Bansal et. al (2004) proved NP-
hardness and gave constant-factor approximation al-
gorithms for the special case in which the graph
is complete (full information) and every edge has
weight +1 or -1 which is not the case in our network.
Alternatively, we can use a greedy optimization al-
gorithm to find partitions. A criterion function for
a local optimization partitioning procedure is con-
structed such that positive links are dense within
groups and negative links are dense between groups.

For any potential partition C, we seek to optimize
the following function: P(C) = a ), +(1-a) ),
where ) is the number of negative links between
nodes in the same subgroup, Zp is the number of
positive links between nodes in different subgroups,
and « is a trade factor that represents the importance
of the two terms. We set o to 0.5 in all our experi-
ments.

Clusters are selected such that: C* =
argmin P(C). A greedy optimization framework
is used to minimize P(C). Initially, nodes are ran-
domly partitioned into ¢ different clusters and the
criterion function P is evaluated for that cluster. Ev-
ery cluster has a set of neighbors in the cluster space.
A neighbor cluster is obtained by moving one node
from one cluster to another, or by exchanging two
nodes in two different clusters. Neighbor partitions
are evaluated, and if one with a lower value for the
criterion function is found, it is set as the current
partition. This greedy procedure is repeated with
random restarts until a minimal solution is found.
To determine the number of subgroups ¢, we select
t that minimizes the optimization function P(C). In
all experiments we used an upper limit of £ = 5.
This technique was able to identify the correct num-
ber of subgroups in 77% of the times. In the rest of
the cases, the number was different from the correct
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number by at most 1 except for a single case where
it was 2.

4 Data

4.1 Signed Network Extraction

Our data consists of a large amount of discussion
threads collected from online discussion forums. We
collected around 41, 000 topics (threads) and 1.2M
posts from the period between the end of 2008 and
the end of 2010. All threads were in English and had
5 posts or more. They covered 11 different domains
including: politics, religion, science, etc. The aver-
age number of participants per domain is 1320 and
per topic is 52. The data was tokenized, sentence-
split, and part-of-speech tagged with the OpenNLP
toolkit. It was parsed with the Stanford parser (Klein
and Manning, 2003).

We randomly selected around 5300 posts (1000
interactions), and asked human annotators to label
them. Our annotators were instructed to read all the
posts exchanged between two participants and de-
cide whether the interaction between them is posi-
tive or negative. We used Amazon Mechanical Turk
for annotations. Following previous work (Callison-
Burch, 2009; Akkaya et al., 2010), we took sev-
eral precautions to maintain data integrity. We re-
stricted annotators to those based in the US to main-
tain an acceptable level of English fluency. We also
restricted annotators to those who have more than
95% approval rate for all previous work. Moreover,
we asked three different annotators to label every in-
teraction. The label was computed by taking the ma-
jority vote among the three annotators. We refer to
this data as the Interactions Dataset.

We ran a different annotation task where we se-
lected sentences including mentions referring to dis-
cussants (names or pronouns) and polarized expres-
sions. Annotators were asked to select sentences
where the polarized attribute is referring to the men-
tion and hence show a positive or negative attitude
toward other discussion participants. This resulted
in a set of 5000 manually annotated sentences. We
refer to this data as the Sentences Dataset.

We asked three different annotators to label ev-
ery instance. The kappa measure between the three
groups of annotations was 0.62 for the Interactions
Dataset and 0.64 for the Sentences Dataset. To bet-
ter assess the quality of the annotations, we asked a
trained annotator to label 10% of the data. We mea-
sured the agreement between the expert annotator



Class Pos. Neg.  Weigh. Avg.
Logistic Reg. Precision 0.848  0.724 0.809
Recall 0.884  0.657 0.812
F-Measure | 0.866 0.689 0.81
Accuracy - - 0.812
Precision 0.906 0.71 0.844
SVM Recall 0.847  0.809 0.835
F-Measure | 0.875 0.756 0.838
Accuracy - - 0.835

Table 2: Interaction sign classifier performance.

Thresh-Perc.
71%

SVM
83.5%

Thresh-Num
69%

Classifier | Random
Accuracy | 65%

Table 3: A comparison of different sign interaction clas-
sifiers.

and the majority label from Mechanical Turk. The
kappa measure was 0.69 for the Interactions Dataset
and 0.67 for the Sentences Dataset.

4.2 Sub-group Detection

We used a dataset of more than 42 topics and ap-
proximately 9000 posts collected from two political
forums (Createdebate! and Politicalforum?). The fo-
rum administrators ran a poll asking participants to
select their stance from a set of possible answers
and hence the dataset was self-labeled with respect
to groups. We also used a set of discussions from
the Wikipedia discussion section. When a topic on
Wikipedia is disputed, the editors of that topic start a
discussion about it. We collected 117 Wikipedia dis-
cussion threads. The threads contain a total of 1,867
posts. The discussions were annotated by an expert
annotator (a professor in sociolinguistics, not an au-
thor of the paper) who was instructed to read each
of the Wikipedia discussion threads in its entirety
and determine whether the discussants split into sub-
groups, in which case he was asked to identify the
subgroup membership for each discussant. In to-
tal, we had 159 topics with an average of approxi-
mately 500 posts, 60 participants and 2.7 subgroups
per topic. Examples of the topics include: Arizona
immigration law, airport security, oil spill, evolution,
Ireland partitions, abortion and many others.

5 Results and Discussion

We performed experiments on the data described
in the previous section. We trained and tested the
sentence with the attitude detection classifiers de-
scribed in Section 3.1 using the Sentences Dataset.

'www.createdebate.com
2www.politicalforum.com

65

We also trained and tested the interaction sign clas-
sifier described in Section 3.2 using the Interactions
Dataset. We built one signed social network for ev-
ery domain (e.g. politics, economics, etc.). We de-
cided to build a network for every domain as op-
posed to one single network because the relation be-
tween any two individuals may vary across domains
(e.g. politics vs. science). In the rest of this section,
we will describe the experiments we did to assess the
performance of the sentences with attitude detection
and interaction sign prediction steps.

In addition to classical evaluation, we evaluate
our results using the structural balance theory which
has been shown to hold both theoretically (Heider,
1946) and empirically (Leskovec et al., 2010c). We
validate our results by showing that the automati-
cally extracted networks mostly agree with the the-
ory. We evaluated the approach using the structural
balance theory because it presents a global (pertain-
ing to relations between multiple edges) and large-
scale (used millions of posts and thousands of users)
evaluation of the results as opposed to traditional
evaluation which is local in nature (only considers
one edge at a time) and smaller in scale (used thou-
sands of posts).

5.1 Identifying Sentences with Attitude

We compare the proposed methods to two baselines.
The first baseline is based on the work of (Thomas
et al., 2006). We used the speaker agreement com-
ponent presented in (Thomas et al., 2006) as a base-
line. The speaker agreement component is one step
in their approach. In this component, they used
an SVM classifier trained using a window of text
surrounding references to other speakers to predict
agreement/disagreement between speakers.

We build an SVM text classifier trained on the
sentence at which the mention referring to the other
participant occurred. We refer to this baseline as
the Text Classification approach. The second base-
lines adopts the language model approach presented
in (Hassan et al., 2010). Two language models
are trained using a stream of words, part-of-speech
tags, and dependency relations, one for sentences
that show an attitude and one for sentences that do
not. New sentences are classified based on gener-
ation likelihoods. We refer to this baseline as the
Language Models approach.

We tested this component using the Sentences
Dataset described in Section 4. We compared the
performance of the proposed method and the two



Extracted Networks Random Networks
Domain +++H F+-) =) ) | F++tH HF+-) F——) (=——)
abortion 51.67 26.31 18.92 0.48 35.39 43.92 18.16 2.52
current-events 67.36 22.26 8.76 0.23 54.08 36.90 8.39 0.64
off-topic-chat 65.28 23.54 9.45 0.25 58.07 34.59 6.88 0.46
economics 72.68 18.30 7.77 0.00 66.50 29.09 4.22 0.20
political opinions 60.60 24.24 12.81 0.43 45.97 40.79 12.06 1.19
environment 47.46 32.54 17.26 0.30 37.38 43.61 16.89 2.12
latest world news 58.29 22.41 16.33 0.62 42.26 42.20 13.98 1.56
religion 47.17 25.89 22.56 1.42 39.68 42.94 15.51 1.87
science-technology 57.53 26.03 14.33 0.00 50.14 38.93 10.05 0.87
terrorism 64.96 23.36 9.46 0.73 41.54 42.42 14.36 1.68

Table 4: Percentage of different types of triangles in the extracted networks vs. the random networks.

Method | Accuracy  Precision  Recall F1

Text Classification 60.4 61.1 60.2 60.6
Language Models 80.3 81.0 79.4 80.2
Relation Extraction 82.3 82.3 82.3 82.3

Table 5: Comparison of attitude identification methods.

baselines. Table 5 compares the precision, recall,
F1, and accuracy for the three methods. The text
classification based approach does much worse than
others. The reasons is that it ignores the structure
and uses much less information (part-of-speech tags
and dependency trees are not used) compared to the
other methods. Additionally, the short length of the
sentences compared to what is typical in text clas-
sification may have had a bad effect on the perfor-
mance. Both other models try to learn the char-
acteristics of the path connecting the mention and
the polarized expression. We notice that optimizing
the weights for unigram and bigrams features using
SVM results in a better performance compared to
language models because it does not have the con-
straints imposed by the former model on the learned
weights.

We evaluated the importance of the feature types
(i.e. dependency vs. pos tags vs words) by measur-
ing the chi-squared statistic for every feature with
respect to the class. Dependency features were most
helpful, but other types of features helped improve
the performance as well.

5.2 Interaction Sign Classifier

We used the relation detection classifier described in
Section 3.1 to find sentences with positive and nega-
tive attitude. The output of this classifier was used to
compute the features described in Section 3.2, which
were used to train a classifier that predicts the sign
of an interaction between any two individuals.

We used both Support Vector Machines (SVM)
and logistic regression to train the sign interaction
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classifier. We report several performance metrics for
them in Table 2. We notice that the SVM classifier
performs better with an accuracy of 83.5% and an
F-measure of 81%. All results were computed using
10 fold cross validation on the labeled data. To bet-
ter assess the performance of the proposed classifier,
we compare it to a baseline that labels the relation as
negative if the percentage of negative sentences ex-
ceeds a particular threshold, otherwise it is labeled
as positive. The thresholds were empirically esti-
mated using a separate development set. The accu-
racy of this baseline is only 71%.

To better assess the performance of the proposed
classifier, we compare it to three baselines. The first
is a random baseline that predicts an interaction as
positive with probability p that equals the proportion
of positive instances to all instances in the training
set. The second classifier (Thresh-Num) labels the
edge as negative if the number of negative instances
exceeds a threshold 7T;,. The third classifier (Thresh-
Perc) labels the edge as negative if the percentage of
negative instances to all instances exceeds a thresh-
old T},. The cutoff thresholds were estimated using
a separate development set.

The 3 baselines were tested using the entire la-
beled dataset. The SVM classifier was tested using
10 fold cross validation. The accuracy of the ran-
dom classifier, the two based on a cut off number
and percentage , and the SVM classifier are shown
in Table 3. We notice that the random classifier per-
forms worst, and the classifier based on percentage
cutoff outperforms the one based on number cut-
off. The SVM classifier significantly outperforms all
other classifiers. We tried to train a classifier using
both the number and percentage of negative and pos-
itive posts. The improvement over using the baseline
using the percentage of negative posts was not sta-
tistically significant.

We evaluated the importance of the features listed



in Table 1 by measuring the chi-squared statistic for
every feature with respect to the class. We found
out that the features describing the interaction be-
tween the two participants are more informative than
the ones describing individuals characteristics. The
later features are still helpful though and they im-
prove the performance by a statistically significant
amount. We also noticed that all features based on
percentages are more informative than those based
on counts. The most informative features are: per-
centage of negative posts per tread, percentage of
negative sentences per post, percentage of positive
posts per thread, number of negative posts, and dis-
cussion domain.

5.3 Structural Balance Theory

The structural balance theory is a psychological the-
ory that tries to explain the dynamics of signed so-
cial interactions. It has been shown to hold both the-
oretically (Heider, 1946) and empirically (Leskovec
et al., 2010c). In this section, we study the agree-
ment between the theory and our automatically ex-
tracted networks. The theory has its origins in the
work of Heider (1946). It was then formalized in
a graph theoretic form by (Cartwright and Harary,
1956). The theory is based on the principles that “the
friend of my friend is my friend”, “the enemy of my
friend is my enemy”, “the friend of my enemy is
my enemy”’, and variations on these. The structural
balance theory states that triangles that have an odd
number of positive signs (+ + + and + - -) are bal-
anced, while triangles that have an even number of
positive signs (- - - and + + -) are not.

In this section, we compare the predictions of
edge signs made by our system to the structural bal-
ance theory by counting the frequencies of differ-
ent types of triangles in the predicted network. Ta-
ble 4 shows the frequency of every type of trian-
gle for 10 different domains. To better understand
these numbers, we compare them to the frequencies
of triangles in a set of random networks. We shuf-
fle the signs for all edges on every network keeping
the fractions of positive and negative edges constant.
We repeat shuffling for 1000 times and report the av-
erage.

We find that the all-positive triangle (+ + +) is
overrepresented in the generated network compared
to chance across all domains. We also see that the
triangle with two positive edges (+ + —), and the
all-negative triangle (— — —) are underrepresented
compared to chance across all domains. The tri-
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angle with a single positive edge is slightly over-
represented in most but not all of the topics com-
pared to chance. This shows that the predicted net-
works mostly agree with the structural balance the-
ory. The slightly non standard behavior of the tri-
angle with one positive edge could be explained in
light of the weak balance theory. In this theory,
Davis (1967) states that this triangle, which corre-
sponds to the “enemy of enemy is my friend” propo-
sition, holds only if the network can be partitioned
into exactly two subsets, but not when there are more
than two. In general, the percentage of balanced tri-
angles in the predicted networks is higher than in
the shuffled networks, and hence the balanced trian-
gles are significantly overrepresented compared to
chance showing that our automatically constructed
network is similar to explicit signed networks in that
they both mostly agree with the balance theory.

5.4 Sub-Group Detection

We compare the performance of the sub-group de-
tection method to three baselines. The first base-
line uses graph clustering (GC) to partition a net-
work based on the frequency of interaction between
participants. We build a graph where each node
represents a participant. Edges link participants if
they exchange posts, and edge weights are based on
the number of posts exchanged. The second base-
line (TC) is based on the premise that participants
with similar text are more likely to belong to the
same subgroup. We measure text similarity by com-
puting the cosine similarity between the tf-idf rep-
resentations of the text in a high dimensional vec-
tor space. We tried two methods for partitioning
those graphs: spectral partitioning (Luxburg, 2007)
and a hierarchical agglomeration algorithm which
works by greedily optimizing the modularity for
graphs (Clauset et al., 2004). The third baseline is
based on stance classification approaches (e.g. (Tan
et al., 2011)). In this baseline we put all the partic-
ipants who use more positive text in one subgroup
and the participants who use more negative text in
another subgroup. Text polarity is identified using
the method described in Section 3.1.

Table 6 shows the average purity (Purity), entropy
(Entropy), Normalizes Mutual Information (NMI),
and Rand Index (RandIndex) values of the method
based on signed networks and the baselines using
different partitioning algorithms. The differences in
the results shown in the table are statistically sig-
nificant at the 0.05 level (as indicated by a 2-tailed



Figure 2: A signed network representing participants in a discussion about the “Health Care Reform Bill”. Blue (dark)
nodes represent participants with the bill, Yellow (light) nodes represent participants against the bill, red (solid) edges
represent negative attitude, while green (dashed) edges represent positive attitude.

Createdebate Politicalforum Wikipedia
Method Purity | Entropy | NMI | RandIndex | Purity | Entropy | NMI | RandIndex | Purity | Entropy | NMI | RandIndex
GC - Spectral 0.50 0.85 0.28 0.40 0.50 0.88 0.27 0.39 0.49 0.89 0.33 0.35
GC - Hierarchical | 0.48 0.86 0.30 0.41 0.47 0.89 0.31 0.40 0.49 0.87 0.38 0.39
TC - Spectral 0.50 0.85 0.31 0.43 0.48 0.90 0.30 0.45 0.51 0.87 0.40 0.46
TC - Hierarchical 0.49 0.90 0.35 0.46 0.48 0.91 0.33 0.49 0.53 0.80 0.40 0.49
Text Polarity 0.55 0.80 0.38 0.49 0.54 0.91 0.31 0.38 0.34 0.95 0.30 0.40
Signed Networks 0.64 0.74 0.46 0.59 0.58 0.80 0.43 0.55 0.65 0.54 0.51 0.60

Table 6: Comparison of the sub-group detection method to baseline systems

paired t-test).

We notice that partitioning the signed network
that was automatically extracted from text results in
significantly better partitions on the three datasets as
indicated by the higher Purity, NMI, and RandIndex
and the lower Entropy values it achieves. We believe
that the first two baselines performed poorly because
the interaction frequency and the text similarity are
not key factors in identifying subgroup structures.
Many people would respond to people they disagree
with more, while others would mainly respond to
people they agree with most of the time. Also, peo-
ple in opposing subgroups tend to use very similar
text when discussing the same topic and hence text
clustering does not work as well. The baseline that
classifies the stance of discussants based on the po-
larity of their text performed bad too because it over-
looks the fact that most of the discussed topics in our
datasets have multiple aspects and a discussant may
use both positive and negative text targeting differ-
ent aspects of the topic. An example of a signed net-
work and the corresponding subgtoups as extracted
from real data is showm in Figure 2.
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6 Conclusions

In this paper, we have shown that natural language
processing techniques can be reliably used to extract
signed social networks from text correspondences.
We believe that this work brings us closer to un-
derstanding the relation between language use and
social interactions and opens the door to further re-
search efforts that go beyond standard social net-
work analysis by studying the interplay of positive
and negative connections. We rigorously evaluated
the proposed methods on labeled data and connected
our analysis to social psychology theories to show
that our predictions mostly agree with them. Finally,
we presented potential applications that benefit from
the automatically extracted signed network.
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Generative Goal-Driven User Simulation for Dialog Management
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Abstract

User simulation is frequently used to train
statistical dialog managers for task-oriented
domains. At present, goal-driven simula-
tors (those that have a persistent notion of
what they wish to achieve in the dialog) re-
quire some task-specific engineering, making
them impossible to evaluate intrinsically. In-
stead, they have been evaluated extrinsically
by means of the dialog managers they are in-
tended to train, leading to circularity of argu-
ment. In this paper, we propose the first fully
generative goal-driven simulator that is fully
induced from data, without hand-crafting or
goal annotation. Our goals are latent, and take
the form of topics in a topic model, clustering
together semantically equivalent and phoneti-
cally confusable strings, implicitly modelling
synonymy and speech recognition noise. We
evaluate on two standard dialog resources,
the Communicator and Let’s Go datasets, and
demonstrate that our model has substantially
better fit to held out data than competing ap-
proaches. We also show that features derived
from our model allow significantly greater im-
provement over a baseline at distinguishing
real from randomly permuted dialogs.

1 Introduction

Automatically simulating user behaviour in human-
machine dialogs has become vital for training sta-
tistical dialog managers in task-oriented domains.
These managers are often trained with some vari-
ant of reinforcement learning (Sutton and Barto,
1998), where optimal behaviour is sought or learnt
through the exploration of the space of possible di-
alogs. Although learning by interacting with human
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subjects is a possibility (Gasi¢ et al., 2011), it has
been argued that user simulation avoids the expen-
sive, labour intensive, and error-prone experience of
exposing real humans to fledgling dialog systems
(Eckert et al., 1997).

Training effective dialog managers should benefit
from exposure to properties exhibited by real users.
Table 1 shows an example dialog in a domain such
as we consider, where the objective is to simulate at
the semantic level. In such task oriented domains,
the user has a goal (in this case, to book a flight
from New York to Osaka), and the machine is tasked
with fulfilling it. Notice that the user is consistent
with this goal throughout the dialog, in that they do
not provide contradictory information (although an
ASR error is present), but that every mention of their
destination city uses a different string. This moti-
vates our first desideratum: that simulation be con-
sistent over the course of a dialog. Furthermore, one
can imagine users not always responding identically
in identical situations: we thus additionally require
variability. In this paper we demonstrate a fully gen-
erative, latent variable probability model exhibiting
both of these properties.

Thus far, consistent simulators have been par-
tially deterministic and have required some hand-
engineering. As a result, it has only been possible to
evaluate them extrinsically using dialog managers.
This is circular because we need simulators to train
managers, but need managers to evaluate simulators.
The issue is that judgements of quality of each de-
pend on the specifics of the other and that a proper
evaluation of one depends on the correct function-
ing of the other. Furthermore, there is little reason to
assume that because a simulator performs well with
a certain dialog manager, it would perform similarly

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 71-81, Jeju Island, Korea, 12-14 July 2012. (©2012 Association for Computational Linguistics



Speech

Semantic Representation

M: Hello, How Can I help?

M: GREETING
M: META_REQUEST_INFO

U: A trip from New York City to Osaka,
please.

U: PROVIDE orig_city New York City
U: PROVIDE dest_city Salt Lake City

City. What day would you like to travel?

M: Leaving from New York City to Salt Lake

M: IMPLICIT_CONFIRM orig_dest_city
M: REQUEST depart_date

in Japan.

U: No, no. Leaving from New York to Osaka

U: NO_ANSWER null no
U: PROVIDE orig_city New York
U: PROVIDE dest_city Osaka Japan

correct?

M: Leaving from New York to Osaka Japan,

M: EXPLICIT_CONFIRM orig_city
M: EXPLICIT_CONFIRM dest_city

U: Yes.

U: YES_ANSWER null yes

Table 1: An example of a dialog in speech and its semantic equivalent. M and U denote machine and user utterances
respectively. Note how a single speech utterance is split by the semantic parser into multiple logical utterances, each
of which is broken down to an ACT, slot, and value. We consider resources where gold standard transcriptions are not
available; thus there will be speech recognition noise, e.g. Osaka rendered as Salt Lake City, something our model

is able to capture.

well with other managers. In contrast, a probabilistic
formulation such as we propose allows us to evalu-
ate our models intrinsically using standard machine
learning metrics, and without reference to a specific
manager, thus breaking the circularity, and guarding
against such experimental biases.

We demonstrate the efficacy of our model on
two tasks, and compare it to two other approaches.
Firstly we use a standard bigram model as conceived
by Eckert et al. (1997) and Levin and Pieraccini
(2000); secondly we compare to a probabilistic goal-
based simulator where the goals are string literals,
as envisaged by Scheffler and Young (2002) and
Schatzmann et al. (2007b). We demonstrate sub-
stantial improvement over these models in terms of
predicting heldout data on two standard dialog re-
sources: DARPA Communicator (Levin et al., 2000;
Georgila et al., 2005b) and Let’s Go (Black and Es-
kenazi, 2009).

2 Related Work

2.1 Related Work on User Simulation

User simulation as a stochastic process was first en-
visioned by Eckert et al. (1997): their Bigram model
conditions user utterances exclusively on the pre-
ceding machine utterance. This was extended by
Levin and Pieraccini (2000), who manually restrict
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the model to estimating “sensible” pairs of user and
machine utterances by assigning all others probabil-
ity zero.

Bigram models ensure that a locally sensible
response to a machine utterance is provided by
the simulator; however, they do not ensure that
it provides responses consistent with one another
throughout the dialog. Several approaches have at-
tempted to overcome this problem. Pietquin (2004),
for example, explicitly models a user goal as a set
of slot-value pairs randomly generated once per dia-
log. He then hand selects parameters to ensure that
the user’s actions are in accordance with their goal.

Jung et al. (2009) use large amounts of dialog
state annotations (e.g. what information has been
provided so far) to learn Conditional Random Fields
over the user utterances, and assume that those fea-
tures ensure user consistency. Georgila et al. (2005a)
instead consider only act-slot pairs, and thus incon-
sistency is not a factor.

Scheffler and Young (2002) simulate user be-
haviour by introducing rules for actions that depend
on the user goal, and probabilistic modelling for ac-
tions that are not goal-dependent. They then map
out a decision network that determines user actions
at every node prior to the start of the dialog. Agenda-
based user simulation, another approach from the lit-
erature, assumes a probability distribution over the



user goal which is either induced from data (Schatz-
mann et al., 2007b), or is manually set when no data
is available (Schatzmann et al., 2007a). An agenda,
which is a stack-like structure of utterances to be
produced given the goal, is then devised determin-
istically. Keizer et al. (2010) combine the decision
network with the agenda and goal to allow for some
variability for some actions. These models ensure
consistency but restrict the variability in user be-
haviour that can be accommodated. Furthermore,
because these approaches do not define a complete
probability distribution over user behaviour, they re-
strict possibilities for their evaluation, a point to
which we now turn.

2.2 Related Work on Simulator Evaluation

No standardised metric of evaluation has been estab-
lished for user simulators largely because they have
been so inextricably linked to dialog managers. The
most popular method of evaluation relies on gener-
ating synthetic dialogs through the interaction of the
user simulator with some dialog manager. Schatz-
mann et al. (2005) hand-craft a simple determin-
istic dialog manager based on finite automata, and
compute similarity measures between these synthet-
ically produced dialogs and real dialogs. Georgila
et al. (2006) use a scoring function to evaluate syn-
thetic dialogs using accuracy, precision, recall, and
perplexity, while Schatzmann et al. (2007b) rely
on dialog completion rates. Williams (2008) use
a Cramer—von Mises test, a hypothesis test to de-
termine whether simulated and real dialogs are sig-
nificantly different, while Janarthanam and Lemon
(2009) use Kullback Leibler Divergence between the
empirical distributions over acts in real and simu-
lated dialogs. Singh et al. (2000) and Ai and Lit-
man (2008) judge the consistency of human quality
ranked synthetic dialogs generated by different sim-
ulators interacting with the IT-SPOKE dialog sys-
tem.

Schatzmann et al. (2007b) use a simulator to train
a statistical dialog manager and then evaluate the
learned policy. Because this only indirectly evalu-
ates the simulator, it is inappropriate as a sole mea-
sure of quality.

There has been far less evaluation of simulators
without a dialog manager. The main approach is
to compute precision and recall on an utterance ba-
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sis, which is intended to measure the similarity be-
tween real user responses in the corpora and simu-
lated user responses produced under similar circum-
stances (Schatzmann et al., 2005; Georgila et al.,
2006). However, this is a harsh evaluation as it as-
sumes a correct or “best” answer, and penalises valid
variability in user behaviour.

3 Dialog as a Statistical Process

We consider a dialog to be a series of turns, com-
prised of multiple utterances. Each Utterance con-
sists of an ACT, a slot, and a value, as shown in Ta-
ble 1. Dialogs proceed by the user and the machine
alternating turns. Because the dialogs are of mixed
initiative, there is no restriction on the number of
contiguous machine or user utterances.

Our aim is to model the user, and are interested
in the conditional distribution of the user utterances
given the dialog up to that point. In other words, we
are interested in the distribution p (u;|d; ... d;—1),
where d,, is either a machine utterance m,, or a user
utterance .

4 Models of Users in Dialogs

This section describes several models of increas-
ing complexity: a Bigram model, which serves as
a baseline; an upper-bound on String-Goal models,
which we design to mimic the behaviour of previous
goal-based approaches, but with a probabilistic for-
mulation; and finally our approach, the Topic-Goal
model.

4.1 Bigram Model

The simplest model we define over dialogs is the bi-
gram model of Eckert et al. (1997):

P (ui|mi—1) )
[P (uilm) )

p(uijm) =
p(ujm) =

The probability of each user utterance u; (the com-
plete {ACT, slot, value} triple) is dependent only on
the machine utterance immediately preceding it (the
slight abuse of notation m;_; here does not mean the
utterance at z— 1 in the machine utterance list, but the
utterance immediately preceding the ¢-th), and utter-
ances in the dialog are conditionally independent of



one another. (Georgila et al. (2006) found no bene-
fit from increasing the Markov horizon). Since each
utterance is generated independently of others in the
dialog with the same context, there is no enforced
consistency between utterances.

Since we require a distribution over all possible
utterances, assigning non-zero probability to cases
outside of the training data, our bigram model is in-
terpolated with a unigram model, which itself is in-
terpolated with a smoothing model which assumes
independence between the act, slot, and value el-
ements of the utterance. Interpolation weights are
set to maximise probability of a development set of
dialogs. Each sub-model uses the maximum like-
lihood estimator (the relative frequency of the ut-
terance), and unseen machine utterances place full
weight on the unigram/smoothed model (ignoring
the bigram probability since it has no meaning if
m;_1 1s unobserved). We label this model the Bi-
gram model in subsequent experiments.

4.2 Goal-Based Models

One way to ensure consistency and more realistic
behaviour is to have a goal for the user in the dia-
log, which corresponds to values for slots required in
the problem. For instance, they might be the origin
and destination cities in a flight booking domain. In
standard machine learning terms, the goal becomes
a latent variable g in a probability model. We can
then define a distribution over utterances as:

p (uilmi—1,9) 3)

> o) [ p(uilmi-1,9) @
g i

p(uilm,g) =
p(um) =

4.3 An Upper-Bound on String-Goal Models

The simplest variant of ¢ has string values for each
of the slots the user is required to provide in order
for the dialog to succeed. Thus we may have:

g = [orig_city: New York; dest_city: Osaka]

as presented in Schatzmann et al. (2005) and Schatz-
mann et al. (2007b). However, in these simulators,
while the goal is probabilistic, there is no distribu-
tion over utterances given the goal because utter-
ances are assembled deterministically from a series
of rule applications. There is also no marginalisation
over the goal as in (4) above.
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The issue with a model of user goals as strings
in this fashion is that users describe the same val-
ues in multiple ways (Osaka Japan, Osaka), and
speech recognition errors corrupt consistent user
input (Osaka mis-recognised as Salt Lake City).
Users also might legitimately switch their goals mid-
dialog. Inference in the model would have allow
for these possibilities: we would have to marginalise
over all possible goal switches.

For the sake of comparison, we compute an upper-
bound on string-goal models, which gives a flavour
for how such models would perform optimistically.
The upper-bound assigns probability to dialogs as
follows: for each utterance wu; if the corresponding
value v; has been seen before in the dialog, the prob-
ability used for that utterance is just p (a;, s;|m;—1),
that is, the probability of the act a; and slot s; only;
there is no penalty for repetition of the value. If the
value is unseen in the dialog, we use the full proba-
bility of the utterance from the bigram model as de-
scribed above. This is optimistic because there is no
penalty for repeated goal changes besides that im-
posed by the bigram model itself, and no penalty is
imposed for choosing between previously sampled
goals as would be necessary in a probability model.

Any string-based model necessarily assigns lower
probabilities to data than the upper bound, because
it would penalise goal changes (in a probabilistic
sense; that is, there would be a term to reflect the
probability of some new goal given the old) to al-
low for the discrepancy in values present in dialogs.
In contrast, our upper bound does not include such
a term. Furthermore, once multiple goal values had
been uttered in the dialog, we would have to sample
one to use for the next utterance, which would again
incur some cost: again, we do not have such a cost
in our upper bound.

We could in theory use an external model of noise
to account for these value discrepancies (and the
ASR errors we model in the next section). However,
this would further decrease the probability, as some
probability mass currently assigned to the heldout
data would have to be reserved for the possibility of
string renderings other than those we observe.

It bears reiterating that our upper bound on string-
goals is not a generative model: however, it allows
us to assign probabilities to unseen data (albeit op-
timistically), and thus provides us with a point of



comparison. Although not technically a model, we
refer to this as the String-Goal model for the remain-
der of the paper.

4.4 Topic-Goal Model

To motivate our proposal, consider that over the
course of a dialog one could look at the set of all
values used for some slot, for example the destina-
tion city, as a count vector:

Vdestcity = Salt Lake:1; Osaka:2; Osaka Japan:1

The above vector may arise because the user actu-
ally wants to go to Osaka, but the destination is
initially mis-recognised as Salt Lake, and the user
finally disambiguates with the addition of the coun-
try. Such situations are common in the noisy dia-
log resources from which simulators are induced—
however, any string-based goal will necessarily con-
sider these different renderings to be different goals,
and will require resampling or smoothing terms to
deal with them.

Our approach instead treats the count vector as
samples from a topic model; that is, a mixture over
multinomial distributions. Whilst by far the most
popular topic model is LDA (Blei et al., 2003), it
provides too flexible a distribution over count vec-
tors to be used with such small samples (we con-
firmed the poor suitability of this model in pre-
liminary experiments). Instead we use the simpler
Mixture-of-Multinomials model, where the latent
topic is sampled once per dialog instead of once per
value uttered. We describe below how parameters to
this model are estimated, and focus for now on how
the resulting model assigns probability to dialogs.

In this formulation, the latent goal for each slot,
which was previously a string, now becomes an in-
dicator for a topic in a topic model. Each topic can
in theory generate any string (so the model is inher-
ently smoothed), but most strings in most topics will
have only the smoothing weight and most probabil-
ity mass will be on a small number of highly corre-
lated strings. We treat the slots as being independent
of one another in the goal, and thus:

p(g) =] p () )

Where z; is the topic indicator for some slot s. If slot
s has associated with it a count vector of values vy,
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each looking like the example above, then the distri-
bution over the values used for each slot becomes:

p ('Us) = ZP (Zs)p ('Us"zs) ©6)

We then define a bigram-based Act model to de-
scribe the probabilities of the {ACT, slor} pairs to
which these values belong, so that:

p(ujm) =J]p () - Hp(ai,sz'\mi—ﬁp(vi\zsﬂ
S 7 (7)

In reality, some slots will not have corresponding
values, or will be slots whose values are not appro-
priate to model in the above way. Dates and times,
for example, have ordinal and structural relations be-
tween them, and a model which treats them as dis-
connected entities is inappropriate. For utterances
defined over such slots we use a standard bigram
model as in (1), and for appropriate utterances we
use a topic-goal model as in (7). This constitutes
the only domain knowledge necessary to adapt the
model for a new resource. We refer to this model as
the Topic-Goal model.

4.4.1 Topic Model Parameter Estimation

Our topic model is a Bayesian version of the
Mixture-of-Multinomials model. Under this model,
each dialog has associated with it a latent variable
zs for each slot s in the goal, which indicates which
topic is used to draw the values for that slot. Con-
ditioned on z, independent samples are drawn from
the distribution over words to which that value of
z corresponds—however, the effect in the marginal
distribution over words is to strongly prefer sets
which have co-occurred in training as these are as-
signed to the same topic.

Bayesian inference in mixture models has been
described in detail in Neal (1991) and Griffiths and
Steyvers (2004), so we give only a brief account here
for our particular model. We take r appropriately-
spaced samples from a Gibbs’ sampler over the pos-
terior mixture parameters 6, ¢: 0 are the word-topic
parameters and ¢ are the mixture proportions. We
assume a uniform Dirichlet prior on # and ¢, lead-
ing to Dirichlet posteriors which we integrate out in
the predictive distribution over v using the standard
Dirichlet integral. For each of our r samples we have



components z parameterised by ~,.. (the Dirichlet
parameter for the z-th mixture component in the r-
th sample) and . ; for each word j in the z-th topic
for the r-th sample. The e notation indicates a sum
over the corresponding index, i.e. Yre = >, Vrz.
Then:

p(v) = ‘izzzzp(v\am) (8)
T (cve I'(vj + «;
p(le) = F(a.(+)1).)H (r(aj) e

This states that each of the r samples has topics z
which are multinomial distributions with posteriors
governed by parameters ... For any of these top-
ics, the distribution over v is as given in Equation
(9) (we suppress the subscripting of « here for the
different samples and topics, since this holds what-
ever its value). The final predictive probability given
in Equation (8) averages over the samples r and the
topics z (with topics weighted by their parameters

Vrz)-
S Experimental Setup

Our experiments use two standard corpora, the
first of which is DARPA Communicator (DC), a
flight booking domain collected between 2000-2001
through the interaction of real users with 10 different
systems (Levin et al., 2000). It was later automati-
cally annotated by Georgila et al. (2005b) to include
semantic information. The second corpora is Let’s
Go (LG), years 2007, 2008, and 2009, distributed as
part of the Spoken Dialog Challenge (Black and Es-
kenazi, 2009). Let’s Go is a bus routing domain in
Pittsburgh collected by having the general public in-
teract with the CMU dialog system to find their way
through the city. The dialogs in both corpora are of
mixed-initiative, having a free number of contiguous
system and user responses.

We preprocessed the corpora, converting Com-
municator XML-tagged files and Let’s Go system
log files into sequences of ACT, slot, and value ut-
terances. Table 2 gives examples. We then divided
the corpora into training, development and test sets
as follows: Communicator contains 2285 dialogs in
total, and Let’s Go contains 17992, and in each case
we selected 80% of dialogs at random for training,
10% for development, and 10% for testing.
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DC:
LG:

PROVIDE_INFO orig_city Boston
INFORM place [departure_place CMU,
arrival_place airport]

Table 2: Example utterances from the two corpora. Note
how in addition to the value, the Let’s Go utterances con-
tain properties (departure_place and arrival_place).

Let’s Go is a noisy corpus that contains far more
speech recognition errors than Communicator. In
addition, users tend to be more flexible with their
bus routes than they are with their flight destinations,
and so values are a lot more varied throughout the
course of Let’s Go dialogs than Communicator ones.
Furthermore, Let’s Go semantic parses contain am-
biguity not present in Communicator; the parser
fails to distinguish departure from arrival places over
90% of the time, and instead assigns them a generic
Single_Place property. Our current model assumes
the decisions made by the semantic parser are cor-
rect. In reality however, a better model would in-
corporate potential noise in the semantic parse in a
joint model. We defer this more complex treatment
for future work.

Free model parameters are set by a simple search
on the development set, where the objective is
likelihood—for the bigram model the parameters are
the interpolation weights, and for the topic model we
search for the number of topics and smoothing con-
stant for the topic distributions. For Let’s Go, since
we can have multiple places provided in a single act,
we treat each utterance as containing a set of values
and build the count vector for the topic model as the
union of these sets over the whole dialog. The slots
over which the topic model is defined for Commu-
nicator are dest_city and orig_city (this takes into ac-
count PROVIDE and REPROVIDE acts). For Let’s Go
we derive the model over the three properties: sin-
gle_place, arrival_place and departure_place, as op-
posed to the less informative slot place.

6 Evaluating the Simulators

We evaluate each of the models in terms of the prob-
ability they assign to the test data. This metric is
more suitable than the precision and recall metrics
which have been previously used, because it ac-
knowledges that, rather than each user response be-
ing “correct” at the point which it is observed, there



Model | DC(A) [ DC(P) | LG(A) | LG(P) |

Topic | 252.78 | 860.2 | 113.45 | 1417.06

String | 270.09 | 1286.03 | 169.87 | 4578.23

Bigram | 347.88 | 5979.53 | 223.23 [ 10125.87
Act | 956 52 | 2771 | 234

Table 3: The mean per-utterance perplexity on heldout
data. DC-A is all acts for Communicator, while DC-P is
the calculated on PROVIDE acts alone (the acts on which
our model is designed to improve prediction). LG-A and
LG-P have the same meaning for Let’s Go.

is a distribution over possible responses. Because
the models we define are full probability models, we
are able to compute this metric and do not need to
use an arbitrarily selected dialog manager for evalu-
ation.

The heldout probability metric should be under-
stood as a means of comparing the relative viabil-
ity of different models of the same data. Note that
we are reporting the probability of unobserved data,
rather than data from which the models were in-
duced, and are thus measuring the generalisability
of the models (in contrast, maximising the proba-
bility of the training data would simply encourage
overfitting). The absolute numbers are hard to inter-
pret, as there is no hard upper bound; while it may
be appealing to think of an upper bound of 1, this is
incorrect as it would imply that there was no vari-
ability in the data. However, it should be understood
that assigning particular behaviour higher probabil-
ity means that the model is more likely to exhibit
it when run in simulation mode—and since the user
behaviour in question has not been seen at training
time, this measures the extent to which the models
have generalised beyond the training data relative to
one another.

We report the mean per-utterance log probability
of unseen data, that is, the probability of the whole
heldout corpus divided by the number of user utter-
ances.

6.1 Results

Figure 1 shows the results of our evaluation. We see
that the Bigram model is weak on both resources.
The results of the String Goal model suggest that,
even using the generous evaluation we do here, there

77

-45
1

) O B T N x
TR R
= | --A
2 ., poe s B e
R TR i
o |
[=2]
o O
- LD'A
() |
(8]
c
© 0
g 61
)
Lo
& ~ A —<— Topic (DC)
g ! —A— String (DC)
g 0 —+— Bigram (DC)
N -%- Topic (LG)
--A- String (LG)
< -+~ Bigram (LG)
! T T T T T
20 40 60 80 100

Percent of Training Examples

Figure 1: Heldout probability of the two resources for
varying percentages of training dialogs. Note that while
the percentages match across resources, Let’s Go is much
larger and thus the absolute numbers of dialogs are differ-
ent, which explains the better performance on Let’s Go.

is much variability due to synonymy and recognition
errors which string goals are unable to capture (in
contrast to our Topic Goal model). The Topic Goal
model explains this much more easily by grouping
commonly co—occurring values into the same topic.
Table 3 shows the perplexities corresponding to the
performances with 100% training data for all acts
and just PROVIDE acts (perplexity is 277 where Ip is
the log probability). Improvements are more appar-
ent when we compute the probability over PROVIDE
acts alone, which the models are designed to handle.
And since perplexity is not on a log scale, the differ-
ences are more pronounced. The Act model, which
is a bigram model over {ACT, slot} pairs alone ex-
cluding the values, demonstrates the vast discrep-
ancy in uncertainty between the full problem and the
valueless prediction problem. We note that the per-
plexity of our Act model on Communicator is com-
parable to that of Georgila et al. (2006).

6.2 Example Simulator Behaviour

In this section we give examples of our Topic
Goal model simulator in generation mode, which
corresponds to sampling from the induced model.



d Zdest city [probability] proportion user utterance given topic zgest_city and
of samples machine utterance REQUEST_INFO dest_city
Norfolk Virginia [0.562] 0.264 PROVIDE_INFO dest_city Norfolk Virginia
Norfolk [0.234] 0.111 PROVIDE_INFO dest_city Norfolk
1 Newark Virginia [0.088] 0.039 PROVIDE_INFO dest_city Newark Virginia
Virginia Beach [0.0412] 0.028 PROVIDE_INFO orig_city Las Vegas Nevada
Newark [0.040] 0.028 NO_ANSWER null no
0.025 COMMAND start_over start over
Chicago [0.350] 0.164 PROVIDE_INFO dest_city Chicago
Chicago Illinois [0.182] 0.082 PROVIDE_INFO dest_city Chicago Illinois
2 Duluth Minnesota [0.124] 0.057 PROVIDE_INFO dest_city New Orleans
New Orleans [0.122] 0.055 PROVIDE_INFO dest_city Duluth Minnesota
New Orleans Louisiana [0.085] 0.039 PROVIDE_INFO dest_city New Orleans Louisiana
0.028 NO_ANSWER null no
Anchorage [0.539] 0.252 PROVIDE_INFO dest_city Anchorage
Anchorage Alaska [0.148] 0.072 PROVIDE_INFO dest_city Anchorage Alaska
3 Jacksonville Florida [0.124] 0.056 PROVIDE_INFO dest_city Jacksonville Florida
Great Anchorage Alaska [0.098] 0.048 PROVIDE_INFO dest_city Great Anchorage Alaska
Duluth Minnesota [0.057] 0.047 PROVIDE_INFO orig_city Hartford Connecticut
0.026 PROVIDE_INFO dest_city Duluth Minnesota

Table 4: Examples of sampling from the topic goal model. Left: top 5 strings (with probabilities) sampled from topics
for three different dialogs d. Right: top 6 utterances (plus fraction of samples in 10,000) generated in response to the
machine utterance “REQUEST_INFO dest_city” and conditioned on the topic Zgest_city-

Our examples are drawn from the model induced
for the Communicator data. Sampling from stan-
dard distributions can be implemented following
the algorithms in Bishop (2006) and other statisti-
cal resources. Utterances are sampled by sampling
ACT, slot pairs from the distribution p (a;, s;|m;—1)
(drawing a value from a multinomial distribution). If
we sample a PROVIDE_INFO act, we check whether
we have sampled a topic for the corresponding slot
thus far in the dialog. If not, we sample one by
drawing a topic indicator from p(zs) = % and then
drawing a multinomial distribution over strings from
the Dirichlet posterior corresponding to z. Once the
topic for the slot is set, we sample values as draws
from the fixed multinomial and add these to the ACT,
slot pair.

Table 4 shows some examples drawn from the
model. For each row in the table (corresponding to a
new dialog d), we sample a topic for the dest_city
and orig_city as needed, and sample 10000 utter-
ances given that topic. The left hand side of the ta-
ble shows the top five strings in the sampled topic,
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while the right hand side shows the top six utter-
ances in response to REQUEST_INFO dest_city. Note
that the proportion of utterances on the right does
not match the probability of the values on the left
because of the presence of other user acts besides
PROVIDE dest_city.

7 Evaluating Model Consistency

Having shown in the previous section that our Topic
Goal model is a much better predictor of heldout
data than the String Goal model or Bigram model,
we now turn to a demonstration of the model’s cap-
turing of consistency.

In the face of value synonymy and ASR errors,
we define inconsistent dialogs to be ones that are lo-
cally coherent but lack the structure of a real dialog
from one turn to the next. We then suggest that an
appropriate task for consistent models is distinguish-
ing between consistent and inconsistent dialogs.

To test this hypothesis, we devise the following
classification problem: can we discriminate between




Baseline

Dialog length (turns)

Mean, standard deviation, min and max acts per turn

Presence of special machine acts (flight offer and confirm)

Presence of user acts (provide a dest city and arrival city)

Proportion of acts which were provides

String Consistency

Did the user provide inconsistent information about dest city?

Did the user provide inconsistent information about orig city?

Topic Model

Ranked list of posterior probabilities of top 50 topics

Normalised probability of dialog for topic model

Table 5: Feature sets for consistency experiments

real dialogs and those generated by randomly sam-
pling turns from different dialogs? In this section we
induce classifiers over various feature sets to demon-
strate that we can, and that the Topic Goal model
contains far more useful information in this regard
than string-based consistency features. (The bigram
model by definition provides no help here, since the
units of which dialogs consist contain the entire win-
dow of context used for the bigram model).

We take our training and development data from
the Communicator corpus in the previous section,
and create a classification problem as follows: real
dialogs form positive examples in the classification
problem. To create negative examples, we sample
{machine, user} turns at random from the appropri-
ate resource. We keep a histogram over real dia-
log lengths, and sample a number of turns for our
“fake” dialogs proportional to this histogram. We
then sample this many turns from the frequency dis-
tribution over turns in the real data, and create ex-
actly as many dialogs in this fashion as real dialogs
in the data. The result is an equal number of dialogs
comprised of real turns, of (expected) real length,
but where the sequence of turns is highly unlikely to
be coherent given the random sampling. The classi-
fication problem is thus far from trivial. We do this
from our training data to produce data with which to
train the classifier, and from our development data
to provide test instances. This gives rise to 2500
training instances, and 500 test instances.

We learn linear SVMs with various features de-
scribed in Table 6. These feature sets are designed
to capture different aspects of consistency: the base-
line features are intended to capture surface level
features of the dialogs, inspired by (Schatzmann et
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al., 2005) where they provide trivial separation of
real from simulated dialogs. However, our setting
is different: we do not seek to tell real dialogs from
fully simulated ones, but real dialogs from scram-
bled versions of real dialogs. In addition to length-
based features, we add binary presence indicator for
several user and machine acts highly correlated with
the completion of dialogs, as well as for acts which
indicate the provision of information and the propor-
tion of all acts occupied by these. The table gives a
complete list of these Baseline (B) features.

We derive a second set of features intended to
replicate the utility of string-based goals: we set up
binary features to fire if contradictory information is
provided for the slots over the course of the dialog.
These are our String Consistency (SC) features.

Finally, we use our topic-model simulator to de-
rive consistency features. Our features are the pos-
terior distribution over topics for each slot given that
dialog. Our topics are induced from the real training
dialogs, and their posterior probabilities computed
for all dialogs relative to this model. We take poste-
rior probabilities of the fifty most probable topics for
each of the dest_city and orig_city slots as features,
as well as the normalised log probability of the di-
alog (the log probability divided by the number of
user utterances). These form our Topic Model (TM)
features.

Our classifiers are linear SVMs, and we use lib-
svm (Chang and Lin, 2011), scaling features to the
range [0 — 1]. All other parameters are left at their
defaults.



Feature Set ‘ Accuracy
Baseline (B) 74.34 £3.77
String Consistency (SC) | 63.60 £4.27
B +SC 77.63 £3.58
Topic Model (TM) 79.61 £3.44
B+SC+TM 85.96 £2.89

Table 6: Performances for the classifiers. Errors are 95%
intervals to the accuracies assuming they are parameters
to a binomial distribution

7.1 Results

The results of the classifiers are shown in Table 5.
Since we have an equally balanced binary classifi-
cation task, accuracy is the most appropriate metric.
Here we see that the baseline and string consistency
features have roughly the same discriminatory po-
tential, and their union produces a slight improve-
ment. The topic model features are far superior to
this, and the union of all three sets gives a further
improvement.

These results demonstrate that our model encodes
notions of consistency which go substantially be-
yond those defined at the level of strings. Features
defined over the latent topic goal space substantially
improve performance in a difficult discrimination
task, demonstrating that our model captures an im-
portant notion of how real dialogs appear that is not
shared by the other models we consider.

8 Concluding Remarks and Future Work

This paper presents a fully generative goal driven
user simulator, the first to merge both consistency
and variability within a fully probabilistic frame-
work. We evaluate our model on two task-based di-
alog domains, Let’s Go and Communicator, and find
it to outperform both a simple bigram model and an
upper bound on probability models where the strings
are represented as goals, in terms of the probability
the model assigns to heldout dialogs.

We then move on to show that features derived
from the model lead to substantial improvement in
detecting real dialogs from those where the turns
have been selected at random from all turns in the
training data: this is a fairly difficult task, but our
model allows significant improvement over strong
and sensible baselines.
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Our model could be extended in a number of
ways. It could be improved to incorporate noise
resulting from the decisions made by the semantic
parser. Another possible improvement is to explore
the effects of introducing dependency between the
slots in the user goal, which would enforce more
plausible values pairings and would potentially im-
prove the simulator’s performance. The effects of a
dependence assumption between the different utter-
ances occurring in a single user turn under the act
model can also be explored. We would also like to
use our simulator to train a POMDP-based dialog
manager using a form of reinforcement learning.
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Abstract

Incremental processing allows system design-
ers to address several discourse phenomena
that have previously been somewhat neglected
in interactive systems, such as backchannels
or barge-ins, but that can enhance the re-
sponsiveness and naturalness of systems. Un-
fortunately, prior work has focused largely
on deterministic incremental decision mak-
ing, rendering system behaviour less flexible
and adaptive than is desirable. We present a
novel approach to incremental decision mak-
ing that is based omierarchical Reinforce-
ment Learningto achieve an interactive op-
timisation of Information Presentation (IP)
strategies, allowing the system to generate
and comprehend backchannels and barge-ins,
by employing the recent psycholinguistic hy-
pothesis ofinformation density (ID)Jaeger,
2010). Results in terms of average rewards
and a human rating study show that our learnt
strategy outperforms several baselines that are
not sensitive to ID by more that8%.

Introduction

v.t.rieser |

0.l enon@w. ac. uk

update and revise input hypotheses, it is affected
by a number of drawbacks, shared by determinis-
tic models of decision making in general: they rely
on hand-crafted rules which can be time-consuming
and expensive to produce, they do not provide a
mechanism to deal with uncertainty introduced by
varying user behaviour, they are unable to gener-
alise and adapt flexibly to unseen situations, and
they do not use automatic optimisation. Statisti-
cal approaches to incremental processing that ad-
dress some of these problems have been suggested
by Raux and Eskenazi (2009), who use a cost matrix
and decision theoretic principles to optimise turn-
taking in a dialogue system under the constraint that
users prefer no gaps and no overlap at turn bound-
aries. Also, DeVault et al. (2009) use maximum en-
tropy classification to support responsive overlap in
an incremental system by predicting the completions
of user utterances. Selfridge et al. (2011) use logis-
tic regression models to predict the stability and ac-
curacy of incremental speech recognition results to
enhance performance without causing delay. For re-
lated work on (deterministic) incremental language

Recent work on incremental systems has ShoV\ﬁ]eneration, please see (Kilger and Finkler, 1995;

that adapting a system’s turn-taking behaviour to blgurver and Otsuka, 2003).

more human-like can improve the user’s experience Recent years have seen a humber of data-driven
significantly, based on incremental models of autcapproaches to interactive systems that automatically
matic speech recognition (ASR) (Baumann et aladapt their decisions to the dialogue context us-
2011), dialogue management (Buss et al., 2010), amy Reinforcement Learning (Levin et al., 2000;
speech generation (Skantze and Hjalmarsson, 201®alker, 2000; Young, 2000; Singh et al., 2002;
All of these approaches are based on the same gd?tietquin and Dutoit, 2006; Henderson et al., 2008;
eral abstract architecture of incremental processir@uayahuitl et al., 2010; Thomson, 2009; Young et
(Schlangen and Skantze, 2011). While this archal., 2010; Lemon, 2011; Janarthanam and Lemon,
tecture offers inherently incremental mechanisms t8010; Rieser et al., 2010; Cuayuitl and Dethlefs,
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2011, Dethlefs and Cuapuitl, 2011). While these put, so that our system only needs to choose a strat-

approaches have been shown to enhance the perfegy for presenting its results. Attributes inclucie-

mance and adaptivity of interactive systems, unfoisine, food quality, location, price rangadservice

tunately none of them has yet been combined witQuality of a restaurant. The system then performs a

incremental processing. database lookup and chooses among three main IP
In this paper, we present a novel approach to irstrategiessummary, comparison, recommendation

cremental decision making for output planning thaand several ordered combinations of these. Please

is based on Hierarchical Reinforcement Learningee Rieser et al. (2010) for details. Table 1 shows

(HRL). In particular, we address the problem of opexamples of the main types of IP strategies that we

timising IP strategies while allowing the system tagenerate.

generate and comprehend backchannels and barge-

ins based on a partially data-driven reward func-

tion. Generating backchannels can be beneficial for

grounding in interaction. Similarly, barge-ins can?-2 Backchannelsand Barge-ins

lead to more efficient interactions, e.g. when a sys-

tem can clarify a bad recognition result immediatelyy , important advantage of incremental processing

before acting based on a misrecognition. ~can be the increased reactiveness of systems. In this
A central concept to our approach is Informationyaper, we focus on the phenomena of backchannels
Density (ID) (Jaeger, 2010), a psycholinguistic hyznq harge-ins that can act as feedback in an interac-
pothesis that human utterance production is sensitiy@, for both user and system. Figure 1 shows some
to a uniform distribution of information across theexamplesBackchannelsan often be interpreted as
utterance. This hypoth_esis has also been adoptt_—zd g?@nals of grounding. Coming from the user, the sys-
low level output planning recently, see e.9. RajkUgem may infer that the user is following the presenta-
mar and White (2011). Our results in terms of avgon of information or is confirming a piece of infor-
erage rewards and a human rating study show thajion without trying to take the turn. Similarly, we
learning agent that is sensitive to ID can learn whegy gliow a system to generate backchannels to the
it is most beneficial to generate feedback t0 a Usfger to confirm that it understands the user’s prefer-

and outperforms several other agents that are nghces j.e. receives high confidence scores from the

sensitive to ID. ASR module. An important decision for a dialogue

. . system is themvhen to generate a backchannel?
2 Incremental Information Presentation

Barge-instypically occur in different situations.
The user may barge-in on the system to correct an
Our example domain of application is the Infor-ASR error (such as ‘ltalian’ instead of ‘Indian’ in
mation Presentation phase in an interactive systeRigure 1) or the system may want to barge-in on the
for restaurant recommendations, extending previousser to confirm a low-confidence ASR hypothesis so
work by Rieser et al. (2010). This previous workas to be able to start an immediate database look up
incrementally constructs IP strategies according tfor results. In the former case, the user barging-in
the predicted user reaction, whereas our approaohn the system, we assume that the system has two
focuses on whether and when to generate backchahoices: yielding the turnto the user, otrying to
nels and barge-ins and how to react to user bargkeepthe turn. In the latter case, the system barging-
ins in the context of dynamically changing input hy-in on the user, the system would have to dedidad
potheses. We therefore implement a simplified vemwhen it would be beneficial to barge-am a user ut-
sion of Rieser et al's model. Their system distinterance. In the following sections, we will develop
guished two steps: the selection of an IP strategy model of dialogue optimisation that can address
and the selection of attributes to present to the usehese question based on Hierarchical RL that opti-
We assume here that the choice of attributes is detenises system behaviour based on trade-offs defined
mined by matching the types specified in the user inn terms of ID.

2.1 Information Presentation Strategies
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Type Example

Comparison The restauraniRomais in the medium price range, but does not serve excellert foo
The restaurantSirenzeandVeronaboth have great food but are more expensive. The
restauranveronahas good service, too.

Recommendation Restauranteronahas the best overall match with your query. It is a bit moresexp
sive, but has great food and service.
Summary | found 24 Italian restaurants in the city centre that matochryquery. 11 of them are

in the medium price range, 5 are cheap and 8 are expensive.

Table 1: Examples of IP as@mparison, recommendati@mdsummaryfor a user looking for Italian restaurants in
the city centre that have a good price for value.

Backchannel 1 (the system backchannels) municate according to the channel’s capacity, which
USR | want Italian food [500 ms] in the city centre...

avs uh-huh corresponds to the hearer’s capacity in terms of cog-

SYS OK. I found 24 Italian restaurants in the city centre. Thehitive load. If they go beyond that, the cognitive load
restaurantRomais in the medium price range, but does notof the listener gets too high. If they stay (far) below,

have great food. The restaurafiteenzeandVverona. .. too little information is transferred per bit (i.e., the
Backchannl 2 (the user backchannels) utterar_\ce is _|neff|C|ent or unlnfo_rma}tlv_e)._ The in-
USRI want Italian food in the centre of town . .. formation gain of each word, which is |nd|_cat|ve of
SYS OK. | found 35 central ltalian restaurants ... how close we are to the channel’'s capacity, can be
USR OK. computed using entropy measures.

SYS The restauranVeronahas great food but is also a bit
expensive. Th&omais cheaper, butnotas centraNesona... 3.1 |nformation Density

Barge-ins 1 (the user barges-in on system) Psycholinguistic research has presented evidence for
USR T want Italian food in the centre of town ... users distributing information across utterances uni-
SYS Ifound 35 Indian... _ formly, so that each word is carrying roughly the
gfz Not Indian, I want Igl}ganénan same amount of information. This has been ob-
SYS | have 24 Italian restaurants . .. ’ served for phonetic phenomena based on words
(Bell et al., 2003) and syllables (Aylett and Turk,

Barge-ins 2 (the system barges-in on user) 2004), and for syntactic phenomena (Levy and
USR | need an ltalian restaurant that is located . .. Jaeger 2007: Jaeger 2010). Relating ID to likeli-
SYS I'm sorry. Did you say ’ ' ’ .

Indian or Italian? hood, we can say that the less frequent a word is, the
USR | said Italian. And in the centre of town please. more information it is likely to carry (Jaeger, 2010).
SYS OK, let me see. | have 24 Italian restaurants . .. For example the wortthe’ often has a high corpus

frequency but a low ID.

Figure 1. Example phenomena generated with the learnt The _ID is defined as the log-probability of an
policy. The agent has learnt to produce backchannefYent (i.e. aword) (Shannon, 1948; Levy and Jaeger,
and barge-ins at the appropriate moment and alternati¢®07), so that for an utteraneeconsisting of the
strategies to deal with user barge-ins. word sequence ... w;_1, we can compute the ID

at each point during the utterance as:

3 Information Theory 1

1 n
Information Theory as introduced by Shannon log% - ; logP(w,-]wl W)
(1948) is based on two main conceptscammuni- =
cation channethrough which information is trans-  While typically the context of a word is given by
ferred in bits and thénformation gain i.e. the in- all preceding words of the utterance, we follow Gen-
formation load that each bit carries. For natural lanzel and Charniak (2002) in restricting our computa-
guage, the assumption is that people aim to contion to tri-grams for computability reasons. Given a

(1)
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language model of the domain, we can therefore 0| T wanttaian food in e oy centre,

timise ID in system-generated discourse, where w L et e adcrens of a vt vostmant | Creseren e,
treat ID as “an optimal solution to the problem of
rapid yet error-free communicatioim a noisy envi-
ronment” (Levy and Jaeger (2007), p.2). We will
now transfer the notion of ID to IP and investigate
the distribution of information over user restaurant

queries. Figure 2: Information Density for example utterances,
where peaks indicate places of high density.

| == need the address of a Thai restaurant.

Information Density

3.2 Information Density in User Utterances

We aim to use ID for incremental IP in two ways: = _ _ o
(1) to estimate the best moment for generaﬂngﬁls information to consider the trade-off of yielding
backchannels or barge-ins to the user, and (2) to d&-current turn to the user or trying to keep it, €.g., in
cide whether to yield or keep the current system turR@S€ Of & user barge-in given the ID of its own turn
in case of a user barge-in. While we do not have spé‘-nd of the user’s incoming turn. Such decisions will

cific data on human barge-in behaviour, we kno/#f€ Made incrementally in our domain given dynam-

from the work of (Jaeger, 2010), e.g., that ID influ/c@lly changing hypotheses of user input.

ences human language production. We therefore hx—
pothesise a relationship between ID and incremen-

tal phenomena. A human-human data collection i, optimise incremental decision making for an in-
planned for the near future. teractive system given the optimisation measure of
To compute the ID of user and system utterancgg) e formalise the dialogue module as a Hierar-
at each time step, we estimated argram lan- chjcal Reinforcement Learning agent and learn an
guage model (using Kneser-Ney smoothing) basgshtimal action policy by mapping states to actions
on a transcribed corpus of human subjects interaciyq optimising a long-term reward signal. The di-
ing with a system for restaurant recommendations %flogue states can be seen as representing the sys-
Rieser et al. (2011).The corpus contained user Ut-tam's knowledge about the task, the user and the
terances as exemplified in Figure 1 and allowed us {@yironment. The dialogue actions correspond to
compute the ID at any point during a user utterahcehe system’s capabilities, such psesent the re-
In this way, we can estimate points of low densityitsor barge-in on the userThey also handle in-
which may be eligible for a barge-in or a backchangremental updates in the system. In addition, we
nel. Figure 2 shows some example utterances draed a transition function that specifies the way
from the corpus and their ID including the first senynat actions change the environment (as expressed
tence from Figure 1. These examples were typicgh the state representation) and a reward function
for what could generally be observed from the coryhich specifies a numeric value for each action
pus. We see that while information is transmitteqaken. In this way, decision making can be seen
with varying amounts of density, the main bits of in-55 5 finite sequence of states, actions and rewards
formation are transmitted at a scale betweeand {s0,a0,71,51,a1, ...,7e—1, ¢}, where the goal is to
7. induce an optimal strategy automatically using Rein-
Due to a lack of human data for the system utteffprcement Learning (RL) (Sutton and Barto, 1998).
ances, we use the same corpus data to compute th§ye ysed Hierarchical RL, rather than flat RL, be-
ID of system utterancesThe learning agent can usecayse the latter is affected by toarse of dimen-
T iavalabe | at htt p: / / waw, macs. hw ac. uk/ sionglity, the fac_t that the state spgce grows ex_po-
i | abar chi ve/ cl assi cpr oj ect/ dat a/ | ogi n. php. nentially according to the state variables taken into

“Note that our model does not currently handle out-ofaccount. This affects the scalability of flat RL agents
domain words. In future work, we will learn when to seek clar-
ification. but for now make the assumption that using the corpus data is
3We plan a data collection of such utterances for the futurénformative since they are from the same domain.

Incremental Utter ance Optimisation
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and limits their application to small-scale problemsdecide to do nothing. The goal of each SMDP is to
Since timing is crucial for incremental approachedijnd an optimal policyr* that maximises the reward
where processing needs to be fast, we choose a for each visited state, according to

erarchical setting for better scalability. We denote ,

the hierarchy of RL agents a&/! where the in- T™i(s) = arg max Q; i(s,a), (2)
dexesi and j only identify an agent in a unique

way, they do not specify the execution sequence QfhereQ’ (s, a) specifies the expected cumulative re-
subtasks, which is subject to optimisation. Eactyard for executmg action in states and then fol-
agent of the h|erarChy is defined as a Semi- MarkON)W|ng *. We use HSMQ Learn”']g to induce dia-

Decision Process (SMDP) consisting of a 4-tuplgggue poI|C|es see (Cuafuitl, 2009), p. 92.
< SZ A;,T;,R’ >. Here, Sl denotes the set of
states ,AL denotes the set of actions, affgl is a 5 Experimental Setting
probabilistic state transition function that determine
the next state’ from the current state and the per-
formed action. R’ (s',7|s,a) is a reward function The HRL agent in Figure 3 shows how the tasks of
that specifies the Yeward that an agent receives fok) dealing with incrementally changing input hy-
taking an actiors in states lasting 7 time steps Potheses, (2) choosing a suitable IP strategy and (3)
(Dietterich, 1999). Since actions in SMDPs maypresenting information, are connected. Note that
take a variable number of time steps to completave focus on a detailed description of modalg_,
the variabler represents this number of time stepshere, which deal with barge-ins and backchannels
The organisation of the learning process into disand are the core of this paper. Please see Dethlefs et
crete time steps allows us to define incremental hyal. (2012) for details of an RL model that deals with
pothesis updates as state updates and transitiongh& remaining decisions.
an SMDP. Whenever conditions in the learning en- Briefly, modelM/{ deals with dynamic input hy-
vironment change, such as the recogniser’s best hgotheses. It chooses when to listen to an incoming
pothesis of the user input, we represent them as trauiser utterance)(3) and when and how to present
sitions from one state to another. At each time stefformation (V3 ,) by calling and passing control
the agent checks for changes in its state represdf-a child subtask. The variable ‘incrementalStatus’
tation and takes the currently best action accordingharacterises situations in which a particular (incre-
to the new state. The best action in an incrementatental) action is triggered, such as a floor holtedr
framework can also include generatingpackchan- me seg’a correction or self-correction. The variable
nel to the user to indicate the status of groundingoresStrategy’ indicates whether a strategy for IP has
or barging-into confirm an uncertain piece of infor- been chosen or not, and the variable ‘userReaction’
mation. Once information has been presented to tigows the user's reaction to an IP episode. The
user, it iscommittedor realised Realised informa- ‘userSilence’ variable indicates whether the user is
tion is represented in the agent’s state, so that it capeaking or not. The detailed state and action space
monitor its own output. of the agents is given in Figure 4. We distinguish ac-
tions for Information Presentation (IP), actions for
Actions in a Hierarchical Reinforcement learnemttribute presentation and ordering (Slot-ordering),
can be either primitive or composite. The formemnd incremental actions (Incremental).
are single-step actions that yield single rewards, and Models M3 , correspond to different ways of
the latter are multi-step actions that correspond tpresenting information to the user. They perform
SMDPs and yield cumulative rewards. Decisiorattribute selection and ordering and then call the
making occurs at any time step of an SMDP: aftechild agentsM , for attribute realisation. When-
each single-step action, we check for any updatever a user barges in over the system, these agents
of the environment that require a system reaction avill decide to either yield the turn to the user or to
change of strategy. If no system action is requiretty and keep the turn based on information density.
(e.g. because the user is speaking), the system chlne variables representing the status of the cuisine,

g.l Hierarchy of Learning Agents
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States MY
incrementalStatus0=none,1=holdFloor,2=correct,3=selfCorrect
observeUsefO=unfilled,1=filled

presStrategy O=unfilled,1=filled

M} userReactiod 0=none,1=select,2=askMore,3=other
userSilencefO=false,1=tru¢
Actions M
IP: compare M1, recommendM2, summariseM{, sum-
Present Present Present . . .
mariseCompare, summariseRecommend, summariseCompar-
Mg M? M3 M3 M} eRecommend,

Incrementalcorrect, selfCorrect, holdFloor, observeUser
Figure 3: Hierarchy of learning agent for incremental InGoal State Mg 0, 1, 1,0, ?

formation Presentation and Slot Ordering.
States M.

IDSystem={ 0=low,1=medium, 2=high
) . ) . statusCuisin¢0=unfilled,1=low,2=medium,3=high,4=realised
food, location, price and service of restaurants inditatusQualityf 0=unfilled, 1=low,2=medium,3=high,4=realised

cate whether the slot is of interest to the user (we astatusLocatiof 0=unfilled, 1=low,2=medium,3=high,4=realised
sume thad means that the user does not care abogtatusPricg0=unfilled,1=low,2=medium,3=high 4=realised
this slot), and what input confidence score is cuftatusServicgo=unfiled,1=low,2=medium,3=high,4=realised
. . turnType{0=holding, 1=resuming, 2=keeping, 3=yielding
rently associated with the value of the slot. For eXgsergargei{o=faise, 1=trug
ample, if our current best hypothesis is that the userctions 3.,
is interested in Indian restaurants, the variable st&lot-ordering: presentCuisine Mg, presentQuality M7,
tusCuisine’ will have a value between 1-3 indicatingresentLocation/3, presentPricé/;, presentService/s,
. . ncrementalyieldTurn, keepTurn
the strength of this hypothesis. ane slots have be al State M , 2.V 4 0V 4,0V 4,0V 4,0V 42,2
presented to the user, they aealisedand can only
be changed through a correction or self-correction States M3
Model M is called whenever the user is speakPargelnOnUsert0=undecided,1=yes, 2=jo N
. IDUser={0=low,1=medium, 2=high, 3=falling, 4=risirig

Ing. The system's main choice here is to remalgtatusCuisinéO:um‘illed,1:I0w,2:medium,3:high,4:reali§ed

silent and listen to the user or barge-in to requestatusLocatiof0=unfilled, 1=low,2=medium,3=high,4=realised
the desired cuisine, location, or price range of atatusPricg0=unfilled,1=low,2=medium,3=high,4=realised
restaurant. This can be beneficial in certain situgbctions M;

tions, such as when the system is able to increase !}Qgrementgl:doNotBargeIn, bargelnCuisine, bargelnLocation,
argelnPrice, backchannel

confidence for a slot from ‘low’ to ‘high’ through Gog state 172 >0, 2, 0v 4, 0v 4, 0v 4
barging-in with a direct clarification request, e.qg.
‘Did you say Indian?’ (and thereby saving sev- Stat%Mc?.%l | . high
DSystem= 0=low,1=medium, 2=hig
er"f" turns .that may be based on ?‘ Wrong hyPOt DUser={0=low,1=medium, 2=high, 3=falling, 4=rising
esis). This can also be harmful in certain situasrtaceForm{0=unrealised, 1=realis¢d
tions, though, assuming that users have a genewdtions M3 ,
preference for not being barged-in on. The learnin§urface Realisatiorfalternative surface realisations]
agent will need to learn to distinguish these situag:9: ‘$number$ restaurants serve $cuisine$ food', ‘$number$
tions. This agent is also responsible for generatinpéﬁ;e;;rzB%atf%'rffrea& ete.
backchannels and will over time learn the best mo-
ments to do this. Figure 4: The state and action space of the HRL agent.
ModelsMZ , choose surface forms for presenta’he g_oal state is reached when all items (that the user
tion to the user from hand-crafted templates. The?pecn‘led in the search query) have been presented. Ques-
are not the focus of this paner. however. and therd®" marks mean that a variable does not affect the goal
. p_ Per, T State, which can be reached regardless of the variable’s
fore not presented in detail. The state-action spacge.

size of this agent is roughly.5 million.* The agent

“Note that a flat RL agent, in contrast, would n&ed 10%° _ _ _
million state-actions to represent this problem. reaches its goal state (defined w.r.t. the state vari-
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ables in Fig. 4) when an IP strategy has been chosshown in Table 2. A score d@f means that the user

and all information has been presented. does not care about the attributemeans that the
_ _ system’s confidence in the attribute’s value is l@w,
5.2 The Simulated Environment that the confidence is medium, aBdneans that the

For a policy to converge, a learning agent typicallconfidence is high. A value of means that the at-
needs several thousand interactions in which it is extibute has already beewgalised i.e. communicated
posed to a multitude of different circumstances. Fadio the user. At the beginning of a learning episode,
our domain, we designed a simulated environmente assign each attribute a possible value and con-
with three main components addressing IP, incrdidence score with equal probability. For food and
mental input hypotheses and ID. Using this simulaservice quality, we assume that the user is never in-
tion, we trained the agent fa thousand episodes, terested in bad food or service. Subsequently, con-
where one episode corresponds to one recommendi@ence scores can change at each time step. In fu-
tion dialogue. ture work these transition probabilities will be esti-
mated from a data collection, though the following
assumptions are realistic based on our experience.
To learn a good IP strategy, we use a user simulgve assume that a confidence scoré ahanges to
tion> by Rieser et al. (2010) which was estimateciny other value with a likelihood df.05. A confi-
from human data and uses bi-grams of the forrdence score of changes with a probability df.3,
P(aut|IPsys), wherea, , is the predicted user reac-a confidence score of with a probability of0.1
tion at timet to the system’s IP stratedyP, ; in state  and a confidence score 6fwith a probability of
s at timet. We distinguish the user reactionss#- ().03. Once slots have been realised, their value is
lecta restauranaddMorelnfato the current query to set to4. They cannot be changed then without an ex-
constrain the search, ather. The last category is plicit correction. We also assume that realised slots
usually considered an undesirable user reaction thefiange with a probability 06.1. If they change,
the system should learn to avoid. The simulatiove assume that half of the time, the user is the ori-
uses linear smoothing to account for unseen situgin of the change (because they changed their mind)
tions. In this way, we can predict the most likelyand half of the time the system is the origin of the
user reaction to each system action. Even thougihange (because of an ASR or interpretation error).
previous work has shown thatgram-based simu- Each time a confidence score is changed, it has a
lations can lead to dialogue inconsistencies, we agrobability of 0.5 for also changing its value. The
sume that for the present study this does not presemisulting input to the system are data structures of
a problem, since we focus on generating single uttethe form present(cuisine=Indian), confidence=low
ances and on obtaining user judgements for singl&éhe probability of observing this data structure in
independent utterances. our simulation is0.1 (for Indian) x 0.2 (for low
. confidence)= 0.02. Its probability of changing
52:2 Input Hypothesis Updates to present(cuisine=italian), confidence=higs 0.1

While the IP strategies can be used for incremeqfOr changing from low to medium) 0.05 (for
tal and non-incremental dialogue, the second part %anging from Indian to Italiany 0.005.

the simulation deals explicitly with the dynamic en-
vironment updates that the system will need to bb6.2.3 Information Density Updates

sensitive to in an incremental setting. We assume \ve simulate ID of user utterances based on proba-
that for each restaurant recommendation, the USBiiistic context-free grammars (PCFG) that were au-
has the option of filling any or all of the attributesomatically induced from the corpus data in Section
cuisine, food quality, location, price rangmdser- 3 o using the ABL algorithm (van Zaanen, 2000).

vice quality The possible values of each attributeryg algorithm takes a set of strings as input and
and possible confidence scores for each value Bmputes a context-free grammar as output by align-

5The simulaion data are available fromww. NG Strings based on Minimum Edit Distance. We
cl assi c- proj ect.org. use then—gram language models trained earlier to

5.2.1 Information Presentation
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Attribute  Values Confidence 89€Nt receives

Cuisine  Chinese, French, German,In-, 0,1,2,3,4
dian, Italian, Japanese, Mexi-
can, Scottish, Spanish, Thai

Quality  bad, adequate, good, verygood 0,1,2,3,4

+100 if the user selects an item,
0 if the user adds further con-
straints to the search,
R= -100  if the user does something else

Location 7 distinct areas of the city 0,1,23,4 .
Price cheap, good-price-for-value or a self-correction,
P g P o -0.5  for the system holding a turn,
expensive, very expensive 0,1,2,3,4

-1 therwise.
Service  bad, adequate, good, very good 0, 1,2, 3,4 otherwise

Table 2: User goal slots for restaurant queries with possi-N€ agent is encouraged to choose those sequences
ble values and confidence scores. of actions that lead to the user selecting a restaurant

as quickly as possible. If the agent is not sure what to

say (because planning has not finished), it can gen-

erate a floor holding marker, but should in any case
add probabilities to grammar rules. We use thesavoid a self-correction due to having started speak-
PCFGs to simulate user utterances to which the sysg too early.
tem has to react. They can be meaningful utter- The remaining rewards are based on ID scores
ances such @show me restaurants nearbgt less computed incrementally during an interaction. The
meaningful fragments such asm let me see, do agent receives the following rewards, where info-
you...hm! The former type is more frequent in Density(Usr) and infoDensity(Sys) refer to the ID of
the data, but both types can be simulated along withe current user and system utterance, respectively,
their ID (clearly, the first type is more dense than thes defined in Equation 1.
second).

-infoDensity(Usr)  for keeping a turn,

barging-in or
a backchannel,
for yielding a turn.

In addition to simulating user utterances, we
hand-crafted context-free grammars of system utlR =
terances and augmented them with probabilities es- -infoDensity(Sys)
timated using the same user corpus data as above

(where again, we make the assumption that this #ghese two measures encourage the agent to consider
to some extent feasible given the shared domairnthe trade-offs between its own ID and the one trans-
We use the simulated system utterances to COMPWgitted by an incoming user utterance. Barging-in
varying degrees of ID for the system. on a user utterance at a low ID point then yields a

small negative reward, whereas barging-in on a user
Both measures, the ID of user and system utt(;F

. , : tterance at a high ID point yields a high negative
ances, can inform the system during learmning to bag ward. Both rewards are negative because barging-
ance the trade-off between them for generating an

- i on the user always contains some risk. Similarly,
receiving backchannels and barge-ins. keeping a turn over a non-dense user utterance re-
ceives a smaller negative reward than keeping it over
a dense user utterance. A reward-of is assigned
for barging-in over a user utterance fragment with a
5.3 A Reward Function for Incremental falling ID to reflect results from a qualitative study

Dialogue Based on Information Density of our corpus data: humans tend to bargbetween
information peaks, so that a barge-in to clarify a low-
confidence slot appears immediately before the ID is

To train the HRL agent, we use a partially datarising again for a new slot. The exact best moment
driven reward function. For incremental IP, we usdor barge-ins and backchannels to occur will be sub-
rewards that are based on human intuition. Thgct to optimisation.
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6 Experimental Results

The agent learns to barge-in or generate backchan ]
nels to users at points where the ID is low but rising.
In particular, the agent learns to bargeight before

information density peaks in an incoming user utter-

201

0
-20F »*
.

b
—40f

Average Reward

-601

ance to clarify or request slots that are still open from -y — e

. . . . -100f + = = = Baselinel |
the previous information density peak. If a user has .- | ||
specified their desired cuisine type but the system 0 e 10t

has received a low ASR confidence score for it, it

may barge-in to clarify the slot. This case was illusFigure 5: Performance in terms of rewards (averaged over
trated in the last example in Figure 1, where the syd0 runs) for the HRL agent and its baselines.

tem clarified the previous (cuisine) slot (which is as-

sociated with a high ID) just before the user specifies

the location slot (which again would have a high ID) g its are summarised in Table 3.

The main benefit the system can gain through clar-

ification barge-ins is to avoid self-corrections when

having acted based on a low ASR confidence, lea@-1 Average Rewardsover Time

ing to more efficient interactions.

The system learns to generate backchanaféés Figure 5 shows the performance of all systems in
information peaks to confirm newly acquired slot§erms of average rewards in simulation. The learnt
that have a high confidence. An example is showRolicy outperforms both baselines. While the learnt
in the first dialogue fragment in Figure 1. policy and Baseline 1 appear to achieve similar per-

In addition, the system learns to yield its currenformance, an absolute comparison of the [E&10
turn to a user that is barging-in if its own ID is low, episodes of each behaviour shows that the improve-

falling or rising, or if the ID of the incoming user Ment of the HRL agent over Baseline 1 corresponds

utterance is high. If the system’s own ID is high, buf® 23.42%. The difference between the learnt policy
the user’s is not, it will try to keep the tufnThis is and its baselines is significantat 0.0001 accord-

exemplified in the third dialogue fragment in Figurdnd t0 a paired t-test and has a high effect size of
1. r = 0.85.

The main reason for these different performances
We compare our learnt policy against two baseis the moment each system will barge-in. Since
lines. Baseline 1 was designed to always generatBaseline 1 barges-in on users after an information
barge-insafter an information peak in a user utter-peak, when ID may still be high, it continuously re-
ance, i.e. when ID has just switched frdmghto ceives a negative reward reflecting the user prefer-
falling. We chose this baseline to confirm that userence for late barge-ins. As a result of this contin-
indeed prefer barge-ins before information peaksous negative reward, the agent will then learn to
rather than at any point of low ID. Baseline 1 yieldsavoid barge-ins altogether, which may in turn lead
aturn to a user barge-in if its own ID is low and triesto less efficient interactions because low confidence
to keep it otherwiseBaseline 2 generates barge-ins ASR scores are clarified only late in the interaction.
and backchannels randomly and a_t any pointdur_ing The main problem of the random barge-ins of
a user utterance. The decision of yielding or keepingseline 2 is that users may often have to restart

aturnin case of a user barge-inis also random. Both  ,/n because the system barged-in too early or
baselines also use HRL to optimise their IP strategy, the middle of an information peak. In addition

We do not compare different IP strategies, which hagasejine 2 needs to occasionally self-correct its own
been done in detail by Rieser et al. (2010). All réygerances because it started to present information

SIncidentally, this also helps to prevent the system yieldind0O €arly, when input hypotheses were not yet stable
its turn to a user backchannel; cf. Example 2 in Fig. 1. enough to act upon them.

90



Regarding user ratings however, Baseline 2 was pre-

Policy Average Reward User Rating) i o i
— = ferred over Baseline 1. This is most likely due to the
Learnt 55.54*% 43% o L .
. - timing of barge-ins: since Baseline 2 has a chance
Baseline1 45.0 26% L . . :
. of barging-in at earlier occasions than Baseline 1,
Baseline 2 1.47 31%

it may have received better ratings. The evaluation

Table 3: Comparison of policies in terms of average reShows that humans care about timing of a barge-in
wards and user ratings.indicates a significant improve- regarding the density of information that is currently

ment over Baseline 1 and over Baseline 2. conveyed and dislike late barge-ins. ID is then useful
in determining when to barge-in. We can therefore
6.2 Human Rating Study further conclude that ID can be a feasible optimisa-

, : . tion criterion for incremental decision making.
To confirm our simulation-based results, we con-

ducted a user rating study on the CrowdFlowey Conclusion and Future Work

crowd sourcing platforrd.  Participants were

shown user utterances along with three options V& have presented a novel approach to incremen-
barging-in over them. For example} | want (@l dialogue decision making based drerarchical

[OPTION 1] Italian food [OPTION 2] in the RL combined with the notion oihformation den-

city [OPTION 3] centre|, whereoPTION 1 cor- Sity. We presented a learning agent in the domain of
responds to the learnt poliogeTi N 2 to Baseline P for restaurant recommendations that was able to
2 andoPTI ON 3 to Baseline 1. generate backchannels and barge-ins for higher re-

Users were asked to choose one option which thaponsiveness in interaction. Results in terms of av-
considered the best moment for a barge-in. Partickage rewards and a human rating study have shown
pants in the study rated altogether 144 utterancé§@t @ learning agent that is optimised based on a
They preferred thdearnt system 63 times (43%), partially data-driven reward functiothat addresses
Baseline 1 37 times (26%) and Baseline 2 44 time&formation density can learn to decide when and if

(31%). This is statistically significant at < 0.02 It is beneficial to barge-in or backchannel on user
according to a Chi-Square test( = 7.542, df = utterances and to deal with backchannels and barge-

9). In a separate test, directly comparing tearnt NS from the user. Future work can take several di-

policy and Baseline 1llearnt was chosen signifi- "€ctions. Given that ID is a measure influencing
cantly more often than Baseline 1; i.e. 79% of théluman language production, we could replace our
time (for 127 utterances, using a 1-tailed Sign testémplate-based surface realiser by an agent that op-
p < 0.0001). Finally, learntwas directly compared timises the information density of its output. Cur-
to Baseline 2 and shown to be significantly more off€ntly we learn the agent's behaviour offline, be-
ten chosen; i.e. 59% of the time (138 utterances, fore the interaction, and then execute it statistically.
tailed Sign testp < 0.025). These results provide More adaptivity towards individual users and situa-
evidence that an optimisation of the timing of genertions could be achieved if the agent was able to learn
ating barge-ins and backchannels in incremental dito™ ongoing interactions. Finally, we can confirm
alogue can be sensitive to fine-grained cues in evol{2€ human results obtained from an overhearer-style
ing ID and therefore achieve a high level of adaptivévaluation in a real interactive setting and explicitly
ity. Such sensitivity is difficult to hand-craft as caneXtend our language model to discourse phenomena

be concluded w.r.t. the performance of Baseline BUch as pauses or hesitations to take them into ac-

which received similar rewards tearntin simula- countin measuring ID.

tion, but is surprisingly beaten by the random Base-
line 2 here. This indicates a strong human dis.likeACknOWIedgements

for late barge-ins. The bad performance of Basérhe research leading to this work has received funding

line 2 in terms of average rewards was due to thom EC's FP7 programmes: (FP7/2011-14) under grant

random barge-ins leading to less efficient dialogue&dreementno. 287615 (PARLANCE); (FP7/2007-13) un-
der grant agreement no. 216594 (CLASSIC); (FP7/2011-

"ww. cr owdf | ower . com 14) under grant agreement no. 270019 (SPACEBOOK);
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Abstract

Recent work has explored the use of hidden
Markov models for unsupervised discourse
and conversation modeling, where each seg-
ment or block of text such as a message in a
conversation is associated with a hidden state
in a sequence. We extend this approach to al-
low each block of text to be a mixture of mul-
tiple classes. Under our model, the probability
of a class in a text block is a log-linear func-
tion of the classes in the previous block. We
show that this model performs well at predic-
tive tasks on two conversation data sets, im-
proving thread reconstruction accuracy by up
to 15 percentage points over a standard HMM.
Additionally, we show quantitatively that the
induced word clusters correspond to speech
acts more closely than baseline models.

1 Introduction

The proliferation of social media in recent years has
lead to an increased use of informal Web data in
the language processing community. With this ris-
ing interest in social domains, it is natural to con-
sider models which explicitly incorporate the con-
versational patterns of social text. Compared to the
naive approach of treating conversations as flat doc-
uments, models which include conversation struc-
ture have been shown to improve tasks such as fo-
rum search (Elsas and Carbonell, 2009; Seo et al.,
2009), question answering and expert finding (Xu et
al., 2008; Wang et al., 2011a), and interpersonal re-
lationship identification (Diehl et al., 2007).

While conversational features may be important,
Web-derived corpora are not always annotated with
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this information, and the nature of conversations on
the Web can vary wildly across domains and venues.
Addressing these concerns, there has been recent
work with unsupervised models of Web conversa-
tions based on hidden Markov models (Ritter et al.,
2010), where each state corresponds to a conversa-
tional class or “act.” Unlike more traditional uses of
HMMs in which a single token is emitted per time
step, HMM emissions in conversations correspond
to entire blocks of text, such that an entire message
is generated at each step. Because each time step is
associated with a block of variables, we refer to this
type of HMM as a block HMM (Fig. 1a).

While block HMMs offer a concise model of
inter-message structure, they have the limitation that
each text block (message) belongs to exactly one
class. Many modern generative models of text, in
contrast, allow documents to contain many latent
classes. For example, topic models such as Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) as-
sume each document has its own distribution over
multiple classes (often called “topics”). For many
predictive tasks, topic models outperform single-
class generative models such as Naive Bayes. These
properties could similarly be desirable in conversa-
tion modeling. An email might contain a request,
a question, and an answer to a previous question —
three distinct dialog acts within a single message.
This motivates the desire to allow a message to be a
mixture of classes.

In this paper, we introduce a new type of model
which combines the functionality of topic models,
which posit latent class assignments to each individ-
ual token, with Markovian sequence models, which

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 94—104, Jeju Island, Korea, 12—14 July 2012. (©2012 Association for Computational Linguistics
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Figure 1: The graphical models for the block HMM (left) where each block of tokens depends on exactly one latent
class, LDA (center) where each token individually depends on a latent class, and M* (right) where the class distri-
butions are dependent across blocks. Some parameters are omitted for simplicity. This figure depicts the Bayesian
variant of the block HMM (Ritter et al., 2010) where the transition distributions 7 depend on a Dirichlet(«) prior.

govern the transitions between text blocks in a se-
quence. We generalize the block HMM approach so
that there is no longer a one-to-one correspondence
between states in the Markov chain and latent dis-
course classes. Instead, we allow a state in the HMM
to correspond to a mixture of many classes: we re-
fer to this family of models as mixed membership
Markov models (M*). Instead of defining explicit
transition probabilities from one class to another as
in a traditional HMM, we define the distribution over
classes as a function of the entire histogram of class
assignments of the previous text segment. We define
our model using the same number of parameters as
a standard HMM (§2), and we present a straightfor-
ward approximate inference algorithm (§3).

While we introduce a general model, we will fo-
cus on the task of unsupervised conversation model-
ing. Specifically, we build off the Bayesian block
HMMs used by Ritter et al. (2010) for modeling
Twitter conversations, which will be our primary
baseline. After discussing related work (§4), we
present experimental results on a set of Twitter con-
versations as well as a set of threads from CNET
discussion forums (§5). We show that M? increases
thread reconstruction accuracy by up to 15% com-
pared to the HMM of Ritter et al. (2010), and we
reduce variation of information against speech act
annotations by an average of 18% from HMM and
LDA baselines. To the best of our knowledge, this
work is the first attempt to quantitatively compare
unsupervised models against gold standard speech
act annotations.
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2 M*: Mixed Membership Markov Models

In this section, we extend the block HMM by intro-
ducing mixed membership Markov models (M*).

Under the block HMM, as utilized by Ritter et al.
(2010), messages in a conversation flow according to
a Markov process, where the words of messages are
generated according to language models associated
with a state in a hidden Markov model. The intu-
ition is that HMM states should correspond to some
notion of a conversation “act” such as QUESTION or
ANSWER. The intuition is the same under M*, but
now each token in a message is given its own class
assignment, according to a class distribution for that
particular message. A message’s class distribution
depends on the class assignments of the previous
message, yielding a model that retains sequential de-
pendencies between messages, while allowing for
finer grained class allocation than the block HMM.
Modeling messages (or more generally, text blocks)
as a mixture of multiple classes rather than a single
class gives rise to the “mixed membership” property.

In the subsections below, we formalize and ana-
lyze this new model.

2.1 Structure Assumptions

We first define the discourse structure and termi-
nology we will be assuming. The discourse struc-
ture is a directed graph, where nodes correspond to
segments of a document (which we will refer to as
“blocks” of text), and the edges define the dependen-
cies between them.



Thus, a text block is a set of tokens, while a doc-
ument consists of the discourse graph and all blocks
associated with it. In the context of modeling con-
versation threads, which will be the focus of our ex-
periments later, we will assume a block corresponds
to a single message in a thread. The parent of a mes-
sage m is the message to which it is a response; if
a message is not in response to anything in particu-
lar, then it has no parent. Any replies to the message
m are the children of m. The thread as a whole is
called a document.

The discourse graph should be acyclic. A directed
acyclic graph (DAG) offers a flexible representation
of discourse (Rosé et al., 1995), but for simplic-
ity, we will restrict this and assume that each sub-
graph is a tree; i.e. no message has multiple parents.
The graph as a whole may be a forest: for example,
someone could write a new message in a conversa-
tion that is not directly in reply to any previous mes-
sage, so this message would not have any parents,
and would form the root of a new tree in the forest.

2.2 Generative Story

Extending the block HMM, latent classes in M* are
now associated with each individual token, rather
than one class for an entire block. The key differ-
ence between the generative process behind M* and
the block HMM is that the transition distributions
are defined with a log-linear model, which uses class
assignments in a block as features to define the dis-
tribution over classes for the children of that block.
Put another way, a state in M* corresponds to a class
histogram, and transitions between states are func-
tions of the log-linear parameters.

Given a block b, we will use the notation b to de-
note the block’s feature vector, which consists of the
histogram of latent class assignments for the tokens
of b.! There are K classes. Additionally, we assume
each feature vector has an extra cell containing an
indicator denoting whether the block has no parent
— this allows us to learn transitions from a “start”
state. We also include a bias feature that is always
1, to learn a default weight for each class. There

'One could also use other functions of the class histograms
rather than the raw counts themselves. For example, we experi-
mented with binary indicator features (i.e. “does class k appear
anywhere in block b?”), but this performed consistently worse
in early experiments, and we do not consider this further.
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are thus K + 2 features which are used to predict
the probability of each of the K classes. The fea-
tures are weighted by transition parameters, denoted
A. The random variable z denotes a latent class, and
¢, is a discrete distribution over word types — that
is, each class is associated with a unigram language
model. The transition distribution over classes is de-
noted 7, which is given in terms of A and the feature
vector of the parent block.
Under this model, a corpus D is generated by:

1. Foreach (7, k) in the transition matrix Ay, x o
(a) Draw transition weight \;;, ~ N(0, o2).
2. For each class j:

(a) Draw word distribution ¢; ~ Dirichlet(w).

3. For each block b of each document d in D:
exp(A;.Fa)
)Y exp()\]T, a)

for all classes 7, where a is the feature vec-
tor for block a, the parent of b.
(b) For each token n in block b:
1. Sample class 2y ;) ~ Tp.
ii. Sample word w(y, ) ~ @.

(a) Set class probability m,; =

For each block of text in a document (e.g. each
message in a conversation), the distribution over
classes 7 is computed as a function of the feature
vector of the block’s parent and the transition pa-
rameters (feature weights) A. Each )j;, has an intu-
itive interpretation: a positive value means that the
occurrence of class k in a parent block increases the
probability that j will appear in the next block, while
a negative value reduces this probability.

The observed words of each block are generated
by repeatedly sampling classes from the block’s dis-
tribution 7, and for each sampled class z, a single
word is sampled from the class-specific distribution
over words ¢,. In contrast, under the block HMM, a
class z is sampled once from the transition distribu-
tion, and words are repeatedly sampled from ¢ ..

We place a symmetric Dirichlet prior on each ¢
with concentration parameter w, which smoothes the
word distributions, and we place a 0-mean Gaussian
prior on each A parameter, which acts as a regular-
izer. The graphical diagram is shown in Figure 1
along with the block HMM and LDA. This figure



shows how M* combines the sequential dependen-
cies of the block HMM with the token-specific class
assignments of LDA.

2.3 Discussion

Like the block HMM, M is a type of HMM. A latent
sequence under M* forms a Markov chain in which
a state corresponds to a histogram of classes. (For
simplicity, we are ignoring the extra features of the
start state indicator and bias in this discussion.) If
we assume a priori that the length of a block is un-
bounded, then this state space is N where 0 € N.
The probability of trans1t10n1ng from a state b to an-
other state b € NX i

P(b — b) x CNMultinomial(B\ﬁ(b), N) (1)

where N = >, by, (v is the probability that a
block has N tokens,? and 7(b) is the transition dis-
tribution given a vector b. This follows from the
generative story defined above, with an additional
step of generating the number of tokens /N from the
distribution (.

We currently define a block b’s distribution 7 in
terms of the discrete feature vector a given by its
parent a. We could have instead made 7, a func-
tion of the parent’s distribution 7, — this would lead
to a model that assumes a dynamical system over a
continuous space rather than a Markov chain. How-
ever, as a generative story we believe it makes more
sense for a block’s distribution to depend on the ac-
tual class values which are emitted by the parent.
Similar arguments are made by Blei and Mcauliffe
(2007) when designing supervised topic models.

Under a block HMM with one class per block,
there are K states corresponding to the K classes,
requiring K x K parameters to define the transition
matrix. Under M*, there is a countably infinite num-
ber of states, but the transitions are still defined by
K x K parameters (ignoring extra features). M* thus
utilizes a larger state space without increasing the
number of free parameters.

3 Inference and Parameter Estimation

We must infer the values of the hidden variables z
as well as the parameters for the word distributions

2The distribution over the number of tokens can be arbitrary,
as this is observed and does not affect inference. In topic mod-
els, this is sometimes assumed to be Poisson (Blei et al., 2003).
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® and transition weights A. Standard HMM dy-
namic programming algorithms cannot straightfor-
wardly be used for M* because of the unboundedly
large state space. We instead turn to Markov chain
Monte Carlo (MCMC) methods as a tool for approx-
imate inference. We derive a stochastic EM algo-
rithm in which we alternate between sampling class
assignments for the word tokens and optimizing the
transition parameters, outlined in the following two
subsections.

3.1 Latent Class Sampling

To explore the posterior distribution over latent
classes, we use a collapsed Gibbs sampler such that
we marginalize out each word multinomial ¢ and
only need to sample the token assignments z con-
ditioned on each other. Given the current state of the
sampler, we sample a token’s class according to:

P(Z(b,n) - k’Z—(b,n)?Wa /\7w) X (2)

nJ

exp(Afa) n¥+w HH exp( )\ b) ¢
S exp(ALa) ng + Wwos j > exp( )\Tb)

The notation n;’ indicates the number of tokens
with word type w that have been assigned to topic k.
W is the vocabulary size. a is the parent block of b,
and C is the set of b’s children. b is the feature vector
corresponding to block b (i.e. the class histogram
plus the bias feature), where the histogram includes
the incremented count of the candidate class k.

This sampling distribution is very similar to that
of LDA (Griffiths and Steyvers, 2004), but the distri-
bution over “topics” is now a function of the previ-
ous block, which gives the leftmost term. The right-
most term is a result of the dependency of the child
blocks (C) on the class assignments of b.

Due to the rightmost term, the complexity of com-
puting the sampling distribution is quadratic in the
number of classes, rather than the linear complexity
of a single-class HMM. Our assumption is that the
number of sequence-dependent classes (e.g. speech
acts or discourse states) will be reasonably small. If
it is desired to have a large number of latent topics as
is common in LDA, this model could be combined
with a standard topic model without sequential de-
pendencies, as explored by Ritter et al. (2010).



3.2 Transition Parameter Optimization

Differentiating the corpus likelihood with respect to
A yields the standard equation for log-linear models:

LN S -

Ok 7 > exp(Aja) o?

3)

where a is the parent of block b, a is the feature vec-

tor associated with a, nj is the number of times class

z occurs in block b and ny is the total number of to-
kens in block b.

Standard optimization methods can be used to
learn these parameters. In our experiments, we find
that we obtain good results by simply performing
a single iteration of gradient ascent after each sam-
pling iteration ¢,3 with the following update:

ol
PUARISS\Op n(t)m (4)

where 7 is a step size function.

4 Related Work

Hidden Markov models have a recent history as sim-
ple models of document structure. Stolcke et al.
(2000) used HMMs as a general model of discourse
with an application to speech acts (or dialog acts)
in conversations. Barzilay and Lee (2004) applied
HMMs as an unsupervised model of discourse. This
work used HMMs to model the progression of sen-
tences in articles, and was shown to be useful for or-
dering sentences and generating summaries of news
articles. More recently, Wang et al. (2011b) exper-
imented with similar tasks using a related HMM-
based model called the Structural Topic Model.
Unsupervised HMMs were applied to conversa-
tional data by Ritter et al. (2010) who experimented
with Twitter conversations. The authors also experi-
mented with incorporating a topic model on top of
the HMM to distinguish speech acts from topical
clusters, with mixed results. Joty et al. (2011) ex-
tended this work by enriching the emission distribu-
tions and using additional features such as speaker
and position information. An approach to unsuper-
vised discourse modeling that does not use HMMs is

3Incremental updates are justified under the generalized EM
algorithm (Dempster et al., 1977). Each gradient step with re-
spect to A corresponds to a generalized M-step, while each sam-
pling iteration corresponds to a stochastic E-step.
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the latent permutation model of Chen et al. (2009).
This model assumes each segment (e.g. paragraph)
in a document is associated with a latent class or
topic, and the ordering of topics within a document
is modeled as a deviation from some canonical or-
dering.

Extensions to the block HMM have incorpo-
rated mixed membership properties within blocks,
notably the Markov Clustering Topic Model
(Hospedales et al., 2009), which allows each HMM
state to be associated with its own distribution over
topics in a topic model. Like the block HMM, this
still assumes a relatively small number of HMM
states, but with an extra layer of latent variables be-
fore the observations are emitted. This is more re-
strictive than the unbounded state space of M.

Decoupling HMM states from latent classes was
considered by Beal et al. (1997) with the Factorial
HMM, which uses factorized state representations.
The Factorial HMM is most often used to model in-
dependent Markov chains, whereas M* has a dense
graphical model topology: the probability of each
of the latent classes depends on the counts of all of
the classes in the previous block. The trick in M*
is to define the transition matrix via a function of
a limited number of parameters, allowing tractable
inference in a model with arbitrarily many states.

In topic models, log-linear formulations of la-
tent class distributions* are utilized in correlated
topic models (Blei and Lafferty, 2007) as a means
of incorporating covariance structure among topic
probabilities. Applying log-linear regression to po-
tentially many features was combined with LDA
by Mimno and McCallum (2008), who model the
Dirichlet prior over topics as a function of document
features. In M?, such features would correspond to
the class histograms of previous blocks, introducing
additional dependencies between documents.

One topic model that imposes sequential depen-
dencies between documents is Sequential LDA (Du
et al., 2010), which models a document as a se-
quence of segments (such as paragraphs) governed
by a Pitman-Yor process, in which the latent topic
distribution of one segment serves as the base dis-
tribution for the next segment. This is in the spirit

*This formulation corresponds to the natural parameteriza-
tion of the multinomial distribution.



of our work, where the latent classes in a segment
depend on the class distribution of the previous seg-
ment. By using the Pitman-Yor process, however,
this work assumes topics are positively correlated,
i.e. the occurrence of a topic in one segment makes
it likely to appear in the next. In contrast, we wish
to learn arbitrary transitions, both positive and neg-
ative, between the latent classes.

5 Experiments with Conversation Data

We experiment with two corpora of text-based asyn-
chronous conversations on the Web. One of these is
annotated with speech act labels, against which we
compare our unsupervised clusters. We measure the
predictive capabilities of the model via perplexity
experiments and the task of thread reconstruction.

5.1 Data Sets

First, we use a corpus of discussion threads from
CNET forums (Kim et al., 2010), which are mostly
technical discussion and support. This corpus in-
cludes 321 threads and a total of 1309 messages,
with an average message length of 78 tokens after
preprocessing.’ Second, we use the Twitter data set
created by Ritter et al. (2010). We consider 36K con-
versation threads for a total of 100K messages with
average length 13.4 tokens.

Both data sets are already annotated with the re-
ply structure, so the discourse graph is given. We
preprocess the data by treating contiguous blocks
of punctuation as tokens, and we remove infrequent
words. The Twitter corpus has some additional pre-
processing, such as converting URLs to a single
word type.

5.2 Baseline Models

Our work is motivated by the Bayesian HMM ap-
proach of Ritter et al. (2010) — the model we re-
fer to as the block HMM (BHMM) — and we con-
sider this our primary baseline. (See also (Goldwa-
ter and Griffiths, 2007) for more details on Bayesian
HMMs with Dirichlet priors.) We also compare
against LDA, which makes latent assignments at the
token-level, but blocks of text are independent of

>Three messages in this corpus have multiple parents. For

the sake of conciseness, we simply remove these threads rather
than introducing a method to model multiple parents.
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each other. In other words, BHMM models sequen-
tial dependencies but allows only single-class mem-
bership, whereas LDA uses no sequence information
but has a mixed membership property. M* combines
these two properties.

We use standard Gibbs samplers for both baseline
models, and we optimize the Dirichlet hyperparam-
eters (for the transition and topic distributions) using
Minka’s fixed-point iterations (2003).

5.3 Incorporating Background Distributions

In our experiments, we find that the intrusion of
common stop words can make the results difficult
to interpret, but we do not want to perform simple
stop word removal because common function words
often play important roles in the latent classes (i.e.
speech acts) of the conversation data we consider
here. We instead handle this by extending our model
to include a “background” distribution over words
which is independent of the latent classes in a docu-
ment; this was also done by Wang et al. (2011b).

The idea is to introduce a binary switching vari-
able x into the model which determines whether a
word is generated from the general background dis-
tribution or from the distribution specific to a latent
class z. Loosely, if the marginal probability of a
word was given by p(w) = ), p(w|z)p(z), the
introduction of a background distribution gives the
marginal probability p(w) = p(x = 0)p(w|B) +
p(x = 1), p(w|z). This is common practice and
we will not go into detail; see (Chemudugunta et al.,
2006) for a general example on sampling switching
variables. We augment all three models with a back-
ground distribution in exactly the same way, so that
the comparison is fair. We use a Beta(10.0,10.0)
prior over the switching distribution.

5.4 Experimental Setup

All of our results are averaged across four randomly
initialized chains which are run for 5000 iterations,
with five samples collected during the final 500 it-
erations. We take small gradient steps of decreasing
size with n(¢) = 0.1/(1000 + ¢t).

We set 02> = 10.0 as the variance of the A
weights. We use optimized asymmetric priors as de-
scribed in §5.2, and we use a symmetric Dirichlet
for the word distributions, following Wallach et al.
(2009). We sample the scaling hyperparameter w via



H 5 \ 10 \ 15 \ 20 \ 25
CNET
Unigram || 63.07 | 63.07 | 63.07 | 63.07 | 63.07
LDA 57.16 | 5435 | 52.88 | 51.63 | 50.50
BHMM || 61.26 | 61.06 | 60.92 | 60.86 | 60.85
M* 60.38 | 59.58 | 59.26 | 59.21 | 59.25
Twitter
Unigram || 93.00 | 93.00 | 93.00 | 93.00 | 93.00
LDA 83.70 | 78.40 | 74.01 | 70.91 | 70.16
BHMM || 90.51 | 89.94 | 89.68 | 89.59 | 89.38
M* 88.44 | 86.17 | 85.50 | 85.55 | 86.31

Table 1: Average perplexity of held-out data for various
numbers of latent classes.

Metropolis-Hastings proposals: we add Gaussian-
distributed noise to the log of the current w, then
exponentiate this to yield the proposed w™"). This
log-space proposal ensures that w is always positive.

When computing the transition distributions for
M*, we normalize the class histograms so that the
counts to sum to 1. This helps with numeric sta-
bility because the input vectors stay within a small
bounded range.®

5.5 Experimental Results

5.5.1 Perplexity

We begin with standard measures of the perplex-
ity of held-out data. For these experiments, we
train on 75% of the data, and test on the remaining
25%. We run the sampler for 500 iterations using the
word distributions and transition parameters learned
during training; we compute the average perplexity
from the final ten sampling iterations.

Results for different numbers of classes are shown
in Table 1. These results demonstrate the advan-
tage of models with the mixed membership property.
Although LDA outperforms both sequence models,
this is be expected. Each block’s topic distribution
is stochastically generated with LDA, whereas in the
two sequence models, the distribution over classes
is simply a deterministic function of the previous
block. This allows LDA to infer parameters that fit
the data more tightly. Comparing only the two se-
quence models, we find that M* does significantly
better than BHMM in all cases with p < 0.05.

Implementations of both M* and the block HMM will be
available at http://cs. jhu.edu/~mpaul
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Figure 2: Accuracy at the task of thread reconstruction.
The horizontal bar indicates a random baseline.

If capturing sequence information is not impor-
tant, then LDA may provide a better fit to a corpus
than sequence models. In the next two subsections,
we will consider tasks where the sequential structure
is important, thus LDA is not an appropriate choice.

5.5.2 Thread Reconstruction

A natural predictive task of the sequence models
is to reconstruct the discourse graph of a document
where the structure is unknown. In the conversa-
tion domain, this corresponds to the task of thread
reconstruction (Yeh and Harnly, 2006; Wang et al.,
2011c). Given only a flat structure, can we recover
the reply structure of messages in the conversation?

Previous work with BHMM found the optimal
structure by computing the likelihood of all permu-
tations of a thread or sequence (Ritter et al., 2010;
Wang et al., 2011b). We take a more practical ap-
proach and find the optimal structure as part of our
inference procedure. We do this by treating the par-
ent of each block as a hidden variable to be inferred.
The parent of block b is the random variable 7, and
we alternate between sampling values of the latent
classes z and the parents r. The sampling distri-
butions are annealed, as a search technique to find
the best configuration of assignments (Finkel et al.,
2005). At temperature 7, we sample a block’s parent
according to:

exp( )\;.Fa)

ni/T
P(ry = alz, \) H (Zj/ exp()\T,a)> %)



For each conversation thread, any message is a
candidate for the parent of block b (except b itself)
including the dummy “start” block.

As before, we train on 75% of the data, and run
this experiment on the remaining 25%. We run the
sampler for 500 iterations, cooling 7 by 1% after
each iteration, where 70) = 1. We measure accu-
racy as the percentage of blocks whose assignment
for r, matches the true parent. For each fold, we
run this estimation procedure from five random ini-
tializations and average the results. Like Ritter et al.
(2010), we do not enforce temporal constraints in the
thread structure for this experiment. We are purely
evaluating the predictive abilities of the model rather
than its performance in a full-fledged reconstruction
setup, which would require richer features beyond
the scope of this paper.

Figure 2 shows results comparing M* against
BHMM. Because all blocks are independent under
LDA, it cannot be used in this experiment; using
LDA would amount to a random baseline.

We plot the distribution of results from vari-
ous samples and various numbers of classes in
{5,...,25}. Most of the variance is across folds
and samples; we find that there is not a strong trend
in accuracy as a function of the number of classes.
This suggests that most of the sequence predictions
are carried by a small subset of the classes.

On average, M* outperforms BHMM by more
than 15 points on the CNET corpus. M* is also bet-
ter on the Twitter corpus, but the difference is not so
stark. This seems to confirm our intuition that the
advantage of M* over BHMM is greater when the
blocks are longer; tweets may be short enough that
the single-class assumption is not as limiting.

5.5.3 Speech Act Discovery

Thus far, we have investigated the predictive
power of the model, but we would also like to deter-
mine if the inferred clusters correspond to human-
interpretible classes. In the case of conversation
data, our hope is that some of the latent classes
represent speech acts or dialog acts (Searle, 1975).
While there is a body of work in supervised speech
act classification (Cohen et al., 2004; Bangalore et
al., 2006; Surendran and Levow, 2006; Qadir and
Riloff, 2011), the variety of conversation domains
on the Web motivates the use of unsupervised ap-
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Figure 3: The variation of information between the
human-created speech act annotations of the CNET cor-
pus and the latent class assignments by various models.

proaches.

The CNET corpus is annotated with twelve
speech act classes: QUESTION and ANSWER, which
are both broken down into multiple sub-classes, as
well as RESOLUTION, REPRODUCTION, and OTHER
(Kim et al., 2010). We would like to quantitatively
measure how closely the latent states induced by our
model match these annotations.’

We can measure this with variation of informa-
tion (Meila, 2003), which has been used in recent
years for unsupervised evaluation, e.g. in part-of-
speech clustering (Goldwater and Griffiths, 2007).
Given two sets of variable assignments z and z’, the
variation of information is defined as H(Z|Z') +
H(Z'|Z). In other words, given one clustering, how
much uncertainty do we have about the other? Re-
sults are shown in Figure 3: a lower value corre-
sponds to higher similarity.

On the CNET corpus, M# outperforms both base-
lines in all cases by a very significant margin. Qual-
itatively, we see clusters and transition parameters
that make sense. For example, the class with top
words {i, my, have, computer,am,?, tried, help}
is most likely to begin a thread (with A = +1.94)
and appears to describe questions or requests for

"Some messages have multiple labels. Since messages are
not annotated at finer granularities, we handle this by simply
duplicating such messages, once per label, and measuring clus-
tering performance on this expanded set of labeled data which
now has one label per token.
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help. The class is not likely to be followed by itself
(A = —0.32) but is likely to be followed by the class
with words {you,your, /,com, ., http, windows}
(with A = +1.38).

The Twitter corpus does not have speech act an-
notations, so we offer example output in Figure 4.
We again see patterns that we might expect to find in
social media conversations, and some classes appear
to correspond to speech acts such a declarations, per-
sonal questions, and replies. For example, the class
in the center of the figure has words like you and but
which suggests it is used in reply to other messages,
and indeed we see that it has a positive weight of
following almost every class, but a negative weight
for actually starting a thread. Conversely, the class
containing URLs (which corresponds to the act of
sharing news or media) is likely to begin a thread,
but is not likely to follow other classes except itself.

How well unsupervised models can truly capture
speech acts is an open question. Much as LDA
“topics” do not always correspond to what humans
would judge to be semantic classes (Chang et al.,
2009), the conversation classes inferred by unsu-
pervised sequence models are similarly unlikely to
be a perfect fit to human-assigned classes. Never-
theless, these results suggest M* is a step forward.
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Our model provides a framework for defining inter-
message transitions as functions of multiple classes,
which will be a desirable property for many corpora.

6 Conclusion

We have presented mixed membership Markov
models (M%), which extend the simple HMM ap-
proach to discourse modeling by positing class as-
signments at the level of individual tokens. This al-
lows blocks of text to belong to potentially multiple
classes, a property that relates M* to topic models.
This type of model can be viewed as an HMM with
an expanded state space, but because the transition
probabilities are a function of a small number of pa-
rameters, the output remains human-interpretible.
M* can be taken as a general family of models and
can be readily extended. In this work, we focused
on introducing a model of inter-message structure,
but certainly more sophisticated models of intra-
message structure beyond unigram language mod-
els could be incorporated into M*. Standard topic
model extensions such as n-gram models (Wallach,
2006) can straightforwardly be applied here, and in-
deed we already applied such an extension by in-
corporating background distributions in §5.3. For
conversational data, it could make sense to segment



messages (e.g. into sentences) and constraint each
segment to belong to one class or speech act; modi-
fications along these lines have been applied to topic
models as well (Gruber et al., 2007). While we have
focused on conversation modeling, M* is a general
probabilistic model that could be applied to other
discourse applications, for example modeling sen-
tences or paragraphs in articles rather than messages
in conversations; it could also be applied to data be-
yond text.

Compared to a Bayesian block HMM, M* per-
forms much better at a variety of tasks. A draw-
back is that the time complexity of inference as pre-
sented here is quadratic in the number of classes
rather than linear. Improving this may be the subject
of future research. Another potential avenue of fu-
ture work is to model transitions such that a Dirichlet
prior for the class distribution of a block, rather than
the class distribution itself, depends on the previous
class assignments. This would yield a model that
more closely resembles LDA, but with topic priors
that encode sequence information.
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Abstract
Entity  Linking (EL) has received

considerable attention in recent years.
Given many name mentions in a document,
the goal of EL is to predict their referent
entities in a knowledge base. Traditionaly,
there have been two distinct directions of
EL research: one focusing on the effects of
mention’'s context compatibility, assuming
that “the referent entity of a mention is
reflected by its context”; the other dealing
with the effects of document’'s ropic
coherence, assuming that “a mention’s
referent entity should be coherent with the
document’s main topics”. In this paper, we
propose a generative model — called entity-
topic model, 10 effectively join the above
two complementary directions together. By
jointly modeling and exploiting the context
compatibility, the topic coherence and the
correlation between them, our model can
accurately link all mentions in a document
using both the local information (including
the words and the mentions in a document)
and the globa knowledge (including the
topic  knowledge, the entity context
knowledge and the entity name knowledge).
Experimental results demonstrate the
effectiveness of the proposed model.

1 Introduction

Entity Linking (EL) has received considerable
research attention in recent years (McNamee &
Dang, 2009; J et a., 2010). Given many name
mentions in a document, the goal of EL is to
predict their referent entities in a given knowledge
base (KB), such as the Wikipedia®. For example, as

L www.wikipedia.org
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shown in Figure 1, an EL system should identify
the referent entities of the three mentions WIWDC,
Apple and Lion correspondingly are the entities
Apple Worldwide Developers Conference, Apple
Inc. and Mac OS X Lion in KB. The EL problem
appears in many different guises throughout the
areas of natural language processing, information
retrieval and text mining. For instance, in many
applications we need to collect al appearances of a
specific entity in different documents, EL is an
effective way to resolve such an information
integration problem. Furthermore, EL can bridge
the mentions in documents with the semantic
information in knowledge bases (e.qg., Wikipedia
and Freebase *), thus can provide a solid
foundation for knowledge-rich methods.

( N
/Apple Worldwide
P, >| Developers
| Conference
confce_),— I N I B > |AppleInc.

introducesits
new operating
system release -

----- -

——————— >

- J
Knowledge Base

Document
Figure 1. A Demo of Entity Linking

Unfortunately, the accurate EL is often hindered
by the name ambiguity problem, i.e., a name may
refer to different entities in different contexts. For
example, the name Apple may refer to more than
20 entities in Wikipedia, such as Apple Inc., Apple
(band) and Apple Bank. Traditionally, there have
been two distinct directions in EL to resolve the
name ambiguity problem: one focusing on the
effects of mention's context compatibility and the
other dealing with the effects of document’s ropic
coherence. EL methods based on context

2 www.freebase.com
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compatibility assume that “the referent entity of a
mention is reflected by its context”(Mihalcea &
Cosomai, 2007; Zhang et a., 2010; Zheng et d.,
2010; Han & Sun, 2011; Kataria et a., 2011; Sen
2012). For example, the context compatibility
based methods will identify the referent entity of
the mention Lion in Figure 1 is the entity Mac OS
X Lion, since this entity is more compatible with its
context words operating system and release than
other candidates such as Lion(big cats) or
Lion(band). EL methods based on topic coherence
assume that “a mention’s referent entity should be
coherent with document’s main topics” (Medelyan
et a., 2008; Milne & Witten, 2008; Kulkarni et al.,
2009; Han et a., 2011). For example, the topic
coherence based methods will link the mention
Apple in Figure 1 to the entity Apple Inc., since it
is more coherent with the document’s topic MAC
OS X Lion Release than other referent candidates
such as Apple (band) or Apple Bank.

In recent years, both of the above two EL
directions have shown their effectiveness to some
extent, and obviously they are complementary to
each other. Therefore we believe that bring the
above two directions together will enhance the EL
performance. Traditionally, the above two
directions are usually be brought together using a
hybrid method (Zhang and Sim, 2011; Ratinov et
a., 2011, Han et al., 2011), i.e, the context
compatibility and the topic coherence are first
separately modeled, then their EL evidence are
combined through an additiona model. For
example, Zhang and Sim (2011) first models the
context compatibility as a context similarity and
the topic coherence as a similarity between the
underlying topics of documents and KB entries,
then these two similarities are combined through
an additiona SVM classifier for the final EL
decision.

The main drawback of these hybrid methods,
however, is that they model the context
compatibility and the topic coherence separately,
which makes it difficult to capture the mutual
reinforcement e€ffect between the above two
directions. That is, the topic coherence and the
context compatibility are highly correlated and
their evidence can be used to reinforce each other
in EL decisions. For example, in Figure 1, if the
context compatibility gives a high likelihood the
mention Apple refers to the entity Apple Inc., then
this likelihood will give more evidence for this
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document’s topic is about MAC OS X Lion, and it
in turn will reinforce the topic coherence between
the entity MAC OS X Lion and the document. In
reverse, once we known the topic of this document
is about MAC OS X Lion, the context compatibility
between the mention Apple and the entity Apple
Inc. can be improved as the importance of the
context words operating system and release will be
increased using the topic knowledge. In this way,
we believe that modeling the above two directions
Jjointly, rather than separately, will further improve
the EL performance by capturing the mutual
reinforcement  effect between the context
compatibility and the topic coherence.

In this paper, we propose a method to jointly
model and exploit the context compatibility, the
topic coherence and the correlation between them
for better EL performance. Specificaly, we
propose a generative probabilistic model — called
entity-topic model, which can uniformly model the
text compatibility and the topic coherence as the
statistical dependencies between the mentions, the
words, the underlying entities and the underlying
topics of a document by assuming that each
document is generated according to the following
two assumptions:

1) Topic coherence assumption: All entities
in a document should be centered around the main
topics of the document. For example, the entity
Apple Inc. tends to occur in documents about /7,
but the entity Apple Bank will more likely to occur
in documents about bank or investment.

2) Context compatibility assumption: The
context words of a mention should be centered on
its referent entity. For example, the words
computer, phone and music tends to occur in the
context of the entity Apple Inc., meanwhile the
words loan, invest and deposit will more likely to
occur in the context of the entity Apple Bank.

In this way, the entity-topic model uniformly
models the context compatibility, the topic
coherence and the correlation between them as the
dependencies between the observed information
(the mentions and the words) in a document and
the hidden information we want to know (the
underlying fopics and entities) through the global
knowledge (including the topic knowledge, the
entity name knowledge and the entity context
knowledge). And the EL problem can now be
decomposed into the following two inference tasks:



1) Predicting the underlying topics and the
underlying entities of a document based on the
observed information and the global knowledge.
We call such atask the prediction task;

2)  Estimating the global knowledge from data.

Notice that the topic knowledge, the entity

name knowledge and the entity context

knowledge are al not previously given, thus we

need to estimate them from data. We call such a

task the knowledge discovery task.

Because the accurate inference of the above two
tasks is intractable in our entity-topic model, this
paper also develops an approximate inference
algorithm — the Gibbs sampling algorithm to solve
them.

Contributions. The main contributions of this
paper are summarized bel ow:

* We propose a generative probabilistic
model, the entity-topic model, which can jointly
model and exploit the context compatibility, the
topic coherence and the correlation between them
for better EL performance;

*  Wedevelop a Gibbs sampling algorithm to
solve the two inference tasks of our model: 1)
Discovering the global knowledge from data; and 2)
Collectively making accurate EL decisions.

This paper is organized as follows. Section 2
describes the proposed entity-topic model. Section
3 demonstrates the Gibbs sampling algorithm. The
experimental results are presented and discussed in
Section 4. The related work is reviewed in Section
5. Finaly we conclude this paper in Section 6.

2  The Entity-Topic Model for Entity
Linking

In this section, we describe the proposed entity-
topic model. In following we first demonstrate how
to capture the context compatibility, the topic
coherence and the correlation between them in the
document generative process, then we incorporate
the global knowledge generation into our model
for knowledge estimation from data.

2.1 Document Generative Process

As shown in Section 1, we jointly model the
context compatibility and the topic coherence as
the dtatistical dependencies in the entity-topic
model by assuming that al documents are
generated in a topica coherent and context

107

compatible way. In following we describe the
document generative process.

In our model, each document d is assumed
composed of two types of information, i.e., the
mentions and the words. Formally, we represent a
document as:

A document is a collection of M mentions and
N words, denoted as d = {m,, ..., myy wy, ...,
wyt, with m; the i" mention and w; the ™" word.

For example, the document in Figure 1 is
represented as d = {WWDC, Apple Lion; at, the,
conference, ...}, where WWDC, Apple, Lion are
the three mentions and the other are the words.

To generate a document, our model relies on
three types of global knowledge, including:

* Topic Knowledge ¢ (The entity
distribution of topics): In our model, al entitiesin
a document are generated based on its underlying
topics, with each topic is a group of semantically
related entities. Statistically, we model each topic
as a multinomial distribution of entities, with the
probability indicating the likelihood an entity to be
extracted from this topic. For example, we may
have a topiC @ apple Inc.= {Steve Jobs""2 iPhone™",
iPod"”, ...}, indicating the likelihood of the entity
Steve Jobs be extracted from thistopicis 0.72, etc.

*  Entity Name Knowledge ¢ (The name
distribution of entities): In our model, all name
mentions are generated using the name knowledge
of its referent entity. Specificaly, we model the
name knowledge of an entity as a multinomial
distribution of its names, with the probability
indicating the likelihood this entity is mentioned
by the name. For example, the name knowledge of
the entity Apple Inc. may be ¢ appic rne. = { Apple””’,
Apple Computer Inc.""’, Apple Inc."”, ...}, indicating
that the entity Apple Inc. is mentioned by the name
Apple with probability 0.51, etc.

. Entity Context Knowledge & (The context
word distribution of entities): In our model, al
context words of an entity’s mention are generated
using its context knowledge. Concretely, we model
the context knowledge of an entity as a
multinomial distribution of words, with the
probability indicating the likelihood a word
appearing in this entity’s context. For example, we
may have {appie rne.= {phoneom, computer™’, 17",
phone”®”, ..}, indicating that the word computer
appearing in the context of the entity Apple Inc.
with probability 0.1, etc.



Given the topic knowledge ¢ , the entity name
knowledge 1/ and the entity context knowledge &:
1. For each doc d in D, sample its topic distribution
04 ~ Dir(«);
2. For each of the M, mentions m; in doc d:
a) Sample atopic assignment z; ~ Mult(60y);
b) Sample an entity assignment ¢; ~ Mult(¢s,);
¢) Sampleamention m; ~ Mult(ve,);
3. For each of the Nz words w; in doc d:
a) Sample atarget entity it describesfromd’'s
referent entitiesa; ~ Unif(em,, €may - s €my);
b) Sample adescribing word using a;’ s context
word distribution w; ~ Mult(&,,).

Figure 2. The document generative process, with
Dir(.), Mult(.) and Uni f(.) correspondingly
Dirichlet, Multinomial and Uniform distribution

Given the entity list E ={ej, e, ..., ez} inthe
knowledge base, theword list V ={w;, w,, ..., w,},
the entity name list K = {n;, n,, ..., nxg} and the
global knowledge described in above, the
generation process of a document collection
(corpus) D ={d,, d,, ..., dp} is shown in Figure 2.
To demonstrate the generation process, we aso
demonstrate how the document in Figure 1 can be
generated using our model in following steps:

Step 1. The model generates the topic
distribution of the document as 8, = { Apple Inc."*,
Operating System(0S)"”’};

Step 2: For the three mentions in the document:

i. According to the topic distribution 6,4, the
model generates their topic assignments as
z;=Apple Inc., z, = Apple Inc., z; = OS;,

ii. According to the topic knowledge ¢4, nc.
¢os and the topic assignments z;, z,, z;, the model
generates their entity assignments as e; = Apple
Worldwide Developers Conference, e; = Apple Inc.,
e; = Mac OS X Lion;

iii. According to the name knowledge of the
entities Apple Worldwide Developers Conference,
Apple Inc. and Mac OS X Lion, our model
generates the three mentions as m;=WWDC, m, =
Apple, m; = Lion;

Step 3: For all wordsin the document:

i. According to the referent entity set in
document ey = {dpple Worldwide Developers
Conference, Apple Inc., Mac OS X Lion}, the
model generates the target entity they describes as
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as=Apple Worldwide Developers Conference and
a,=Apple Inc.,

ii. According to their target entity and the
context knowledge of these entities, the model
generates the context words in the document. For
example, according to the context knowledge of
the entities Apple Worldwide Developers
Conference, the model generates its context word
w; =conference, and according to the context
knowledge of the entity Apple Inc., the model
generates its context word w, = introduces.

Through the above generative process, we can
see that al entities in a document are extracted
from the document’s underlying topics, ensuring
the topic coherence; and all words in a document
are extracted from the context word distributions
of its referent entities, resulting in the context
compatibility. Furthermore, the generation of
topics, entities, mentions and words are highly
correlated, thus our model can capture the
correlation between the topic coherence and the
context compatibility.

2.2 Global Knowledge Generative Process

The entity-topic model relies on three types of
global knowledge (including the topic knowledge,
the entity name knowledge and the entity context
knowledge) to generate a document. Unfortunately,
all three types of global knowledge are unknown
and thus need to be estimated from data. In this
paper we estimate the global knowledge through
Bayesian inference by also incorporating the
knowledge generation process into our model.

Specifically, given the topic number 7, the entity
number E, the name number K and the word
number ¥, the entity-topic model generates the
global knowledge as follows:

1) ¢|6~ Dir(B)

For each topic z, our model samples its entity
distribution ¢, from an E-dimensional Dirichlet
distribution with hyperparameter 3.

2) ly ~ Dir(y)

For each entity e, our model samples its name
distribution 1, from a K-dimensional Dirichlet
distribution with hyperparameter .

3) €[5 ~ Dir(6)



For each entity e, our model samples its context
word distribution &, from a V-dimensional
Dirichlet distribution with hyperparameter 4.

Finally, the full entity-topic model is shown in
Figure 3 using the plate representation.
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Figure 3. The plate representation of the entity-
topic model
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2.3 TheProbability of a Corpus

Using the entity-topic model, the probability of
generating a corpus D={d, d, ..., dp} given
hyperparameters «, 3, v and § can be expressed as:

P(D;aaﬂa/y’(s) = HP(md,deé,ﬂ,%(s)
d

= H Z P(eql|o, )P(mqleq,y)P(wdleq,d)

d eq

/ ¢|ﬂ)/ W [1 3 Plmalea, )

d eq

y /’5 P(§|5);P(atﬂed)P(Wdlad,Q

X /P(6|a)P(ed|6', @)dbdedpdd (2.1)

[
where mgq and eq correspondingly the set of
mentions and their entity assignments in document
d, wq and aq correspondingly the set of words and
their entity assignmentsin document d.

3 Inferenceusing Gibbs Sampling

In this section, we describe how to resolve the
entity linking problem using the entity-topic model.
Overadll, there were two inference tasks for EL:
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1) The prediction task. Given a document d,
predicting its entity assignments (eq for mentions
and aq for words) and ropic assignments (zq).
Notice that here the EL decisions are just the
prediction of per-mention entity assignments (eq).

2) The knowledge discovery task. Given a
corpus D={d;, d,, ..., dp}, estimating the global
knowledge (including the entity distribution of
topics ¢, the name distribution ¢ and the context
word distribution & of entities) from data.

Unfortunately, due to the heaven correlation
between topics, entities, mentions and words (the
correlation is also demonstrated in Eqg. (2.1), where
the integra is intractable due to the coupling
between 6, ¢, ¥ and &), the accurate inference of
the above two tasks is intractable. For this reason,
we propose an approximate inference algorithm —
the Gibbs sampling algorithm for the entity-topic
model by extending the well-known Gibbs
sampling algorithm for LDA (Griffiths & Steyvers,
2004). In Gibbs sampling, we first construct the
posterior distribution P(z,e,a|D) , then this
posterior distribution is used to: 1) estimate 8, ¢, ¥
and &; and 2) predict the entities and the topics of
all documentsin D. Specifically, wefirst derive the
joint posterior distribution from Eq. (2.1) as:

P(z,e,a|D) x P(z)P(e|z)P(m|e)P(ale)P(w|a)

where
a+ ChT)
D(To+ CDT)
isthe probablllty of the jOI nt topic assignment z to
al mentionsm in corpusD and
Eﬁ H L'(8+Ce")
is the condltlonal probab|I|ty of the joint entity

assignments e to all mentions m in corpus D given
all topic assignments z, and
L(y+CEHY)

o) = ['(Kv+ CEM)

is the condltlonal probablllty of al mentions m
given all per-mention entity assignments e, and

HH

d=1eCeq
is the conditional probab|I|ty of the joint entity
assignments a to all words w in corpus D given all
per-mention entity assignments e, and

FTaD +
HH

P(z) = (31)

FK’Y EHH

P(m (3.3)

Cde CdeA (3.4)

P(ale) =




I'(V6) . g vy [1,T(6 + CEV

P(W|a) = (FE(S)V) )E H l}\(vé i ng))

is the conditional probability of all words w given
all per-word entity assignments a. In al above
formulas, I'(.) is the Gamma function, C27 is the
times topic ¢ has been assigned for al mentionsin
document d, CLT =Y, CP7 is the topic number
in document d, and CLE, CEM CcDE cDA CEW

(3.5)

te ' Yem ew
have similar explanation.

Based on the above joint probability, we
construct a Markov chain that converges to the
posterior distribution P(z,e,a|D) and then draw
samples from this Markov chain for inference. For
entity-topic model, each state in the Markov chain
is an assignment (including topic assignment to a
mention, entity assignment to a mention and entity
assignment to a word). In Gibbs sampling, all
assignments are sequentially sampled conditioned
on all the current other assignments. So here we
only need to derive the following three fully
conditional assignment distributions:

1) P(z; =t|z—;,e,a,D): the topic assignment
distribution to a mention given the current
other topic assignments z_;, the current
entity assignmentse and a;

2) P(e; =e|z,e_;,a,D) the  entity
assignment distribution to a mention given
the current entity assignments of al other
mentions e_, the current topic assignments
z and the current entity assignments of
context words a;

3) P(a; =e|z,e,a_;,D) the  entity
assignment distribution to a context word
given the current entity assignments of all
other context words a_;, the current topic
assignments z and the current entity
assignments e of mentions.

Using the Formula 3.1-3.5, we can derive the
above three conditional distributions as (where m;
is contained in doc d):

C(D—:Iiﬂ)dt ta y C(T—Ei‘)te +5
Cl%a +Ta C5, +EB
where the topic assignment to a mention is
determined by the probability this topic appearing
in doc 4 (the 1% term) and the probability the
referent entity appearing in this topic (the 2™ term);

P(z =t|z_;,e,a,D) x
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P(e; =e|z,e_;,a,D)

C{_’f)te +0 C(E_ﬂgem +

Clhv +EB~ CEY., + K
where the entity assignment to a mention is
determined by the probability this entity extracted
from the assigned topic (the 1% term), the
probability this entity is referred by the name m
(the 2™ term) and the contextual words describing
this entity in doc d (the 3 term);

Ccnr (—hew 9
CRF CPR..+Vi
where the entity assignment to a word is
determined by the number of times this entity has
been assigned to mentions in doc 4 (the 1% term)
and the probability the word appearing in the
context of this entity (the 2™ term).

Finally, using the above three conditional
distributions, we iteratively update all assignments
of corpus D until coverage, then the global
knowledge is estimated using the final assignments,
and the final entity assignments are used as the
referents of their corresponding mentions.

Inference on Unseen Documents. When
unseen documents are given, we predict its entities
and topics using the incremental Gibbs sampling
algorithm described in (Kataria et a., 2011), i.e,
we iteratively update the entity assignments and
the topic assignments of an unseen document as
the same as the above inference process, but with
the previously learned global knowledge fixed.

Hyperparameter setting. One still problem
here is the setting of the hyperparameters o, 3, v
and ¢. For oo and 3, this paper empirically set the
value of them to a=50/T and 3 =0.1 as in
Griffiths & Steyvers(2004). For -, we notice that
Ky is the number of pseudo names added to each
entity, when v =0 our model only mentions an
entity using its previousy used names. Observed
that an entity typically has a fixed set of names, we
set + to a small value by setting K+ = 1.0. For §,
we notice that V§ is the number of pseudo words
added to each entity, playing the role of smoothing
its context word distribution. Asthereistypicaly a
relatively loose correlation between an entity and
its context words, we set § to a relatively large
value by fixing the total smoothing words added to
each entity, atypical valueisV'§ = 2000.

DE
( C(—i)de
DE
C(—i)de

+ 1)CdDeA

OEW

P(a; = e|z,e,a_;,D) x



4 Experiments

In this section, we evaluate our method and
compare it with the traditional EL methods. We
first explain the experimental settings in Section
4.1-4.4, then discuss the results in Section 4.5.

4.1 Knowledge Base

In our experiments, we use the Jan. 30, 2010
English version of Wikipedia as the knowledge
base, which contains over 3 million entities. Notice
that we also take the general conceptsin Wikipedia
(such as Apple, Video, Computer, €tC.) as entities,
so the entity in this paper may not strictly follow
its definition.

4.2 Data Sets

There are two standard data sets for EL: 11 TB* and
TAC 2009 EL data set (McNamee & Dang, 2009),
where IITB focuses on aggressive recall EL and
TAC 2009 focuses on EL on salient mentions. Due
to the collective nature of our method, we mainly
used the 11 TB as the primary data set as the same
as Kulkarni et a.(2009) and Han et al.(2011). But
we aso give the EL accuracies onthe TAC 2009 in
Sect. 4.5.4 as auxiliary results.

Overdl, the IITB data set contains 107 web
documents. For each document, the name
mentions' referent entities in Wikipedia are
manually annotated to be as exhaustive as possible.
In total, 17,200 name mentions are annotated, with
161 name mentions per document on average. In
our experiments, we use only the name mentions
whose referent entities are contained in Wikipedia.

4.3 Evaluation Criteria

This paper adopted the same performance metrics
used in the Kulkarni et a. (2009), which includes
Recall, Precision and F1. Let M" be the golden
standard set of the EL results (each EL result is a
pair (m, e), with m the mention and e its referent
entity), M be the set of EL results outputted by an
EL system, then these metrics are computed as:

.. MnNM*
Preczszonz' T |

MnNM™|
Recall = |—
[ M*]

where two EL results are considered equal if and

only if both their mentions and referent entities are
equal. As the same as Kulkarni et al.(2009),

3 http://www.cse.iith.ac.in/~soumen/doc/QCQ/
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Precision and Recall are averaged across
documents and overall FI is used as the primary
performance metric by computing from average
Precision and Recall.

44 Basdines

We compare our method with five baselines which
are described asfollows:

Wikify!. This is a context compatibility based
EL method using vector space model (Mihalcea &
Csomai, 2007). Wikify! computes the context
compatibility using the word overlap between the
mention’s context and the entity’ s Wikipedia entry.

EM-Model. This is a datistical context
compatibility based EL method described in Han
& Sun(2011), which computes the compatibility by
integrating the evidence from the entity popularity,
the entity name knowledge and the context word
distribution of entities.

M&W. Thisisarelational topic coherence based
EL method described in Milne & Witten(2008).
M&W measures an entity’s topic coherence to a
document as its average semantic rel atedness to the
unambiguous entities in the document.

CSAW. This is an EL method which combines
context compatibility and topic coherence using a
hybrid method (Kulkarni et al., 2009), where
context compatibility and topic coherence are first
separated modeled as context similarity and the
sum of al pair-wise semantic relatedness between
the entities in the document, then the entities which
can maximize the weighted sum of the context
compatibility and the topic coherence are identified
asthe referent entities of the document.

EL-Graph. This is a graph based hybrid EL
method described in Han et a. (2011), which first
models the context compatibility as text similarity
and the topic coherence of an entity as its node
importance in a referent graph which captures all
mention-entity and entity-entity relations in a
document, then arandom walk algorithm is used to
collectively find al referent entities of a document.

Except for CSAW and EL-Graph, al other
baselines are designed only to link the salient name
mentions (i.e., key phrases) in a document. In our
experiment, in order to compare the EL
performances on aso the non-sdient name
mentions, we push these systems recall by
reducing their respective importance thresholds of
linked mentions.



4.5 Experimental Results

4.5.1 Overall Performance

We compared our method with all the above five
baselines. For our method, we estimate the global
knowledge using all the articles in the Jan. 30,
2010 English version of Wikipedia, and totaly
there were 3,083,158 articles. For each article, the
mentions within it are detected using the methods
described in Medelyan et al.(2008) and all termsin
an article are used as context words, so a term may
both be a mention and a context word. The topic
number of our model is T =300 (will be
empirically set in Sect 4.5.2). To train the entity-
topic model, we run 500 iterations of our Gibbs
sampling algorithm to converge. The training time
of our mode is nearly one week on our server
using 20 GB RAM and one core of 3.2 GHz CPU.
Since the training can be done offline, we believe
that the training time is not critica to the real-
world usage as the online inference on new
document is very quick. Using the above settings,
the overall results are shown in Table 1.

Precison | Recall F1
Wikify! 0.55 0.28 0.37
EM-Model 0.82 0.48 0.61
M&W 0.80 0.38 0.52
CSAwW 0.65 0.73 0.69
EL-Graph 0.69 0.76 0.73
Our Method 0.81 0.80 0.80

Table 1. The overall resultson |1 TB data set

From the overall resultsin Table 1, we can see that:

1) By jointly modeling and exploiting the
context compatibility and the topic coherence, our
method can achieve competitive performance: @
compared with the context compatibility baselines

Wikify! and  EM-Model, our method
correspondingly gets 43% and 19% F1
improvement; @ compared with the topic

coherence baselines M&W, our method achieves
28% F1 improvement; ® compared with the
hybrid baselines CSAW and EL-Graph, our method
correspondingly achieves 11% and 7% F1
improvement.

2) Compared with the context compatibility
only and the ftopic coherence only methods, the
main advantage of our method is that, rather than
only achieved high entity linking precision on
salient mentions, it can aso effectively link the

112

non-salient mentions in a document: this is
demonstrated in our method's significant Recall
improvement: a 32~52% Recall improvement over
baselines Wikify!, EM-Model and M&W. We
believe this is because a document usually contains
little evidence for EL decisions on non-salient
mentions, so with either only context compatibility
or only topic coherence the evidence is not enough
for EL decisions on these non-salient mentions,
and bring these two directions together is critica
for the accurate EL on these mentions.

3) Compared with the hybrid methods, the
main advantage of our method is the improvement
of EL precision (a 11~16% improvement over
baselines CSAW and EL-Graph), we believe thisis
because: @ Our method can further capture the
mutual reinforcement effect between the context
compatibility and the topic coherence; @ The
traditional hybrid methods usually determine the
topic coherence of an entity to a document using
all entities in the document, in comparison our
method uses only the entities in the same topic, we
believe thisis more reasonable for EL decisions.

45.2 Parameter Tuning

One dtill parameter of our method is the topic
number 7. An appropriate T will distribute entities
into well-organized topics, in turn it will capture
the co-occurrence information of entities. Figure 4
plots the F1I at different T values. We can see that
the F1 isnot very sensitive to the topic number and
with T'= 300 our method achieves its best FI
performance.
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Figure 4. The F1 vs. the topic number T

4.5.3 Detailed Analysis

In this section we analyze why and how our
method works well in detail. Generaly, we believe
the main advantages of our method are:

1) The effects of topic knowledge. One main
advantage of our model is that the topic knowledge



can provide a document-specific entity prior for EL.
Concretely, using the topic knowledge and the
topic distribution of documents, the prior for an
entity appearing in a document 4 is highly related
to the document’ stopics:

P(e|d) = ., P(z|d)P(e|z)

This prior is obviously more reasonable than the
“information less prior” (i.e., al entities have equal
prior) or “a global entity popularity prior” (Han &
Sun, 2011). To demonstrate, Table 2-3 show the 3
topics where the Apple Inc. and the fruit Apple
have the largest generation probability P(e|z) from
these topics. We can see that the topic knowledge
can provide a reasonable prior for entities
appearing in a document: the Apple Inc. has alarge
prior in documents about Computer, Video and
Software, and the fruit Apple has a large prior in
documents about Wine, Food and Plant.

Topic(Computer) | Topic(Video) Topic(Softwar €)
Computer Video Computer software
CPU Mobile phone | Microsoft Windows
Hardware Mass media Linux
Personal computer Music Web browser
Computer memory Television Operating system

Table 2. The 3 topics where the Apple Inc. hasthe

largest P(elz)
Topic(Wine) Topic(Food) Topic(Plant)
Wine Food Plant
Grape Restaurant Flower
Vineyard Meat Leaf
Winery Cheese Tree
Apple Vegetable Fruit
Table 3. The 3 topics where the fruit Apple hasthe
largest P(elz)

2) The effects of afine-tuned context model.
The second advantage of our modd is that it
provides a statistical framework for fine-tuning the
context model from data. To demonstrate such an
effect, Table 4 compares the EL performance of
@ the entity-topic model with no context model is
used (No Context), i.e., we determine the referent
entity of a mention by deleting the 3rd term of the
formulaP(e; = €|z,e—;,a,D) jn Section 3; @ with
the context model estimated using the entity’s
Wikipedia page (Article Content), @) with the
context model estimated using the 50 word
window of all its mentions in Wikipedia (Mention
Context) and; @ with the context model in the
original entity-topic model (Entity-Topic Model).
From Table 4 we can see that a fine-tuned context
model will result in a2~7% F1 improvement.
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Context Modéel F1
No Context 0.73
Article Content 0.75
Mention Context 0.78
Entity-Topic Model 0.80

Table 4. The FI using different context models

3) The effects of joint model. The third
advantage of our model is that it jointly model the
context compatibility and the topic coherence,
which bring two benefitss ©® the mutua
reinforcement between the two directions can be
captured in our model; @ the context compatibility
and the topic coherence are uniformly modeled and
jointly estimated, which makes the model more
accurate for EL.

45.4 EL Accuracies on TAC 2009 dataset

We also compare our method with the top 5 EL
systems in TAC 2009 and the two state-of-the-art
systems (EM-Model and EL-Graph) on TAC 2009
data set in Figure 5 (For EL-Graph and our method,
a NIL threshold is used to detect whether the
referent entity is contained in the knowledge base,
if the knowledge base not contains the referent
entity, we assign the mention to a NIL entity).
From Figure 5, we can see that our method is
competitive: 1) Our method can achieve a 3.4%
accuracy improvement over the best system in
TAC 2009; 2) Our method, EM-Model and EL-
Graph get very close accuracies (0.854, 0.86 and
0.838 correspondingly), we believe this is because:
® The mentions to be linked in TAC data set are
mostly salient mentions; @ The influence of the
NIL referent entity problem, i.e., the referent entity
is not contained in the given knowledge base: Most
referent entities (67.5%) on TAC 2009 are NIL
entity and our method has no special handling on
this problem, rather than other methods such as the
EM-Model, which affects the overall performance

of our method.
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Figure 5. The EL accuracies on TAC 2009 dataset



5 Related Work

In this section, we briefly review the related work
of EL. Traditionally, the context compatibility
based methods link a mention to the entity which
has the largest compatibility with it. Cucerzan
(2007) modeled the compatibility as the cosine
similarity between the vector space representation
of mention’s context and of entity’s Wikipedia
entry. Mihalcea & Csomai (2007), Bunescu &
Pasca (2006), Fader et a. (2009), Gottipati et
a.(2011) and Zhang et a.(2011) extended the
vector space model with more information such as
the entity category and the acronym expansion, etc.
Han & Sun (2011) proposed a generative model
which computes the compatibility using the
evidences from entity’s popularity, name
distribution and context word distribution. Kataria
et al.(2011) and Sen (2012) used a latent topic
model to learn the context model of entities. Zheng
et a. (2010), Dredze et a. (2010), Zhang et al.
(2010), Zhou et a. (2010) and J & Chen(2011)
employed the ranking techniques to further take
relations between candidate entities into account.

On the other side, the topic coherence based
methods link a mention to the entity which are
most coherent to the document containing it.
Medelyan et a. (2008) measured the topic
coherence of an entity to a document as the
weighted average of its relatedness to the
unambiguous entities in the document. Milne and
Witten (2008) extended Medelyan et a. (2008)’s
coherence by incorporating commonness and
context quality. Bhattacharya and Getoor (2006)
modeled the topic coherence as the likelihood an
entity is generated from the latent topics of a
document. Sen (2012) modeled the topic coherence
as the groups of co-occurring entities. Kulkarni et
al. (2009) modeled the topic coherence as the sum
of all pair-wise relatedness between the referent
entities of a document. Han et a.(2011) and
Hoffart et a.(2011) modeled the topic coherence of
an entity as its node importance in a graph which
captures all mention-entity and entity-entity
relations in a document.

6 Conclusionsand Future Work

This paper proposes a generative model, the entity-
topic model, for entity linking. By uniformly
modeling context compatibility, topic coherence
and the correlation between them as statistical
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dependencies, our model provides an effective way
to jointly exploit them for better EL performance.

In this paper, the entity-topic model can only
link mentions to the previously given entities in a
knowledge base. For future work, we want to
overcome this limit by incorporating an entity
discovery ability into our model, so that it can also
discover and learn the knowledge of previously
unseen entities from a corpus for linking name
mentions to these entities.
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Abstract

Existing techniques for disambiguating named
entities in text mostly focus on Wikipedia as
a target catalog of entities. Yet for many
types of entities, such as restaurants and
cult movies, relational databases exist that
contain far more extensive information than
Wikipedia. This paper introduces a new task,
called Open-Database Named-Entity Disam-
biguation (Open-DB NED), in which a system
must be able to resolve named entities to sym-
bols in an arbitrary database, without requir-
ing labeled data for each new database. We
introduce two techniques for Open-DB NED,
one based on distant supervision and the other
based on domain adaptation. In experiments
on two domains, one with poor coverage by
Wikipedia and the other with near-perfect cov-
erage, our Open-DB NED strategies outper-
form a state-of-the-art Wikipedia NED system
by over 25% in accuracy.

1 Introduction

Named-entity disambiguation (NED) is the task of
linking names mentioned in text with an established
catalog of entities (Bunescu and Pasca, 2006; Rati-
nov et al., 2011). It is a vital first step for se-
mantic understanding of text, such as in grounded
semantic parsing (Kwiatkowski et al., 2011), as
well as for information retrieval tasks like person
name search (Chen and Martin, 2007; Mann and
Yarowsky, 2003).

NED requires a catalog of symbols, called refer-
ents, to which named-entities will be resolved. Most
NED systems today use Wikipedia as the catalog of
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referents, but exclusive focus on Wikipedia as a tar-
get for NED systems has significant drawbacks: de-
spite its breadth, Wikipedia still does not contain all
or even most real-world entities mentioned in text.
As one example, it has poor coverage of entities that
are mostly important in a small geographical region,
such as hotels and restaurants, which are widely dis-
cussed on the Web. 57% of the named-entities in
the Text Analysis Conference’s (TAC) 2009 entity
linking task refer to an entity that does not appear
in Wikipedia (McNamee et al., 2009). Wikipedia is
clearly a highly valuable resource, but it should not
be thought of as the only one.

Instead of relying solely on Wikipedia, we pro-
pose a novel approach to NED, which we refer to
as Open-DB NED: the task is to resolve an en-
tity to Wikipedia or to any relational database that
meets mild conditions about the format of the data,
described below. Leveraging structured, relational
data should allow systems to achieve strong accu-
racy, as with domain-specific or database-specific
NED techniques like Hoffart et al.’s NED system
for YAGO (Hoffart et al., 2011). And because of
the availability of huge numbers of databases on
the Web, many for specialized domains, a success-
ful system for this task will cover entities that a
Wikipedia NED or database-specific system cannot.

We investigate two complementary learning
strategies for Open-DB NED, both of which signifi-
cantly relax the assumptions of traditional NED sys-
tems. The first strategy, a distant supervision ap-
proach, uses the relational information in a given
database and a large corpus of unlabeled text to
learn a database-specific model. The second strat-
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egy, a domain adaptation approach, assumes a sin-
gle source database that has accompanying labeled
data. Classifiers in this setting must learn a model
that transfers from the source database to any new
database, without requiring new training data for the
new database. Experiments show that both strategies
outperform a state-of-the-art Wikipedia NED sys-
tem by wide margins without requiring any labeled
data from the test domain, highlighting the signifi-
cant advantage of having domain-specific relational
data.

The next section contrasts Open-DB NED with
previous work. Section 3 formalizes the task. Sec-
tions 4 and 5 present our distant supervision strategy
and domain-adaptation strategy, respectively. Sec-
tion 6 introduces a technique that is a hybrid of the
two learning strategies. Section 7 describes our ex-
periments, and Section 8 concludes.

2 Previous Work

As mentioned above, restricting the catalog of ref-
erents to Wikipedia, as most recent NED systems
do (Bunescu and Pasca, 2006; Mihalcea and Cso-
mai, 2007; Fader et al., 2009; Han and Zhao, 2009;
Kulkarni et al., 2009; Ratinov et al., 2011), can re-
strict the coverage of the system. Zhou et al. (2010)
estimate that 23% of names in Yahoo! news arti-
cles have no referent in Wikipedia, and Cucerzan
(2007) estimates the rate at 16% in MSNBC news
articles. There is reason to suspect that these esti-
mates are on the low side, however, as news tends to
cover popular entities, which are most likely to ap-
pear in Wikipedia; the mentions in TAC’s 2009 en-
tity linking task are drawn from both newswire and
blogs, and have a far higher rate (57%) of missing
Wikipedia entries. Lin et al. (2012) find that 33% of
mentions in a corpus of 500 million Web documents
cannot be linked to Wikipedia.

NED systems that are focused on specific do-
mains (or verticals) greatly benefit from reposito-
ries of domain-specific knowledge, only a subset
of which may be found in Wikipedia. For exam-
ple, Pantel and Fuxman (2011) use a query-click
graph to resolve names in search engine queries to a
large product catalog from a commercial search en-
gine, while Dalvi ef al. (2009; 2012) focus on movie
and restaurant databases. Bellare and McCallum
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(2009) use the sequence information available in ci-
tation text to link author, title, and venue names to a
publication database. Open-DB NED systems work
on any database, so they can serve as baselines for
domain-specific NED tasks, as well as provide dis-
ambiguation for domains where no domain-specific
NED system exists.

Numerous previous studies have considered dis-
tant or weak supervision from a single relational
database as an alternative to manual supervision for
information extraction (Hoffmann et al., 2011; Weld
et al., 2009; Bellare and McCallum, 2007; Bunescu
and Mooney, 2007; Mintz et al., 2009; Riedel et al.,
2010; Yao et al., 2010). In contrast to these sys-
tems, our distant supervision NED system provides
a meta-algorithm for generating an NED system for
any database and any entity type.

Existing domain adaptation or transfer learning
approaches are inappropriate for the Open-DB NED
task, either because they require labeled data in both
the source and target domains (Daumé III et al.,
2010; Ben-David et al., 2010), or because they lever-
age some notion of distributional similarity between
words in the source and target domains (Blitzer et
al., 2006; Huang and Yates, 2009), which does not
apply to the database symbols across the two do-
mains. Instead, our domain adaptation technique
uses domain-independent features of relational data,
which apply regardless of the actual contents of the
database, as explained further below.

3 The Open-DB NED Problem and
Assumptions

3.1 Problem Formulation

A mention is an occurrence of a named-entity
in a document. Formally, a mention m =
(d, start,end) is a triple consisting of a document
d, as well as a start and end position for the men-
tion within the document. We say that d is the
context of m. A relational database is a 2-tuple
(S, R). Here, S is a set of symbols for constants,
attributes, and relations in the database, and R =
{r1,...,ry} is aset of relation instances of the form
T = {(6171,...,0171%),...,(Cni,l,...,cnhki)},
where each c¢; is taken from S, k; is the arity of re-
lation r; and n; is the number of known instances
of r;. We will write example database symbols in



[ movie [N 0 acor M 00 acedin |
[id | _title | vear Jilid | name [ movieid | actorid | role |
1 NextDoor 1975 1 Nicole Kreux 5 1 Evelyn
2 Next Door 2005 2 Richard Ryan 5 2 Bruce
3 NextDoor 2008 3 Kristoffer Joner 2 3 John

4 Next Door 2008 4 Lee Perkins 1 4 Kid

5 NextDoor 2010 5 Carla Valentine 3 5 Elana
id name height position id name player_id team_id
1 Carlos Lee 6’2" LF 1 San Diego Padres 4 3

2 RobBironas 60" K 2 Houston Texans 5 2

3 Chris Johnson 6’3" 3B 3 Tennessee Titans 3 5

4 Chris Johnson 511" RB 4  Oakland Raiders 1 5

5 Chris Johnson 6’1" DB 5  Houston Astros 2 3

Figure 1: Example movie database (above) and sports
database (below) in BCNF.

teletype, and mentions in “quotations.” For a
particular database D B, we refer to its components
as DB.S and DB.R. For a set of databases D, de-
fine the set of referents as Sp = (Uppep PB.S) U
{OOD}, where OOD is a special symbol indicat-
ing something that is “out of database”, or not found
in any of the databases in D.

Given a corpus C, a set of mentions M that oc-
cur in C, and a set of databases D, the Open-DB
NED task is to produce a function f : M — Sp,
which identifies an appropriate target symbol from
one of the databases in D, or determines that the
mention is OOD. Note that this problem formula-
tion assumes no labeled data. This is significantly
more challenging than traditional NED settings, but
allows the system to generalize easily to any new
database. In the domain adaptation section below,
we relax this condition somewhat, to allow labeled
data for a small number of initial databases; the sys-
tem must then transfer what it learns from the la-
beled domains to any new database. Also note that
the focus for this paper is disambiguation; we as-
sume that the set of mentions are correctly demar-
cated in the input text. Previous systems, such as
Lex (Downey et al., 2007), have investigated the task
of finding correct named-entity boundaries in text.

3.2 Assumptions

To allow our systems to handle arbitrary databases,
we need to make some assumptions about a standard
format for the data. We will assume that databases
are provided in a particular form, called Boyce-Codd
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Normal Form (BCNF) (Silberschatz et al., 2010).
A relational schema is said to be in BCNF when
all redundancy based on functional dependency has
been removed, although other types of redundancy
may still exist. Formally, a schema R is said to
be in BCNF with respect to a set of functional de-
pendencies F if for every one of the dependencies
(X = Y) € F,either

1. Y C X, meaning this is a trivial functional de-
pendency, or

2. X is a superkey, meaning that X is a set of at-
tributes that together define a unique ID for the
relation.

In practice, this is a relatively safe assumption as
database designers often aim for even stricter normal
forms. For databases not in BCNF, such as tables
extracted from Web pages, standard algorithms ex-
ist for converting them into BCNF, given appropri-
ate functional dependencies, although there are sets
of functional dependencies for which BCNF is not
achievable. Figure 1 shows two example databases
in BCNF. We use these tables as examples through-
out the paper.

We will additionally assume that all attributes, in-
cluding names and nicknames, of entities that are
covered by the database are treated as functional de-
pendencies of the entity. Again, in practice, this
is a fairly safe assumption as this is part of good
database design, but if a database does not con-
form to this, then there will be some entities in the
database that our algorithms cannot resolve to. This
assumption implies that it is enough to use the set of
superkeys for relations as the set of possible refer-
ents; our algorithms make use of this fact.

Finally, we will assume the existence of a func-
tion p(s,t) which indicates whether the text ¢ is a
valid surface form of database symbol s. Our exper-
iments in Section 7.3 explore several possible simple
definitions for this function.

4 A Distant Supervision Strategy for
Open-DB NED

Our first approach to the Open-DB NED problem re-
lies on the fact that, while many mentions are indeed
ambiguous and difficult to resolve correctly, most



mentions have only a very small number of possi-
ble referents in a given database. “Chris Johnson”
is the name of doubtless thousands of people, but
for articles that are reasonably well-aligned with our
sports database, most of the time the name will refer
to just three different people. Most sports names are
in fact less ambiguous still. Thus, taking a corpus of
unlabeled sports articles, we use the information in
the database to provide (uncertain) labels, and then
train a log-linear model from this probabilistically-
labeled data.

This strategy requires a set of features for the
model. Traditionally, such features would be hand-
crafted for a particular domain and database. As a
first step towards our Open-DB system, we present
a log-linear model for disambiguation, as well as a
simple feature-generation algorithm that produces a
large set of useful features from a BCNF database.
We then present a distant-supervision learning pro-
cedure for this model.

4.1 Disambiguation Model

Let Sp be the set of possible referents. We construct
a vector of feature functions f(m, s) describing the
degree to which m and s € Sp appear to match
one another. The feature functions are described be-
low. The model includes a vector of weights w, one
weight per feature function, and sets the probability
of entity s given m and w as:

exp (w - f(m, s))
> sesp exp (w - £(m, s'))

P(slm,w) = )]

4.2 Database-driven Feature Generation

Figure 2 shows our algorithm for automatically gen-
erating feature functions f;(m,s) from a BCNF
database. As mentioned above, we only need to con-
sider resolving to database symbols s that are keys,
or unique IDs, for some tuple in a database. For
an entity in the database with key id, the feature
generation algorithm generates two types of feature
functions: attribute counts and similar entity counts.
Each of these features measures the similarity be-
tween the information stored in the database about
the entity id, and the information in the text in d sur-
rounding mention m.

An attribute count feature function fi‘fjt»t(m,id)
for the jth attribute of relation r; counts how many
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Algorithm: Feature Generation

Input: DB, a database in BCNF
Output: F, a set of feature functions
Initialization: F < ()

Attribute Count Feature Functions:
For each relation r; € DB.R
Foreach jin {1,... k;}
Define function f{(m, id):
count < 0
Identify the tuple t € r; containing id
val « t;
count < count +
ContextMatches(val, m)
return count
F—FuU{f att

17.7

Similar-Entity Count Feature Functions:
For each relation r; € DB.R
For each jin {1,...,k;}
Define function f;m(m, id):
count «— 0
Identify the tuple ¢ € r; containing id
val « t;
Identify the set of similar tuples 7"
T" = {t'|t' € r;, t; = val}
For each tuple t' € T"
Foreach j' € {1,... k;}
val’ ¢
count < count +
ContextMatches(val’',m)
return count

F —FU{fm
Figure 2: Feature generation algorithm. The

ContextMatches(s,m) function counts how many
times a string that matches database symbol s appears
in the context of m. In our implementation, we use all
of d(m) as the context. Matching between strings and
database symbols is discussed in Sec. 7.3.

attributes of the entity id appear near m. For exam-
ple, if ¢d is 5 in the movie relation in Figure 1, the
feature function for attribute year would count how
often 2010 matches the text surrounding mention
m. Defining precisely whether a database symbol
“matches”