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Foreword from the General Chair

As president of the European Association for Machine Translation (EAMT) and General Chair
of the 24th Annual Conference of the EAMT, it is with great pleasure that I write these opening
words to the Proceedings of EAMT 2023.

According to tradition, my first note of deep appreciation and gratitude goes to Heidi De-
praetare and Khalil Simaan, Executive Board Members, who have moved to new adventures in

their lives, after long, outstanding, and dedicated service to the EAMT community.

We have several milestones to celebrate this year, built upon the hard work of our Execu-
tive Committee and our community: upgraded grants for low income and war zones and for
Translation Studies, a record submission rate for research projects (9 projects), a record for
submissions for the best thesis candidates, and one of the highest number of papers ever sub-

mitted to our conference! I could not be prouder of the contagious energy from our community.

The EAMT Executive Committee (EC) has been very busy. Luc Meertens (treasurer) and
Carolina Scarton (secretary) have been tirelessly supporting all initiatives. André Martins and
Celia Rico, our co-chairs for low income areas, war zones and Translation Studies grants, se-
lected 10 grantees. Barry Haddow and Carolina Scarton, our co-chairs for the Research Projects,
selected 4 projects with a diverse set of topics. To all our co-chairs, my gratitude! The selection
work is never an easy task and this year was particularly hard. The same applied to the best
thesis award — co-chairs Carolina Scarton and Helena Moniz had a very difficult time selecting

a single candidate, since the submissions were of very high quality.

EAMT, as full sponsor of the MT Marathon, would also like to highlight the outstanding
work that the MT Marathon organisers conducted, enriching the vitality of our community
with their projects and keynotes. A special thank you to Jindra Helcl, Ondiej Bojar, and Barry

Haddow for all the efforts on yet another successful MT Marathon event.

EAMT, in an effort to reach out to our community in Africa, also sponsored three student
grants to attend the AfricaNLP workshop at ICLR’23. Thank you, André Martins, for bridging

our association with this initiative.



Now to Tampere, Finland! EAMT 2023 will have a three-day, four-track programme put
together by our chairs: Eva Vanmassenhove and Tharindu Ranasinghe (research: technical
track co-chairs); Nora Aranberri and Sergi Alvarez Vidal (research: translators & users track
co-chairs); Carla Parra Escartin and Mara Nunziatini (implementations & case studies track co-
chairs); and Mikel Forcada and Helena Moniz (products & projects track chairs). And backing
up all the scientific components of our conference and filters of quality for the final selection:

our reviewers. Thank you for your work and for the alignment with all the chairs!

This year EAMT 2023 will also have an extra day for workshops and tutorials, organised by our
co-chairs Judith Brenner and Maja Popovic. Once more, the submissions for workshops and

tutorials largely exceeded our expectations for this inaugural year!

The programme will continue the tradition of including two keynote speakers, Lynne Bowker
(Full Professor at the University of Ottawa, Canada) and Marco Turchi (Head of MT at Zoom
Video Communications). Our keynote speakers will demonstrate their extensive and impactful
work in Translation Studies, technologies and machine translation, speech translation, and auto-

matic post-editing. We bring you a fresh overview of the field, integrating a wide range of topics.

EAMT 2023 will also include a panel on The Impact of Large Language Models (LLMs) on
MT: A European View, with several guests: Andreas Eisele (Responsible for MT at the Euro-
pean Union), André Martins (Unbabel/University of Lisbon), Christian Federmann (Microsoft),
Helena Moniz (EAMT /University of Lisbon), Kenneth Church (Northeastern University), and
Mikel Forcada (EAMT /Universitat d’Alacant). This panel is a moment to have a European

view on a subject dominated by non-European initiatives.

EAMT 2023 would never be possible without the bright, enthusiastic, and hard working lo-
cal organising team! What a dream team! Whenever EAMT had a request for a possible new
addition, the answer was usually “Why not?” I’'m so grateful for being able to work with you!
Starting with our chair, Mary Nurminen (Tampere University), Judith Brenner (University of
Eastern Finland), Maarit Koponen (University of Eastern Finland), Sirkku Latomaa (Tampere
University), Mikhail Mikhailov (Tampere University), and Frederike Schierl, (Tampere Uni-
versity). Thank you, Tampere University and the University of Eastern Finland, for all your

support! Tampere University has been such an amazing and flexible host!

EAMT has been supported by generous sponsors in its initiatives along the years. This year
is no exception. Our gratitude to our Silver sponsors: Pangeanic, Unbabel and ZOO Digital.
To our Bronze sponsors: CrossLang, ModelFront, STAR, TransPerfect, and Welocalize. Also
to Apertium, our long standing collaborator sponsor; Springer, our Supporter sponsor for the
Best Paper award; and our Media sponsors, MultiLingual and Slator. Your support is vital in

our efforts to give back to our community through grants and other initiatives.
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A note still to all our EAMT members and our participants! Without you no effort would
make sense! Let us take this opportunity to create scientific collaboration and give construc-
tive feedback. To fully enjoy the conference, please check our Code of Conduct at https:

//events.tuni.fi/eamt23/ethics/. I'm looking forward to seeing you all!

It is EAMT’s greatest wish to continue giving back to our community and to drive and be
driven by our community’s energy and enthusiasm. Reach out to us if you have new ideas or
suggestions you would like to implement. We will try hard to accomplish it with you. Learn

more about us at https://eamt.org/.

Helena Moniz

President of the EAMT

General Chair of EAMT 2023

University of Lisbon / INESC-ID, Portugal

vil
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Message from the Organising

Committee Chair

Tervetuloa Tampereelle!

The local organising committee welcomes you all to EAMT 2023! Thank you for choosing to
join us, either in person or remotely, for 3 days of talks, posters, chats with colleagues, and
evening activities. Plus an extra day for many of you to focus on a particular issue in a work-
shop or tutorial. Attendance at EAMT conferences continues to grow, and the highest number

ever will participate in the Tampere conference.

After 2 conferences in the southern parts of Europe — Alacant in 2018 and (virtually) Lis-
bon in 2020 — EAMT moved northward to Ghent in 2022 and then farther up to Finland in
2023. Perhaps Tampere, which is on the same latitude as the southern parts of Greenland, will

be the farthest north the conference will ever be held. We hope you enjoy our light nights!

A few new things will be introduced in this year’s conference. For the first time, we will have
an extra workshop and tutorial day adjacent to the main conference. As first-timers, we
were unsure about the number and types of proposals we would receive. We were delighted to
receive a large number of proposals of very high quality, and it was difficult to make selection de-

cisions. We hope that everyone will have a good experience with this addition to the conference!

A second change this year are the conference tracks, which have been reconfigured to show an
updated view of happenings in the MT world. Whereas we previously had 1 track for research,
we now have 2: one that focuses on technical research and another that focuses on academic
research on translators and other types of MT users, a field that has been steadily growing. The
track on implementations and case studies highlights cases of actual MT use (’in the wild’). The

fourth track puts focus on various ongoing products and projects in the MT sphere.
The final change is that we are trying out a hybrid light conference attendance option to

include those who cannot make it to Tampere themselves. We look forward to your feedback

on all of these innovations.
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A conference like this does not just happen — it is the result of great efforts by a number of
people, and we’d like to thank them. First is the EAMT organisation, and especially President
Helena Moniz and Secretary Carol Scarton, who went to great lengths to support our efforts.
It would not have been possible without you. Next we’d like to thank our program chairs, who
managed the vital work of selecting the best proposals and papers for the conference: Sergi Al-
varez Vidal, Nora Aranberri, Judith Brenner, Mikel Forcada, Helena Moniz, Mara Nunziatini,

Carla Parra Escartin, Maja Popovic, Tharindu Ranasinghe and Eva Vanmassenhove.

We’d also like to thank our Silver sponsors, Pangeanic, Unbabel and ZOO Digital; Bronze
sponsors CrossLang, ModelFront, STAR Group, TransPerfect and Welocalize; Collaborator
sponsor Apertium; Supporter sponsor Springer, and Media sponsors MultiLingual and Slator.

Your support of our conference and activities is greatly appreciated!

Thanks also go out to the Tampere University Congress Office, which made so, so much of

our work easier.

Personally, I'd like to thank my colleagues on the local planning committee: Judith Bren-
ner, Maarit Koponen, Sirkku Latomaa, Mikhail Mikhailov and Frederike Schierl. We have been
a small but very effective, 6-person powerhouse of activity. Thank you for your enthusiasm,
willingness to jump into new things, and professionalism. It has been a pleasure to serve with

you.

We look forward to meeting you all and to your active participation in the conference! Let’s
continue to make EAMT a unique space for a diverse group of researchers, developers, practi-

tioners, leaders, vendors, users, and translators to share experiences and ideas.

Mary Nurminen
Tampere University and the University of Eastern Finland

On behalf of the local organising committee



Preface by the Programme Chairs

On behalf of the programme chairs, a warm welcome to the 24th annual conference of the
European Association for Machine Translation in Tampere, Finland. Following the approach
which has proven so successful in the previous editions of EAMT, the conference programme
consists of papers and posters divided into four tracks. However, the year 2023 sees a change in
the structuring of the conference tracks. This year, we are introducing two tracks for research
papers: one for more technical papers on MT development and another for research focusing
on various types of users of MT. In addition to the two research tracks, two other tracks show-
case use cases and implementations as well as projects and products. For the first time, the
programme also includes workshops and tutorials. And the programme would not be complete

without the two keynote speeches by Lynne Bowker and Marco Turchi.

This year at EAMT, there is a notable change since the traditional research track has been
transformed into two distinct research tracks: the Technical Track and the Translators and
Users Track. The Technical Research track invited and received technical submissions on
all aspects of machine translation and related areas, serving as a hub for cutting-edge research
and technological advancements, covering topics such as neural machine translation, language
models, quality estimation, and more. It garnered significant attention and proved to be the
most popular track at EAMT 2023, receiving a total of 51 submissions from 24 countries. Among
these, 22 papers were accepted, resulting in an acceptance rate of 43%. Seven of the accepted

papers will be presented orally, while the remaining 15 will be presented as posters.

A considerable number of the accepted papers are centered around Neural Machine Translation
(NMT) and its diverse facets. Noteworthy topics include, among others, real-word translation
(Martins et al., 2023), knowledge distillation (Gumma et al., 2023), and multilingual NMT
(Chichirau et al., 2023). Several papers delve into machine translation quality estimation (QE),
with a specific focus on domain adaptation of QE (Sharami et al., 2023), evaluating large lan-
guage models for QE (Kocmi and Federmann, 2023), and emotion translation QE (Qian et
al., 2023). It was evident that leveraging large language models such as GPT and BLOOM in
machine translation and related fields is a prevailing trend. Given the popularity of tools like
ChatGPT, we anticipate this trend to persist in future conferences as well. Additionally, the
EAMT 2023 technical research track features several papers dedicated to low-resource languages
(Sannigrahi et al., 2023; Galiano-Jiménez et al., 2023).
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Last but not least, we would like to sincerely thank all the reviewers who provided feedback
and insightful comments for the submissions received. We hope you enjoy reading this year’s

contributions to the Technical Research Track.

This edition has witnessed the reshaping and renaming of the MT tracks involving users. For
the first time, a research track has been assigned to showcase studies carried out from a user
perspective (translators, language experts and citizens who avail of the technology without
pertaining to the language industry) and properly acknowledge the value and quality of the
research in this field of study. As such, it has been the focus of the Translators and Users
Research track to gather the widest range of topics in order to highlight the breadth of the

area, current efforts and concerns regarding the quality and use of the technology.

We would like to thank the response of the community, which has contributed with an extensive
selection of research themes. Work spanning MT literacy, concrete use cases and guidelines for
their evaluation, assessments of MT output that go beyond sentence-level precision and fluency,
translation styles and editing effort were submitted to the track. We believe that their outcomes
serve as feedback for MT development but also help to establish targets for researchers in this

particular subfield.

Overall, 18 papers were submitted to the track, out of which 16 were accepted (an 89% ac-
ceptance rate). 4 papers will be presented orally while the remaining will be exhibited in a

dedicated poster session.

The EAMT conference has always sought to be an inclusive venue where researchers, users
and MT practitioners could meet, discuss and share knowledge and expertise around machine
translation from all possible points of view. With the aim of encouraging more practitioners to
share their day-to-day experiences and learn from real use cases of MT, this year a new track was
created: the Implementations & Case Studies track. This track aims to allow those using
MT in their organisations to share their experiences from different angles. The 8 papers that
will be presented at the conference showcase the wide variety of topics that this may cover, from
building domain-specific MT engines to using MT for epidemiological social media surveillance,
among others. They all cover different domains, from e-commerce to patents, demonstrating
how MT, now more than ever, is a ubiquitous technology used by very different organisations
and for ever-expanding purposes. And while this happens, it still poses challenges along the

way that need to be tackled in real-world settings to ensure MT implementations are successful.

De-la-Torre-Vilarino et al. (2023) focus on how to build a domain specific, high-quality MT
workflow in the e-commerce luxury space, while Zeynep et al. (2023) experiment with how
MT systems can be fine-tuned towards the specific stylistic features of literary translators for

the translation of literature. Within the customer support domain, Cabeca et al. (2023) focus
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on building test suites to monitor MT and QE systems, paying particular attention to those
errors that are critical to customers. Paulo et al. (2023) propose ways to identify context-
dependent translation units that require gender agreement, and explain how to minimise such
context-dependency through manipulating the translation units to make them gender-neutral
and hence minimise gender bias in their MT training data. Also in the area of data prepara-
tion for MT, Wirth et al (2023) describe the process used at the European Patent Office for
generating MT data to train their patent-specific MT models, and the challenges that this task
poses. Chatzitheodorou et al. (2023) tackle the challenge of reconciling the competing needs
of data privacy and data quality through post-editing anonymised texts. Another common
challenge in MT is how to successfully incorporate terminology and tackle the tradeoffs that
this may imply. Knowles et al. (2023) address this challenge in their paper. Finally, the last
paper in this track explores how MT can be used for document classification purposes: Popovié

et al. (2023) showcase how MT can be used for scaling epidemiological social media surveillance.

The Products and Projects track has been upgraded with clearer criteria for submission,
based on the extensive experience gathered after years of running this track. This year we
received 20 submissions and 16 papers were accepted. The selection will provide a plethora of
products and projects being developed by our community with a rich set of topics. It will surely
be a very lively session with the usual poster boasters (one of our EAMT conferences’ favourite

moments) and poster sessions.

For the first time, this year’s EAMT conference includes a Workshop and Tutorial Day. We
invited proposals for in-depth sessions on any aspect of machine translation and related fields,
and a total of 7 workshop proposals and 4 tutorial proposals were received. Almost all of the sub-
missions were for a full-day event, demonstrating the organisers’ eagerness to take the audience
on a deep dive into their respective areas of expertise. After a careful review process, taking
into account all aspects of the submissions, 4 workshops and 1 tutorial were accepted. The
workshop topics range from gender-inclusive translation technology, open-source MT tools and
automated translation of sign and spoken languages to language generation, while the tutorial

explores the evolving role of the post-editor with speakers from both academia and the industry.
Our special thanks go to our track advisor, Jay Marciano, whose extensive experience in or-
ganising and hosting MT-related conferences and events was a great source of inspiration and

guidance in the implementation of the first Workshop and Tutorial Day at an EAMT conference.

We also wish to thank Karen Patteri de Souza from the University of Eastern Finland for

invaluable help in putting together this proceedings volume.
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Keynote Addresses

Towards an Outward Turn in Translation Technology Research?

Lynne Bowker, University of Ottawa

In 2019, Susan Bassnett and David Johnson guest edited a special issue of The Translator (vol.
25, issue 3) with the theme “the Outward Turn”. In the introduction, the editors note that
Translation Studies (TS) has witnessed numerous turns in the past decades (e.g. linguistic,
cultural, sociological), and is perhaps not really in need of another, not the least because fields
do not develop in a neat linear way. Nevertheless, Bassnett and Johnson point to what they
see as a potentially worrying trend whereby TS scholars seem increasingly to talk mainly to
one another, which puts TS at risk of lurching “into ultimate self-referentiality, especially in
the global academic marketplace where reference and citation are perceived as valuable ends
in themselves” (p. 185). Of course, the fields of translation technology and TS do not face
precisely the same issues, nor will they necessarily benefit from the same specific approaches.
Yet at a higher level, we might do well to pay attention to discussions about an Outward Turn
in TS and consider how this could benefit the translation technology community. For instance,
Bassnett and Johnson suggest that at one level, the idea of an Outward Turn entails the recog-
nition of the need for an increasing plurality of voices from across the globe; yet, this must be
coupled with a recognition of the importance of creating space where different traditions can
maintain their perspective and assert the value of their own concerns and insights within the
homogenizing context of internationalization. In other words, an Outward Turn in TS would
see researchers focus on the issues that increasingly surround them and recognize that unifor-
mity can ultimately be damaging for everyone. In what ways might the broad strokes of an
Outward Turn be relevant for translation technology research? This presentation will consider
how various aspects of this need for expanding horizons within and beyond the contours of the
translation technology field could manifest themselves in our collective research agenda.



Towards Real-time Meeting Translation

Marco Turchi, Zoom Video Communications

Nowadays, machine translation (MT) has become the prominent solution to break language
barriers and is used daily to translate emails, chats, technical documents, news articles, etc. At
Zoom, we provide users with translation solutions to allow them to better connect, collaborate,
and communicate in different languages during meetings. However, different from the classic
speech translation use cases including TED talks or European Parliament sessions, the meeting
scenario poses several challenges for MT technology. For instance, when speaking spontaneously,
people introduce hesitations and repetitions, and, when interacting with other participants,
they generate truncated, overlapped, and malformed utterances. So, in addition to the speech
recognition errors, the MT system needs to simultaneously deal with all these factors to generate
the optimal translation in real time. In my presentation, I will initially focus on highlighting
the main challenges of meeting translation, paying attention to those phenomena that have a
critical impact on the final output. Then, I will present some solutions that can be used to
mitigate these problems and enhance translation quality in meetings.



EAMT 2023 Best Thesis Award —
Anthony C Clarke Award

Nine PhD theses defended in 2022 were received as candidates for the 2022 edition of the EAMT
Best Thesis Award, and all nine were eligible. 28 reviewers and 6 EAMT Executive Commit-
tee members were recruited to examine and score the theses, considering how challenging the
problem tackled in each thesis was, how relevant the results were for machine translation as a
field, and what the strength of its impact in terms of scientific publications was. Two EAMT
Executive Committee members also analysed all theses. It became very clear that 2022 was

another very good year for PhD theses in machine translation.

All theses had merit, all candidates had strong CVs and, therefore, it was very difficult to

select a winner.

A panel of two EAMT Executive Committee members (Carolina Scarton and Helena Moniz)
was assembled to process the reviews and select a winner that was later ratified by the EAMT

executive committee.

We are pleased to announce that the awardee of the 2022 edition of the EAMT Best Thesis
is Biao Zhang’s thesis ” Towards Efficient Universal Neural Machine Translation”

(University of Edinburgh, UK), supervised by Dr Rico Sennrich and Dr Ivan Titov.

The awardee will receive a prize of €500, together with a suitably-inscribed certificate. In
addition, Dr. Zhang will present a summary of their thesis at the 24rd Annual Conference
of the European Association for Machine Translation (EAMT 2023: https://events.tuni.
fi/eamt23/) which will take place from June 12th to 15th in Tampere, Finland. In order to
facilitate this, the EAMT will waive the winner’s registration costs and will make available a
travel bursary of €200.

Helena Moniz, EAMT President
Carolina Scarton, EAMT Secretary
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Towards Efficient Universal Neural Machine Translation

Biao Zhang*
School of Informatics
University of Edinburgh
b.zhang@ed.ac.uk

Humans benefit from communication but suffer
from language barriers. Machine translation (MT)
aims to overcome such barriers by automatically
transforming information from one language to an-
other. With the rapid development of deep neu-
ral networks, neural machine translation (NMT)
— especially Transformer (Vaswani et al., 2017)
— has achieved great success in recent years, de-
livering state-of-the-art and even near human per-
formance on many bilingual text-based translation
tasks (Akhbardeh et al., 2021). However, chal-
lenges remain particularly in 1) efficiency where
a massive NMT model is a computational bottle-
neck for training and decoding, and 2) universality
where extending NMT beyond bilingual and text-
based scenarios (such as multilingual and speech-
to-text translation) is still non-trivial. In this the-
sis, we investigate ways of developing simple and
effective neural architectures to address these two
challenges.

NMT is resource-hungry.  Achieving high-
quality translation demands complex network ar-
chitectures and a large number of model parame-
ters, which often takes hundreds or even thousands
of training GPU hours and leads to slow inference.
We tackle this computational inefficiency issue via
three aspects: 1) simplifying model architectures,
where we propose a lightweight recurrent network
and root mean square layer normalization to enable
higher model parallelization, as well as a merged
attention network paired with depth-scaled initial-
ization to improve deep Transformer; 2) explor-
ing representation redundancy, where we demon-
strate the feasibility of sparsifying encoder outputs

*Now at Google Deepmind.

© 2023 The authors. This article is licensed under a Creative
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in Transformer and propose a rectified linear atten-
tion to induce sparse attention weights efficiently;
and 3) semi-autoregressive modeling, where we re-
lax the independence assumption by allowing gen-
eration from the left-to-right and right-to-left di-
rections simultaneously. Apart from benefiting ef-
ficiency, these techniques also lay the foundation
for our research on universality, another topic of
this thesis.

MT should be universal, i.e., being capable of
transforming information between any languages
in any modalities.  Unfortunately, NMT still
struggles with poor language coverage and cross-
modality gap. As a step towards universal MT, we
focus on (massively) multilingual NMT and direct
speech-to-text translation (ST). Multilingual NMT
suffers from capacity bottleneck and off-target
translation; we thus study methods of increasing
modeling capacity for multilingual Transformer,
and propose random online backtranslation to
bridge zero-short language pairs. We further ex-
plore when and where language-specific model-
ing matters via conditional language-specific rout-
ing, discovering the trade-off between shared and
language-specific capacity. Unlike textual NMT,
the modality gap between speech and text hinders
ST. We narrow this gap by inventing adaptive fea-
ture selection, which automatically filters out un-
informative speech features, improving translation
as well as inference speed. Next, we extend our
study to document-level speech translation to ad-
dress the question whether and how context helps
ST. We adopt contextual modeling for ST, and
show its effectiveness on enhancing homophone
and simultaneous translation.

Finally, we move forward to multilingual and
multimodal modeling for translation by exploring
multilingual ST, a critical path to universal NMT.
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We integrate the above methods into a single sys-
tem and participate in the multilingual ST shared
task in IWSLT2021. Our system achieves compet-
itive performance in both supervised and zero-shot
translation, where we observe the complementar-
ity of different techniques in improving multilin-
gual ST.

We believe that technologies nowadays are ma-
ture enough to pursue universal translation model-
ing. Along this path, challenges widely exist, but
also opportunities. We released our source code to
facilitate the development. !

Acknowledgements

The author would like to thank his PhD super-
visors, Rico Sennrich and Ivan Titov, and his
thesis examiners, Kenneth Heafield and Graham
Neubig. The work presented in this thesis has
been supported by Baidu Scholarship, the Euro-
pean Union’s Horizon 2020 Research and Innova-
tion Programme under Grant Agreements 825460
(ELITR) and 825299 (GoURMET). The author
also acknowledges the resources provided by the
Cambridge Tier-2 system operated by the Uni-
versity of Cambridge Research Computing Ser-
vice (http://www.hpc.cam.ac.uk) funded by EP-
SRC Tier-2 capital grant EP/P020259/1.

References

[Akhbardeh et al.2021] Akhbardeh, Farhad, Arkady
Arkhangorodsky, Magdalena Biesialska, Ondfej Bo-
jar, Rajen Chatterjee, Vishrav Chaudhary, Marta R.
Costa-jussa, Cristina Espafia-Bonet, Angela Fan,
Christian Federmann, Markus Freitag, Yvette Gra-
ham, Roman Grundkiewicz, Barry Haddow, Leonie
Harter, Kenneth Heafield, Christopher Homan,
Matthias Huck, Kwabena Amponsah-Kaakyire,
Jungo Kasai, Daniel Khashabi, Kevin Knight, Tom
Kocmi, Philipp Koehn, Nicholas Lourie, Christof
Monz, Makoto Morishita, Masaaki Nagata, Ajay
Nagesh, Toshiaki Nakazawa, Matteo Negri, San-
tanu Pal, Allahsera Auguste Tapo, Marco Turchi,
Valentin Vydrin, and Marcos Zampieri. 2021. Find-
ings of the 2021 conference on machine translation
(wmt21). In Proceedings of the Sixth Conference
on Machine Translation, Online, November. Asso-
ciation for Computational Linguistics.

[Vaswani et al.2017] Vaswani, Ashish, Noam Shazeer,
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L. ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Guyon, I, U. V.

"https://github.com/bzhangGo/zero

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, volume 30,
pages 5998-6008. Curran Associates, Inc.



Research: Technical






Tailoring Domain Adaptation for Machine Translation Quality Estimation

Javad Pourmostafa Roshan Sharami, Dimitar Shterionov, Frédéric Blain,
Eva Vanmassenhove, Mirella De Sisto, Chris Emmery, Pieter Spronck

Department of Cognitive Science and Artificial Intelligence, Tilburg University
{j.pourmostafa,d.shterionov,F.L.G.Blain,e.o.j.vanmassenhove,
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Abstract

While quality estimation (QE) can play an
important role in the translation process,
its effectiveness relies on the availability
and quality of training data. For QE in
particular, high-quality labeled data is of-
ten lacking due to the high cost and effort
associated with labeling such data. Aside
from the data scarcity challenge, QE mod-
els should also be generalizable; i.e., they
should be able to handle data from dif-
ferent domains, both generic and specific.
To alleviate these two main issues — data
scarcity and domain mismatch — this pa-
per combines domain adaptation and data
augmentation in a robust QE system. Our
method first trains a generic QE model
and then fine-tunes it on a specific domain
while retaining generic knowledge. Our
results show a significant improvement for
all the language pairs investigated, better
cross-lingual inference, and a superior per-
formance in zero-shot learning scenarios
as compared to state-of-the-art baselines.

1 Introduction

Predicting the quality of machine translation (MT)
output is crucial in translation workflows. Inform-
ing translation professionals about the quality of
an MT system allows them to quickly assess the
overall usefulness of the generated translations
and gauge the amount of post-editing that will be
required (Tamchyna, 2021; Murgolo et al., 2022).
Quality estimation (QE) is an approach that aims

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

to reduce the human effort required to analyze
the quality of an MT system by assessing the
quality of its output without the need for reference
translations.

QE can be applied on word-, sentence- or
document-levels. The goal of sentence-level QE,
which is the focus of our work, is to predict a
quality label based on a source sentences and
its MT equivalents. This label, (i.e., the quality
estimate), can be expressed in various ways such
as TER/HTER (Snover et al., 2006), BLEU (Pa-
pineni et al., 2002) or any metric of interest to
the user. Training a sentence-level QE system
typically requires aligned data of the form: source
sentence (SRC), target sentence (TRG), and
quality gold label (LBL). However, most quality
labels are by-products of MT and post-editing —
a rather difficult and expensive process — limiting
the size of the available QE data (Rei et al., 2020;
Zouhar et al., 2023).

The WMT QE shared task (Specia et al., 2021;
Zerva et al., 2022) has been offered a platform to
compare different QE systems and to share QE
data. Despite efforts from initiatives like the QE
shared task to publicly release QE datasets, such
resources remain scarce across language pairs and,
by extension, also have a limited coverage across
domains (Fomicheva et al., 2020a; Fomicheva et
al., 2022). This can pose a challenge for all QE
models, especially recent ones that utilize large
pre-trained language models (LLMs) (Ranasinghe
et al., 2020; Zerva et al., 2022), since fine-tuning
pre-trained models with small datasets has been
demonstrated to be quite unstable (Zhang et al.,
2020; Rubino, 2020).

Furthermore, QE models trained on specific
data do not generalize well to other domains that
are outside of the training domain (Kocyigit et
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al., 2022). Domain mismatches lead to significant
decreases in the performance of QE models (de
Souza et al., 2014a; Zouhar et al., 2023). To
improve the generalizability of QE models, it is
important to establish the right balance between
domain-specific and generic training data. To date,
only a few attempts have been made to address
this challenge (de Souza et al., 2014b; Rubino,
2020; Lee, 2020). Thus, the majority of QE
models have difficulty with accurately estimating
quality across different domains, whether they are
generic or specific (Zouhar et al., 2023).

In this work, we propose to tackle both the
data scarcity and the domain mismatch challenge
that LLM-based QE models face. We propose a
methodology whereby a small amount of domain-
specific data is used to boost the overall QF pre-
diction performance. This approach is inspired
by work on domain adaptation (DA) in the field
of MT, where a large generic model is initially
trained and then fine-tuned with domain-specific
data (Chu and Wang, 2018; Pham et al., 2022).

To assess the validity of the proposed approach
in QE, we conducted experiments using small
and large, authentic and synthetic data in bilin-
gual, cross-lingual, and zero-shot settings. We ex-
perimented with publicly available language pairs
from English (EN) into German (DE), Chinese
(ZH), Italian (IT), Czech (CZ), and Japanese (JA)
and from Romanian (RO) and Russian (RU) into
English (EN). We used the common test sets from
the WMT2021 QE shared tasks'.

Our experiments show a statistically significant
improvement in the performance of QE models.
Our findings also indicate that not only our im-
plementation leads to better multi-/cross-lingual
QE models (where multi-/cross-lingual data is pro-
vided) but also zero-shot QE (where no data for the
evaluated language pairs was provided at training).

The main contributions of our research are:

* A QE methodology that employs DA and data
augmentation (DAG), along with a novel QE
training pipeline that supports this methodology.

* An empirical demonstration of the pipeline’s ef-
fectiveness, which highlights improvements in
QE performance, and better cross-lingual infer-
ence.

* A comparative analysis with state-of-the-art
(SOTA) baseline methods that demonstrates the

"https://www.statmt.org/wmt21/
quality-estimation-task.html
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effectiveness of our approach in enhancing zero-
shot learning (ZSL) for the task of QE.

» Adaptable QE pipelines that can be tailored and
implemented for other language pairs; i.e., high
generalizable QE pipelines.

To the best of our knowledge, this is the first QE
methodology to use DA and DAG. Furthermore,
it is easily reusable and adaptable: (i) while we
used XLM-R in our experiments, one can easily
replace it with any preferred LLM as long as the
input-output criteria are met; (ii) we built our tool
around Hugging Face (HF) implementations of
LLMs, meaning one can employ a certain generic
model and apply it to any QE task by simply
fine-tuning it on (newly-collected) QE data.

2 Domain adaptation for specialized QE

In this section, we outline our methodology for
training LLM-based QE models for a specific do-
main with limited available in-domain data. This
involves: (i) a set of training steps that we found to
be particularly effective, and (ii) DAG techniques
to improve the QE models’ specificity. Addition-
ally, we provide details on two different training
modes we implemented (with or without tags).

2.1 Training steps

We implement the “mixed fine-tuning + fine-
tuning” DA technique that proved promising for
MT (Chu et al., 2017). We tailor this methodol-
ogy to suit our needs following the steps outlined
below. A visualization of the steps involved can
be found in Appendix A.1. Our technique involves
leveraging both in-domain (ID) and out-of-domain
(OOD) QE data (see Section 3.1 for details on the
datasets).

Step 1 We train a QE model using OOD data
until it converges. We employ the experimental
framework described in Section 3.2 in which an
LLM is fine-tuned to predict QE labels. The goal
of this step is two-fold: (i) leveraging the LLM’s
cross-lingual reference capabilities and (ii) build-
ing a generic QE model. This way we ensure that
the model can estimate the quality of a broad range
of systems, but with limited accuracy on ID data.

Step 2 The model’s parameters are fine-tuned
using a mix of OOD and ID data. We use different
ID data, both authentic and synthetic according
to the DAG approaches in Section 2.2. The
objective here is to ensure the model does not



forget generic-domain knowledge acquired during
the first step while simultaneously improving its
ability to perform QE on the domain-specific
data. This mixing step is often referred to as
“oversampling” in DA literature, where a smaller
subset of OOD data is concatenated with ID data
to allow the model to assign equal attention to
both datasets; it aims to further adapt the model to
the specific domain of interest.

Step 3 We continue to train the QE model on a
specific ID dataset until convergence, resulting in a
more domain-specific QE model than that obtained
in Step 2.

2.2 Data augmentation for DA in QE

In our study, we explore two alternative ap-
proaches to oversampling to optimize the utiliza-
tion of available ID resources and assess the po-
tential benefits of incorporating synthetic ID data
into the QE pipeline:

Approach 1: Concatenating all available au-
thentic ID data across all languages. The
XLM-R model is multilingual, allowing us to ap-
ply it to different language pairs. When there is
not enough data to fine-tune it for a specific lan-
guage, one can use multilingual data. In our work,
to increase the amount of authentic data (given the
small volume of parallel data for two languages),
we construct a multilingual ID dataset: we con-
catenate all available ID data, which includes dif-
ferent language pairs. The rationale behind this
approach is to make use of all available authen-
tic resources in order to improve the performance
of the QE model by providing better cross-lingual
references.

Approach 2: Generating synthetic ID data.
Given that all available ID resources have been al-
ready utilized in Approach 1, we propose to sup-
plement the existing data with artificially gener-
ated additional ID data using a trained MT model
for each language pair, inspired by the research
conducted by Negri et al., (2018) and Lee (2020).
This approach aims to tackle the data scarcity
problem and further improve the QE model’s ac-
curacy. Let Dy, denote the publicly available par-
allel data (SRC, TRG) for a language pair Ip, as
identified in Section 3.1. The approach consists
of the following steps for each ID involved in the
pipeline:
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. Randomly select N samples from Dy, to obtain
a set Sy, of training samples. Divide S;, into
two equal sets S7 and Ss.

Train a multilingual MT model M, on S; (de-
tails of the model can be found in Section 3.2).
. Use M;, to translate the sources-side of Sy (or
a portion of it), obtaining a set 7}, of translated
samples.

Compute quality labels (e.g., TER/HTER) by
comparing T;, with the reference (T'RG) text
from .S5.

The resulting three-part output of this approach
comprises the source-side of Sy, 7T, and
TER/HTER obtained from the fourth step. A vi-
sual representation of these steps can be found in
Appendix A.3.

2.3 Additional indication of domain

In NMT, in order to handle multiple domains and
reduce catastrophic forgetting, DA has been con-
trolled using additional tags added at the begin-
ning or at the end of the sentence (Sennrich et
al., 2016; Chu and Dabre, 2019). Following these
studies, we explore two training modes: (i) with
tag (“TAG”), by appending either <OOD> or <ID>
at the end of sentences based on the dataset domain
type (i.e., OOD or ID). The input format in this
mode is <s> SRC </s> TRG <Tag> </s>,
where SRC and TRG represent source and target
of the QE triplet, and <s> and </s> are the be-
ginning and separator tokens for the LLM used in
the pipeline; (ii) without tag (“NO TAG”), where
the training steps are the same as detailed in Sec-
tion 2.1.

3 Experiments

3.1 Data

We conducted experiments on publicly available
data in different languages: from EN into DE, ZH,
IT, CZ, and JA and from RO and RU into EN. We
categorize the data into three groups according to
their use in our pipeline:

Group 1: for building ID and OOD QE mod-
els. The ID data is collected from WMT 2021
shared task on QE (Specia et al., 2021), Task
2, consisting of sentence-level post-editing efforts
for four language pairs: EN-DE, EN-ZH, RU-EN
and RO-EN. For each pair there are train, de-
velopment (dev), and test sets of 7K, 1K, 1K
samples, respectively. Additionally, as our OOD



data we used the eSCAPE (Negri et al., 2018)
dataset with approximately 3.4M tokenized SRC,
machine-translated text (MTT), post-edited (PE)
sentences. We used sacrebleu? (Post, 2018) to
calculate TER (Snover et al., 2006) from MTT and
PE pairs. We split the data into train, dev, test sets
via the scikit-learn package’ (Pedregosa et
al., 2011) with 98%, 1%, and 1% of the total data,
respectively. To improve the generalization of our
models and enable them to better adapt to specific
QE through the ID dataset, we utilized a larger
OOD dataset. This decision is in line with prior
studies on DA, which are described in the related
work section (Section 6).

Group 2: for building MT systems as a compo-
nent of Approach 2 in the proposed DAG (Sec-
tion 2.2). We collected parallel data— SRC and
reference translations (REF) — from Opus (Tiede-
mann, 2012) for each language pair used in ID:
EN-DE, EN-ZH, RO-EN, and RU-EN. Next, we
trained MT models for Approach 2 of our method-
ology by selecting 4 M samples and dividing them
into two equal parts, each with 2M samples. We
split either of the two parts into train, dev, test
sets. To save time during evaluation and inference,
we set the size of the dev and test splits to be the
same as the number of training samples in the ID
datasets, which is 7K. Moreover, we randomly se-
lected a portion of the SRC (7K out of 2M) in the
second split, which was not used for training. We
passed this portion to the trained MT to get MTT.
Finally, we computed the TER using the MTT and
the corresponding REF via sacrebleu. We set
the portion size 7K as the goal was to double the
size of the initial ID data.

Group 3: for testing the zero-shot capabili-
ties of the trained QE models in our proposed
methodology. We used two zero-shot test sets,
namely English to Czech (EN-CS) and English to
Japanese (EN-JA), which were provided by WMT
2021 shared task on QE for Task 2. Each test set
contained 1K samples.

3.2 Frameworks

Quality Estimation. To train all QE models of
our study, we developed a new QE framework with
the ability to invoke multilingual models from HF
model repository. In all our experiments we chose

Zsignature:nrefs: 1 |case:Ic|tok:tercom|punct:yes| version:2.3.1
3random state/seed=8, shuffle=True, used for all splits.
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to use XLM-RoBERTa* (XLM-R) (Conneau et al.,
2020), to derive cross-lingual embeddings, which
has shown success in prior studies such as Ranas-
inghe et al.,, (2020). The framework is simi-
lar in architecture to “MonoTransQuest” (Ranas-
inghe et al., 2020), but adapted to the needs of
our experiments. The differences with “Mono-
TransQuest” are the additional tokens (<OOD> and
<ID>) added during the tokenization process, as
well as the resizing of the model’s token embed-
dings in order to support the added tags. Addi-
tionally, rather than computing the softmax, we di-
rectly used logits to estimate the quality labels.

Training and evaluation details of QE models.
In Section 2.1 we describe our methodology for
training and evaluating QE models. During Step
1, we trained and evaluated an OOD QE model
every 1000 stepsy > using the train and dev sets
from Group 1. In Step 2, we trained and evaluated
QE mix models every 500 stepsyp using a mix
of OOD and ID data from Group 1. For Step 3,
we evaluated the final domain-specific QE model
after 500 stepsgr using only an ID train and dev
set. Throughout training, we used an early stop-
ping mechanism to halt the training process if there
was no improvement in the evaluation loss after
5 evaluations. We adjusted the default evaluation
stepsgr from 500 to 1000 for Step 1 due to the
larger number of training samples in that step.

Machine Translation. Our approach to gener-
ating synthetic ID (Approach 2, Section 2.2) dif-
fers from prior studies, such as Eo et al., (2021),
which rely on a generic/common translation model
(e.g., Google machine translate). Instead, we first
trained a separate NMT model on a subset of
the original dataset. This approach ensures that
the training data and the data used for translation
have similar vocabularies, cover comparable top-
ics, styles, and domains, which leads to higher
quality translations.

We used an in-house MT framework to train
our models, based on pre-trained mBART-50
(Liu et al.,, 2020) from HF. We followed the
Seq2SeqTraining arguments recommended by HF
and trained the model for Approach 2, stopping the
training if the evaluation loss did not improve after
5 evaluations.

4xIm-roberta-large

Sstepsur refers to Hugging Face framework’s training or
evaluation steps, which are different from the ones we de-
scribed in Section 2.1.



We used default hyperparameters recommended
by HF for QE and MT, and our frameworks
with modified hyperparameters are available
at https://github.com/JoyeBright/
DA-QE-EAMT2023 to reproduce our results.

4 Results

To assess the performance of our approach we
evaluate output from the trained QE models
in comparison to the reference quality metric
(HTER/TER) on the test sets described in data
Groups 1 and 3. We use Pearson’s coefficient
(p € —1 : 1, which we rescale to —100 to 100
for clarity) to correlate our predictions with the test
set. We use the BLEU score as a metric to evaluate
the translation quality of our MT models.

4.1 Baseline results

To establish a baseline for our study, we fine-tuned
XLM-R with the ID data for each language pair as
provided by WMT 2021 shared task (Group 1 of
data). This is a conventional approach employed
in prior research, such as Ranasinghe et al. (2020),
where pre-trained models are utilized to provide
cross-lingual reference for training QE models.

We also attempted to compare our work with the
models of Rubino (2020) and Lee (2020). For the
latter work, their experiments used the WMT 2020
test sets, while we used WMT 2021, which makes
it difficult to compare our results to theirs directly.
Furthermore, we could not replicate their models
as no code is available (at the time of writing this
paper). Our baseline results are presented in Ta-
ble 1.

4.2 Main results

In Table 1 we present our results using the DAG
approaches and the two training modes (Tag and
No Tag). Additional details on the statistical
tests for each language pair are available in Ap-
pendix A.2. The results in Table 1 show that,
in general, all of the proposed DA methods per-
formed better than the baseline for each language
pair, except for Approach 1 in the RO-EN language
pair. For this language pair, the use of a domain tag
led to reduced performance, and the improvement
achieved without such a tag was not statistically
significant.

We also observe that the increase of perfor-
mance compared to the baseline for each language
pair shown as percentage in the last column of Ta-
ble 1 is substantial, except for RO-EN (only 0.92%
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Language . NO TAG TAG

. Baseline Increase %
pair DAG 1 DAG2|DAG 1 DAG?2
EN-DE 47.17 | 49.93 49.54 | 51.90 51.25 10.03
EN-ZH 29.16 | 3475 35.27 | 35.62 36.60 25.51
RO-EN 83.63 | 83.67 83.74 | 83.37 84.40 00.92
RU-EN 40.65 | 4491 45.40 | 47.16 4398 16.01

Table 1: Pearson correlation scores for proposed QE mod-
els across 4 language pairs: EN-DE, EN-ZH, RO-EN, and
RU-EN. For each language pair, the bold result indicates the
highest-performing method compared to the baseline. Results
for the first and second DAG approaches are reported under
DAG 1 and DAG 2, respectively. The column labeled “In-
crease % shows the percentage improvement for the highest-
performing model (in bold) compared to the baseline.

increase over the baseline). This is mainly due
to the already high baseline performance (83.63),
making it challenging to achieve significant im-
provements. Among the other language pairs, the
EN-ZH pair had the largest increase in perfor-
mance — just over 25%. The RU-EN and EN-DE
pairs had the second and third highest increases,
with improvements of around 16% and 10% over
their respective baselines.

Additional indication of domain results. The
results indicate that incorporating tags into the
DA training pipeline was generally effective, al-
though in some instances, the improvement was
not statistically significant compared to the mod-
els that were trained without tags. However, it
was observed that at least one model outperformed
the same language pair’s models that were not
trained with tags, when DAG techniques were
used. Specifically, the EN-DE Approach 1 model
trained with tags performed better compared to
Approach 2 without tags, as did the EN-ZH Ap-
proach 1 model trained with tags relative to the
same approach without tags. Finally, the RO-EN
Approach 2 model trained with tags outperformed
Approach 2 without tags, and the RU-EN Ap-
proach 1 model trained with tags exhibited better
performance than Approach 1 without tags.

4.3 Data Augmentation results

Upon analyzing the integration of DAG techniques
into the specialized QE pipeline, we observe that
for most language pairs, both approaches showed
better performance than their respective baselines.
However, in situations where tags were not em-
ployed, Approach 2 only showed statistical signif-
icance over Approach 1 in the EN-ZH and RU-
EN language pairs. Moreover, when tags were
used, Approach 2 lead to statistically significant



improvements only for EN-DE and EN-ZH. These
findings suggest that the choice of DAG approach
and the use of tags should be carefully consid-
ered when applying DA in QE. Additionally, DAG
was observed to be significant for EN-ZH, for both
cases — with or without tags.

4.4 Zero-shot results

In order to evaluate the effectiveness of our QE
models in the context of ZSL, we compared their
performance with the baseline models for the EN-
CS and EN-JA language pairs (test sets). The re-
sults of these tests are presented in Table 2.

The findings show that, for the EN-CS test
set, the QE model trained solely on the EN-DE
dataset achieved the highest performance among
all QE baselines, with a Pearson correlation score
of 46.97. Additionally, we observe that our pro-
posed DA pipeline performed even better than the
highest-performing baseline for EN-CS, but only
DAG approach 1 and 2 with tags were found to
be statistically significant. Likewise, for the EN-
JA test set, the highest-performing QE baseline
was the one that was trained solely on the RU-EN
dataset, with a Pearson correlation score of 20.32.
In contrast to EN-CS, none of the models that
were trained with our pipeline and with the RU-EN
dataset outperformed the baselines. Nevertheless,
we observed that three models trained with EN-ZH
and using our pipeline (Approach 1 with and with-
out tag, and Approach 2 with tag) performed better
than the highest-performing baseline.

Overall, these findings suggest that if a QE
model is conventionally trained with and evaluated
on an unseen QE dataset, some extent of ZSL ca-
pabilities can be achieved due to the use of XLM-
R. However, the proposed DA pipeline can signif-
icantly increase this extent, whether through mod-
els trained with the same dataset or other datasets
used in the pipeline. Furthermore, we observed
that training a QE model conventionally using cer-
tain language pairs may lead to decreased perfor-
mance. For instance, a model trained exclusively
with the EN-DE language pair showed a Pearson
correlation of approximately 10. In such cases, the
proposed pipeline may enhance performance even
when using the same training data.

5 Additional observations

5.1 Cross-lingual inference

Table 3 presents data that shows that our pro-
posed methodology has an overall advantage over
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Trained . NO TAG TAG
Test set | Baseline
on DAG1 DAG2 | DAG1 DAG2
EN-DE EN-CS | 46.97 48.77 48.07 | 47.78 47.82
EN-JA | 09.67 18.16 08.00 | 16.12 17.36
EN-ZH EN-CS | 35.56 4933  48.54 | 4798 46.83
EN-JA 13.13 2277 19.87 | 2224 21.54
RO-EN EN-CS | 26.33 39.10 39.79 | 3920 4041
EN-JA 18.88 20.34  18.55 | 20.11  21.22
RU-EN EN-CS | 2842 4558 44.85 | 4643 4522
EN-JA 20.32 17.64 17.04 | 17.26  19.63
Table 2: Performance comparison of the proposed meth-

ods and the baseline model trained on the EN-DE, EN-ZH,
RO-EN, and RU-EN datasets in the context of ZSL, with re-
sults presented for EN-CS and EN-JA test sets. Results for
the first and second DAG approaches are reported under DAG
1 and DAG 2, respectively.

the conventional training method of using a pre-
trained LLM and fine-tuning it with QE data (base-
lines) in terms of cross-lingual inference. That
is, the QE models trained with our proposed DA
pipeline not only perform significantly better than
baselines on their target domain and language pair
but can also estimate the quality of other language
pairs to some extent better than their correspond-
ing baseline.

By examining the data closely (bottom to top
row of the Table 3), we observe that XLM-R
provides a limited level of cross-lingual infer-
ence, which is insufficient for estimating qual-
ity labels due to the absence of prior knowl-
edge about them. However, using Step 1 of our
pipeline, which utilizes little inference knowledge,
the model still achieves an acceptable level of gen-
eralization across all language pairs.

Specifically, the first step achieved an average
Pearson correlation score of approximately 39,
which is higher than all baseline scores, except for
the RO-EN pair, which achieved around 42. Fur-
thermore, the model trained using Step 1 of the
pipeline achieved a Pearson correlation of around
70 when evaluated with the RO-EN test set. This
result can be attributed to the training of the model
with IT, which was used as OOD data. From a lin-
guistic point of view, this result could be explained
by the fact that I'T and RO belong to the same lan-
guage family, i.e., the “romance languages” (refer
to Appendix A.5), which explains the high Pearson
correlation score achieved by the model.

As we move up the table, we can observe that
the model built in Step 2 of our pipeline be-
comes more specific toward the task and the ID
datasets. Consequently, there is an average im-



Test Sets
Models =N DE ENZH ROEN RUEN| VO
Baseline | 47.17  19.67 4496 3291 | 36.17
EN-DE | 4993 2266 7897  39.55 | 47.77
A 0276 0299 3401  06.64 | 11.60
Baseline | 3034 29.16 4755 3687 | 3598
EN-ZH | 4346 3475 8051  42.67 | 50.34
A 1312 0559 3296 0580 | 14.36
Baseline | 24.64 2356  83.63  39.97 | 42.95
RO-EN | 43.02 2431 8367 3874 | 4743
A 1838 0075 0004 -01.23 | 04.48
Baseline | 2240 2467 57.17 4069 | 36.23
RU-EN | 2536 2606 7534 4491 | 4291
A 0296 0139 1817 0422 | 06.68
Step2 3829 2472 7696 3135 | 42.83
Stepl 3080 1657  70.14  39.93 | 39.36
XLM-R | -02.74 0730 0297 03.12 | 02.66

Table 3: Performance comparison of proposed models and
baselines across all test sets using Pearson correlation as the
metric. A represents the difference between them. “AVG”
column shows the overall difference for each language model.
Step 1: model trained with OOD. Step 2: model trained with
DAG approach 1 and OOD. Approach 2 in Step 2 had similar
results, not included. XLLM-R: model not being trained. Mod-
els and baselines are color-coded for clarity, with bold num-
bers indicating the average A across all language pairs, and
underlined numbers representing each model’s performance
on their respective test sets.

provement of around 3.5 Pearson correlation (from
39.36 to 42.83) across the languages. This indi-
cates that our DA pipeline is effective in improv-
ing more specific cross-lingual QE performance.
Ultimately, fine-tuning Step 2 with any of the ID
languages provides a highly domain-specific QE
model that is not only better estimates the qual-
ity of their language pair, but also performs better
cross-lingual inference over its baseline.

5.2 OOD Performance

The main goals of DA are to quickly create an
adapted system and to develop a system that per-
forms well on ID test data while minimizing per-
formance degradation on a general domain. In our
study, we showed that models from Step 1 or Step
2 can be fine-tuned quickly using the user’s data
(achieving the first of these goals). Our main focus
was on the assessment of ID QE. However, we test
the generalizability of our ID models on an OOD
test set. Our results, summarized in Table 4, in-
dicate that all ID models outperformed the corre-
sponding baselines on the OOD test set, and we
observe that incorporating ID data in Approaches
1 and 2 did not compromise the performance with
respect to OOD. However, comparing the models’

15

performance with models trained solely on OOD
we see a small performance drop, which is in-
evitable and in most cases acceptable.

Trained QE Models

with EN-DE EN-ZH RO-EN RU-EN|OOD |DAG 1|DAG 2
Baseline 1195 0359 11.60 03.43

Our pipeline| 54.62 59.30 52.51 47.36 64.33] 65.4 | 6476
A Baseline 42.67 5571 4091 4393

Aoop -09.71 -05.03 -11.82 -16.97

Table 4: Model comparison on OOD test set using Pearson
correlation as the metric. The Apgsetine values indicate the
performance difference relative to the corresponding baseline,
while the Apop values compare the models’ performance
with the one trained solely with OOD.

6 Related Work

Data Scarcity in QE. The issue of data scarcity
in MT QE has been explored in numerous previous
studies. The work of Rubino and Sumita (2020)
involves the use of pre-training sentence encoders
and an intermediate self-supervised learning step
to enhance QE performances at both the sentence
and word levels. This approach aims to facilitate
a smooth transition between pre-training and fine-
tuning for the QE task. Similarly, Fomicheva et
al., (2020b) proposed an unsupervised method for
QE that does not depend on additional resources
and obtains valuable data from MT systems.

Qiu et al. (2022) conducted a recent study on the
the impact of various types of parallel data in QE
DAG, and put forward a classifier to differentiate
the parallel corpus. Their research revealed a sig-
nificant discrepancy between the parallel data and
real QE data, as the most common QE DAG tech-
nique involves using the target size of parallel data
as the reference translation (Baek et al., 2020; Qiu
et al., 2022), followed by translation of the source
side using an MT model, and ultimately generating
pseudo QE labels (Freitag et al., 2021). However,
our study diverges from this conventional approach
and concentrates on a straightforward yet effective
DAG methods to mitigate this gap. Similarly, Ko-
cyigit et al. (2022) proposed a negative DAG tech-
nique to improve the robustness of their QE mod-
els. They suggested training a sentence embedding
model to decrease the search space and training it
on QE data using a contrastive loss.

Domain Adaptation in QE. To tackle the chal-
lenges with translating data when training data
comes from diverse domains, researchers have ex-
tensively used DA in MT. DA involves training
a large generic model and then fine-tuning its



parameters with domain-specific data (Chu and
Wang, 2018; Saunders, 2021; Pourmostafa Roshan
Sharami et al., 2021; Pham et al., 2022). In MT,
one way to achieve DA is by appending tags to sen-
tences to handle different domains (Sennrich et al.,
2016; Vanmassenhove et al., 2018; Chu and Dabre,
2019) and reduce catastrophic forgetting.

Despite being useful in MT, DA has not been
widely used in QE according to our knowledge.
Dongjun Lee (2020) proposed a two-step QE train-
ing process similar to our own, and Raphael Ru-
bino (2020) pre-trained XLLM and further adapted
it to the target domain through intermediate train-
ing. Both studies demonstrated that adding a step
before fine-tuning improves performance com-
pared to fine-tuning alone. However, unlike our
methodology, neither of them included sentence
tags or conducted additional fine-tuning (such as
Step 3 in our methodology). As a result, their QE
models are not as specialized for the target domain
as ours. A few researchers have made attempts to
integrate aspects of DA into QE. For instance, in
an effort to improve QE performance in domain-
specific scenarios, Arda Tezcan (2022) included
fuzzy matches into MonoTransQuest with the aid
of XLM-RoBERTa model and data augmentation
techniques.

7 Conclusion and future work

This paper addresses two key challenges related
to quality estimation (QE) of machine transla-
tion (MT): (i) the scarcity of available QE data and
(ii) the difficulties in estimating translations across
diverse domains. The primary aim of this study is
to enhance the performance of QE models by ad-
dressing these challenges. To do so, we propose a
solution that utilizes domain adaptation (DA) tech-
niques adopted from MT. We adapt the “mixed
fine-tuning + fine-tuning” approach (Chu et al.,
2017) and extend it with data augmentation as an
alternative to the traditional oversampling tech-
nique. We adopt a three-step training methodol-
ogy: (i) we fine-tune XLM-R, a language model,
with a large generic QE dataset, which enables
the model to generalize; (ii) we fine-tune the
model with a mix of out-of-domain (OOD) and in-
domain (ID) data derived from two data augmen-
tation (DAG) approaches; and (iii) we fine-tune
the model with a small amount of domain-specific
data, which leads to a more specific model. We
evaluated models’ performance with and without
domain tags appended to the sentences.
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Our experiments show significant improvements
across all language pairs under consideration, in-
dicating that our proposed solution has a benefi-
cial impact in addressing the aforementioned chal-
lenges. Our study also demonstrates the effective-
ness of both proposed DAG approaches and shows
that using domain tags improves the performance
of the models. Additionally, we find that our model
outperforms the baseline in the context of zero-
shot learning and in cross-lingual inference.

Moving forward, there are several directions for
future work based on our findings. First, it would
be interesting to investigate the performance of our
pipeline on low-resource language pairs, where
there is limited ID data available. This is partic-
ularly relevant given the smaller coverage of QE
datasets compared to parallel data in MT. Second,
we only used one type of OOD data in our ex-
periments (EN-IT); it would be useful to explore
other OOD data over different language pairs for
QE. Third, it would be valuable to study the perfor-
mance of other LLMs than XILLM-R. Fourth, since
the choice of languages employed in the pipeline
was based on availability, we would suggest ex-
ploring a more regulated approach for selecting
the languages to be used in the proposed pipeline.
Specifically, the optimal transfer languages can be
selected based on their data-specific features, such
as dataset size, word overlap, and subword over-
lap, or dataset-independent factors, such as genetic
(see Appendix A.5) and syntactic distance (Lin et
al., 2019).
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A Appendices
A.1 Training Steps

In Figure 1, we present an overview of the pro-
posed training steps for specialized QE.

00D QE
Dataset

QE Framework
checkpoint: a
pre-trained LM

QE Model

QE Framework
int. OOD
QE Model

.o
\n'\v.\a\\ﬂ!‘.‘.’- -

: Mixed FT
1 QE Model '

i| IDQE
i| Dataset

QE Framework
checkpoint: Mixed FT
E Model

Figure 1: Overview of the proposed training steps for spe-
cialized QE. The “+” sign indicates the oversampling per-
formed in Step 2 to balance the use of ID and OOD data. The
dashed arrows indicate the source of the checkpoint used to
initialize the models in each stage.

A.2 Statistically Significance Test Results

The statistical significance test results for the pre-
dictions in Table 1 for the language pairs EN-DE,
EN-ZH, RO-EN, and RU-EN are shown in Table 5.

Language

. Models
pair

NOTAG1 NOTAG?2 TAG1 TAG2

Baseline Y
NO TAG 1 - N
NO TAG 2 - -
TAG 1 - - -

Baseline
NO TAG 1 -
NO TAG 2 - -
TAG 1 - - -

Baseline
NO TAG 1 -
NO TAG 2 - -
TAG 1 - - -

Baseline
NO TAG 1 -
NO TAG 2 - -
TAG 1 - - -

Y
N
EN-DE v

EN-ZH

Z <=

Z <=

RO-EN

RU-EN

Z =< =

ZHRHRK[ZZARAKIKZZ[RA<AR

Table 5: Statistically significant test results with a p-value
less than 0.05. The letter “Y” in the table indicates that the
corresponding prediction in Table 1 is statistically significant,
while “N” indicates that it is not.

A.3 Data Augmentation: Approach 2

Figure 2 presents an overview of Approach 2 that
is employed for data augmentation in the context
of domain adaptation for QE.
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Multilingual MT
Framework

SRC
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\ train

SRC TRG

MT model
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SacreBLEU
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Figure 2: Overview of Approach2 (Generating synthetic
ID) of data augmentation for domain adaptation in QE.
The various steps involved in the approach are indicated close
to the corresponding arrows. Arrow | represents subsam-
pling. The abbreviations SRC, TRG, and Tj, stand for
source, target, and machine-translated text, respectively. The
final outputs which include SRC, Tj, and quality labels
(T'ER) are color-coded for clarity.

A.4 Machine Translation Performance

We utilized multilingual MT systems to generate
synthetic ID data. Table 6 displays the results of
the top-performing models used in generating this
data.

Language pair | BLEU 1 | Eval Loss |
EN-DE 41.25 01.09
EN-ZH 32.28 01.52
RO-EN 49.60 00.96
RU-EN 41.29 01.61

Table 6: MT performance used as a component of Ap-
proach 2 in the proposed DAG (Section 2.2).

A.5 Genetic Distance

Figure 3: Genetic distance between IT and other lan-
guages: DE, ZH, RO, RU, JA, and CZ.

In MT, measuring the similarity between lan-
guages is important for effective cross-lingual
learning. One such measure is the “genetic dis-
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Step 3
DAG 1

Step 2
DAG 2

Step 2
DAG 1

Step 1 3.41

Baseline

Figure 4: Training time (in hours) for models in the EN-
ZH language pair, where Step X refers to the training step
outlined in Section 2.1, and DAG X denotes the data aug-
mentation approach used in the second step of the pipeline.
The term “Baseline” denotes a model fine-tuned from XLM-
R. The X and Y axes represent the training time in hours and
the approaches used to train the model, respectively.

tance” between languages, which has been shown
to be a good indicator of language similarity for
independent data (Lin et al., 2019). To illustrate
this, we calculate® and present the genetic distance
scores between Italian (used as OOD data) and the
other languages included in our study in Figure 3.
The genetic distance is represented as a numeri-
cal value ranging from O (indicating the same lan-
guage) to 100 (the greatest possible distance).

A.6 Training time

Compared to the conventional approach of using a
pre-trained LLM and fine-tuning it with QE data
(baselines), our proposed DA methodology results
in a significant improvement in performance, re-
gardless of whether we include tags in the sen-
tences or not. However, it requires two additional
training steps: Step 1, training an OOD QE model,
and Step 2, fine-tuning the model using a mix of
OOD and ID QE data. These additional steps re-
quire more time. Step 1 and Step 2 (with both DAG
approaches) are reused (i.e., not trained) for each
language pair, and Step 3 of the pipeline took al-
most the same amount of time across all languages.
That is why we present the consumed time for EN-
ZH in Figure 4, and use it to discuss training times
for other language pairs as well. Models trained
with tagged data have a similar training time.

The data presented in Figure 4 indicates that
Step 1 has the highest training time with approx-

®http://www.elinguistics.net/Compare_
Languages.aspx
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imately 3.4 hours. It is noteworthy that this long
training time is partly due to the fact that the model
was evaluated after every 1000 stepspgp, which
consequently resulted in a longer running time in
comparison to other models that were evaluated af-
ter every 500 stepspr. Furthermore, the model
that was trained is publicly accessible, and other
individuals can utilize it to fine-tune with new ID
datasets, avoiding the need for retraining for each
specific ID data. This applies to both DAG ap-
proaches, given that the target language pair was
used in Step 2 of the pipeline. If not, Step 1 must
be fine-tuned with a new set of QE data.
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Abstract

This article presents an original method for
Text-to-Sign Translation. It compensates
data scarcity using a domain-specific pa-
rallel corpus of alignments between text
and hierarchical formal descriptions of
Sign Language videos. Based on the de-
tection of similarities present in the source
text, the proposed algorithm recursively
exploits matches and substitutions of ali-
gned segments to build multiple candidate
translations for a novel statement. This
helps preserving Sign Language structures
as much as possible before falling back on
literal translations too quickly, in a gene-
rative way. The resulting translations are
in the form of AZee expressions, desi-
gned to be used as input to avatar synthe-
sis systems. We present a test set tailored
to showcase its potential for expressive-
ness and generation of idiomatic target lan-
guage, and observed limitations. This work
finally opens prospects on how to evaluate
this kind of translation.

1 Introduction

Rosetta ! is a French project that aimed to study
accessibility solutions for audiovisual content. One
of the experiments consisted in designing an au-
tomatic translation system from text to Sign Lan-
guage (SL) displayed through animation of a vir-
tual signer.

The three main contributions concerning SL in

© 2023 The authors. This article is licensed under a
Creative Commons 4.0 licence, no derivative works, attribu-
tion, CC-BY-ND.

1. https://rosettaccess.fr/index.php/
home-page—english/

this project were 1) the constitution of Rosetta-
LSF (Bertin-Lemée et al., 2022), an aligned corpus
of text and SL captured using a mocap system, 2) a
translation system from text to AZee (a represen-
tation of SL content), and 3) a system allowing to
generate virtual signer animations from AZee in-
put (Dauriac et al., 2022).

This article describes the second contribution :
the translation system from text to AZee. After
an overview of the issues and recent works in the
field, we explain our method and design choices,
and describe the implementation of the translation
system. Finally, we give preliminary results and
discuss the questions raised for evaluation.

2 Text-to-Sign translation

The automatic translation of content from a spo-
ken language into a SL is a fairly recent and still
largely unexplored research topic. Here we are in-
terested in the translation of text as the source lan-
guage, in our case in French, and video or 3D ani-
mation as the target language, in our case French
Sign Language (LSF).

In this section, we look at the main challenges
encountered with text-to-sign translation.

2.1 Need for bilingual corpora

Machine translation (MT) was first developed
for spoken languages in their written form using
bilingual dictionaries and rule-based systems, that
were not easy to develop and maintain. Access to
parallel corpora of aligned examples has led to
the rise of data-driven approaches, such as Sta-
tistical Machine Translation (SMT) that used the
frequencies of translation pairs containing source—
target pairings of words or phrases. In the current
dominant approach, Neural Machine Translation
(NMT), which is also data-driven, the source text is

Nurminen, Brenner, Koponen, Latomaa, Mikhailov, Schierl, Ranasinghe, Vanmassenhove, Vidal, Aranberri, Nunziatini, Escartin, Forcada,

Popovic, Scarton, Moniz (eds.)

Proceedings of the 24th Annual Conference of the European Association for Machine Translation, p. 21-30

Tampere, Finland, June 2023.



encoded into an intermediate representation in the
form of numerical vectors to be decoded as a tar-
get text. Although the representation is not directly
open to interpretation, the practical results largely
prevail over former strategies. These methods desi-
gned for spoken languages rely on the availability
of large volumes of parallel data (of the order of
several million sentences). Unfortunately, SLs are
too little resourced in this respect, and attempts in
SMT (Stein et al., 2012) and NMT (Miiller et al.,
2022) have not yet yielded satisfactory results.

Example-based MT (EBMT) is another data-
driven approach based on analogy (Nagao, 1984).
It uses a bilingual corpus that contains texts and
their translations. Given a text to translate, seg-
ments from this corpus are selected that contain
similar components. These components are then
used to translate the components of the original
text into the target language, and these phrases
are recombined to form a complete translation.
Although the larger the corpus, the better the re-
sults will be, this approach can be implemented
on smaller corpora and thus may be considered
in the case of Sign Language Machine Transla-
tion (SLMT). Moreover, unlike SMT/NMT ap-
proaches, EBMT allows for non-sequential consi-
deration of the input, for example recombining
components in a hierarchical structure, which
seems to us to be more likely to represent content
in SL, as we shall see next.

2.2 Need for an intermediate representation

One of the major differences between SLMT
and written MT is the difference in channel. Writ-
ten languages are input to MT systems as se-
quences of discrete tokens (words separated by
blanks) whereas SL does not have a written form
and are to be considered as face-to-face oral lan-
guages. Moreover, they are able to convey simul-
taneous information by the way of a number of ar-
ticulators, such as the two hands and arms, but also
the torso, shoulders, head, gaze and facial expres-
sions (including a number of facial components).

As SL has no written form, many approaches
proceed in two steps : a first step transforms the SL
content into an intermediate representation, and a
second step uses this representation as the input of
a synthesis system to control the animation of an
avatar in order to display the content in SL.

After a first generation of studies based mainly
on the rule-based approach (Veale et al., 1998;
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Zhao et al., 2000; Marshall and Safar, 2004), a
few ones have investigated EBMT (Morrissey and
Way, 2005). They have sometimes been combined
with statistical approaches, such as in De Martino
et al. (2017) who have developed a system that au-
tomatically translates Brazilian Portuguese text to
Brazilian SL. (LIBRAS) by combining SMT with
EBMT in case of unseen texts or ambiguous terms
dependent on the context and frequency of occur-
rence in previous translations. To our knowledge,
these projects have not led to any follow-up, nor to
consumer applications.

The vast majority of projects using an interme-
diate representation of SL, including the latest ones
(Gémez et al., 2021), use sequences of glosses,
each gloss 2 standing for a so-called lexical unit ge-
nerally restricted to manual activity. Studies have
attempted to refine glosses with their internal re-
presentations, such as for example in HamNo-
Sys/SiGML/JASigning approaches (van Gemert et
al., 2022), but these remain linear sequence des-
criptions. The translation systems then deal with a
sequence of tokens and as such, meet the require-
ments for the approaches designed for sequences.
With this kind of representation though, it is very
difficult if not impossible to handle common SL
phenomena like non-manual activity, spatial rela-
tions, depicting structures, or the rhythm of the si-
gning production. This results in low quality ani-
mations, incomplete if not incomprehensible, and
therefore unacceptable by the Deaf community.
For this reason, it seems important to consider a ri-
cher intermediate representation than mere conca-
tenations of glosses.

Note that in some recent neural-based ap-
proaches (Stoll et al., 2020), the use of an inter-
mediate representation is not present. This neural-
based approach generates directly photo-realistic
continuous sign videos from text inputs. These me-
thods are themselves very demanding in terms of
aligned bilingual data. Moreover, we wish to out-
put avatar animations, which corresponds better to
use cases where a greater neutrality of appearance
of the SL content is desired.

This work therefore chooses to explore EBMT
for translation to SL, given that we do not have a
large bilingual corpus. Also, we consider the use
of an intermediate representation for SL. more ap-
propriate.

2. A gloss is a text label, generally a single word, reflec-
ting the meaning of the sign it stands for.



3 Method

In view of the EBMT approach as explained
above, we used the Rosetta-LSF corpus (Bertin-
Lemée et al., 2022) and the intermediate represen-
tation AZee to represent the SL utterances, which
we explain in this section.

3.1 EBMT-type approach

As explained above, EBMT is a translation me-
chanism based on analogy from examples. This
means that we can compensate for a missing
example by finding one close enough, and working
from it to replace what is different. For example, to
translate “la présidente parle nerveusement” (the
president is speaking nervously) when the example
is not in the data base of examples, we can hope
to work from the translation of “le ministre de
I’écologie parle nerveusement” (the minister of the
environment is speaking nervously), with a substi-
tution.

In such candidate segment henceforth, we will
call “anti-matches” the parts that do not match the
query in the segment that otherwise does, and “cor-
rections” the respective text parts that would have
been a match. For example, “présidente” (pre-
sident) is the anti-match above, and “ministre de
I’écologie” (minister of the environment) its cor-
rection.

A hypothesis is that if we find the portions cor-
responding to each anti-match in the aligned trans-
lation, we can attempt to replace them with trans-
lations of their corrections.

Our aim is therefore to produce a translation of
the source written text into the chosen intermediate
representation that reflects the target signed lan-
guage, AZee.

3.2 AZee

AZee is a formal approach to SL discourse re-
presentation (Filhol et al., 2014). It allows to define
production rules that associate forms to articulate
(e.g. begin eyebrow raise before X) to identified
meaning (semantic operations, e.g. expression of
Y with doubt). By combining them, one can build
hierarchically structured discourse expressions re-
presenting full discourse utterances, determining
the forms to produce while exposing the meaning.

For example, consider the four productions rules
below :

— info-about(topic, info) : info, which is

focused, is given about a fopic;
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— nerveusement(sig) : sig in a nervous,

stressed out way ;

— président : president;

— parler : speak.

These can be combined in the expression below,
which not only creates a semantic combination in-
terpretable as “the president is speaking nervous-
ly”, but also produces, through recursive applica-
tion of each rule’s forms, the resulting overall si-
gned form with that meaning.

:info-about

"topic
:président
"info
:nerveusement
"sig
:parler

A corpus of 120 such expressions has been pu-
blished by Challant and Filhol (2022).

Since it represents the articulations necessary to
convey that meaning, it can be used as the output of
our translation system, a lot easier than attempting
to generate video frames directly. Of course this
requires to append an animation system to the pi-
peline, able to render AZee input to SL video. This
has already been proven possible and demonstra-
ted elsewhere (McDonald and Filhol, 2021; Dau-
riac et al., 2022), but is outside the scope of this
paper, and assumed for now.

AZee discourse expressions are hierarchical,
each nested expression covering a sub-part of the
discourse. So unlike a linear stream like text or vi-
deo where segments are typically specified with
start and length, identifying an AZee “segment”
can be done through identification of a single node
in the expression. This node is the root of a sub-tree
(or a leaf) which covers a time segment in the vi-
deo (the SL capture modelled with the expression,
or indeed any avatar animation rendered from the
expression).

3.3 Corpus

As explained above, we needed a bank of ali-
gnments between French text segments and AZee
expression nodes. For this purpose, we used a sub-
set of the Rosetta-LSF corpus (Bertin-Lemée et
al., 2022), a parallel French-LSF corpus whose
first “task™ consists in 194 French news items
of 3 to 35 words in length, together with their
LSF translations. For instance : “L’Everest menacé
de réchauffement climatique” (Everest threatened



with global warming). The translations were done
by a deaf person selected for her experience in pro-
ducing online LSF content on a regular basis.

The benefit of that particular subset is that all
of the items also include AZee (section 3.2) ex-
pressions and alignment information with the text.
For each of the 194 full AZee discourse expres-
sions, the root node necessarily covers the whole
discourse in French, which already serves as an ali-
gnment. Besides, each node of the expression re-
presents a portion of the news, which sometimes
matches a text segment as equivalent in meaning.
In such case a new alignment exists, of finer gra-
nularity. The corpus contains such alignments with
segments of variable granularity, from whole news
items to single words.

The total number of AZee—text alignments in
this data set is 1812. They are collected in a file,
each on a line with the following format : name of
text file containing the news entry in French; first
character position of the French segment; length
in chars of the French segment; file name of the
aligned AZee discourse expression; line number
of the root of the aligned AZee expression or sub-
expression (node). For example :

RO1_X0007.Titrel 10 4 RO1_X0007.Titrel.az 7

4 Implementation

4.1 General algorithm

Let ¢r be the function that associates to a text
query q a set of possible translations for g by ana-
logy based on a corpus of aligned examples. If the
corpus contains alignments in which the text seg-
ment is exactly ¢, the set formed by their aligned
AZee expressions specifies an acceptable result for
tr(q).

Otherwise, as explained in §3.1, we consider
the alignments whose text segments are “close” to
q, whose differences to ¢ are the “anti-matches”,
whose translated counterparts in the aligned ex-
pression we hope to replace. By doing this, the
global structure of the aligned expression is kept
to serve as a template for ¢r(q), in which substitu-
tions are made.

Formally, for a given alignment between a text
segment txt and an expression az where txt qua-
lifies as close to g, let :

— m1q,...,my be the anti-matches of txt, i.e.

the parts in ¢zt that differ to ¢, where usually
N <2
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— ¢; be the correction of m; (7 € 1..N), i.e. the

wanted part of ¢ missing in tzt;

— az; be the node in az at the root of the sub-

expression which translates m; ( € 1..N).
With these notations, our approach is then to find
anode az; for each ¢ € 1..N, and replace it with a
translation of c¢;.

For example, assume the following alignment is
part of our data base. The text means “the minis-
ter for environmental issues speaks nervously”. In
the AZee expression, rule side—-info with ar-
guments focus and info carries the meaning of fo-
cus with additional (non-focused) information info
about it.

Text “le ministre de [’écologie parle
nerveusement”’

AZee :info-about
"topic
:side—-info

"focus

:ministre

"info

renvironnement
"info
:nerveusement

"sig

:parler

To translate the query “la présidente parle ner-
veusement” for example (i.e. “the president speaks
nervously”), we could consider the text segment
above as close. The unique anti-match m; is “le
ministre de [’écologie”, and its correction c; is “la
présidente”. We would then want to identify the
sub-expression marked () as the translation node
azy1, for which to substitute a translation of the
wanted piece “la présidente”.

If no or several candidates for an dz; are found
in the AZee expression, it becomes a lot less tri-
vial to know what to substitute in az regarding the
1th anti-match. For now, we implement translation
failure in these cases, forcing each az; to be found
unique. The translations of ¢; can however be nu-
merous, each one becoming an option for the az;
substitution.

Using our formal notations :

— finding dz; means finding a unique node n

such that n is an acceptable translation for
m;, in other words such that n € tr(m;);

— finding translations for ¢; implies simply to

consider tr(c;).



Then, any combination of N substitutions az; —
x,x € tr(c;) can be applied to az to create a trans-
lation of ¢g. The set of all of them is therefore a
subset of tr(q) associated with the txt—az align-
ment. The full set can be specified as the union of
such sets, iterating over all known alignments with
a text segment close to q.

The approach above yields a recursive definition
of tr(q) as it requires values for ¢r(m;) and tr(c;)
for each anti-match encountered. The base case for
this recursion are the exact matches. Besides, each
anti-match is always a shorter segment than the ini-
tial query, so the only condition for termination of
this algorithm is to ensure that corrections c; are al-
ways also shorter than the query, which is clearly
the typical case so adding this constraint will likely
result in zero loss.

More than termination, the problem is that of
translation failure, which is all the more likely
to happen as the corpus of example alignments
is small. In such cases, we resort to a last fall-
back where we break the query down into a par-
tition of smaller text chunks, which we will trans-
late separately and concatenate in the result with
the only reason that it follows the French or-
der. To do this we apply the AZee production
rule sign-supported-spoken which allows
to build utterances based a spoken language literal
sequence of items.

For example, one can chunk the query above
into “la présidente parle” + “nerveusement”, find
a translation for each chunk separately, say (a) and
(b) below, and propose (c) as a final translation.
(a) :info-about

"topic
:président
"info
:parler
nerveux
sign-supported-spoken
"units
list
:info-about
"topic
:président

(b) :
(©):

"info
:parler
rnerveux

For a given partition (p1,po,...,pn) of g,
the combinations sign-supported-spoken(units =
(1,2, ...,2y)) wWith z; € tr(p;) constitute a set

25

of possible translations of ¢ with this technique.
By iterating on different partitions and joining all
such sets, we generate a last, fallback specification
of tr(g). This is also a recursive definition, whose
recursive calls are applied to chunks (p;) shorter
then ¢ by construction, so termination is guaran-
teed as well.

This fallback strategy produces poorer quality
SL, and indeed equivalent to literal (word-to-word)
translation if used systematically. But it does allow
to juxtapose coarser-grain chunks of content when
translation succeeds without resorting to partitio-
ning.

For example, the use of the rule nerveux, ge-
nerating an additional manual sign meaning “ner-
vous”, can be judged as poorer LSF than that
of nerveusement used further up, which ge-
nerates a preferred and sufficient facial expres-
sion conveying the same meaning. However, the
first chunk was translated as a whole (using
info-about), which did avoid the even poorer
literal sign sequence below.

:sign—-supported-spoken

"units

list
:président
:parler
rnerveux

4.2 Auxiliary text processing modules

The practical implementation of the algorithm
relies on several text processing modules enhan-
cing analysis to find best correspondences in the
existing corpus.

To allow for matching, antimatching and parti-
tions, word-level tokenization is first performed by
OpenNMT Tokenizer *, and flexibility is allowed
when finding matching segments for punctuation
and articles.

Then the core challenge is to define what kind
of “similarity” in the source language can produce
best candidates for target language generation. As
can be seen in the example above, both semantics
and syntax come into play to determine similar ele-
ments to be replaced or translated separately. In
practice, we rely on two types of text analysis at
different steps of the algorithm.

To find the best anti-matches in the current da-
tabase and replace them by corrections, we use
string matching and consider as “anti-matchable”

3. https://github.com/OpenNMT/Tokenizer



Alignment text Common Length Ratio
tokens

le superéthanol n’est proposé que dans 1 000 stations-service en

france , comme ici dans la banlieue de bordeaux . 4 22 0.18

comme ici dans la banlieue de bordeaux 4 7 0.57

la banlieue de bordeaux 3 4 0.75

situé dans la province du guizhou , en chine , le mont fanjing attire

de nombreux touristes venus découvrir la richesse de ce paysage

montagneux . 3 26 0.12

la villa noailles a hyeres dans le var est un chateau cubiste construit

dans les années folles , a la demande d’un couple de mécenes

avant-gardiste . 3 29 0.10

TABLE 1 — Antimatchable alignments to translate “dans la banlieue de Gerstheim” (in the suburbs of Gerstheim)

all alignments that have tokens in common with
the candidate text. Best matches have been empiri-
cally set as the ones with the maximum tokens in
common, and either the minimum length in num-
ber of tokens or the best ratio of similar tokens
over total tokens. For example, to translate “dans
la banlieue de Gerstheim” (in the suburbs of Gers-
theim) by anti-match, the alignments with most to-
kens in common found in the database are descri-
bed in Table 1. We see that selecting, among the
alignments with the highest number of tokens in
common (4), the alignment with the lowest length
or best ratio between number of similar tokens and
length enables to retrieve the most relevant align-
ment for anti-match : “comme ici dans la banlieue
de Bordeaux” (like here in the suburbs of Bor-
deaux). Other sets of metrics could be used suc-
cessfully, as we found that the selection and ran-
king of alignments for anti-matching strategy si-
gnificantly affects the results of the algorithm.

When matching and anti-matching approaches
fail, we resort to partitions determined by naviga-
ting the syntactic dependency tree obtained using
spaCy 4, open-source Python library with off-the-
shelf pretrained models and optimized pipelines
for Natural Language Processing. For instance, for
the sentence “Le couvre-feu cette semaine n’est
pas encore arrété” (curfew this week has not yet
been stopped), we consider as candidate parti-
tions :

— “le couvre-feu” | “cette semaine n’est pas en-

core arrété’”
— “le couvre-feu cette semaine n’est” | “pas
encore” | “arrété”
— “le couvre-feu” | “cette semaine” /

[T

n’est pas

4. https://spacy.io
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encore arrété”.

Our tree exploration makes that some possible
partitions such as the following are not explored :
“Le couvre-feu” | “cette semaine” | “n’est pas” /
“encore” | “arrété”. Dependency parsing does not
explore all possible partitions of an input but at
least constrains the exploration to syntactically va-

lid chunks.

5 Test

5.1 Test set

Admittedly, the data base is still too small for us
to claim a system up to any usable scale. So to test
our system, we decided to build a test set by crea-
ting sentences mixing segments from different en-
tries of the corpus, and evaluate the produced out-
puts.

Our test set is composed of 15 sentences and al-
lows to test the algorithm, as presented in the next
section. For instance, the sentence “Recul de I’dge
légal a la retraite : c’est ce que proposent des re-
traités pour leurs enfants” (Increase of the retire-
ment age : pensioners propose it for their children)
was added to the test set and created from the fol-
lowing sentences of the corpus :

— Reculde I’dge légal a la retraite : “Il ne faut
pas prendre les Francais pour des canards
sauvages”, lance Valérie Pécresse. (Increase
of the retirement age : “We should not
take the French for a ride”, shouts Valérie
Pécresse.)

— Des routes nationales bientdt privatisées ?
C’est ce que proposent les sociétés d’auto-
routes dans une note interne. (National roads
soon to be privatised ? Motorway companies
propose it in an internal memo.)



— Solidarité : une ancienne abbaye accueille
des retraités (Solidarity : a former abbey
hosts pensioners.)

— Au Japon, des dizaines de peres francais se
battent désespérément pour voir leurs en-
Jants. (In Japan, dozens of French fathers are
desperately fighting to see their children.)

5.2 Algorithm on an example

This section describes the steps taken by the al-
gorithm run on the following example taken from
the test set, and the produced AZee description re-
sults.

“Alsace : de grands chefs ont vendu leur
vaisselle pour les plus modestes comme
ici dans la banlieue de Gerstheim.” (Al-
sace : great chefs sold their crockery for
the poor like here in the suburbs of Gers-
theim.)

The whole sentence is tested, first for exact
matches, then for anti-matching segments but to
no avail. So it falls back to partitioning the query,
breaking it down into 3 smaller segments as fol-
lows : “Alsace” | “de grands chefs” | “ont vendu
leur vaisselle pour les plus modestes comme ici
dans la banlieue de Gerstheim”.

Each segment above is then used as a new (sim-
pler) input query in a recursive call to the algo-
rithm, reported below. See fig. 1 for the referenced
AZee expression matches.

“Alsace” An exact-match (d) is found, which is
directly returned as an acceptable translation
for this segment.

““de grands chefs” Similarly, an exact-match
(e) is found.

“ont vendu leur vaisselle pour ...” There is no
exact match, and no anti-matching segment
is found either to translate this text chunk.
So again, the query is broken down into the
smaller sub-queries below.

“ont vendu leur vaisselle” Exact match
(f1) found.

“pour les plus modestes” Exact match (2)
found.

“comme ici dans la banlieue de Gerstheim”
No exact match, but similar segment
found, aligned with (f3’) : “comme
ici dans la banlieue de Bordeaux”,
anti-match “Bordeaux” to be corrected
with “Gerstheim”. Both the anti-match
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and the correction trigger a recursive
call, the former to decide on a node to
change in (f3’); the latter to find what to
change it for.

“Bordeaux” Exact match :Bordeaux
found in the alignment base, reco-
gnised and unique in (f3’)—marked
(x%) in fig. 1.

“Gerstheim” Exact match (f3”) found
in the alignment base.

Let (f3) be the expression (f3”) with (f3”)
instead of node () ; (f3) is a resulting
translation for this query.

Now that each segment of the inner
partition has found a translation, a re-
sult can be produced by creating a
sign—-supported-spoken expres-
sion with units (f1), (f2) and (f3) in this
order.

Finally and in the same way, a result can
be proposed for the outer partition using
sign-supported-spoken. The overall
expression is therefore the following :
:sign-supported-spoken
"units
list
(d)
(e)
:sign-supported-spoken
"units
list
(f1)
(£2)
(£3)

6 Discussion

First, our anti-matches approach has some ad-
vantages, compared to a sequence-based one. In-
deed, structures that are specific to LSF can be
found in the final translations, which is not the
case when the language is reduced to a sequence
of glosses or another linear representation.

In addition, the approach produces results with
a certain form of creativity. In LSF, paraphrases or
additions are commonly used, and indeed part of
the corpus as initially delivered by the translator at
the time of video corpus creation. These elements
were later aligned as examples, thus frequently ap-
pear in the generated translations, although not al-
ways strictly necessary. See the example for “Al-



(d) :category
"cat
:info-about
"topic
:Est
"info
:info-about
"topic
:France
"info
:zone
"elt
:info-about
"topic
:appartenance
"info
:Alsace

(f2) : info—-about
"topic
:pour
"info
:side-info
"focus
:multiplicity
"elt
:une personne
"info
:info-about
"topic
:comment dire
"info
:difficile

In English :

(e) :category

(f37)

:info-about

1) :
"cat
:side—info
" focus
tmultiplicity
"elt
:une personne
"info
:zone
"elt
:chef cuisinier

(f37)
"topic
rexemple
"info
:info-about
"topic
raussi
"info
:info-about
"topic
rici
"info
:info-about
"topic
:side—info
"focus
:Bordeaux (
"info
:banlieue
"info
:la

(d) The Alsace region in the East of France

(e) Chefs
(f1) Sell crockery
(f2) For the poor (people)

(f3’) Like here in the suburbs of Bordeaux

(f3”’) Gerstheim

info-about
"topic
:la
"info
:info—-about
"topic
rall-of
"items
list
:assiette
:assiette
"info
rmultiplicity
"elt
:vendre

:category
"cat
:ville
"elt
:fingerspelling
"letters
list

EHEHIDH®N®WMHEQ®

* %)

FIGURE 1 - Aligned AZee expressions matched in algorithm run
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sace”, which although a single sign exists, is trans-
lated to the whole expression (d), typical of LSF
when no context yet exists.

Moreover, the output of the algorithm is a set
of translations (built from the various substitution
combinations), not necessarily a single expression.
This in a way accounts for the reality of the trans-
lation task. For example, to translate “Emmanuel
Macron” into LSF, different possibilities have been
used by the translator, hence the different possible
AZee output expressions (g), (h) and (i) below.

(g) :Emmanuel Macron

(h) :side-info

"topic

:Emmanuel Macron

"info

:président

(i) :category

"cat

:side—info
"topic
:une personne
"info
:président

"elt

:Emmanuel Macron

In our test set, the number of translations propo-
sed for a query ranges from 1 to 12 (average : 4). At
the moment, the order in which the AZee expres-
sions are output is irrelevant. One prospect for this
algorithm is to rank them according to some heu-
ristics, for example constraints on preferred AZee
rule combinations.

The work presented also has limitations. We can
observe that some anti-matches are incorrect, for
instance : “des personnes pro-Brexit” (pro-Brexit
people) vs “des personnes manifestent” (people
demonstrate). The syntactic categories of the anti-
match and its correction are not the same (adjec-
tive vs. verb), which creates problems during the
translation process. If we want to translate “des
personnes pro-Brexit sont dans la rue” (pro-Brexit
people are in the street), the algorithm suggests
“pro-Brexit” as an anti-match for “manifestent”,
but the result is syntactically unacceptable : “*des
personnes manifestent sont dans la rue”. The syn-
tactic category of each phrase should be taken into
account to prevent such errors and to improve the
anti-matching results.

Finally, a considerable number of fallbacks are
present in the output of the algorithm : 3 per re-
sult on average. As explained in section 4.1, this is
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not ideal, and the size of the corpus is undoubtedly
a contributing factor : if we increase the number
of examples and alignments, the number of fall-
backs will decrease and the quality of the transla-
tions should hopefully improve.

7 Conclusion and prospects

We have presented a new system of automa-
tic translation from text to AZee, based on an
example-based machine translation approach, the
hierarchical representation of S AZee and an ali-
gned corpus of French text and AZee descriptions
extracted from the Rosetta-L.SF corpus. A prototy-
ping implementation of the system has been made
and tested on some examples, thus providing a
proof of concept.

The capacities of this system and the size of the
corpus still need to be extended before real eva-
luations can be carried out. But we can already
stress that the evaluation of such a system will
not be easy, since it proposes a translation from
one language to a representation of another lan-
guage, not directly readable. Automatic evaluation
metrics could be considered using target transla-
tions references, which are hierarchical, and tree
edit distances instead of the Levenshtein-type ones
used for sequences, e.g. BLEU scores.

Metrics for the evaluation by human of the qua-
lity of translations, such as the one proposed in
the European QT21 project®, provide a scoring
sheet with types of errors produced by the trans-
lation system, which allows to highlight the short-
comings of the systems and the aspects to improve.
This project has proposed a framework for descri-
bing and defining custom translation quality me-
trics. Some of the error categories are defined as-
suming text as a target, which does not apply in
our case. A category called “fluency” allows us to
evaluate the quality of an utterance, regardless of
whether it is the result of a translation. In our case,
the target is not even a language utterance, thus
this category will need some adjustments. What re-
mains is the category of errors linked to the trans-
lation process itself, categorised as “accuracy”. It
would be interesting to study if this kind of eva-
luation could be adapted to our system. The issue
is to define these categories in the case of SL. It is
common or indeed often preferred in SL to intro-
duce contextual information, for example expres-
sion (d) figure 1 for “Alsace”, which should not be

5. https://www.qt21l.eu



judged as an unwanted addition.

Furthermore, as AZee can be used to generate
virtual signer animations which are directly “rea-
dable” by language users, fluency error categories
could be taken into consideration after this step
to complete the evaluation. The establishment of
a robust and comprehensive evaluation protocol is
clearly a subject of study in its own right, which
needs to be pursued in the near future.
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Abstract

This work presents an unsupervised
method of selecting filters and threshold
values for the OpusFilter parallel corpus
cleaning toolbox. The method clusters
sentence pairs into noisy and clean cate-
gories and uses the features of the noisy
cluster center as filtering parameters.
Our approach utilizes feature importance
analysis to disregard filters that do not
differentiate between clean and noisy
data. A randomly sampled subset of a
given corpus is used for filter selection
and ineffective filters are not run for the
full corpus. We use a set of automatic
evaluation metrics to assess the quality
of translation models trained with data
filtered by our method and data filtered
with OpusFilter’s default parameters. The
trained models cover English-German and
English-Ukrainian in both directions. The
proposed method outperforms the default
parameters in all translation directions for
almost all evaluation metrics.

1 Introduction

Neural machine translation (NMT) is dependent
on large parallel text corpora. Available train-
ing data can often be noisy, especially if the data
is retrieved by the common method of extract-
ing bitexts from web crawls (Espla-Gomis et al.,
2019; Schwenk et al., 2021; Bafidn et al., 2020).
Training NMT on noisy data can be detrimental
to the translation models. Ensuring that the train-

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

ing examples are clean sentence pairs leads to bet-
ter translation quality and more efficient training
(Khayrallah and Koehn, 2018). If clean paral-
lel corpora are not readily available, a common
practice is to refine a noisy corpus by filtering
out low quality training examples. The amount
and type of noise varies between different cor-
pora. Selecting the kind of filters that are optimal
for cleaning a specific parallel corpus can take a
lot of trial and error. Several methods and tools
for corpus cleaning have been proposed and de-
veloped (Taghipour et al., 2011; Carpuat et al.,
2017; Ramirez-Sénchez et al., 2020). OpusFilter
(Aulamo et al., 2020) is one such toolkit. It pro-
vides a selection of configurable filters, but suffers
from the same issue of having to manually choose
the filters and their parameters. In this work, we
propose an unsupervised method of selecting ef-
fective filters and filtering thresholds based on the
properties of a given corpus. Our method automat-
ically generates a filtering configuration file which
serves as a solid starting point for finding the op-
timal settings for an OpusFilter corpus cleaning
pipeline. We assess the proposed method by com-
paring the translation quality of models trained
with data filtered with default parameters from
OpusFilter and data filtered with autogenerated pa-
rameters. Our implementation of the filter selec-
tion method is available at https://github.
com/Helsinki-NLP/OpusFilter.

2 Related work

Corpus cleaning has been a part of training
pipelines since the statistical machine translation
(SMT) era. Some of the most common and most
straightforward methods include sentence length
based methods, for example removing too short
and too long sentences and sentence pairs where
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the ratio of source and target lengths is above a
given threshold. The Moses toolkit (Koehn et al.,
2007) offers commonly used scripts for this pur-
pose. Taghipour et al. (2011) map sentence pairs
into an N-dimensional space and filter out the out-
liers. Cui et al. (2013) propose a graph-based
random walk filtering method which is based on
the idea that better sentence pairs lead to better
phrase extraction and that good sentence pairs con-
tain more frequent phrase pairs. The Zipporah data
cleaning system (Xu and Koehn, 2017) maps sen-
tence pairs into a feature space and uses logistic
regression to classify good and bad data. As the
features, they use bag-of-word translation scores
and n-gram language model scores.

Training data quality has a strong effect on NMT
performance. Khayrallah and Koehn (2018) study
several types of noise and their impact on trans-
lation quality. They report that NMT is less ro-
bust against noisy data than SMT. Rikters (2018)
points out common problems in parallel corpora
that can result in low quality NMT and provides
filters to overcome these issues. These problems
include mismatch of non-alphabetic characters be-
tween source and target segments, wrong language
and repeating tokens.

Ramirez-Sanchez et al. (2020) present two tools
for more careful corpus cleaning with NMT in
mind: Bifixer and Bicleaner. Bifixer is a restora-
tive cleaner; it only removes sentence pairs with
either side being empty but otherwise it fixes text-
related issues in place. Bifixer corrects char-
acter encoding and orthography issues, conducts
re-splitting of the sentences and identifies dupli-
cates. Bicleaner consists of filtering rules, lan-
guage model scoring and a classification part. The
filtering rules are predefined, but other steps of
Bicleaner require training a language model and
a classifier. However, pretrained models are pro-
vided for many language pairs.

OpusFilter (Aulamo et al., 2020) is a config-
urable parallel corpus cleaning toolbox. OpusFil-
ter provides a variety of data selection, text pro-
cessing, filtering and classification features that
can be combined into a reproducible corpus clean-
ing pipeline. An important step in constructing this
pipeline is to choose which filters to use and with
what parameters. The filters work by producing
a score for a sentence pair and checking whether
the score exceeds a threshold value. OpusFilter
defines default threshold values for each filter, but
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there is no guarantee that these values are optimal
for a given corpus and language pair.

We propose an unsupervised method to choose
filters that are useful in differentiating between
clean and noisy sentence pairs and to initialize
threshold values based on features extracted from
a parallel corpus. The approach consists of cluster-
ing sentence pairs into noisy and clean categories
and using the features of the noisy cluster center
as the threshold values. This method is especially
useful in setting initial OpusFilter parameters that
are adapted to the characteristics of a given corpus.

3 Method

Our proposed method of selecting relevant filters
and useful threshold values for OpusFilter is based
on clustering sentence pairs into clean and noisy
categories and using the features of the noisy clus-
ter center as our filtering parameters. To select the
filters that are actually useful in detecting noisy
sentence pairs, we convert the clustering task into
a classification task and find the features that af-
fect classification accuracy the most. For cluster-
ing, classification and feature importance inspec-
tion, we use the scikit—-learn Python package
(Pedregosa et al., 2011).

3.1 Filter scores as features

In order to extract features from a parallel cor-
pus, we select a set of filters and use them to pro-
duce scores for sentence pairs with OpusFilter’s
score function. We conduct this procedure on a
randomly sampled subset of 100k sentence pairs
from the training corpus in order to keep the con-
figuration generation reasonably fast even for large
corpora. In this work, we use the following filter
scores as features:

* AlphabetRatioFilter: The proportion of al-
phabetic characters in the segments.

 CharacterScoreFilter: The proportion of char-
acters in a valid script.

» LanguageldFilter: A confidence score from
cld2 language identifier.!

* LengthRatioFilter: The ratio between the
source and target segment lengths. We use
two versions of this score: one with charac-
ters and one with tokens as the length unit.

"https://github.com/CLD20wners/cld2



* NonZeroNumeralsFilter: The similarity of
numerals in the source and target segments
(Vazquez et al., 2019).

* TerminalPunctuationFilter: A penalty score
for terminal punctuation co-occurrence in the
source and target segments (Vazquez et al.,
2019).

These features are chosen as they are inexpensive
to produce and easy to interpret, but our approach
can be expanded to use any filter that produces
scores ranging from noisy to clean.

3.2 Clustering

We train k-means clustering with the filter scores
as features and we cluster the sentence pairs
into two categories: noisy and clean. We use
the k-means++ algorithm for centroid initializa-
tion (Arthur and Vassilvitskii, 2007). All feature
scores are standardized by removing the mean and
scaling to unit variance before clustering. After
training the clustering algorithm, we look at the
centroids of each cluster to recognize the two cat-
egories. The cluster center which has lower mean
feature score represents the noisy cluster. For some
filters, low values represent clean sentence pairs
and in those cases we use the value’s additive in-
verse when calculating the mean. The features of
the noisy cluster center are used as the generated
filtering threshold parameters.

3.3 Feature importance

Not all features are useful in differentiating be-
tween noisy and clean sentence pairs. The k-
means clustering algorithm does not directly indi-
cate which of the features are important. In order
to determine the feature importance, we convert
the unsupervised clustering task into a supervised
classification task similarly to Ismaili et al. (2014).
We train a random forest classifier with the same
features as extracted for clustering, and as the la-
bels we use the categories assigned to each sen-
tence pair by the clustering step.

Once the classifier is trained, we find the im-
portant features using permutation feature impor-
tance scores which show how much the classifi-
cation accuracy is affected by shuffling the values
of a given feature (Breiman, 2001). In order to
determine which features are important enough to
keep in the filtering configuration, we compare the
importance value of each feature to the mean of
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all importance values. The importance threshold
that each feature has to cross is the mean multi-
plied by a rejection coefficient. This coefficient is
used to lower the threshold in order to accept all
features in cases where all importance values are
close to the mean. In our preliminary experiments,
we found using 0.1 as the coefficient to work in
rejecting features that do not differentiate between
noisy and clean sentence pairs. The default value
for the coefficient is 0.1 but it can be set to other
values. Finding the optimal value is not trivial as
this would require examining the results of running
the filters on full datasets and possibly training MT
systems to assess the datasets. Finding a more ro-
bust approach for rejecting filters remains for fu-
ture work.

Noisy Clean Importance

AlphabetRatio.src 0.74 0.82 0.086
AlphabetRatio.trg 0.76 0.84 0.104
CharacterScore.src 1.0 1.0 0.0

CharacterScore.trg 0.99 1.0 0.010
LanguagelD.src 0.94 0.92 0.001
LanguagelD.trg 0.91 0.92 0.001
LengthRatio.char 1.18 1.17 0.001
LengthRatio.word 1.21 1.21 0.001
NonZeroNum 0.67 0.99 0.088
TerminalPunctuation | -0.67  -0.05 0.063

Table 1: Feature selection for English-Ukrainian. The ta-
ble shows the feature values of the noisy and clean cluster
centers. The rightmost column shows the importance val-
ues determined by the random forest classification task. The
mean importance is 0.036 and rejection coefficient is set to
0.1. Thus, the threshold to be considered an important fea-
ture is 0.0036. Five of the features are rejected as they do not
cross this threshold. Rejected importance values have a grey
background.

Table 1 shows an example of feature selection
for the English-Ukrainian training set used in our
translation experiments in Section 4. Five of the
ten features are rejected as they do not cross the
importance score threshold. The features that are
rejected appear to have similar values in both the
noisy and clean cluster centers. On the other hand,
the character score on the target side is not rejected
despite having values very close to each other in
both clusters. This can be explained by the fact that
the importance values take into account the whole
distribution of feature scores, while the cluster cen-
ters only represent the means of each feature.

4 Translation experiments

In order to assess the impact of our data filtering
method, we train translation models for English-
German (en-de) and English-Ukrainian (en-uk) in



Default Autogen Default Autogen

en-de en-uk en-de en-uk en-de en-uk
AlphabetRatio 0.75, 0.75 | 0.73, 0.76 | 0.74, 0.76 13.5% | 16.2% | 10.6% | 15.0%
CharacterScore 1, 1 - - - 099 0.1% | 14.1% - | 11.1%
Languageld 0, 0 - 0.85 - - 8.5% | 10.6% 8.7% -
LengthRatio.char 3 - - 0.0% 0.0% - -
LengthRatio.word 3 - - 0.0% 0.0% - -
NonZeroNumeral 0.5 0.60 0.67 7.9% 7.8% 9.6% | 11.9%
TerminalPunctuation -2 -0.66 -0.67 0.8% 0.7% | 19.1% | 14.9%

Table 2: The left side shows the default thresholds and the generated thresholds for each filter. The default thresholds are the
same for both language pairs. AlphabetRatio, CharacterScore and Languageld filters each have two threshold values: one for
the source and one for the target sentence. The right side shows the proportions of data that each filter would remove with these
thresholds if ran individually. The hyphens indicate filters that have been rejected by the autogeneration method.

both translation directions. These language pairs
are chosen as the latest WMT shared transla-
tion task (Kocmi et al., 2022) provides develop-
ment and test data for them and there is available
ParaCrawl data for both language pairs (Espla-
Gomis et al., 2019; Baién et al., 2020). We train
models with three different training datasets: one
unfiltered set, one cleaned with the default param-
eters from OpusFilter, and one cleaned with filters
and parameters selected by our proposed configu-
ration generation method. We compare the transla-
tion quality of the resulting models with automatic
metrics.

4.1 Experiment setting

For our experiments, we use ParaCrawl v9 data,
which has been previously shown to contain a good
amount of noise (Kreutzer et al., 2022). To con-
duct basic initial cleaning on our training datasets,
we remove duplicates and filter out sentences by
length (we remove sentences shorter than 3 words
and longer than 100 words). The en-uk training
set has 12,605,229 sentence pairs after the initial
filtering. For en-de, we take a sample of 30M sen-
tence pairs from the initially filtered set to serve as
the training data.

Our translation models, trained using the Mar-
ianNMT toolkit (Junczys-Dowmunt et al., 2018),
are transformer-base with an encoder and decoder
depth of 6. We train SentencePiece (Kudo and
Richardson, 2018) unigram tokenizers for each
model and restrict the vocabulary size to 32k fol-
lowing Gowda and May (2020). For en-de we
choose a shared vocabulary, while for en-uk we
choose to have separate vocabularies of 32k for
each script. All models are trained until conver-
gence with early-stopping on development data,
for which we use Flores-101 (Goyal et al., 2022).
Flores-101 is the only development set for en-uk
in WMT22 and we aim to create consistent train-
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ing conditions for all our experiments. Therefore,
we use Flores-101 development data for en-de as
well. We use 1 single NVIDIA Volta V100 GPU
for training.

We train models in both translation directions
for each language pair based on three different data
filtering methods:

* baseline: raw data deduplicated and fil-
tered by length.

* default: data filtered with OpusFilter’s de-
fault parameters.

* autogen: data filtered with OpusFilter con-
figuration files produced with the proposed
autogeneration method.

4.2 Corpus filtering

We filter the training sets for both language pairs
with two different methods: using the default
parameters from OpusFilter and using automat-
ically generated parameters. In both methods,
we use the filters defined in Section 3.1. Ta-
ble 2 shows the default thresholds for each filter
as well as the thresholds generated by the auto-
generation method. Many filtering thresholds are
rejected as the configuration generation procedure
does not consider them useful for differentiating
between noisy and clean sentence pairs. For exam-
ple, the length ratio score distributions are similar
in the noisy and clean clusters for both language
pairs and consequently, the length ratio filters are
dropped for both language pairs. Language iden-
tification scores are not found important for en-uk
but for the en-de training set, the threshold for the
German side is kept. All character score thresh-
olds are rejected except for the Ukrainian side of
the en-uk set.

Table 2 also shows how much data each filter
would remove with default and autogenerated pa-
rameters if each filter was run individually. The



BLEU chrF COMET
en-uk uk-en en-de de-en | en-uk uk-en en-de de-en en-uk uk-en en-de de-en
Baseline 11.1 21.3 24.6 24.1 353 45.8 52.6 49.6 | -0.395 -0.177 0.198 0.152
Default 15.8 289 b24.6 24.6 434 532  b52.5 50.9 0.027  0.108  50.201 0.202
Autogen 16.3 29.9 255 d24.6 44.2 54.4 53.7 d50.8 0.065 0.164 0.230 40.212

Table 3: Results of the translation experiments. When the results from default parameters or autogenerated parameters are not
significantly different from the baseline results, we prefix them with 5. When the results from autogenerated parameters are not
significantly different from the default parameter results, we prefix them with d.

proportion of sentence pairs removed by the four
length ratio filters with default thresholds ranges
from none at all to 0.0005%. This supports the hy-
pothesis that length ratio values are not useful for
finding noisy data in these training sets. Similarly,
the character score filter with default parameters
removes only 0.1% of the en-de set and the filter
is not present in the generated configuration. On
the other hand, the language identification score
for the en-uk set does not follow this trend: the
default thresholds filter out a substantial portion of
the data, 10.6%, but it is still rejected by the auto-
generation method.

In total, filtering with default values keeps
22,586,611 (75.3%) sentence pairs for the en-
de set and 8,069,599 (64.0%) for the en-uk set.
In turn, after filtering with the autogenerated
threshold parameters, the dataset size for en-de
is 19,417,755 (64.7%) and for en-uk 8,316,491
(66.0%) sentence pairs. The en-de training sets
have 19,031,231 overlapping sentence pairs which
is 84.3% of the default set and 98.0% of the auto-
generation set. For en-uk, the number of overlap-
ping sentence pairs is 7,280,959 which is 90.2% of
the default set and 87.5% of the autogeneration set.

4.3 Results

The trained translation models are evaluated with
three evaluation metrics: BLEU (Papineni et al.,
2002), chrF (Popovié, 2015) and COMET (Rei et
al., 2020). We use SacreBLEU (Post, 2018) to
calculate BLEU and chrF. COMET is computed
with the unbabel-comet Python package® us-
ing evaluation model wmt20-comet-da. Addi-
tionally, we conduct significance testing by us-
ing paired bootstrap resampling (Koehn, 2004) to
compare the filtered training sets to the baseline,
and to compare the default and autogeneration
methods to each other. Results are shown in Ta-
ble 3 for the WMT?22 general test sets (Kocmi et
al., 2022).

Autogeneration performs better than the base-

https://github.com/Unbabel/COMET
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line for all metrics and language pairs. The perfor-
mance gains are especially noticeable for the en-
uk and uk-en translation pairs. Default filtering
scores are higher than the baseline in all transla-
tion directions except en-de where the scores are
not significantly different from the baseline by any
metric. Autogeneration outperforms default filter-
ing in all language pairs except de-en for which
there are no significant performance differences
between the two approaches.

These results suggest that the proposed method
is able to improve the translation quality of mod-
els trained on parallel corpora that are filtered by
extracting and clustering corpus-specific features.
Additionally, our method makes the corpus filter-
ing phase more efficient. We select the filters and
their thresholds based on a 100k sentence pair sam-
ple of a much larger corpus. This allows us to
avoid unnecessarily running filters that do not re-
move noisy sentence pairs on the whole corpus. In
our experiments, running the filters with default
parameters took 1h3m12s for en-de and 31m21s
for en-uk. Using the generated configurations, the
filtering times were 47m4s (25.5% faster) for en-de
and 18m35s (40.7% faster) for en-uk. Generating
the filtering parameters takes one to two minutes.
The filters used in this work are quite inexpensive
and fast to run but our method can be easily ex-
panded to more demanding cleaning.

5 Conclusion

We propose an unsupervised method for selecting
filters and filtering thresholds for OpusFilter. We
evaluate our method in translation tasks where we
train models on data filtered with the default pa-
rameters of OpusFilter and another set of mod-
els trained on data filtered with generated filter-
ing configuration files. The autogeneration method
outperforms the default parameters in almost all
cases. Additionally, our method makes corpus fil-
tering more efficient as we only run useful filters
with appropriate parameters on the full training set.

In future work, we will evaluate our method in a



larger variety of corpus cleaning scenarios to con-
firm our findings. One point of interest is to test
the method for corpora with different proportions
of noisy data. We will also conduct tests in low-
resource language settings. Additionally, we will
evaluate the effects of expanding our approach by
integrating a larger range of different filters. In or-
der to improve the autogeneration method, more
careful analysis of the feature selection process
will be performed, for example manual evalua-
tion of sentence pairs in noisy and clean categories
in order to assess the clustering accuracy. We
will also explore using statistical inference (e.g.
Welch’s t-test) for finding effective filters as an al-
ternative for the feature importance analysis. Re-
lying on statistical significance could be a more ro-
bust approach for discarding filters than the current
rejection coefficient method.
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Abstract

There are several parallel corpora available
for many language pairs, such as CCMa-
trix, built from mass downloads of web
content and automatic detection of seg-
ments in one language and the transla-
tion equivalent in another. These tech-
niques can produce large parallel corpora,
but of questionable quality. In many cases,
the segments are not in the required lan-
guages, or if they are, they are not transla-
tion equivalents. In this article, we present
an algorithm for filtering out the segments
in languages other than the required ones
and re-scoring the segments using SBERT.
A use case on the Spanish—Asturian and
Spanish—Catalan CCMatrix corpus is pre-
sented.

1 Introduction

1.1 Parallel corpora crawled from the web

There are several web-derived very large parallel
corpora available for a high number of language
pairs. Paracrawl' (Bafién et al., 2020) is a paral-
lel corpus created crawling the web searching for
multilingual pages. At the moment it offers par-
allel corpora from English to 38 languages and 6
additional language pairs not including English.
Wikimatrix? (Schwenk et al., 2021a) is created us-
ing Wikipedia to automatically find translated sen-
tences. It includes 96 languages, totalling 16,720
language pairs. CCAligned® (El-Kishky et al.,
2020) is a corpus formed by parallel or compara-
ble web-document pairs in 137 languages aligned
© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

"https://paracrawl.eu/
Zhttps://github.com/facebookresearch/LASER/

tree/main/tasks/WikiMatrix
3https://www.statmt.org/cc-aligned/

with English. From this document corpus, paral-
lel segments are extracted using similarity scores
of LASER* (Artetxe and Schwenk, 2019) embed-
dings from the document pairs. OSCAR? (Abadji
et al., 2022) is also a parallel corpus crawled from
the web covering 166 languages. The CCMatrix®
(Schwenk et al., 2021b) corpus has the particular-
ity that no document information has been used.
Instead, all the segments in a given language are
compared with all the segments in another lan-
guage in order to detect parallel segments. To do
so, they also use LASER and calculate a margin
score, defined as the ratio between the cosine dis-
tance between the two sentence embeddings, and
the average cosine similarity of its nearest neigh-
bours in both directions. This results in very large
parallel corpora for 90 languages, totalling 1,197
language pairs.

Some of these corpora, and CCMatrix in par-
ticular, suffer from low quality, especially for lan-
guage pairs with fewer resources. Two main prob-
lems are easily detected by a simple visual inspec-
tion: segments are not in the correct language,
and source and target segments are not translation
equivalents. In this paper we present a program
that verifies the languages and assesses the transla-
tion equivalence of the source and target segments.
We evaluate the performance of the program on
the CCMatrix corpus for Spanish—Asturian and
Spanish—Catalan.

1.2 Automatic language detection

Several language detection libraries implemented
in Python are available. Among them, we can

“https://github.com/facebookresearch/LASER
Shttps://oscar-project.org/
®https://github.com/facebookresearch/LASER/
tree/main/tasks/CCMatrix
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highlight the following:” (1) langdetect® able to
detect 55 languages; (2) Spacy-langdetect’ that in
fact uses langdetec, being able to detect by default
the same number of languages; (3) fastText,'? a
tool for text classification developed by the Face-
book AI Research (FAIR) lab that includes a lan-
guage identification model able to detect 176 lan-
guages; and (4) gcld3,'" a neural network model
for language identification developed by Google
that can detect 107 languages.

We have selected fastText language identifica-
tion module because it is the one detecting more
languages and it provides a confidence score for
the detected languages. Furthermore, fastText al-
lows training your own models very easily.

1.3 Multilingual models for sentence
embeddings

Two libraries for the calculation and use of mul-
tilingual sentence embeddings, that also provide
ready-to-use models for a lot of languages, can be
highlighted. The LASER!? (Language-Agnostic
SEntence Representations) (Schwenk and Douze,
2017) provides models for over 200 languages.
This library is the one used to create the CCMa-
trix corpus. Sentence-Transformers (Reimers and
Gurevych, 2019) (SBERT)!3 is a library for sen-
tence, text and image embeddings, offering sup-
port for more than 100 languages. Both libraries
offer a lot of code examples for different tasks, and
they can be used indistinctly.

2 Previous works

The idea of using multilingual sentence embed-
dings for parallel corpus cleaning is not new. In
Chaaudary et al. (2019), LASER is used to cre-
ate representations of the segments and to score
them and filter the noisy parallel segments. They
used this technique in a low—resource scenario, but
the authors state that it is promising even in no—
resource scenarios. In Zhang et al. (2020), the de-
gree of parallelism of the segments is measured us-
ing BERT and a domain filter is used to avoid the
adverse effect of the domain of the training data.

"https://towardsdatascience.com/4-nlp-libraries-for-
automatic-language-identification-of-text-data-in-python-
cbc6bf664774

8https://github.com/Mimino666/langdetect
*https://pypi.org/project/spacy-langdetect/
https://fasttext.cc/

https://pypi.org/project/gcld3/
Phttps://github.com/facebookresearch/LASER
Bhttps://www.sbert.net/

A recent study (de Gibert Bonet et al., 2022) de-
signs a filtering strategy based on a trained clas-
sifier. To train the classifier, they use a labelled
dataset of parallel segments annotated as valid
or invalid. They apply the filtering algorithm to
English—Catalan and Catalan—English and achieve
improvements between 1.3 and 2.9 BLEU points
when training NMT systems on the clean corpus.
The resources and algorithms are freely available,
but their use is not simple and straightforward.

Few of these works end in a ready-to-use algo-
rithm. Among these, we can mention the follow-
ing. Zipporah!# (Xu and Koehn, 2017) uses a bag-
of-words translation feature, and needs to train a
logistic regression models to filter the parallel cor-
pus. The user has to train the system providing
a bad corpus (containing noisy data that should
be filtered), a good or training corpus and devel-
opment data, that should be a clean corpus. Bi-
fixier'> (Ramirez-Sanchez et al., 2020) performs
a restorative cleaning consisting on the follow-
ing steps: removing of the parallel segments hav-
ing an empty segment in any of the parts; char-
acter fixing; orthography fixing; respliting of the
segments and duplicate identification. Bicleaner!®
(Zaragoza-Bernabeu et al., 2022) is a parallel sen-
tence noise filter and classifier tool. The process
is done in three steps: (1) pre-filtering based on a
set of rules; (2) language model fluency scoring,
a language-dependent step using character-based
language models; and (3) classification based on
a random-forest machine learning model.

3 Description of the resorting and
filtering tool

The tool is implemented in two Python programs
that can be freely downloaded from GitHub!”: the
rescorer and the selector.

The rescorer algorithm performs two actions:

e It detects the language of the source and tar-
get segments using fastText. By default, it
uses the lid.176.bin model, that is able to de-
tect 176 languages, but the user can select any
other model and even train and use his/her
own models.

* It represents the source and target languages
using a multilingual sentence embedding

"“https://github.com/hainan-xv/zipporah

Bhttps://github.com/bitextor/bifixer
"®https://github.com/bitextor/bicleaner
7https://github.com/aoliverg/MTUOC-PCorpus-rescorer



model. The implementation uses Sentence-
Transformers.'® By default the LaBSE model
is used, that supports 109 languages, but any
other model can be used.
These  actions are  implemented in
MTUOC-PCorpus-rescorer.py, that uses
the following parameters:

* The input corpus. It should be a parallel cor-
pus in TSV format with the source segment,
the target segment and, optionally, a score.
For example, CCMatrix corpora provides a
margin score, that can be used as a third field

in the TSV file.

A path and name for the Sqlite database that
will be created. See the description of this
database below in this section.

The source language code.
The target language code.

Optionally, a SentenceTransformer model
can be provided. By default, the LaBSE
model is used.

Optionally, a fastText language detection
model can be provided. By default, the
1id.176.bin model is used.

The algorithm creates a Sqlite database with the
following structure:

* segmment identifier.
* source segment.
target segment.
the score provided by the corpus, if any.

the detected source language.

the confidence for the detection of the source
language.

the detected target language.

the confidence for the detection of the target
language.

the score calculated with the SentenceTran-
former, the cosine similarity between the
source and the target segments.

Bhttps://www.sbert.net/
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While reading the input corpus, the Sqlite
database is filled with the required information. As
the calculation of the SentenceTransformer and the
cosine similarity are slow, they are only calculated
for those source and target segments with the ex-
pected detected languages. Please note that along
with the detected language, the confidence scores
are stored in the database.

Once the  Sqlite database is cre-
ated, a  selection program is  used
(MTUOC-PCorpus—-selector.py) to se-

lect the parallel segments satisfying a minimum
source and target language detection confi-
dence and a minimum SBERT score (the cosine
similarity).

4 Experimental part

4.1 Corpora

In the experiments we worked with the CCMatrix
for two language pairs involving three Romance
languages of the project TAN-IBE: Spanish—
Catalan and Spanish—Asturian. This setting is
interesting because it involves similar languages
(causing difficulties for the automatic language de-
tection) and includes one low resource language:
Asturian. In table 1 we can observe the size of
these corpora.

Languages | Segments
spa—ast 6,438,281
spa—cat 65,369,659

Table 1: Sizes of the CCMatrix corpus for Spanish—Asturian
and Spanish—Catalan.

To automatically evaluate the algorithm we used
the Flores-200 corpus (Goyal et al., 2022) for the
following languages: Spanish, Portuguese, Cata-
lan, Galician, Occitan and Asturian. For Asturian,
a complete revision by a native speaker has been
performed in the TAN-IBE project. This corpus
has a total of 2,009 segments. Two evaluation cor-
pora have been created from these Flores corpora:

* A monolingual corpus containing all these
Flores corpora concatenated and shuffled.
This corpus has been used to evaluate the lan-
guage detection algorithm,

* A parallel corpus with mixed language pairs
and directions of these Flores corpora, includ-
ing: Spanish—Asturian, Asturian—Spanish,



Spanish—Portuguese, Spanish—Catalan and
Spanish—Occitan. It also included incorrectly
aligned Spanish—Asturian and Asturian—
Spanish segments. This corpus has been used
to evaluate the capability of the algorithm to
select the correct parallel segments.

4.2 Evaluation of the language detection
algorith

The evaluation has been performed using the
language detection model provided by fastText:
lid.176.bin, capable of detecting 176 languages.
The detection algorithm can provide a confidence
score. In table 2 we can observe the values of
precision, recall and L, for Asturian, Catalan and
Spanish for different values of confidence (the
same minimum confidence assigned to both lan-
guages).

As we can observe, for any value of confidence
we get a 100% precision for Asturian, but very low
recall and therefore F}. This may mean that most
of the Asturian segments are detected as other lan-
guages, and only very few of the segments are de-
tected as written in this language. This is probably
due to the fact that Asturian is underrepresented
in the corpus used to train the language detection
module. For Catalan, the best F} is reached for a
confidence of 0.7 and for Spanish for a confidence
of 0.9.

The evaluation results for language detection us-
ing the existing 1id.176.bin model were no satis-
factory for Asturian. Using this model will re-
sult in rejecting a lot of Asturian segments due
to the incorrect language detection. For this rea-
son we decided to train a new language detection
model including the languages of the project plus
French and English and using the same number
of segments for training for all languages. We
have included English because a lot of content
collected from the web contains segments in En-
glish, and we want this content to be detected
and filtered out. The inclusion of French is mo-
tivated by its similarity to Occitan, and to the
fact that a lot of web content in Occitan con-
tains information in French. To do so, we ex-
tracted the text from the Wikipedia dumps for
Spanish, Portuguese, Galician, Catalan, Asturian,
Aragonese, Occitan, English and French. We ran-
domly selected 1,000,000 segments larger than 50
characters from each Wikipedia texts and labeled
them with the language code. For the Aragonese
Wikipedia we could only select 273,458 segments
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and for the Occitan Wikipedia 664,728. With this
corpus we trained a fastText model using character
n-grams of length 2. 3 and 4. In table 3 we can ob-
serve the results of the evaluation of the language
detection task using the newly trained model. As
we can see, the precision for Asturian is kept in
very high values with no lack of recall, resulting in
very good values of F for all the levels of confi-
dence. The values for Catalan and Spanish are also
very good.

4.3 [Evaluation of the rescoring algorithm

In this section the results of the evaluation of the
rescoring algorithm are showed. We used the par-
allel corpus with mixed language pairs and direc-
tions from the Flores corpora. The task consists
on detecting the correct segment pairs for two di-
rections: Spanish—Asturian and Spanish—Catalan.
In table 4, we can observe the results of the eval-
uation, using the confidences for language detec-
tion with higher confidence of 0.5 for all the lan-
guages and using the lid.176.bin model. As we can
see, the values for precision for a SBERT score of
0.6 or higher are very good (100% for Spanish—
Asturian and 84.36% for Spanish—Catalan. But for
Spanish—Asturian the recall values are very low,
of about 21%. Using this configuration in a real
scenario would probably lead to missing a lot of
correct parallel segments, at least for the Spanish—
Asturian language pair.

If we now observe the results in table 5, where
the newly trained language detection model is
used, we can see that the recall problems in the
Spanish—Asturian language pair now disappear,
with no degradation of the precision figures. As
far as the Spanish—Catalan language pair is con-
cerned, we now observe a significant improvement
in the precision values, while the recall values are
maintained and even improved.

This experiment leads us to conclude that the
language detection model plays a very important
role in the filtering and rescoring process of the
corpus. The use of a language detection model tai-
lored to the corpus to be cleaned leads to a much
better performance.

4.4 Filtered CCMatrix corpora

In table 6 we can observe the number of sen-
tences after the filtering process for the CCMatrix
Spanish—Asturian and Spanish—Catalan using the
1id.176.bin with confidence 0.5 for both languages
and for several values of the SBERT score. In table



Asturian Catalan Spanish
conf. P R B P R F P R I3
0.9 100 | 1.24 | 2.46 | 98.83 | 75.79 | 8590 | 92.11 | 94.12 | 93.13
0.8 100 | 4.83 | 9.21 | 96.30 | 89.35 | 92.69 | 81.09 | 98.86 | 89.10
0.7 100 | 9.31 | 17.03 | 92.97 | 93.48 | 93.22 | 73.08 | 99.45 | 84.25
0.6 100 | 15.88 | 27.41 | 89.04 | 96.27 | 92.51 | 67.60 | 99.70 | 80.57
0.5 100 | 21.75 | 35.73 | 84.12 | 97.81 | 90.45 | 62.67 | 99.95 | 77.04
0.4 100 | 27.82 | 43.54 | 78.98 | 98.95 | 87.85 | 58.78 | 99.85 | 74.03
0.3 100 | 3091 | 47.22 | 76.74 | 99.35 | 86.59 | 57.19 | 99.95 | 72.75
0.2 100 | 31.86 | 48.32 | 75.62 | 99.45 | 85.95 | 56.69 | 99.95 | 72.35
0.1 100 | 31.86 | 48.43 | 75.60 | 99.45 | 8590 | 56.66 | 99.95 | 72.32
0 100 | 32.01 | 48.49 | 75.57 | 99.45 | 85.88 | 56.66 | 99.95 | 72.32
Table 2: Evaluation of language detection with model lid.176.bin
Asturian Catalan Spanish
conf. P R F1 P R Fl P R Fl
0.9 100 | 98.11 | 99.05 100 | 99.00 | 99.50 100 | 97.76 | 98.873
0.8 99.95 | 98.66 | 99.30 100 | 99.45 | 99.73 100 | 99.95 | 99.47
0.7 99.95 | 99.30 | 99.63 100 | 99.75 | 99.88 100 | 99.40 | 99.70
0.6 99.95 | 99.45 | 99.70 | 99.95 | 99.85 | 99.90 | 99.80 | 99.70 | 99.75
0.5 99.95 | 99.60 | 99.78 | 99.95 | 99.95 | 99.95 | 99.70 | 99.90 | 99.80
< 0.4 199.95 | 99.65 | 99.80 | 99.95 | 99.95 | 99.90 | 99.65 | 99.90 | 99.78

Table 3: Evaluation of language detection with the newly trained model

7 we can observe the same figures when using the
newly trained language detection model.

For the Spanish—Asturian corpus, the number of
segments of the filtered corpus is much larger for
the newly trained language detection model, by
a factor of almost 3 for all SBERT scores. This
may mean that, with the 1id.176.bin model, many
segments written in Asturian are detected as being
written in another language, and thus filtered out,
regardless of the SBERT score.

On the other hand, the number of segments
of the filtered corpus is smaller for the Spanish—
Catalan corpus when using the newly trained lan-
guage detection model, by a factor of about 1.4 for
most of the SBERT scores. This fact demonstrates
the importance of selecting the appropriate lan-
guage model when filtering parallel corpora with
the proposed methodology.

In future experiments, we plan to manually eval-
uate the resulting filtered corpora. We also plan to
evaluate this method in the task of training neu-
ral machine translation systems with several of the
filtered corpora and the original one. The trained
NMT systems will be evaluated using automatic
metrics. These evaluation results will shed light

on the quality-quantity in relation to the training
corpora for NMT systems.

5 Conclusion and future work

In this paper, we have presented a simple strategy
to select the higher quality segments from a large
parallel corpus. This strategy is based on verify-
ing the languages of the segments and on scoring
the parallel segments with SBERT. The methodol-
ogy has been implemented in a Python script hold-
ing a free licence that can be downloaded from
Github.!®. Filtered versions of the CCMatrix cor-
pus for several language pairs are available for
download.

In a future work we plan to further evaluate this
strategy training and evaluating neural machine
translation systems with the raw and cleaned ver-
sions of the corpora for several language pairs.

We plan to use this strategy for further cleaning
the parallel corpora available in the Opus Corpus
collection?” (Tiedemann, 2012) for the languages
of the project TAN-IBE (Neural Machine Trans-
lation for the romance languages of the Iberian

https://github.com/aoliverg/MTUOC-PCorpus-rescorer
Phttps://opus.nlpl.eu/
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Spanish—Asturian Spanish—Catalan
conf. P R Fy P R F
0.9 100 | 6.12 | 11.54 | 93.23 | 65.50 | 77.63
0.8 100 | 16.43 | 28.22 | 87.25 | 95.62 | 91.26
0.7 100 | 20.11 | 33.49 | 84.96 | 97.56 | 90.82
0.6 100 | 21.20 | 34.99 | 84.36 | 97.76 | 80.57
0.5 100 | 21.60 | 35.53 | 84.11 | 97.76 | 90.42
0.4 98.20 | 21.70 | 35.55 | 84.11 | 97.76 | 90.42
0.3 82.61 | 21.75 | 34.44 | 84.12 | 97.81 | 90.45
0.2 59.70 | 21.75 | 31.89 | 84.05 | 97.81 | 90.41
0.1 51.47 | 21.75 | 30.58 | 84.01 | 97.81 | 90.39

Table 4: Evaluation of SBERT capability to select correct translations. For language detection, lid.176.bin model is used with

confidence 0.5 for both languages.

Spanish—Asturian Spanish—Catalan
conf. P R F1 P R F1
0.9 100 | 27.18 | 42.74 100 | 67.89 | 80.88
0.8 100 | 76.06 | 86.40 | 99.95 | 97.71 | 98.85
0.7 100 | 92.48 | 96.10 | 99.95 | 99.65 | 99.8
0.6 100 | 94.91 | 98.94 | 99.95 | 99.85 | 99.90
0.5 99.75 | 99.15 | 99.45 | 99.95 | 99.85 | 99.90
0.4 97.60 | 99.30 | 98.45 | 99.95 | 99.85 | 99.90
0.3 82.67 | 99.50 | 90.31 | 99.95 | 99.90 | 99.90
0.2 59.15 | 99.5 | 74.21 | 99.95 | 99.85 | 99.93
0.1 51.16 | 99.50 | 67.59 | 99.95 | 99.85 | 99.93

Table 5: Evaluation of SBERT capability to select correct translations. For language detection, a newly trained model is used

with confidence 0.5 for both languages.

score spa—ast spa—cat
0.9 126,526 | 35,495,245
0.8 170,491 | 45,848,066
0.7 183,074 | 52,120,334
0.6 199,780 | 55,207,461
0.5 258,113 | 56,308,989
0.4 418,225 | 56,624,672
0.3 737,022 | 56,703,000
0.2 1,162,165 | 56,719,624
0.1 1,417,611 | 56,722,271

Table 6: Size of the filtered corpora using the lid.176.bin
model

Peninsula): Spanish, Portuguese, Catalan, Gali-
cian Asturian, Aragonese and Aranese.
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score spa-ast spa—cat
0.9 372,317 | 23,639,411
0.8 496,931 | 30,547,417
0.7 539,569 | 34,874,013
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0.4 1,202,697 | 38,943,338
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Table 7: Size of the filtered corpora using the lid.176.bin
model
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Abstract

Although neural-based machine transla-
tion evaluation metrics, such as COMET
or BLEURT, have achieved strong corre-
lations with human judgements, they are
sometimes unreliable in detecting certain
phenomena that can be considered as crit-
ical errors, such as deviations in entities
and numbers. In contrast, traditional eval-
uvation metrics such as BLEU or CHRF,
which measure lexical or character overlap
between translation hypotheses and human
references, have lower correlations with hu-
man judgements but are sensitive to such
deviations. In this paper, we investigate sev-
eral ways of combining the two approaches
in order to increase robustness of state-of-
the-art evaluation methods to translations
with critical errors. We show that by us-
ing additional information during training,
such as sentence-level features and word-
level tags, the trained metrics improve their
capability to penalize translations with spe-
cific troublesome phenomena, which leads
to gains in correlation with human judg-
ments and on recent challenge sets on sev-
eral language pairs.!

1 Introduction

Trainable machine translation (MT) evaluation
models, such as COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020), generally achieve

higher correlations with human judgments, thanks

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

'Our code and data are available at: https://github.com/
deep-spin/robust_MT_evaluation

to leveraging pretrained language models. How-
ever, they often fail at detecting certain types of
errors and deviations from the source, for exam-
ple related to translations of numbers and entities
(Amrhein and Sennrich, 2022). As a result, their
quality predictions are sometimes hard to interpret
and not always trustworthy. In contrast, traditional
lexical-based metrics, such as BLEU (Papineni et
al., 2002) or CHRF (Popovic¢, 2015)—despite their
many limitations—are considerably more sensitive
to these errors, due to their nature, and are also
more interpretable, since the scores can be traced
back to the character or n-gram overlap.

This paper investigates and compares methods
that combine the strengths of neural-based and lex-
ical approaches, both at the sentence level and at
the word level. This is motivated by the findings
of previous works, which demonstrate in detail that
the COMET MT evaluation metric struggles to han-
dle errors like deviation in numbers, wrong named
entities in generated translations, deletions that ex-
clude important content from the source sentence,
insertions of extra words that are not present in the
source sentences, and a few others (Amrhein and
Sennrich, 2022; Alves et al., 2022). While data
augmentation techniques alleviate the problem to
some extent (Alves et al., 2022), the gains seem to
be relatively modest. In this paper we investigate
alternative methods that take advantage of lexical
information and go beyond the use of various aug-
mentation techniques and synthetic data.

We focus on increasing robustness of MT evalu-
ation systems to certain types of critical errors. We
experiment with the reference-based COMET met-
ric, which has access to reference translations when
producing quality scores. In order to make evalua-
tion metrics more robust towards this type of errors,
we consider and compare three different ways of

Nurminen, Brenner, Koponen, Latomaa, Mikhailov, Schierl, Ranasinghe, Vanmassenhove, Vidal, Aranberri, Nunziatini, Escartin, Forcada,

Popovic, Scarton, Moniz (eds.)
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incorporating information from lexical-based evalu-
ation metrics into the neural-based COMET metric:

* Simply ensembling the sentence-level metrics;

* Using lexical-based sentence-level scores as
additional features through a bottleneck layer
in the COMET model;

* Enhancing the word embeddings computed
by COMET for the generated hypothesis with
word-level tags. We generate these word-level
tags using the Levenshtein (sub)word align-
ment between the hypothesis and the reference
tokens.

We compare these three strategies with the recent
approach of (Alves et al., 2022), which generates
synthetic data with injected errors from a large lan-
guage model, and retrains COMET on training data
that has been augmented with these examples. We
assess both the correlation with human judgments
and using the recently proposed DEMETR bench-
mark (Karpinska et al., 2022).

2 Related Work

Recently several challenge sets have been intro-
duced, either within a scope of the WMT Metrics
shared task (Freitag et al., 2022) or in general as a
step towards implementing more reliable MT eval-
uation metrics: SMAUG (Alves et al., 2022) ex-
plores sentence-level multilingual data augmenta-
tion; ACES (Amrhein et al., 2022) is a translation
accuracy challenge set that covers high number of
different phenomena and language pairs, includ-
ing a considerable number of low-resource ones;
DEMETR (Karpinska et al., 2022) and HWTSC
(Chen et al., 2022) aim at examining metrics ability
to handle synonyms and to discern critical errors
in translations; DFKI (Avramidis and Macketanz,
2022) employs a linguistically motivated challenge
set for two language directions (German <+ En-
glish).

Apart from purely focusing on improving robust-
ness with augmentation of different phenomena,
there are works that combine usage of synthetic
data with other different methods. These methods
use more fine-grained information—aiming at iden-
tifying both the position and the type of translation
errors on given source-hypothesis sentence pairs
(Bao et al., 2023). As another source of useful
information, word-level supervision can be consid-
ered, which has proven to be beneficial in tasks of
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quality estimation and MT evaluation (Rei et al.,
2022a; Rei et al., 2022b).

There have been other attempts to add linguis-
tic features to automatic MT evaluation metrics,
e.g. incorporating information from a multilin-
gual knowledge graph into BERTScore. (Wu et
al., 2022) proposed a metric that linearly combines
the results of BERTScore and bilingual named en-
tity matching for reference-free machine translation
evaluation. (Abdi et al., 2019) use an extensive set
of linguistic features at word- and sentence- level
to aid sentiment classification. Additionally, glass-
box features extracted from the MT model have
been used successfully in the quality estimation
task (Fomicheva et al., 2020; Zerva et al., 2021;
Wang et al., 2021). For the incorporation of differ-
ent types of information to neural models early and
late fusion is commonly used with benefits on mul-
tiple tasks and domains (Gadzicki et al., 2020; Fu
et al., 2015; Baltrusaitis et al., 2018). To the best of
our knowledge there have not been any attempts to
combine the representations of neural metrics with
external features obtained by lexical-based metrics.

Moreover, there are similar concerns regarding
robustness of evaluation models in non-MT related
tasks (Chen and Eger, 2022). In general, it is de-
picted that evaluation metrics perform rather well
on standard evaluation benchmarks but are vulner-
able and unstable to adversarial examples. The
approaches investigated in our paper aim to address
these limitations.

3 Combination of Neural and Lexical
Metrics

In this section we describe the methods we investi-
gated in order to infuse the COMET with informa-
tion on lexical alignments between the MT hypoth-
esis and the reference.

3.1 Metric ensembling

A simple way to combine neural and lexical-based
metrics is through an ensembling strategy. To this
end, we use a weighted ensemble of normalized
BLEU, CHRF and COMET scores. The weights for
each metric are tuned on the same development set
used for training the COMET models discussed in
this work (MQM WMT 2021) and presented in Ap-
pendix A. For normalisation we compute the mean
and standard deviation to standardize the develop-
ment set for each metric and we use the same mean
and standard deviation values to standardize the



test-set scores.

3.2 Sentence-level lexical features

A simple ensemble is limited because it does not
let the neural-based model /earn the best way of
including the information coming from the lexi-
cal metrics—for example, the degree of additional
information brought by the lexical metrics might
depend on the particular input.

Therefore, we experiment with a more sophis-
ticated approach, where the lexical scores are in-
corporated in the COMET architecture as additional
features that are mapped to each instance in the
data, allowing the system to learn how to best take
advantage of these features. To this end, we adopt a
late fusion approach, employing a bottleneck layer
to combine the lexical and neural features. The use
of a bottleneck layer for late fusion in deep neu-
ral architectures has been used successfully across
tasks, especially for multimodal fusion or fusion
of features with vast differences in dimensionality
(Petridis et al., 2017; Guo et al., 2018; Ding et
al., 2022). In our implementation, the bottleneck
layer is inserted between two feed-forward layers
in the original COMET architecture (see Fig. 1), im-
plemented in a similar manner as in (Moura et al.,
2020; Zerva et al., 2022) (see App. A).

3.3 Word-level lexical features

While the sentence-level features allow the model
to account for lexical overlap, there is still no word-
level information. Instead, we propose to leverage
the inferred alignments between the MT hypothe-
sis and the reference words. To that end we adopt
the Translation Edit Rate (TER) alignment proce-
dure that calculates the edit distance (cost) between
the translation and reference sentence. This align-
ment, produced with the Levenshtein dynamic pro-
gramming algorithm, identifies the minimal sub-
set of MT words that would need to be changed
(modified, inserted, or deleted) in order to reach
the correct translation (reference) (Snover et al.,
2009b). TER-based alignments have been widely
used to evaluate translations with respect to post-
edits (HTER) in automated post-editing as well as
other generation tasks (Snover et al., 2009a; Elliott
and Keller, 2014; Gupta et al., 2018; Bhattacharyya
et al., 2022). Recently, providing word-level super-
vision using binary quality tags inferred via Mul-
tidimensional Quality Metrics (MQM) error anno-
tations, proved to be beneficial for MT evaluation
(Rei et al., 2022a).
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In this work, for simplicity, we opted for calculat-
ing the alignments not on a word but on a sub-word
level, employing the same tokenization convention
used by the COMET encoder.> This allows to asso-
ciate a quality OK / BAD tag to each sub-word unit
of the MT hypothesis input vector.

We then incorporate these quality tags to the
original input for each translation sample which
consists of a triplet (s, ¢, r), where s is a source text,
t is a machine translated text, and r is a reference
translation. To leverage the estimated quality tags
in the COMET architecture, we encode the tags as
a sequence of special tokens, w, and learn separate
embeddings for the OK / BAD tokens. We can
thus encode the quality tag sequence and obtain a
word quality vector « and then compute the sum
& = { @ o for the sequence. We then extend the
pooling layer of COMET by adding both the w and
& representations (see the architecture in Fig. 2).

4 Experimental Design

The main focus of our experiments is to investigate
how the robustness of the MT evaluation models
can be improved and how the proposed settings
compare to each other and to a data augmentation
approach proposed by (Alves et al., 2022). Our
comparisons address the correlation with human
judgments and recent robustness benchmarks on
MT evaluation datasets (§4).

We follow (Amrhein and Sennrich, 2022) — we
use COMET (v1.0) (Rei et al., 2020) as the underly-
ing architecture for our MT evaluation models and
focus on making it more robust.

Human Judgements Data We consider two
types of human judgments: direct assessments (DA)
(Graham et al., 2013) and multi-dimensional quality
metric scores (MQM) (Lommel et al., 2014). For
training, we use WMT 2017-2020 data from the
Metrics shared task (Freitag et al., 2021b) with di-
rect assessment (DA) annotations (see App. C). For
development and test, we use the MQM annotations
of the WMT 2021 and 2022 datasets, respectively >.

Challenge Sets Data Furthermore, we evaluate
our models using two challenge sets: DEMETR
(Karpinska et al., 2022) and ACES (Amrhein et al.,
2022).

*We specifically used the XLMRobertaTokenizerFast Hug-
gingface implementation with truncation and default
max_length.

3We opted for DA annotations to train due to the limited avail-
ability of MQM data
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Figure 1: The architecture of the COMET model with incorpo-
rated sentence-level lexical features.

* DEMETR is a diagnostic dataset with 31K
English examples (translated from 10 source
languages) created for evaluating the sensi-
tivity of MT evaluation metrics to 35 differ-
ent linguistic perturbations spanning semantic,
syntactic, and morphological error categories.
Each example in DEMETR consists of (1) a
sentence in one of 10 source languages, (2) an
English translation written by a human trans-
lator, (3) a machine translation produced by
Google Translate, and (4) an automatically per-
turbed version of the Google Translate output
which introduces exactly one mistake (seman-
tic, syntactic, or typographical).

* ACES is a translation accuracy challenge set
based on the MQM ontology. It consists of
36,476 examples covering 146 language pairs
and representing 68 phenomena. This chal-
lenge set consists of synthetically generated
adversarial examples, examples from repur-
posed contrastive MT test sets, and manually
annotated examples.

Both of these challenge sets allow measuring the
sensitivity of the proposed approaches to various
phenomena and assess their overall robustness.

Augmentation We compare our methods against
the multilingual data augmentation approach
SMAUGH* proposed by (Alves et al., 2022). Specif-

“The code is available at https://github.com/Unbabel/
smaug.
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Figure 2: The architecture of the COMET model with incorpo-
rated word-level lexical features.

ically, we use transformations that focus on devi-
ations in named entities and numbers since these
are identified as the major weaknesses of COMET
(Amrhein and Sennrich, 2022).

Models In the experiments that follow, we use
as baseline the vanilla COMET architecture trained
on WMT2017-2020 (COMET). We compare this
baseline against the model trained with augmented
data and our proposed approaches:

e COMET + aug: COMET model trained on a
mixture of original and augmented WMT2017-
2020 data, where the percentage of the aug-
mented data is 40%. We use the code pro-
vided by the authors of SMAUG and apply
their choice of hyperparameters, including the
optimal percentage of the augmented data.

* Ensemble: The weighted mean of BLEU,
CHRF and COMET normalized scores, where
the weights are optimized on the development
set (MQM 2021) with regards to the Kendall’s
tau correlations.

e COMET + SL-feat.. The combination of
COMET and scores obtained from other met-
rics, BLEU and CHRF, that are used as
sentence-level (SL) features in a late fusion
manner.

e COMET + WL-tags: The combination of
COMET and word-level OK / BAD tags that
correspond to the subwords of the translation



hypothesis.
Evaluation For evaluation and analysis we:

1. Compute standard correlation metrics on
segment-level between predicted scores and
human judgements: Pearson 7, Spearman p
and Kendall’s tau;

2. Use challenge sets, specifically DEMETR and
ACES, to analyse the robustness of MT Eval-
uation systems to critical errors and specific
perturbations.

For the challenge sets, we measure the ability of
the evaluation metric to rank the correct translations
higher than the incorrect ones by computing the
official Kendall’s tau-like correlation as proposed
in previous WMT Metrics shared tasks (Freitag et
al., 2022; Ma et al., 2019):

_ Concordant — Discordant
~ Concordant + Discordant’

(1)

where the “Concordant” is the number of times a
metric assigns a higher score to the “better” hy-
pothesis and “Discordant” is the number of times
a metric assigns a higher score to the “worse” hy-
pothesis.

5 Results and Discussion

In this section, we show results for the aforemen-
tioned methods, specifically the correlations with
MQM annotations from WMT 2022 Metrics shared
task for 3 high-resource language pairs (English
— German, English — Russian, Chinese — En-
glish) in four domains: Conversation, E-commerce,
News and Social. In addition, we discuss evaluation
results obtained on two challenge sets.

5.1 Correlation with Human Judgements

Overall, by looking at Table 1 we can see that the
more sophisticated techniques of using additional
information, whether it is lexical-based scores used
as features, word-level tags based on token align-
ments or synthetically augmented data, outperform
the simple weighted average (ensemble) approach.
These findings are further supported when calculat-
ing performance for the Pearson r and Spearman p
coefficients, shown in Tables 9 and 10 respectively
in the Appendix B.

Across all proposed methods, we observe that
COMET + aug and COMET + SL-feat. have rel-
atively similar performance. In contrast, adding

o1

word-level tags (COMET + WL-tags) based on
alignments between the translation hypothesis and
the reference seems to give a considerable gain in
results compared to the baseline COMET and the
other approaches.

Another interesting observation is that the im-
provement in correlations can be especially noticed
in ZH-EN language pair across all domains for
COMET + WL-tags model. Overall, we found
that adding the word-level quality supervision pro-
vides the most consistent benefits in performance.
However, since our main motivation is to address
robustness to specific errors, the correlations with
MQM annotations serve primarily as a confirma-
tion of the potential of the proposed methods; we
provide a more detailed performance analysis over
the multiple error types of different challenge sets
in the next section.

5.2 Results on Challenge Sets
5.2.1 DEMETR

For DEMETR we analyse results on two levels
of granularity: (1) performance over the full chal-
lenge set, which is calculated via Kendall’s tau and
presented in Table 2 which shows Kendall’s tau-like
correlations per language pair; and (2) performance
depending on error severity, which is presented in
and Table 3 and shows accuracy on detecting differ-
ent types of DEMETR perturbations for lexical and
neural-based metrics, bucketed by error severity
(baseline, critical, major, and minor errors).

We can observe that both the sentence- and word-
level features outperform data augmentation meth-
ods, with the word-level method being the best
on average and for the majority of language pairs.
These findings indicate that the subword quality
tags enable the model to attend more to the per-
turbations of the high quality data, hence better
distinguishing the bad from the good translations
of the same source.

One of the key findings from Table 3 is that the
model which uses word-level information consis-
tently outperforms the other methods across almost
all severity buckets, with the exception of “critical”
error bucket. In combination with the findings on
the ACES challenge set (see section 5.2.2), it seems
that investigating approaches which target more nu-
anced and complex error phenomena that lead to

SFor the statistical significance over correlations r we use
Williams’ test and Fisher r — to — 2’ transform: f(r) =
2 In 1£2 to calculate significance over the macro-averages,

with p <= 0.01.




BLEU CHRF COMET ENSEMBLE COMET+aug COMET+SL-feat. COMET+WL-tags
m Conversation  0.201  0.257 0.308 0.309 0.296 0.310 0.314
A  E-commerce 0.179 0212  0.326 0.318 0.311 0.322 0.322
é News 0.167 0.202  0.361 0.356 0.330 0.355 0.369
Social 0.130 0.168 0.297 0.292 0.277 0.294 0.293
o Conversation  0.140  0.175 0.305 0.304 0.328 0.298 0.328
&  E-commerce 0.202 0.221 0.372 0.371 0.382 0.369 0.391
UZJ News 0.125 0.164  0.373 0.367 0.366 0.384 0.370
Social 0.152  0.132 0305 0.304 0.330 0.332 0.349
» Conversation  0.125 0.160  0.283 0.282 0.295 0.283 0.298
M E-commerce 0.174  0.187 0.326 0.325 0.342 0.335 0.357
5 News 0.046 0.042 0270 0.261 0.291 0.276 0.292
Social 0.162 0.190  0.319 0.316 0.313 0.315 0.330
AVG 0.150 0.176  0.321 0.317 0.322 0.323 0.3341

Table 1: Kendall’s tau correlation on high resource language pairs using the MQM annotations for Conversation, E-commerce,
News and Social domains collected for the WMT 2022 Metrics Task. Bold numbers indicate the best result for each domain in
each language pair. 1 in the averaged scores indicates statistically significant difference to the other metrics °.

BLEU CcHRF COMET ENSEMBLE COMET+aug COMET+SL-feat. COMET+WL-tags
ZH-EN 0505  0.684 0.818 0.855 0.817 0.866 0.872
DE-EN  0.655  0.802 0.909 0.926 0.917 0.942 0.957
HI-EN  0.616  0.768 0.900 0.92 0.925 0.929 0.945
JA-EN 0.521  0.722 0.850 0.883 0.83 0.907 0.891
Ps-EN  0.533  0.703 0.818 0.88 0.775 0.863 0.877
RU-EN  0.552  0.724 0.898 091 0.894 0.950 0.949
Cz-EN  0.541 0.755 0.875 0.917 0.863 0.87 0.920
FrR-EN  0.664  0.794 0.892 0.915 0.926 0.945 0.951
Es-EN 0516  0.704 0.877 0.899 0.877 0.91 0.934
IT-EN 0.601  0.774 0912 0.924 0.906 0.936 0.945
AVG 0.57 0.743 0.875 0.903 0.873 0912 0.9241

Table 2: Kendall’s tau-like correlation per language pair on DEMETR challenge set. Bold values indicate the best performance
per language pair. 1 in the averaged scores indicates statistically significant difference to the other metrics.

Metric Base Crit. Maj. Min. All
lexical-based metrics

BLEU 100.0 79.33 83.76 726 78.52

CHRF 100.0 90.79 90.85 80.83 87.16
neural-based metrics

ENSEMBLE 100.0 96.87 9291 93.77 095.14

COMET 99.3 9577 91.04 9218 93.74

+ aug 98.6 9554 91.66 92.06 93.65

+ SL-feat. 99.3  96.95 93.56 94.64 95.59

+ WL-tags 99.2 9648 939 96.36 96.2

Table 3: Accuracy on DEMETR perturbations for both lexical-
based and neural-based metrics, shown bucketed by error sever-
ity (base, critical, major, and minor errors), including a micro-
average across all perturbations.

critical errors could further improve performance
of neural metrics.

5.2.2 ACES

To analyse general, high-level, performance
trends of the lexical and proposed approaches on
the ACES challenge set, we report Kendall’s tau
correlation and the “ACES - Score” as proposed by

(Amrhein et al., 2022), which is a weighted combi-
nation of the 10 top-level categories in the ACES
ontology:

(5 * Taddition

D * Tomission

9 * Tmistranslation
D * Tovertranslation
ACES-Score — sum 9 * Tundertranslation
1 * Tuntranslated

1 * Tdo not translate

1 % Treal-world knowledge

1% Twrong language

0.1 Tpunctuation Y,
2

The weights in this formula correspond to the
recommended values in the MQM framework
(Freitag et al., 2021a): weight 5 for major,
weight = 1 for minor and weight = 0.1 for flu-
ency/punctuation errors. The ACES-Score results
can be seen in the last row of Table 4.
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BLEU CcHRF CoOMET ENSEMBLE COMET+aug COMET+SL-feat. COMET+WL-tags
major (weight = 5)
addition 0.748  0.644 0.349 0.367 0.52 0.443 0.427
omission 0427  0.784 0.704 0.828 0.706 0.724 0.666
mistranslation -0.296  0.027 0.186 0.216 0.255 0.148 0.189
overtranslation -0.838  -0.696 0.27 0.176 0.308 0.086 0.304
_ Undertranslation _ -0.856 0592 _008 __ 004 02 _ 018 012
minor (weight = 1)
untranslated 0.786  0.928 0.709 0.894 0.58 0.618 0.686
do not translate 0.58 0.96 0.88 0.9 0.78 0.9 0.84
real-world knowl.  -0.906 -0.307  0.195 0.176 0.202 0.109 0.162
_wronglanguage 0659 _ 0693 0071 0052 019 0185 0.087
Sfluency/punctuation (weight = 0.1)
punctuation 0.658  0.803 0.328 0.699 0.377 0.323 0.339
ACES-Score -2.89 3.189 9.833 9.807 11.704 7.949 10.339
Table 4: Kendall’s tau-like correlations for 10 top-level categories in ACES challenge set.
BLEU cHRF COMET ENSEMBLE COMET+aug COMET+SL-feat. COMET+WL-tags
EN-XX  0.034  0.329 0.201 0.340 0.256 0.183 0.206
Xx-EN  -037 -0.046  0.283 0.26 0.329 0.222 0.285
Xx-Yy -0.124 0.097 0.105 0.115 0.204 0.088 0.104
AVG -0.153  0.127 0.196 0.238 0.263" 0.164 0.198

Table 5: Kendall’s tau-like correlation on ACES challenge set. } in the averaged scores indicates statistically significant

difference to the other metrics.

Overall, as the ACES challenge set contains a
larger set of translation errors, and goes beyond sim-
ple perturbations to more nuanced error categories
such as real-world knowledge and discourse-level
errors, we can see that the performance scores and
best metrics vary largely depending on the category.
Interestingly, CHRF seems to outperform other met-
rics especially in the categories that do not relate so
much to replacements in the reference translation,
but rather relate to fully or partially wrong language
(or punctuation) use. We note that these seem to
be largely cases that are not frequently found in
MT training data, nor are they considered in pre-
viously proposed data augmentation approaches,
which could explain why neural metrics are out-
performed by baseline surface-level metrics, even
under investigated robustness modifications. Hence,
there seems to be room for further improvements in
incorporating surface-based information in neural
metrics and enabling them to pay more attention
to n-gram overlap. Instead, for the error categories
that depend on other perturbations, we can see that
all robustness oriented modifications to COMET
improve the performance compared to the vanilla
model, with augmentation achieving significantly
higher Kendall’s tau correlations.

When looking at the overall picture and focusing

on the ACES-Score which weights the errors by
the severity of the errors there seem to be only
two methods that outperform the baseline COMET
model, namely COMET + aug and COMET + WL-
tags, which achieve the best and second best ACES-
Score respectively. Since these two approaches are
orthogonal to each other, it seems that a promising
direction for future work is to explore options for
combining the two methods.

Note that the overall behavior of lexical and
neural-based metrics corroborates the findings pre-
sented in the original paper. We can confirm that
in our experiments the worst performing metric is
also BLEU, which is expected. However, it is hard
to highlight the best performing metric based only
on the ACES-Score, the purpose of this analysis is
more so to find any interesting trends or any partic-
ular issues that some methods are handling better
than the others.

Since the ACES dataset encompasses a high num-
ber of LPs, we aggregate the results into three
groups, EN-XX (out-of-English), XX-EN (into-
English) and XX-YY (LPs without English). We
also report the balanced average across all lan-
guage pairs (AVG). Results in Table 5 show that
methods which include augmented data during
training achieve higher performance compared to
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other proposed options. As for additional sentence-
level or word-level information, COMET + WL-
tags slightly improves performance of the baseline
COMET across EN-XX and XX-EN aggregations
and beats the approach that uses SL-features.

6 Conclusion and Future Work

In this paper, we presented several approaches that
use interpretable string-based metrics to improve
the robustness of recent neural-based metrics such
as COMET. There are various ways of combining
these methods together: ensembling metrics, in-
corporating sentence-level features, or using word-
level information coming from alignments between
the hypothesis and the reference. We observed that
adding small changes to the architecture of COMET,
either by using sentence-level features based on
BLEU and CHRF scores, or by incorporating word-
level tags for the hypothesis, can lead to competitive
performance gains. To showcase the effectiveness
of our proposed approaches, we evaluated them on
the most recent MQM test set that covers multiple
domains and language pairs, as well as on the chal-
lenge sets that were introduced in the WMT 2022
Metrics shared task, with encouraging results.

It is likely that our proposed approaches are com-
plementary to each other, as well as to the data
augmentation method we are comparing against
(COMET+aug). An interesting direction for fu-
ture work is to study further the impact of using
word-level tags of the hypothesis in other ways not
covered in this paper, e.g., in combination with
augmentation approaches.
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A Model Implementation and Parameters

Table 8 shows the hyperparameters used to train the
following prediction models: COMET, COMET +
SL-feat. and COMET + WL-tags. For the baseline

we used the code available at https://github.

com/Unbabel/COMET and we trained the model on
WMT17-WMT20 DA data (in the table we refer to
it as COMET).

For the ENSEMBLE we tune three weights on the
development set with grid search, by optimizing
Kendall tau correlations (see Table 6).

BLEU
0.02513

COMET
0.92965

CHRF
0.04523

weights

Table 6: Tuned weights on the MQM 2021 set for the weighted
ensemble.

The bottleneck size parameter for COMET + SL-
feat. model was tuned using development set. This
set covers three language pairs (English — German,
English — Russian, Chinese — English) and two
domains (ted and newstest). Kendall tau correlation
was computed over the whole dataset without con-
sidering different domains separately (see Table 7).

64 128 256 512
EN-DE 0223 0.216 0.217 0.225
EN-RU 0305 0.279 0.275 0.281
ZH-EN 0319 0330 0325 0315
AVG 0.282 0.275 0.272 0274

Table 7: Kendall’s tau-like correlation per language pair on
development set for different bottleneck sizes. Bold values
indicate the best performance per language pair.

B Correlation with Human Judgements

We present here results on MQM 2022 set for Pear-
son and spearman correlations (see Tables 9 and 10
accordingly). We can see that especially for Spear-
man p the findings are aligned with the findings
on Kendall tau correlations. Instead, for the Pear-
son r which is more sensitive to outliers, we can
see that the augmentation method outperforms the
feature-based modifications.

C Training Data Statistics

The combined WMT training data (from 2017 to
2020) has 950069 segments and covers the follow-
ing language pairs (total number is 32): Cs-En,
De-Cs, De-En, De-Fr, En-Cs, En-De, En-Et, En-Fi,
En-Gu, En-Ja, En-Kk, En-Lt, En-Lv, En-Pl, En-Ru,

o7

En-Ta, En-Tr, En-Zh, Et-En, Fi-En, Fr-De, Gu-En,
Ja-En, Kk-En, Km-En, Lt-En, PI-En, Ps-En, Ru-En,
Ta-En, Tr-En, Zh-En.



Hyperparameter COMET COMET + SL-feat. COMET + WL-tags

Encoder Model XLM-R (large) XLM-R (large) XLM-R (large)

Optimizer Adam Adam Adam

No. frozen epochs 0.3 0.3 0.3

Learning rate 3e-05 3e-05 3e-05

Encoder Learning Rate le-05 le-05 le-05

Layerwise Decay 0.95 0.95 0.95

Batch size 4 4 4

Loss function Mean squared error ~ Mean squared error Mean squared error

Dropout 0.15 0.15 0.15

Hidden sizes [3072, 1024] [3072, 1024] [3072, 1024]

Encoder Embedding layer Frozen Frozen Frozen

Bottleneck layer size - 64 -

FP precision 32 32 32

No. Epochs (training) 2 2 2

Table 8: Hyperparameters used to train different prediction methods.
BLEU CHRF COMET ENSEMBLE COMET +aug + SL-feat.  + WL-tags

Conversation  0.228  0.285 0.371 0.376 0.378 0.379 0.400
5] Ecommerce 0.173  0.222 0.376 0.373 0.380 0.383 0.341
~  News 0.220  0.260 0.521 0.521 0.492 0.506 0.526
M Social 0.172  0.220 0.367 0.367 0.375 0.382 0.351

Conversation  0.155  0.185 0.372 0.369 0.418 0.350 0.400
é Ecommerce 0249 0.287 0.488 0.488 0.510 0.507 0.481
»~ News 0.169  0.230 0.469 0.467 0.464 0.477 0.448
M Social 0213  0.143 0.324 0.328 0.371 0.343 0.385

Conversation  0.160 0.206  0.340 0.338 0.370 0.343 0.358
uZJ Ecommerce 0.220  0.230 0.391 0.391 0.438 0.400 0.440
+  News 0.097 0.078 0.340 0.334 0.383 0.364 0.359
N  Social 0.161 0.177 0.351 0.347 0.358 0.343 0.373

AVG 0.185 0.210 0.393 0.392 0.411 0.398 0.405

Table 9: Pearson correlation on high resource language pairs using the MQM annotations for Conversation, Ecommerce, News
and Social domains collected for the WMT 2022 Metrics Task. Bold numbers indicate the best result for each domain in each
language pair.

BLEU CHRF COMET ENSEMBLE COMET +aug + SL-feat.  + WL-tags
Conversation  0.262  0.337 0.401 0.403 0.385 0.404 0.409
E Ecommerce 0235 0.278 0.421 0411 0.403 0.416 0.417
»~ News 0.224  0.273 0.478 0.472 0.438 0.471 0.486
M Social 0.173  0.222  0.389 0.383 0.361 0.386 0.384
Conversation  0.183  0.230  0.400 0.397 0.427 0.389 0.428
é Ecommerce 0.276  0.303 0.502 0.501 0.514 0.499 0.528
»~ News 0.171 0.224  0.499 0.492 0.490 0.514 0.495
M Social 0212 0.186  0.425 0.423 0.455 0.460 0.483
Conversation  0.166  0.211 0.375 0.369 0.385 0.370 0.389
uZJ Ecommerce 0.241  0.259 0.449 0.448 0.467 0.459 0.487
+ News 0.063  0.057 0.364 0.352 0.393 0.373 0.394
N  Social 0219 0.256  0.424 0.421 0.418 0.419 0.439
AVG 0202 0.236 0427 0.423 0.428 0.430 0.445

Table 10: Spearman correlation on high resource language pairs using the MQM annotations for Conversation, Ecommerce,
News and Social domains collected for the WMT 2022 Metrics Task. Bold numbers indicate the best result for each domain in
each language pair.
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Abstract

Pre-trained models have revolutionized the
natural language processing field by lever-
aging large-scale language representations
for various tasks. Some pre-trained mod-
els offer general-purpose representations,
while others are specialized in particu-
lar tasks, like neural machine translation
(NMT). Multilingual NMT-targeted sys-
tems are often fine-tuned for specific lan-
guage pairs, but there is a lack of evidence-
based best-practice recommendations to
guide this process. Additionally, deploying
these large pre-trained models in computa-
tionally restricted environments, typically
found in developing regions where low-
resource languages are spoken, has be-
come challenging. We propose a pipeline
to tune the mBARTS50 pre-trained model
to 8 diverse low-resource language pairs,
and then distill the resulting system to
obtain lightweight and more sustainable
NMT models. Our pipeline conveniently
exploits back-translation, synthetic corpus
filtering, and knowledge distillation to de-
liver efficient bilingual translation models
that are 13 times smaller, while maintain-
ing a close BLEU performance.

1 Introduction

In the field of natural language processing (NLP),
most of the so called pre-trained or foundation
models (Bommasani et al., 2021) fall into one
of three categories, based on whether the under-
lying architecture corresponds to the encoder of
the transformer (Vaswani et al., 2017), the de-
coder or both. Encoder-like models consist of a
© 2023 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

number of bidirectional self-attention layers that
learn deep general-purpose representations with
self-supervised denoising learning objectives —
such as predicting the original token for masked
or perturbed tokens in the input— and can then
be adapted to a wide range of downstream tasks.
Monolingual models such as BERT (Devlin et al.,
2019) and cross-lingual variations like mBERT or
XLM-R (Conneau et al., 2020) have been obtained
this way. Decoder-like pre-trained models —such
as GPT-3 (Brown et al., 2020) or LLaMA (Tou-
vron et al., 2023)— are trained to auto-regressively
predict the next token in the sequence by us-
ing causal self-attention layers. Pre-trained mod-
els involving the whole encoder-decoder trans-
former architecture —e.g. DeltaLM (Ma et al.,
2021), BART (Lewis et al., 2020) and its cross-
lingual variation mBART (Liu et al., 2020)— are
also pre-trained to denoise perturbations in the in-
put, and then fine-tuned for particular text-to-text
downstream tasks such as neural machine transla-
tion (NMT).

In addition to models pre-trained to obtain
general-purpose neutral representations, there ex-
ist a number of multilingual encoder-decoder mod-
els specifically pre-trained to translate between
many different language pairs. Well-known sys-
tems in this group include mBARTS50 (Tang et al.,
2021), or NLLB-200 (NLLB Team et al., 2022).
All these pre-trained models attain high translation
quality (Tran et al., 2021) because they leverage
information from multiple language pairs, thus be-
coming an interesting realization of the possibili-
ties of transfer learning. In this paper, we focus on
mBARTS50 and leave the exploration of other pre-
trained models to future work. mBARTS50 (Tang
et al., 2021) was obtained by additionally training
mBART in a supervised manner to translate be-
tween English and 49 languages, and vice versa.'

"mBARTS50 can be considered as a fine-tuned model on its
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As a consequence of the relatively recent release
of pre-trained models specifically aimed at NMT,
there are just a few studies (see Sect. 5) on how
to adapt them to a certain language pair. In this
paper we focus on low-resource languages in low-
resource settings, since low-resource languages are
usually spoken in impoverished or conflicting ar-
eas with limited computational resources.

We propose a pipeline to tune the English-to-
many mBARTS50 model for the translation be-
tween English and a specific low-resource lan-
guage (or vice versa with the many-to-English pre-
trained model) and, afterwards, distill the knowl-
edge in the fine-tuned mBARTS50 feacher model
to build a lightweight student model that has a
much smaller number of parameters. In this re-
gard, our pipeline considers mBARTS50 as an ini-
tial resource-hungry model which is conveniently
exploited to generate synthetic parallel sentences
that are conveniently filtered before training a
smaller student NMT system that can then be run
on low-end devices. We prove that filtering is ben-
eficial in most cases, without being detrimental in
any of them. We chose mBARTS0 for our ex-
periments based on its performance in the litera-
ture (Liu et al., 2021; Lee et al., 2022; Chen et al.,
2022), as it has been shown to provide comparable
or better BLEU scores than alternatives like M2M-
100, mT5, CRISS, and SixT, at least for language
pairs including English.

Our pipeline is evaluated on eight translation
tasks involving four low-resource languages and
English. In order to evaluate the transferabil-
ity of the pre-trained model to unseen languages,
two of our languages were not considered during
mBARTS50’s pre-training. Languages were cho-
sen so that each one belongs to a different lan-
guage family. The results show that when English
is the source language, our student models outper-
form the teacher models or perform comparably.
However, when English is the target language, the
teachers perform better that the students. In either
case, the student models are 92% faster than the
teacher models when they are executed on a CPU.

The rest of the paper is organized as follows.
Next section describes our pipeline for fine-tuning
and knowledge distillation of pre-trained NMT
models. Sect. 3 then presents the experimental set-

own, as it results from adapting a pre-trained model to a par-
ticular task, or as a pre-trained model used as the seed to ob-
tain specific bilingual machine translation (MT) models as we
do in this paper.
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Figure 1: Pipeline for fine-tuning mBARTS50 to translate En-
glish (en) into a low-resource language (xx), and vice versa,
using parallel and monolingual corpora.

tings with eight different translation tasks involv-
ing four low-resource languages, whereas Sect. 4
reports the main results and discusses the most rel-
evant observed patterns. The paper ends with a re-
view of related work, followed by some conclud-
ing remarks and future work plans.?

2 Approach

Our pipeline consists of two different stages: a
first stage aimed at improving the pre-trained mod-
els by combining iterative back-translation, paral-
lel corpus filtering and fine-tuning; and a second
stage aimed at distilling the knowledge from the
fine-tuned models to train a student model with far
fewer parameters but comparable performance.

Fine-tuning of pre-trained models. This pro-
cess, depicted in Figure 1, combines fine-
tuning of the pre-trained models with back-
translation (Hoang et al., 2018) and synthetic
parallel corpus filtering via a fine-tuned XLM-R
model (Conneau et al., 2020). For our English-
centric scenario and a particular low-resource lan-
guage, this consists of the following steps:

1. Use the available parallel corpora to train
a Bicleaner-Al (Zaragoza-Bernabeu et al.,
2022) model. Bicleaner-Al learns a classifier
on top of XLM-R that predicts if a pair of in-
put sentences are mutual translation or not.

Fine-tune both the English-to-many and the
many-to-English mBARTS50 models with the
original parallel corpora.

2The code for our training pipeline is available at https:
//github.com/transducens/tune—-n-distill



3. Perform  incremental iterative back-

translation.

(a) Translate the available English monolin-
gual corpora into the low-resource lan-
guage, and vice versa, using the last fine-
tuned mBART50 models.

(b) Filter the synthetic corpora using the
XLM-R model trained in step 1.

(c) Use the filtered synthetic corpora and the
available parallel corpora to further fine-
tune the last fine-tuned mBARTS50 mod-
els translating to and from English.

(d) Evaluate the performance of the two re-

sulting models on a development set. If

none improves, stop the iterative pro-
cess. Otherwise, increase the size of
both monolingual corpora and jump to

step 3(a).

To filter the synthetic corpora generated in
each iteration, a threshold in the interval [0,1] is
used to discretize the output of Bicleaner-Al. This
threshold is set in the first iteration of the back-
translation process —step 3(b)— by exploring all
thresholds in [0.0, 0.9] at steps of 0.1. The thresh-
old for the remaining iterations is the one that pro-
duces the synthetic corpus that leads to the best
mBART50 models on the development set. We
start the iterative back-translation with 1 million
monolingual sentences in each language (or the
whole corpus if the amount is smaller) and we add
1 million sentences in each language (if available)
after step 3(d).

Training of student models. Knowledge distil-
lation is usually implemented in NLP at token
level, but in tasks like NMT performing it at se-
quence level (Kim and Rush, 2016) is usually
equivalent and easier to implement: the student is
trained on a synthetic corpus obtained by trans-
lating with the feacher the source segments of
the original training parallel corpus, if available.
However, in the case of third-party-developed pre-
trained models, this corpus may not be available.
We hypothesize that, in its absence, as well as for
languages never seen by pre-trained models, we
can generate synthetic training samples by translat-
ing monolingual data with the teacher model and
then filtering the synthetic data generated to dis-
card low-quality or noisy sentence pairs.

Once the pre-trained models have been prop-
erly fine-tuned, we train a student model by
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performing standard sentence-level knowledge
distillation (Kim and Rush, 2016). To this
end, monolingual English data is automatically
translated into the low-resource language with
the best fine-tuned English-to-many mBARTS50
system and the resulting synthetic bilingual corpus
(opportunely cleaned with the same Bicleaner-Al
model) together with the true bilingual corpus
are used to train the student model translating the
low-resource language into English. Conversely,
monolingual data available for the low-resource
language is automatically translated into En-
glish with the best fine-tuned many-to-English
mBART50 model and the resulting cleaned corpus
together with the bilingual corpus are used to train
the system translating from English into the low-
resource language. In addition to this approach
based on back-translation, we will also explore
two other approaches to student training: using
forward-translated texts (Li and Specia, 2019) and
using both, forward- and back-translated ones.

3 Experimental settings

Selection of low-resource languages. We con-
ducted experiments for the translation from four
low-resource languages into English, and vice
versa. These low-resource languages are Swahili
(sw), Kyrgyz (ky), Burmese (my) and Macedo-
nian (mk).> They belong to different language fam-
ilies and use different alphabets. Swahili belongs
to the Niger-Congo language family and is written
in the Latin script. Kyrgyz is a Turkic language
written in a Cyrillic alphabet in Kyrgyzstan, and
in a Perso-Arabic alphabet in Xinjiang. Burmese
is a Sino-Tibetan language that has its own writ-
ing system. The presence of blank spaces between
words is optional in Burmese, but they are com-
monly used in a non-standard manner to ease legi-
bility. Finally, Macedonian is a Slavic language us-
ing the Cyrillic alphabet, but differs in some char-
acters from other languages with the same script.

3It should be emphasized that the term low-resource fre-
quently used to categorize languages in the literature is inher-
ently ambiguous and relative. In order to more precisely de-
fine the degree of data sparseness of human languages, Joshi
et al. (2020) have proposed a six-class taxonomy based on
the number of available resources, ranging from class 0 lan-
guages (labeled as the left-behinds) with no representation
in any existing resource, to class 5 (the winners). Under
this classification, Swahili belongs to class 2 (the hopefuls),
whereas Kyrgyz, Macedonian and Burmese belong to class 1
(the scraping-bys).



Model architecture. The pre-trained model ex-
ploited in this paper is mBARTS50 (Tang et
al., 2021), a multilingual sequence-to-sequence
encoder-decoder pre-trained on large-scale mono-
lingual corpora using the BART denoising ob-
jective (Lewis et al., 2020) and then fine-tuned
for multilingual MT. mBART50 was trained on a
set of 50 languages, including English, Burmese
and Macedonian, but neither Swahili nor Kyr-
gyz. mBARTS50 uses a standard transformer ar-
chitecture (Vaswani et al., 2017) with 12 layers
for both the encoder and the decoder, embedding
dimension of 1024, feed-forward inner-layer di-
mension of 4096, and 16 attention heads. This
adds up to approximately 680M parameters. Our
bilingual baselines and student models consist of
a transformer architecture with 6 layers for both
the encoder and the decoder, embedding dimen-
sion of 512, feed-forward inner-layer dimension
of 2048, and 8 attention heads. These mod-
els have near 5S0M parameters, approximately 13
times fewer parameters than the mBARTS50 mod-
els. All our models were trained or fine-tuned us-
ing the Fairseq toolkit.*

Data. Most of the training corpora used for each
language pair comes from OPUS.> In addition,
parallel corpora from GoURMET® and JW300
were also used. The ALT corpora’ was addi-
tionally used for Burmese and SAWA (De Pauw
et al.,, 2009) for Swahili. We used monolingual
texts from NewsCrawl, except for Burmese, for
which we used OSCAR (Ortiz Suérez et al., 2020).
We added the monolingual corpora available in
GoURMET to Kyrgyz and Macedonian. For
Macedonian, an in-house corpus was used, repre-
senting 48% of the Macedonian monolingual sen-
tences shown in Table 1. Burmese texts were pre-
processed with the Pyidaungsu® word segmenter.
Parallel sentences longer than 100 words in either
side were discarded for all languages. Table 1 pro-
vides information about the training corpora after
their pre-processing.

For development and testing, we used the
FLORES-101 (Goyal et al., 2021) dataset which

“https://github.com/facebookresearch/fairseq
‘https://opus.nlpl.eu/
*https://gourmet-project.eu/
data-model-releases/\#ib-toc—anchor-0
"https://www2.nict.go.jp/astrec—att/
member/mutiyama/ALT/
8https://github.com/kaunghtetsan275/
pyidaungsu
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Language pair sentences
English-Burmese 87432
English—Swabhili 232133
English-Kyrgyz 311705
English-Macedonian 756746
Language sentences
English 3000000
Burmese 1192914
Swahili 455488
Kyrgyz 1125488
Macedonian 2393325

Table 1: Number of sentences in the parallel and monolingual
corpora used for mBARTS50 fine-tuning and student training.

contains the same set of sentences translated
by professional translators across 101 languages.
We use the 927 sentences in the dev directory
for development and the 1,012 sentences in the
devtest directory for testing.’

Sub-word splitting. When using mBARTS50,
sentences in all languages are tokenized with
the SentencePiece model (Kudo and Richardson,
2018) provided with mBARTS0 (same model for
all languages). To be consistent with mBART,
whose parameters are used to initialize mBARTS50
before pre-training, mBARTS50 uses mBART’s
SentencePiece model, which in turn was ob-
tained using monolingual data for the 101 lan-
guages in the XLM-R pre-trained model (Con-
neau et al., 2020). Consequently, this Senten-
cePiece model (with a vocabulary of 250k to-
kens) already supports languages beyond the 50
languages in mBARTS50 pre-training, including
Swahili and Kyrgyz. Sub-word tokens for these
languages are thus present in the embedding table
of mBARTS50, but their parameters were not up-
dated during mBARTS50’s pre-training'® except for
those tokens shared with some of the 50 languages.
Moreover, as the SentencePiece model is jointly
computed for 101 languages, it may split words in
Swahili or Kyrgyz in sub-optimal ways. To avoid
these issues, we obtained two new joint Sentence-
Piece models of 10,000 tokens each for English—
Swabhili and English—Kyrgyz. We then filtered the
embedding table of mBART50 out by removing

“FLORES-101 contains a third of sentences from Wikinews
(news articles), a third from Wikijunior (non-fiction children
books), and a third from Wikivoyage (a travel guide).

They were not updated during mBART’s denoising pre-
training, since neither Swahili nor Kyrgyz corpora were in
the training data of mBART.



those tokens that were not included in the new Sen-
tencePiece vocabulary. Finally, we extended the
embedding table to include every new token in the
SentencePiece vocabulary.!! The already learned
embeddings are thus kept for those tokens already
included in the original token set. This procedure
may also be applied to new languages not in the
original mBARTS50’s SentencePiece model, even if
they have a new alphabet. As regards the students
and the baseline bilingual models, we computed
a different joint bilingual SentencePiece model for
each language pair using the bilingual training cor-
pora and a vocabulary of 10,000 tokens.

Training. When training and fine-tuning,
we used a learning rate of 0.0007 with the
Adam (Kingma and Ba, 2015) optimizer (5,=0.9,
£2=0.98), 8,000 warm-up updates and 4,000
max tokens. We trained with a dropout of
0.1 and updated the model every 5,000 steps.
Validation-based early stopping on the FLORES-
101 development set was carried out as a form of
regularization to prevent over-fitting. The cross-
entropy loss with label smoothing was computed
on the development set after every epoch and the
best checkpoint was selected after 6 validation
steps with no improvement.

4 Results and discussion

Table 2 shows, for the different language pairs and
systems evaluated, the mean and standard devia-
tion of the BLEU score computed on the test set
after three different runs. The systems evaluated
are the following: i) baseline models trained on the
available parallel corpora, using the same architec-
ture as the students, followed by iterative back-
translation with the same monolingual corpora
used in other set-ups for the teacher; ii) mBARTS50
without further fine-tunning; iii) teacher models
after their fine-tuning; and iv) the three different
student configurations explained next. Note that
for the teacher models only the results of a sin-
gle run are provided as their parameters are ini-
tialized to those of the pre-trained model. The
three different student configurations are “Student
Back”, which refers to the student models trained
on synthetic parallel corpora generated by running
the teacher model from target to source; “Student
Fwd”, which refers to the students trained on syn-
thetic parallel corpora obtained by translating from

"'The number of model parameters after this trimming proce-
dure decreases from 680M to approximately 370M.
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source to target with the teacher model; and “Stu-
dent All”, which refers to students trained on both
forward and backward translations.

As can be seen, when English is the target lan-
guage, the student models lag further behind the
teacher models as compared to when English is the
source language: the difference with the best stu-
dent models (“Student All” in all cases) is around
3 BLEU points, being the minimum difference of
1.82 BLEU points (ky-en) and the maximum dif-
ference of 3.80 BLEU points (my-en). This is
clearly motivated by the fact that the English-to-
many mBARTS50 translates from one language to
50 languages, whereas the many-to-English model
only generates English. The latter is therefore spe-
cialized in generating English texts. As the stu-
dent models have been trained on much less En-
glish corpora than mBARTS0, they are not able to
match the performance of mBARTS50 when trans-
lating into English. Alternative evaluation met-
rics, such as chrF (Popovié, 2015) or spBLEU (see
below), show the same trend; consequently, only
BLEU scores are reported in Table 2.

The best student models consistently improve
the results of the bilingual baselines by a wide mar-
gin, thus confirming the appropriateness of con-
sidering large pre-trained models as the seed for
NMT models and the effectiveness of our pipeline.
As regards the low BLEU scores attained by the
bilingual baseline models involving Kyrgyz, our
results match the pattern described by Nekoto et al.
(2020), who observed that 8 out of 9 low-resource
NMT systems for African languages trained on
JW300 generalized very poorly in human evalu-
ations when shifting to domains such as TED talks
or COVID-19 surveys; they concluded that the val-
idation score on the JW300 test set was misleading
as it overestimated the model quality.

Impact of forward and backward translations.
As seen in Table 2, the models trained using
both forward and backward translations gener-
ated by the teacher model (Student All) are the
best performing ones (except for en—-my where
Student Fwd performs slightly better). Contrary
to intuition, the use of forward translations when
English is the source language results in better
performance than the use of backward translations
when English is the target. This may be due
to the fact that the amount of monolingual text
used in StudentFwd is much larger than that of
Student Back, because the amount of monolingual



Model en-mk | mk-en | en-my my-en en-sw sw-en en-ky ky-en
Baseline 2877 4+.21341+£.1|1344+4(|175£.4(263+24(272+51(01+.1]1.1+.1
mBARTS50 |23.1 33.1 13.5 22.5 - - - -
Teacher 32.1 40.0 16.5 24.6 31.8 36.3 9.1 17.0
Student All |31.0£.5(36.3+.3{169+.7/208+.5|33.3+.1 |33.1+.2 |9.2+£.2|15.2+ 4
Student Back | 28.8 £.8(34.94+ .6|11.7£.5]20.7+£ .4|298+.1 |325+.3 |83£.3|15.0+.3
Student Fwd | 30.5£.5(34.7+.5|17.0£.1]1.0£.3 |32.7+ .4 |303+.1 |[89+£.1|13.8+.2

Table 2: BLEU scores for the different NMT models. Burmese reference has been processed with Pyidaungsu.

Model Synthetic | Discarded | ABLEU
Back | 2292343 29.49% -0.01
en-mk
Fwd | 2994928 18.84% 1.18
mk-en Back| 2994928 18.84% 0.39
Fwd | 2292343 29.49% 0.08
Back| 600934 76.40% 11.35
en-my
Fwd | 2934522 6.10% 0.21
my-en Back| 2934522 6.10% -0.07
Fwd 600934 76.40% 0.94
enosw Back| 454796 7.69% 0.14
Fwd | 2986535 4.58% -0.10
sween Back| 2986535 4.58% 0.42
Fwd 454796 7.69% 0.31
en-ky Back| 1109097 29.88% 0.26
Fwd | 2988350 10.25% -0.16
Ky-en Back | 2988350 10.25% 0
Fwd | 1109097 29.88% -0.20
Table 3: Number of synthetic sentences and percentage of

sentences discarded by Bicleaner-Al. The ABLEU column
shows the improvement in terms of BLEU when the student
models are trained with the filtered corpora (see Table 2) over
using the whole corpus.

corpora available in English is higher, and in each
iteration of back-translation one million English
sentences are added and translated. The my-en
Student Fwd model produces remarkably poor
results, most probably because of the differences
in Burmese segmentations between our texts and
the original training corpora, which may challenge
mBARTS50’s processing capabilities and result in
translation errors or hallucinations that hinder the
student model’s learning. The impact of using
synthetic English as the target language is more
pronounced, as demonstrated by the performance
of the en-my Student Back model trained on the
same corpus. A more thorough investigation of
this phenomenon is leaved for future work.

Impact of synthetic corpus filtering. Table 3
shows the percentage of synthetic corpora dis-
carded when using the same scores we used dur-
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ing the incremental iterative back-translation fine-
tuning of the teacher model. The differences in
BLEU scores between the student models trained
on the filtered corpus and those trained on the
whole synthetic corpus is shown in the ABLEU
column, where a positive value means that filter-
ing is effective. Note that only a few small neg-
ative values exist and that most of them are posi-
tive, even though in some cases the proportion of
discarded sentences is quite significant.

As regards the average threshold used with
Bicleaner-Al for each language pair, it is around
0.4, although it ranges from 0.0 to 0.7 depend-
ing on the language pair. In addition to this,
the amount of synthetic sentence pairs discarded
varies considerably between language pairs. The
language pair for which this difference in more
pronounced is English-Burmese:'> while for
en-my the percentage of segments discarded is
6.1% (threshold of 0.4), for my—en it is 76.4%
(threshold of 0.3).13

As can be seen, when English is the synthetic
language, the percentage of discarded sentences is
higher. This could be due to the specialization of
mBARTS50 in English generation, which may make
it generate fluent sentences but not correct transla-
tions. Although there could be noise in the corpus,
this noise has a different effect depending on the
size of the corpus and whether the synthetic lan-
guage is used as the source or the target. Trans-
former’s noise tolerance can explain why, in the
majority of cases, corpus filtering does not affect
the BLEU scores. All in all, filtering is a good
practice as it may lead to better scores or, at least,
to a reduction in training time due to the removal
of noisy sentence pairs.

I2Bjicleaner-Al was trained on the same corpora in both cases.
3The large number of discarded segments contributes to the
extremely low score of the Student Fwd my-en model in Ta-
ble 2.



Impact of distillation on efficiency. Compared
to the teacher models, the student models with 13
times fewer parameters demonstrate a remarkable
increase in inference speed: 61% faster on one
GPU NVIDIA A100, and 92% on an Intel i5 2.9
GHz CPU (both measured as the fraction of the
teacher’s execution time we can save by switching
to the student). For example, on the GPU, using
fairseg_interactive with a beam search
of 5 and maximum number of tokens of 4,000,
the en—-mk teacher model takes around 900 sec-
onds to translate the FLORES 101 devtest (31 to-
kens/second), whereas the student model produces
the output in approximately 350 seconds (97 to-
kens/second). The same teacher and student mod-
els executed on CPU take 4,800 seconds (6 to-
kens/second) and 400 seconds (87 tokens/second),
respectively.

Comparison with other models. Table 4 shows
a comparison in terms of spBLEU'* between
our models, including mBARTS50 without fine-
tuning, and three prominent multilingual mod-
els: M2M-124 (Goyal et al, 2021) and
DeltaLM+Zcode (Yang et al., 2021) —the baseline
and winner system at WMT 2021, respectively—
and NLLB-200 (NLLB Team et al., 2022). As
can be seen, student models perform considerably
better than DeltaM+Zcode when the target lan-
guage is not English, except for en-mk. When
the target language is English, DeltaM+Zcode
clearly outperforms the teacher and student mod-
els. NLLB-200 matches or exceeds the results of
other models in all languages, but is by far the
largest model in the comparison. Our students are
noticeably smaller, but note that both M2M-124
and DeltaLM+Zcode are one-size-fits-all models
which have not been bilingually fine-tuned.

5 Related work

Multilingual NMT models. A large amount of
pre-trained multilingual NMT models'> have been

“As good tokenizers are not always available for low-
resource languages, spBLEU (Goyal et al., 2021) has been
proposed as an evaluation metric. spBLEU applies Senten-
cePiece (Kudo and Richardson, 2018) to both the output and
the reference translation before computing BLEU. As all our
languages are part of FLORES-101, the pre-computed Sen-
tencePiece model of 256k tokens provided by its develop-
ers at https://github.com/facebookresearch/
flores\#spm-bleu has been used.

"We omit discussion of general multilingual text-to-text
models such as DeltaLM (Ma et al., 2021), mT5 (Xue et al.,
2021) or mT6 (Chi et al., 2021) that were not specifically de-
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developed in the last years: NLLB-200 (NLLB
Team et al., 2022), CRISS (Tran et al., 2020),
DeltaLM (Ma et al., 2021), M2M-100 (Fan et
al., 2021), M2M-124!¢ (Goyal et al., 2021),
mBARTS50 (Tang et al., 2021), SixT (Chen et al.,
2021), and SixT+ (Chen et al., 2022), to name
but a few. In most cases, their encoders and de-
coders are initialized from cross-lingual encoder-
like pre-trained models, mainly XLM-R (Conneau
et al., 2020), or full cross-lingual models such as
mBART (Liu et al., 2020).

The number of supported languages varies,
ranging from a few to around 100, mainly those
in the OPUS-100"" or FLORES-101 (Goyal et al.,
2021) corpora. Recently, larger models supporting
up to 200 (NLLB Team et al., 2022) or even around
1000 (Bapna et al., 2022) languages have ap-
peared. mBARTS50 can be seen as a medium-size
English-centric model supporting 50 languages.

A number of common training techniques such
as iterative back-translation are exploited by most
models.  Additionally, every model incorpo-
rates distinctive elements: language-specific lay-
ers (Zhang et al., 2020; Fan et al., 2021); remov-
ing of residual connections in the encoder to mi-
norate language-specific representations by reduc-
ing the influence of positional information (Chen
et al., 2022); adding a mixture of experts sub-
layer to significantly improve the representabil-
ity of low-resource languages while maintaining
the same inference and training efficiency (NLLB
Team et al., 2022); modification of the decoder
to have interleaved layers with self-attention and
cross-attention so that the former are randomly ini-
tialized but the latter can be paired with the cor-
responding layers in an encoder-like pre-trained
model (Ma et al., 2021); or rescaling the gradients
so that performance for low-resource languages
improves (Li and Gong, 2021).

Pre-training is based on monolingual mask-
ing/corruption and, optionally, translation pair
masking/corruption, but for some models, such as
DeltaLM+Zcode (Yang et al., 2021), this kind of
denoising tasks are learned at the same time they
are fine-tuned for MT. DeltaLM+Zcode (Yang et
al., 2021) is based on DeltaLM (Ma et al., 2021)
and can be considered as one of the best current

signed for MT, although they could be fine-tuned to do so.

16 An extended version of M2M-100 that includes all the lan-
guages in the FLORES-101 dataset.
"https://opus.nlpl.eu/opus—100.php



Model # params | en-mk | mk-en | en-my | my-en | en-sw | sw-en | en-ky | ky-en
NLLB-200 54.5B 42.4 479 24.2 33.7 | 379 | 487 | 299 | 275
M2M-124 615M 33.8 33.7 - 10.0 26.9 30.4 45| 114
DeltalLM+Zcode 1013M 42.4 45.6 - 24.2 344 | 36.7| 198 | 221
DeltaLM+Zcode 711M 35.9 42.4 - 19.7 | 277 328 | 13.6 | 209
mBART50 680M 28.3 34.9 26.8 23.7 - - - -
Teacher 680M 39.1 41.5 31.1 26.2 36.3 372 | 219 | 19.0
Our best student 50M 38.1 38.0 31.3 221 38.0 33.8 | 225 | 173

Table 4: spBLEU scores on the FLORES-101 testset for three large, non-English-centric multilingual pre-trained models (Yang
et al., 2021) and our fine-tuned English-centric mBARTS50-based teachers and best performing student models. The results for
the en-my column were calculated after segmenting the reference and model output with pyidaungsu; as the output translations
of some of the models have not been published, the corresponding scores in that column are not provided.

multilingual NMT systems,!® translating all direc-
tions across the 101 languages in the FLORES-101
dataset. Its training process exploits multiple fac-
tors such as an incremental architecture, genera-
tion of pseudo-parallel synthetic data, curriculum
learning to progressively reduce the influence of
the denoising tasks, and iterative back-translation.

Fine-tuning of multilingual models. Birch et
al. (2021) fine-tuned mBARTS50 via curriculum
learning and back-translation to obtain competitive
English-Pashto NMT systems. Lee et al. (2022)
evaluated mBARTS50 on 10 languages, all disjoint
with ours. Liu et al. (2021) improved mBART"s
performance on NMT with new languages by pre-
training with a denoising task on mixed-language
sentences containing masked tokens, removed
tokens, or words replaced by their English coun-
terparts obtained from unsupervised bilingual
dictionaries (Lample et al., 2018). Similar mixed-
language sentences that allow the system to align
representations between English and the new
languages were also used in the mRASP2 (Pan et
al., 2021) model. Adelani et al. (2022) fine-tuned
M2M-100 for African languages by mapping the
codes of languages not included in the pre-training
to the codes of already included languages. A par-
allel line of research (Ustiin et al., 2021; Stickland
et al.,, 2021) adds language-specific information
for unseen languages in the form of adapters which
are pre-trained with monolingual data and then
fine-tuned with bilingual data. The NMT-Adapt
method (Ko et al., 2021) initializes the transformer
with mBART and then jointly optimizes a combi-
nation of tasks including high-resource translation,
low-resource back-translation, monolingual de-
noising of all languages, and adversarial training

8DeltalLM+Zcode won the task on Large-Scale Multilingual
Machine Translation of WMT 2021 (Wenzek et al., 2021).
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to obtain universal representations. Finally, Alabi
et al. (2022) perform monolingual fine-tuning
of pre-trained multilingual models on unseen
representative African languages.

6 Concluding remarks

In this paper, we have presented a pipeline to
tune large NMT pre-trained models, and distill the
knowledge in the fine-tuned teachers to build stu-
dent models using far fewer parameters. In order
to fine-tune the teacher model we apply an iter-
ative back-translation procedure that integrates a
Bicleaner-Al classifier based on XLM-R to dis-
card poor quality translations. We have demon-
strated that filtering yields benefits in the majority
of cases, without causing harm in any instance.

Our approach has been tested on the English-
centric mBARTS50 pre-trained model and on four
different low-resource languages, translating to
and from English. The languages belong to dif-
ferent language families and two of them were not
part of the pre-training stage of mBARTS50. The re-
sults show two clear trends, depending on whether
English is the source or the target language. When
translating from English, our student models out-
perform the teacher models or perform compara-
bly. When translating into English, the teacher
models clearly outperform the student models. In
any case, the student models have 13 times fewer
parameters and are 92% faster when translating on
a regular CPU, which makes them suitable for af-
fordable computational devices.

We leave the in-depth exploration of alternative
models such as SixT+, NLLB-200 or DeltaLM as
future work. We also plan to extend our pipeline
with monolingual and bilingual denoising tasks,
especially for unseen languages, as well as to ex-
plore a larger number of language combinations.
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Abstract

Supervised learning in Neural Machine
Translation (NMT) typically follows a
teacher forcing paradigm where reference
tokens constitute the conditioning context
in the model’s prediction, instead of its
own previous predictions. In order to
alleviate this lack of exploration in the
space of translations, we present a sim-
ple extension of standard maximum like-
lihood estimation by a contrastive mark-
ing objective. The additional training sig-
nals are extracted automatically from ref-
erence translations by comparing the sys-
tem hypothesis against the reference, and
used for up/down-weighting correct/incor-
rect tokens. The proposed new training
procedure requires one additional transla-
tion pass over the training set per epoch,
and does not alter the standard inference
setup. We show that training with con-
trastive markings yields improvements on
top of supervised learning, and is espe-
cially useful when learning from postedits
where contrastive markings indicate hu-
man error corrections to the original hy-
potheses. Code is publicly released!.

1 Introduction

Due to the availability of large parallel data sets
for most language pairs, the standard training pro-
cedure in Neural Machine Translation (NMT) is

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

"https://www.cl.uni-heidelberg.de/
statnlpgroup/contrastive_markings/

supervised learning of a maximum likelihood ob-
jective where reference tokens constitute the target
history in the conditional language model, instead
of the model’s own predictions. Feeding back
the reference history in model training, known as
teacher forcing (Williams and Zipser, 1989), en-
courages the sequence model to stay close to the
reference sequence, but prevents the model to learn
how to predict conditioned on its own history,
which is the actual task at inference time. This
lack of exploration in learning has been dubbed
exposure bias by Ranzato et al. (2016). It has
been tackled by techniques that explicitly inte-
grate the model’s own prediction history into train-
ing, e.g. scheduled sampling (Bengio et al., 2015),
minimum risk training (Shen et al., 2016), rein-
forcement learning (Bahdanau et al., 2017), im-
itation learning (Lin et al., 2020), or ramp loss
(Jehl et al., 2019), amongst others. In most of
these approaches, feedback from a human ex-
pert is simulated by comparing a system transla-
tion against a human reference according to an
automatic evaluation metric, and by extracting a
sequence- or token-level reward signal from the
evaluation score.

In this paper, we present a method to incorpo-
rate contrastive markings of differences between
the model’s own predictions and references into
the learning objective. Our approach builds on pre-
vious work on integrating weak human feedback
in form of error markings as supervision signal in
NMT training (Kreutzer et al., 2020). This work
was conceptualized for reducing human annotation
effort in interactive machine translation, however,
it can also be used on simulated error markings ex-
tracted from an automatic evaluation score. It al-
lows the model to extract a contrastive signal from
the reference translation that can be used to re-
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inforce or penalize correct or incorrect tokens in
the model’s own predictions. Such a reward signal
is more fine-grained than a sequence-level reward
obtained by a sequence-level automatic evaluation
metric, and less noisy than token-based rewards
obtained by reward shaping (Ng et al., 1999).

Our hypothesis is that such contrastive mark-
ings should be especially useful in learning se-
tups where human postedits are used as reference
signals. In such scenarios, contrastive markings
are likely to indicate erroneous deviations of ma-
chine translations from human error corrections,
instead of penalizing correct translations that hap-
pen to deviate from independently constructed hu-
man reference translations. We confirm this hy-
pothesis by simulating a legacy machine transla-
tion system for which human postedits are avail-
able by performing knowledge distillation (Kim
and Rush, 2016) on the stored legacy machine
translations. We define a “legacy” machine trans-
lation system as a system which was previously
used in production and produced translations for
which human feedback was gathered, but which
is no longer productive. Knowledge distillation
is required because the legacy system is a black-
box system that is unavailable to us, but its out-
puts are available. For comparison, we apply our
framework to standard parallel data where refer-
ence translations were generated from scratch. Our
experimental results show that on both datasets,
combining teacher forcing on postedits with learn-
ing from error markings, improves results with re-
spect to TER on test data, with larger improve-
ments for the knowledge-distilled model that emu-
lates outputs of the legacy system.

A further novelty of our approach is the true
online learning setup where new error markings
are computed after every epoch of model train-
ing, instead of using constant simulated markings
that are pre-computed from fixed machine trans-
lation outputs as in previous work (Petrushkov et
al., 2018; Grangier and Auli, 2018; Kreutzer et al.,
2020). Online error markings can be computed in
a light-weight fashion by longest common subse-
quence calculations. The overhead incurred by the
new training procedure is one additional transla-
tion pass over the training set, whereas at inference
time the system does not require additional infor-
mation, but can be shown to produce improved
translations based on the proposed improved train-
ing setup.
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2 Related Work

Most approaches to remedy the exposure bias
problem simulate a sentence-level reward or cost
function from an automatic evaluation metric and
incorporate it into a reinforcement- or imitation-
learning setup (Ranzato et al., 2016; Shen et al.,
2016; Bahdanau et al., 2017; Lin et al., 2020; Jehl
et al,, 2019; Gu et al., 2019; Xu and Carpuat,
2021).

Methods that are conceptualized to work di-
rectly with human postedits integrate the human
feedback signal more directly, without the mid-
dleman of an automatic evaluation heuristic. The
standard learning paradigm is supervised learning
where postedits are treated as reference transla-
tions (see, for example, Turchi et al. (2017)). Most
approaches to learning from error markings adapt
the supervised learning objective to learn from cor-
rect tokens in partial translations (Marie and Max,
2015; Petrushkov et al., 2018; Domingo et al.,
2017; Kreutzer et al., 2020).

The QuickEdit (Grangier and Auli, 2018) ap-
proach uses the hypothesis produced by an NMT
system and token-level markings as an extra input
to an automatic postediting system (APE), and ad-
ditionally requires markings on the system output
at inference time. This requires a dual encoder ar-
chitecture with the decoder attending to both the
source and hypothesis encoders. In this case, con-
volutional encoders and decoders of Gehring et al.
(2017) are used.

Our approach builds upon the work of
Petrushkov et al. (2018) and Kreutzer et al. (2020)
who incorporate token-level markings as learning
signal into NMT training. In contrast to Grang-
ier and Auli (2018), who compute markings off-
line before training and require them for inference,
we only require them during training and calcu-
late markings online. Furthermore, instead of pre-
senting markings to the system as an extra input,
they are integrated into the objective function as a
weight. While Petrushkov et al. (2018) simulate
markings from reference translations by extracting
deletion operations from longest common subse-
quence calculations, Kreutzer et al. (2020) show
how to learn from markings solicited from human
annotators. In contrast to these approaches, we in-
tegrate markings to enhance supervised learning in
a true online fashion.



Source

To remove the highlighting , un@ @ mark the menu entry .

Hypothesis Um die Her@@ vor@@ hebung zu entfernen , mark@ @ ieren Sie den Menii@ @
ein@ @ trag .

Reference  Um die Her@ @ vor@ @ hebung auszu@ @ schalten , de@@ aktivieren Sie diesen
Menii@ @ ein@ @ trag .

Markings 1111100100101 111

Table 1: An example of a source, hypothesis, and reference triple along with the contrastive markings generated by comparing
the hypothesis to the reference. Markings of 1 indicate a correct subword token, while 0 indicates an incorrect subword token.
We used byte-pair encoding (Sennrich et al., 2016) and the ”@ @ indicate that this token is part of the same word as the
following token. We underline and color the incorrect tokens and their corresponding markings red.

) Knowledge Distilation
Legacy Logged
Source NMT Model [—|Hypotheses| | | Logged
Hypotheses Emulated
Cross- s Legacy
Ca— ) e Model
Pre-trained
Postedits [ Source Model |
- g

Figure 1: Left: The WMT21 APE dataset is created by having a black-box NMT system generate hypothesis translations.
These logged hypotheses are then given to human reviewers to postedit to create a triple of (source, hypothesis, postedit).

Right: Because the system that generated the hypotheses is not available for us to fine-tune, we try to emulate it with knowledge
distillation. We train the model to reproduce the original hypothesis by using them as targets with a cross-entropy loss to produce

an emulated legacy model.

3 Methods

3.1 Learning Objectives

Let x = x;...xg be a sequence of indices over
a source vocabulary Vsic, and y = y1 ... yr a se-
quence of indices over a target vocabulary Vryg.
The goal of sequence-to-sequence learning is to
learn a function for mapping an input sequence
x into an output sequence y. For the example of
machine translation, y is a translation of x, and a
model parameterized by a set of weights 6 is opti-
mized to maximize pg(y | z). This quantity is fur-
ther factorized into conditional probabilities over
single tokens pg(y | @) = [T, po(ye | 23y<0).
where the latter distribution is defined by the neu-
ral model’s softmax-normalized output vector:

Po(yt | 75y<i) = softmax(NNy(z;y<¢)). (1)

There are various options for building the archi-
tecture of the neural model NNy, such as recurrent
(Bahdanau et al., 2015), convolutional (Gehring et
al., 2017) or attention-based (Vaswani et al., 2017)
encoder-decoder architectures.

Standard supervised learning from postedits
treats a postedited output translation y* for an in-
put z the same as a human reference translation
(Turchi et al., 2017) by maximizing the likelihood
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of the user-corrected outputs where

T
Lpp(0) => > logpy(yi | ziys,), ()

z,y* t=1

using stochastic gradient descent techniques (Bot-
tou et al., 2018).

Petrushkov et al. (2018) suggested learning
from error markings 6;" of tokens ¢ in machine-
generated output §. Denote ;" if marked as cor-
rect, or 6, otherwise, than a model with §;” = 1
and 6, = 0 will reward correct tokens and ignore
incorrect outputs. The objective of the learning
system is to maximize the likelihood of the correct
parts of the output where

T
Lu(0) =D > 67 logpa(de | x59<1)-  (3)

z,g t=1

The tokens g, that receive 6; = 1 are part of the
correct output y*, so the model receives a strong
signal how a corrected output should look like. Al-
though the likelihood of the incorrect parts of the
sequence does not weigh into the sum, they are
contained in the context of the correct parts (in
UJ<¢). Alternatively, it might be beneficial to pe-
nalize incorrect tokens, with e.g. 6, = —0.5, and



reward correct tokens 6;” = 0.5, which aligns with
the findings of Lam et al. (2019).

Our final combined objective is a linear interpo-
lation of the log-likelihood of postedits Lpg and
the log-likelihood of markings L j;:

L(Q) :aLpE+(1—a)LM. @)

3.2 Simulating Markings

Error markings are simulated by comparing the hy-
pothesis to the reference and marking the longest
common subsequence as correct, as proposed by
Petrushkov et al. (2018). We show an example
of a data point in Table 1. Markings were ex-
tracted from the longest common subsequence cal-
culations. For every token in the model hypothe-
sis there is a corresponding reward. A reward is O
when the corresponding token is not present in the
reference and is 1 when the token was kept in the
reference.

3.3 Knowledge Distillation

We want to showcase the advantage of our tech-
nique of enhancing supervised learning from
human reference translations and from human
postedits. In order to take advantage of the fact
that human postedits indicate errors in machine
translations instead of differences between ma-
chine translations and independent human refer-
ences, we need to simulate the legacy machine
translation system that produced the translations
that were postedited. For this purpose we use
APE data consisting of sources, MT outputs, and
postedits. Since the legacy system is a black box
to us, we carry out sequence-level knowledge dis-
tillation (Kim and Rush, 2016) on the machine
translations provided in the train split of the APE
dataset (cf. Section 4). This allows us to emu-
late the legacy system by knowledge distillation
and to consider the postedits in the APE dataset
as feedback on the knowledge-distilled model. We
present an overview of this process in Figure 1.

As shown in Table 2, after fine-tuning on the
MT outputs in the train split of the APE data,
we are able to produce translations that are more
similar to the black-box systems than those of the
pre-trained baseline system. Additionally, because
the APE dataset’s postedits were generated by cor-
recting those MT outputs, Table 3 shows that the
knowledge-distilled system’s performance on the
postedits is closer to the black-box system’s per-
formance than before distillation.
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3.4 Online Learning

Our learning setup performs standard stochastic
gradient descent learning on mini-batches. After
every epoch, new system translations are produced
and error markings are extracted by comparing the
translations to references. This process is shown
in Figure 2, showing that we produce error mark-
ings by comparing the model’s output with the
postedits and then use the marked hypotheses and
the postedits to train the system.

In preliminary experiments we found that com-
puting error markings from a fixed initial set of
system translations and using them as learning sig-
nals in iterative training appeared to bring initial
improvements. Continued training, however, led to
decreased performance. We conjecture that learn-
ing from constant marking signals can work for
very small datasets (for example, Kreutzer et al.
(2020) used fewer than 1,000 manually created
markings for training), but it leads to divergence
of parameter estimates on datasets that are one or
two orders of magnitude larger, as in this work.

4 Data

We use the WMT17 En-De dataset’ for pre-
training. Our data is pre-processed using the
Moses tokenizer and punctuation normalization
for both English and German implemented in
Sacremoses>.

We first test our ideas on the IWSLT14 En-De
dataset* (Cettolo et al., 2012). We download and
pre-process the data using joey scripts’. The En-
De dataset consists of transcribed TED talks and
volunteer provided reference translations into the
target languages.

The APE dataset is from the WMT automatic
postediting shared task 2021 (Akhbardeh et al.,
2021). The legacy system that produced the origi-
nal MT outputs is based on a standard Transformer
architecture (Vaswani et al., 2017) and follows
the implementation described by Ott et al. (2018).
This system was trained on publicly available MT
datasets, including Paracrawl (Bandn et al., 2020)
and Europarl (Koehn, 2005), totalling 23.7M par-
allel sentences for English-German. The APE

https://www.statmt.org/wmt17/
translation-task.html
*https://github.com/alvations/sacremoses
‘nttps://sites.google.com/site/
iwsltevaluation2014/data-provided
Shttps://github.com/joeynmt/joeynmt /blob/
main/scripts/get_iwsltl4_bpe.sh



System Train

Dev Test

BLEU TER BLEU TER BLEU TER

APE MT Outputs  100.0 0.0 100.0 0.0 100.0 0.0
Baseline Model 48.0 31.8 49.0 31.0 46.2 33.8
KD Model 88.9 5.8 56.0 259 558 267

Table 2: Systems outputs compared to APE data MT outputs. BLEU and TER scores indicate distance of system outputs to MT
outputs that were shown to human posteditors. Results show that Knowledge Distillation (KD) on APE MT Outputs improves
distances (higher BLEU, lower TER), enabling improved approximation of the MT system that generated the hypotheses used
in the APE dataset. Baseline and Knowledge Distillation systems evaluated with a beam size of 5.

System Train Dev Test
BLEU TER BLEU TER BLEU TER
APE MT Outputs 70.8 181 69.1 189 71,5 179
Baseline Model 424 369 433 358 417 378
KD Model 66.0 208 49.1 312 49.6 316

Table 3: System outputs compared to APE data postedits. Results show that Knowledge Distillation (KD) on APE MT outputs
also reduces the distance to APE postedits (higher BLEU, lower TER) . Baseline and KD systems are evaluated with a beam

size of 5.
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Figure 2: Once per epoch, we have our model run inference on all source sentences to generate hypothesis sentences. These
then get compared to the postedits using the Longest Common Subsequence algorithm with tokens contained in the subsequence
marked as good and those not in the subsequence marked as bad. Both the marked hypotheses and postedits are used as targets
with a weighted cross-entropy loss function. The NMT model that generate the hypotheses and the model we train are the same

model.

data consists of source, MT output, and postedit
triples. The source data was selected from English
Wikipedia articles. The MT outputs were provided
by the legacy system and were postedited by pro-
fessional translators. The sizes of the datasets are
given in Table 4.

5 Experiments

5.1 Experimental Setup

We implement our loss function and data-loading
on top of JoeyNMT (Kreutzer et al., 2019).5 All
that needs to be changed, in addition to adding
weighting to the loss function, is a way of loading
data and constructing combined batches such that
each batch contains sources, hypotheses, weights,
and postedits. To do this, we duplicate each source

®https://github.com/joeynmt/joeynmt
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twice in the batch and pair the first copy with the
hypothesis and the second copy with the postedit.
From the point of view of the model and loss func-
tion, the batch constructed for the combined ob-
jective does not differ from a normal batch with
token-level weights. Batches constructed this way
and in the usual manner can both contain the same
number of tokens, but half of the target sequences
in the combined batches come from the model’s
own translation of the training data.

Our baseline system is a standard Trans-
former model (Vaswani et al., 2017), pre-trained
on WMT17 data for English-to-German transla-
tion (Bojar et al., 2017), and available through
JoeyNMT’. The model uses 6 layers in both the en-

"https://www.cl.uni-heidelberg.
de/statnlpgroup/joeynmt/wmt_ende_
transformer.tar.gz



Dataset Train Dev Test
WMT17 (pre-train) 5,919, 142
IWSLT14 (fine-tune) 158,794 7,216 6,749
WMT21 APE (fine-tune) 7,000 1,000 1,000

Table 4: Size of En-De datasets used for pre-training and fine-tuning: The WMT17 and IWSLT14 data consist of pairs of
source and target sentences; the WMT21 APE data consists of triples of source, MT output, and postedited sentences.

System References Online markings TER
a 1.0 0.0 48.2
b 0.9 0.1 48.1
c 0.7 0.3 48.0%f
d 0.5 0.5 47.8%7
e 0.3 0.7 48.3
f ) 0 51.3

Table 5: Results from fine-tuning the WMT17 News model on out-of-domain IWSLT references. Numbers in the References
and Online markings columns refer to interpolation weights given to that loss. The bottom row is the unchanged system, hence
its interpolation values are (). The results show that, up to a threshold, increasing the weight given to Online markings improves
TER scores. Superscripts denote statistically significant differences to indicated system at p-value < 0.05.

coder and decoder with 8 attention heads each, and
hyper-parameters as specified in the pre-trained
JoeyNMT model’s configuration file.

We compare the combined objective given in
Equation (4) to standard supervised fine-tuning by
continued training on references or postedits and
to the pre-trained model.

All systems share the same hyper-parameters
except for the weighting of target tokens. The stan-
dard supervised learning method does not account
for token-level weights and therefore all weights
in the loss-function are set to 1. For the contrastive
marking method, we experimented with a range of
interpolation values o on the IWSLT14 dataset to
select the best value. The weighting of the tokens
were set to —0.5,0.5 in correspondence with the
results from Kreutzer et al. (2020).

5.2 Experimental Results

Since our work is concerned with learning from
token-based feedback, we evaluate all systems ac-
cording to Translation Edit Rate (TER) (Snover et
al., 2006). Furthermore, we provide the Sacre-
BLEU (Post, 2018) signatures® for evaluation con-
figurations of evaluation metrics. Statistical sig-
nificance is tested using a paired approximate ran-
domization test (Riezler and Maxwell, 2005).

8TER: nrefs:1 | ar:10000 | seed:12345 | case:lc | tok:tercom |
norm:no | punct:yes | asian:no | version:2.0.0
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Table 5 shows results from fine-tuning on inde-
pendently created human references. A baseline
model trained on WMT17 data (line f) is fine-tuned
on references (line a) or on a combination of ref-
erences and online markings (lines b-e, using dif-
ferent interpolation weights) from the TED talks
domain. We see that up to a threshold, increasing
the interpolation weight given to learning from on-
line markings significantly improves TER scores
up to 3.5 points (line d) compared to the baseline
(line f), and up to 0.5 points compared to training
from references only (line a).

Table 6 gives an experimental comparison of
fine-tuning experiments on human postedits. A
baseline model trained on news data is fine-tuned
on postedit data from the Wikipedia domain. The
postedit data is feedback on real MT outputs that
we have trained on using knowledge distillation
to emulate. Line a shows TER results for fine-
tuning on postedits. This result can be improved
significantly by 0.6 TER by combined learning on
postedits and online markings, using an interpola-
tion weight of 0.5 (line b). Lines ¢ and d perform
the same comparison of objectives for a model that
has been trained via knowledge distillation (KD) of
the legacy machine translations that were the input
data for postediting. Comparing line d to line a,
we see that by combined learning of a KD system
on postedits and markings even larger gains, close
to 1 TER point, can be obtained. The improve-



System TER
a Baseline + Postedits 31.3
b Baseline + Postedits + Online Markings 30.7¢
¢ Baseline + KD + Postedits 30.8
d Baseline + KD + Postedits + Online Markings 30.4%¢

Table 6: Fine-tuned systems compared to WMT APE postedit test data. Results show that Online markings, when combined
with learning from references, are able to improve our systems more than references alone. Even larger improvements are
gained by systems trained by knowledge distillation (KD) on legacy translations. Interpolation weights are set to 0.5. Super-
scripts indicate a significant improvement p < 0.05 over the indicated system.

ments due to adding online markings are signifi-
cant over training from postedits alone in all cases,
and nominally, results for models adapted to the
legacy machine translations via KD are better than
for unchanged models trained on postedits.

An example showing the learning progress of
the different approaches during the first epochs is
given in Table 7. The results of epoch 0 are given
in the first block. It shows the system outputs
of the models trained with knowledge distillation
and the baselines before learning from postedits
or markings. The KD models, given in lines ¢
and d, already show better terminology translation
(superstructure - Uberbau, bases - Fundamente)
than the baselines in lines a and b (superstruc-
ture - Superstruktur, bases - Stiitzpunkte). After
one epoch, contrastive learning (lines b and d) and
learning from postedits (lines a and c) correct “ar-
mored - gewagelt” and “armored - getrieben” to
”armored - gepanzert”, but only for KD models or
if contrastive learning is used. Furthermore, con-
strastive learning of a KD model (line d) also cor-
rects the translation of ’funnel” from “Funnels” to
“Trichter”.

6 Discussion

Our experimental results in Table 6 show that
online markings combined with references or
postedits bring greater improvements than super-
vised learning on references or postedits alone, and
moreover, the knowledge distilled models benefit
more from the provided feedback. This suggests
that the more related the feedback is to the sys-
tem’s own output, the more can be learned from
the feedback.

Furthermore, this result has implications for
how to best use postedits. Postedits are of-
ten treated as new reference translations for the
sources and used to train new systems, whereas the
original MT outputs are discarded. However, fine-
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tuning the original system on the postedits may
yield larger improvements than training a new, un-
related model on the source and postedit alone.

Lastly, we believe that our results can be inter-
preted as the effect of mitigating exposure bias.
The pre-trained model is exposed not only to refer-
ence translations, but to its own trajectories. Even
if the model’s trajectory is far from the gold ref-
erence and multiple tokens in its history are incor-
rect, it will be rewarded if it predicts a token that
is in the output. This may enable it to return to a
more rewarding trajectory.

7 Conclusion

In this work we present a way to combine postedits
and word-level error markings extracted from the
edit operations between the postedit and the MT
output to learn more than what the postedit alone
is able to provide. Experimentally, we try this on
systems unrelated to the legacy system, whose out-
puts were originally postedited, and on a simula-
tion of the legacy system we create via knowledge
distillation. We show that these contrastive mark-
ings are able to bring significant improvements to
TER scores and we hypothesize this is because
they are able to target insertion errors that con-
tribute to higher TER scores. Additionally, learn-
ing from the model’s own output may allow it to
learn how to correct itself after making an error if
it is later rewarded for correct outputs.
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Source

the superstructure was armored to protect the bases of the turrets , the funnels and the ventilator ducts in what he
termed a breastwork .

Postedit  der Uberbau wurde gepanzert , um die Fundamente der Tiirme , der Trichter und der Ventilatorkanile in dem

Bereich zu schiitzen , den er als Brustwehr bezeichnete .
Epoch 0

System  Hypothesis

a die Superstruktur wurde getrieben , um die Stiitzpunkte der Turm- , der Funn X rn- und der Ventilator die Herde
in dem , was er als die Bruststbesteigung bezeichnet hatte zu schiitzen .

b die Superstruktur wurde getrieben , um die Stiitzpunkte der Turm- , der Funn & rn- und der Ventilator die Herde
in dem , was er als die Bruststbesteigung bezeichnet hatte zu schiitzen .

c der Uberbau wurde gewagelt , um die Fundamente der Tiirme , die Funnels und die Ventilatorenkanile in einem
Brustwerk zu schiitzen .

d der Uberbau wurde gewagelt , um die Fundamente der Tiirme , die Funnels und die Ventilatorenkanile in einem
Brustwerk zu schiitzen .

Epoch 1

System  Hypothesis

a die Superstruktur wurde gezeichnet , um die Stiitzen der Turrets , der Funnels und der Ventilator in seiner Art
Brustwork zu schiitzen .

b die Uberbauung war gepanzert , um die Grundstiicke der Turrets , der Funnels und der Vaterfunkanten in dem ,
was er als Brustwerk nannte , zu schiitzen .

c der Superbau wurde gepanzert , um die Stiitzpunkte der Turrets , der Funnels und der Ventilatorentotungen in
einer so genannten Brustarbeit zu schiitzen .

d der Uberbau wurde gepanzert , um die Fundamente der Tiirme , der Trichter und der Ventilatorkankanile zu

schiitzen , was er als Brustwerk nannte .

Table 7: Here we show the beginning of a training trajectory for a single example from the APE dataset. Above is the source
and the postedit from the dataset, after which follows the first three epochs. Because translations and markings are generated
before the beginning of an epoch, epoch 0 contains outputs from the knowledge distilled (KD) (lines ¢ and d) and baseline
systems (lines a and b). The systems letters correspond to those in Table 6, indicating learning from postedits in lines a and
¢, and learning additionally from the contrastive markings in lines b and d. Models ¢ and d have seen the MT side of this
dataset beforehand and are already more capable of translating terminology such as “superstructure” to "Uberbau”. After one
epoch, we see that the KD models and the contrastive learning objective models are able to correct “gewagelt” and “getrieben”
to “gepanzert” as the translation of “armored”. Because we use subword tokens, we have markings on portions of words.
Although ”Uberbau” is a part of ”Uberbauung”, the subwords used to construct them differ, leading to ”bau” in ”Uberbauung”
being marked as incorrect.
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Abstract

We approach the task of assessing the
suitability of a source text for translation
by transferring the knowledge from estab-
lished MT evaluation metrics to a model
able to predict MT quality a priori from
the source text alone. To open the door
to experiments in this regard, we depart
from reference English—German parallel
corpora to build a corpus of 14,253 source
text—quality score tuples. The tuples in-
clude four state-of-the-art metrics: cush-
LEPOR, BERTScore, COMET, and Tran-
sQuest. With this new resource at hand,
we fine-tune XLM-RoBERTa, both in a
single-task and a multi-task setting, to
predict these evaluation scores from the
source text alone. Results for this method-
ology are promising, with the single-task
model able to approximate well-established
MT evaluation and quality estimation met-
rics —without looking at the actual ma-
chine translations— achieving low Root
Mean Square Error values in the [0.1-0.2]
range and Pearson’s correlation scores up
to 0.688.

1 Introduction

There are many factors in play when assessing the
suitability of a text for machine translation (MT).
Readability might account for part of the problem,
but the metrics designed for its estimation aim at
assessing the level of education necessary to un-
derstand a given text, from a monolingual perspec-
tive (Gunning, 1969). As evidenced by Vanroy et
© 2023 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

a.barron]@unibo.it

al. (2019), there is a clear-cut distinction between
translatability, “the difficulty of a translation task”,
and readability, “the difficulty of a monolingual
text”. They argue that, although the two might
overlap in some regards, a translation task cannot
be solely defined based on monolingual features.
Their study is centred on human translation (HT),
but given that MT and post-editing (PE) represent
the strongest future trend for both industry and
academia, according to the latest ELIS language
industry report (European Language Industry Sur-
vey Research, 2022), our work seeks to advance the
discussion in the field of MT.

In fact, although quality improvements over the
last few years have indeed been significant, the
translation world has expressed a need, time and
time again, for new methods and technologies to
properly assess its quality (Kocmi et al., 2021).
Most of the previous work in this regard has focused
on the target translation; both in the reference-based
machine translation evaluation (MTE), where the
machine-translated segment is compared against a
human reference, and in the more recent quality
estimation techniques (QE), where the machine-
translated segment is evaluated without any refer-
ence (Freitag et al., 2021; Specia et al., 2021).

This paper seeks a different perspective, switch-
ing the focus to the source text, to assess whether a
given segment will produce a high quality machine
translation. We define this task as Machine Transla-
tion Suitability. Existing MTE and QE techniques
either use a reference translation or an MT output,
meaning they both require to first translate all the
segments with MT system in order to obtain a qual-
ity evaluation. Many such segments will inevitably
not meet the desired quality and will be discarded,
constituing a net loss. Given that most commercial
MT systems are paid by word, our approach would

Nurminen, Brenner, Koponen, Latomaa, Mikhailov, Schierl, Ranasinghe, Vanmassenhove, Vidal, Aranberri, Nunziatini, Escartin, Forcada,

Popovic, Scarton, Moniz (eds.)

Proceedings of the 24th Annual Conference of the European Association for Machine Translation, p. 79-89

Tampere, Finland, June 2023.



serve to reduce the costs of the overall system by
avoiding to send certain segments to MT, thus creat-
ing a more efficient production pipeline. Moreover,
recent studies have also pointed towards a lower
lexical variation of post-edited MT segments, as
well as an overall lower quality of those segments
with respect to translations from scratch (Volkart
and Bouillon, 2022), while others highlight the chal-
lenges of generating comprehensive guidelines for
post-editors, especially regarding what constitutes
an error in a given scenario and how to correctly
provide quality assurance for such segments (Nun-
ziatini and Marg, 2020). Therefore, the presence of
an additional evaluation step before generating the
machine-translated segments would help avoid hav-
ing to undergo an expensive PE step or reroute to
human translation. Lastly, applying such a model
could reduce the pipeline’s carbon footprint, be-
cause it would not need to compute a translation
using large, resource heavy models.

With the purpose of advancing research in this
field, we thus formulate the following research ques-
tion:

RQ: Is it possible to accurately predict
the MTE or QEF score of a translation
from the source text alone?

In order to give light to the RQ, we compile an
ad-hoc corpus pairing source segments with the
evaluation scores of their automatic translations
in the English—German language pair from one of
the most prominent MT engines available: Mod-
ernMT!. We select two reference-based evaluation
metrics and two quality estimation metrics: cush-
LEPOR, BERTScore, COMET, and TransQuest,
according to the state of the art (Freitag et al., 2021;
Specia et al., 2021). We frame the task as a re-
gression problem and fine-tune our model to repro-
duce the evaluation score by looking at the source
text alone. The experiments are conducted us-
ing the multilingual model XLLM-RoBERTa (XLM-
R) (Conneau et al., 2020)? and approach the task
in two different settings: single-task and multi-task.
In the former, a model is fine-tuned on each eval-
uation score individually, whereas in the latter, a
model is trained on all four scores to exploit the
shared knowledge among the different metrics.

"https://github.com/modernmt/modernmt

2We use a multilingual model instead of a monolingual one in
order to have a realistic baseline and to facilitate future work
in multiple language pairs.
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By achieving low RMSE values in the [0.1-0.2]
range and Pearson correlation scores up to 0.688,
our results are promising and indicate that it is
indeed possible to distil the knowledge acquired
from different MT evaluation metrics into a model
trained solely on the source text, thus confirming
our RQ.

2 Related Work

Nowadays, the state of the art is divided between
MTE metrics, similar to BLEU (Marie et al., 2021;
Papineni et al., 2002; Post, 2018), which employ
the source text, target text and a reference transla-
tion, and QE metrics which assess quality without
looking at a reference (Specia et al., 2021).

Some of the most prominent reference-based
metrics include cushLEPOR, an n-gram based met-
ric whose parameters are automatically tuned using
pre-trained language models (Han et al., 2021), and
BERTScore, which exploits embedding similarity
and has been shown to highly correlate with hu-
man judgments on sentence-level and system-level
evaluation (Zhang et al., 2020; Freitag et al., 2021).

Being somewhat new, the field of QE achieved
impressive results in the past few years by employ-
ing multilingual pre-trained representations from
very large language models to generate their pre-
dictions. Nevertheless, it instead appears to have
no single metric being consistently deployed to pro-
duction in either the industry or institutions, with
the only exception being COMET, which has con-
sistently achieved top scores for three years in a
row in the annual WMT QE shared task (Specia et
al., 2021; Zerva et al., 2022).

Both MTE and QE metrics, though, depend on
the underlying target translation produced by an
MT engine and research specifically focused on the
source text has been limited. Vanroy et al. (2019)
aimed at developing a “translatability prediction
system”. It assigns a global difficulty score to a
source text and identifies which passages are more
problematic for translation. Albeit promising, this
work solely addressed human translation difficulty
and no study tailored to MT has been published yet.

SmartLQA (Smart Linguistic Quality Assess-
ment), aims at analysing the impact of the source
text on MT (Yanishevsky, 2021). It handles the
prediction of ar-risk content prior to translation,
identifying the most problematic linguistic aspects
within the source text via linguistic features and
readability tests, such as the Flesch—Kincaid met-



ric (Kincaid et al., 1975). They conclude that poor
source-text quality leads to poor target-text quality.
To the best of our knowledge, no predictive model
using these features has been proposed.

Additional work in this direction was carried out
by Cambra and Nunziatini (2022), who use the
source segment and MT training data to approxi-
mate translation quality without the target. Their
method is based on the assumption that a similar-
ity can be found between the source segment to
be translated and the underlying data seen by the
MT system. They employ either a bag-of-word
representation or the “all-mpnet-base-v2” sentence
transformer model (Song et al., 2020) to encode
both the source and the training segments and apply
similarity metrics on their vectorial representations,
also accounting for words unknown to the MT sys-
tem. Their technique achieves results comparable
to QE metrics. Similarly, Tezcan (2022) shows how
fuzzy matches retrieved from the training data can
be highly informative for predicting sentence-level
quality of a given MT model.

Another recent paper instead proposed a new
task, called PreQuEL: Pre-Quality-Estimation
Learning (Don-Yehiya et al., 2022), namely pre-
dicting the likelihood of an MT system to cor-
rectly translate a sentence in a given target language.
They, too, entirely focus on the input text and
their method also proposes to learn to predict qual-
ity evaluation metrics from the source text alone
and for this they employ Direct Assessment (DA)
scores from the WMT shared task on QE (Zerva et
al., 2022). Additionally, they use the open-source
Marian-MT (Junczys-Dowmunt et al., 2018) rather
than commercial systems. Although we recognize
that using quality DA scores would lead to more
reliable target scores, these are not available for
commercial systems, as the authors also point out.
While we share the same objective, our attempt by-
passes the need for manual evaluation to understand
whether a large transformer model would be able to
predict state-of-the-art MTE/QE scores, and instead
uses a small pool of automatically scored data. Ad-
ditionally, they employ the monolingual RoBERTa
architecture, which limits their experiments to be
carried out on English source texts (Liu et al., 2019).
Hence, we opt for the multilingual XLM-R to cre-
ate a solid baseline which could be easily extended
to multiple language pairs and directions.
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3 Corpus

In order to produce our corpus, we departed from a
collection of parallel segments from OPUS (Tiede-
mann, 2012), including Europarl?®, Ubuntu* and
News-commentary v16°. We target the English—
German language pair because it is especially
prominent for both MTE and QE (Specia et al.,
2021; Freitag et al., 2021).

Although these corpora have been already exten-
sively used in the literature, their pre-processing
is done automatically, without any type of man-
ual corrections. To ensure their quality for our ex-
periments, two additional filtering steps have been
carried out on the translation units (TUs), follow-
ing Koehn et al. (2020). It involved the removal of
both very long and very short segments from the
corpora, set to a minimum length of 25 characters
and a maximum length relative to each corpus and
language. We removed outliers with respect to each
subcorpus, since we do not deem them informative
for modeling translation difficulty in a real use-case.
The maximum allowed TU length is determined as:

1 n
MaxLength = — Z len; + o, (D)
s

where n is the number of segments in the corpus,
len; is the length of the i-th segment and o is one
unit of the standard deviation over the corpus. Ad-
ditionally, we applied an adaption of the filtering
approach from the open-source version of Mod-
ernMT®. A TU is also discarded if either the source
or the target-segment character length exceeds the
length of the other segment by more than 50%. In
order to prevent the filter from discarding short
valid sentence pairs, an arbitrary value of 15 is
added to the initial character count.

We randomly selected a subset of the resulting
TUs and generated their automatic translations, on
which we could obtain the quality scores to be
learned by the model. We used the out-of-the-box
NMT system ModernMT, based on the state-of-the-
art transformer architecture and trained on a large
pool of parallel data (Bertoldi et al., 2018). In or-
der to score the resulting automatic translations, we
considered four evaluation metrics:

3ht’cps: //opus.nlpl.eu/Europarl.php
*https://opus.nlpl.eu/Ubuntu.php

5https: //opus.nlpl.eu/News-Commentary.php

6ht’cps: //github.com/modernmt/DataCollection/blob/
dev/baseline/filter_hunalign_bitext.py



corpus train  test length

Europarl| 4,223 528 151.54+90.5
News 4,223 528 137.5£69.3
Ubuntu | 4,223 528  33.24+74.6
Total 12,669 1,584 107.4£78.1

Table 1: Statistics of the full corpus, incl. number of instances
and average character length of the source segments with their
respective standard deviation.

hLEPOR. We used cushLEPOR, a version of hLE-
POR with optimised settings for the en>de lan-
guage pair (Han et al., 2021):7 Alpha = 2.95,
Beta = 2.68, n = 2, weight_elp = 2.95,
weight_pos = 11.29, weight_pr = 1.87.

BERTScore. We adopted the official repository re-
lease (Zhang et al., 2020).8

COMET. Even if the most recent release turns the
score within a [0, 1] range, we opted for the
early release wmt20@-comet-ge-da, which pro-
vides an unbounded score (Rei et al., 2020).°

TransQuest. We used the en>de version
monotransquest-da-en_de-wiki instead of
the multilingual model because of its better
performance, as reported in (Ranasinghe et
al., 2020a; Ranasinghe et al., 2020b).'°

For our MT suitability experiments, the source
text segments are paired with their respective qual-
ity scores by combining only the source text and
the scores. Our objective is to produce a model
to predict the quality score from the source text
alone. With such a model, it would be possible to
know how well an MT engine would translate that
segment in advance and thus how “suitable” would
it be for machine translation. Figure 1 represents a
possible pipeline, including the rerouting step from
source text to either MT, MT+PE or HT, depending
on the expected quality —suitability— of the ma-
chine translation. We partition the corpus into two:
12,669 instances for training and 1584 instances for
testing. Table 1 shows its statistics.

Since the original corpora used for this work
are open-source and specifically designed for NMT
training (Tiedemann, 2012), it is likely that they

Thttps: //github.com/poethan/cushLEPOR
8https://github.com/Tiiiger/bert_score
https://github.com/Unbabel/COMET
10https ://huggingface.co/TransQuest/
monotransquest-da-en_de-wiki

82

> X
high wA
source MT target
MT > !
D_) suitabilty i > SA P »D
MT PE
low
>
HT

Figure 1: The MT Suitability workflow. A source segment
is evaluated by the suitability module and then directed to the
appropriate workflow based on quality: MT (high quality),
MT+PE (mid quality) or HT (low quality).

have already been seen by ModernMT during train-
ing. This would be problematic because an at-
tempt at learning MT suitability using these corpora
would not necessarily be applicable to unseen texts.
Hence, we compare the distributions of the training
corpus to those of a new, smaller corpus, whose
texts have surely not been seen by the system. If
the scores’ distribution of this secondary corpus
were very similar to that of the training corpus, it
would mean that there is no significant difference
in the scores of unseen and already seen TUs.

To test this hypothesis, we performed a Mann-
Whitney U test on all 4 independent vari-
ables (Mann and Whitney, 1947) between our cor-
pus and a collection of texts from Globalvoices for
which we had guarantees of not having been used
for the training of the MT model. Appendix A con-
tains all the details of the test. In summary, there
was no significant difference (p>0.05) between the
training and the Globalvoices dataset for all metrics
except for TransQuest. This gives confidence that
both corpora belong to the same non-gaussian dis-
tribution, meaning there is no significant difference
in the quality scores obtained by texts translated
using our training corpus and a corpus containing
texts not seen by the MT system.

4 Experiments

We perform two sets of experiments: once in a
single-task setting and once in a multi-task setting.
The single-task experiment involves one training
session per evaluation metric, thus resulting in four
distinct models.

In addition to attempting to learn each of the four
metrics independently, we also experiment with
Multi-Task Learning (Caruana, 1997) to link the
various label representations together instead of
training separate models. This approach has been



applied to multiple areas of NLP, ranging from the
estimation of the check-worthiness of claims in
political debates (Vasileva et al., 2019), to a de-
mographic classifier based on features extracted
from tweets (Vijayaraghavan et al., 2017) and fine-
tuning of transformer models to improve perfor-
mance on the GLUE benchmark (Karimi Mahabadi
et al., 2021). Appendix B includes details on the
batch size and other model settings for the multi-
task approach, constrained by design decisions and
the hardware at hand. Figure 2 offers a representa-
tion of the model.

We used x1m-roberta-base (Wolf et al., 2020)
for our architecture, which has a total of 125 million
parameters.!! While it may be possible to achieve
a higher performance with a monolingual English-
only model, we believe that this would not accu-
rately reflect the potential performance on other lan-
guages, because high-quality transformer models
are not available for all languages. Furthermore, our
choice is in line with the current trend in the WMT
Shared Task on Quality Estimation, where XLM-R
is one of the most commonly used transformer ar-
chitectures (Specia et al., 2021; Zerva et al., 2022).
All the experiments used a learning rate of 2e — 5
and employed the AdamW optimiser. We explored
an effective training batch size € [2,16,32] and
epochs € [1,5,10], as suggested for XLM-R by
a recent study on the performance of multilingual
language models by Hu et al. (2020).!?

Additionally, for our use case, we used Huber-
Loss as the loss function (Huber, 1992).'3 This loss
combines the advantages of both the MSELoss and
the L1Loss because it employs a squared term if
the absolute element-wise error falls below a pre-
defined ¢ and a d-scaled L1Loss otherwise (we use
the default value for ¢), making HuberLoss less
sensitive to outliers.

We use Root Mean Square Error (RMSE) for
the evaluation (lower values correspond to a bet-
ter performance). Since it is scale-dependent, and
the distributions of the labels fall within different
ranges, the RMSE is not comparable across tasks.
This makes it only informative with respect to the
original distribution. In order to obtain a value
which is not only comparable but also easily in-
terpretable across tasks, all model predictions and
gold labels are reshaped into the range [0, 1]. We

Uhttps://huggingface.co/x1lm-roberta-base

12https ://github.com/JunjieHu/xtreme-dev/issues/2
13https ://pytorch.org/docs/stable/generated/torch.
nn.HuberlLoss.html.
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Figure 2: Representation of the multi-task model. Each box
represents a separate encoder with a different prediction head,
one for every MTE and QE score, each one connected via an
external task mapping module.

also compute both Pearson’s and Spearman’s corre-
lation coefficients (Cohen et al., 2009; Spearman,
1987) between the predicted outputs and the orig-
inal predictions, similarly to what is done in the
ranking of WMT tasks, except that we use MTE/QE
scores as reference values instead of human evalua-
tions (Zerva et al., 2022).

Table 2 shows the RMSE results for both the
single-task and multi-task XI.M-R model, trained
on a batch size of 2. The multi-task model per-
forms poorly on all tasks except for BERTScore,
for which it shows significant improvements over
the single-task model, which instead converges to
the mean value (0.7229). All models show an in-
creased performance at smaller epochs, suggesting
that with such a small batch size the models are
likely overfitting. The only exception appears to be
COMET, whose best model can actually be found
at 5 epochs. Overall, though, the performance is
generally poor, which is also confirmed by the ex-
tremely low values of Pearson’s R and Spearman’s
p, which all approach 0, except for the single-task
model (see Table 3).

Table 2 also shows the results for the single-task
XLM-R models using the same learning rate as
before but exploring a batch size of 16 and 32, re-
spectively. Scaling to higher batch sizes yields bet-
ter performance, as attested by the overall smaller
RMSE values. All models show significant signs
of learning as early as the first epoch, ramping up
but remaining very close with respect to the RMSE
value from 5 to 10 epochs. These results are con-
firmed by the correlation values, which are signifi-
cantly higher for all tasks, showing definite corre-
lation with values as high as 0.688 for TransQuest.
This is especially evident at 5 epochs, where the
overall strongest correlation is found (see Table 3).



2b@1* 2b@5* 2b@10* 2b@1 2b@5 2b@10
hLEPOR 0.4006 03800 04611 0.1361 0.1498  0.1601
BERTScore | 0.2676 03063  0.3075 03500 0.6030  0.4215
COMET 0.3910 0.2439  0.3354 0.2972  0.1461  0.2248
TransQuest | 0.3019  0.2035  0.2281 0.2010 0.2212  0.2127

lI6b@1 16b@5 16b@10 32b@1 32b@5 32b@10
hLEPOR 0.1342  0.1292  0.1387 0.1456  0.1260  0.1386
BERTScore | 0.3359 0.1931 0.1747 0.3381 0.2069  0.1833
COMET 0.2731  0.1161  0.1419  0.1598  0.1309  0.1126
TransQuest | 0.1493  0.1339  0.2116  0.1543  0.1569  0.1338

Table 2: Results using a training batch size of 16 and 32 at different epochs [1, 5, 10], only using single-task models. The score
is reported as normalized RMSE value and the best performances are highlighted in bold.

hLEPOR BERTScore COMET TransQuest hLEPOR BERTScore COMET TransQuest

e=1 e=1

multi -0.017 -0.014 0.019 0.008 multi -0.033 -0.007 0.023 0.009
2b 0.546 0.357 0.395 0.549 2b 0.335 0.340 0.464 0.434
e=5 e=5

16b 0.565 0.415 0.475 0.688 16b 0.358 0.404 0.503 0.652
32b 0.589 0.420 0.444 0.660 32b 0.352 0.416 0.487 0.629
e=10 e=10

16b 0.521 0.412 0.477 0.596 16b 0.374 0.402 0.516 0.546
32b 0.519 0.381 0.446 0.686 32b 0.379 0.378 0.515 0.643

Table 3: Correlation values between the predictions of the
most accurate models and the original evaluation metrics. The
score is calculated using Pearson’s R. The best result on each
metric is in bold.

5 Discussion

The obtained results are promising. Given that,
on average, the reported RMSE values of the best
models lie in the [0.11, 0.17] range, whereas their
correlation scores are in the [0.420,0.688] range
for Pearson’s R and in the [0.379, 0.652] range for
Spearman’s p. This means that all single-task mod-
els are able to reproduce the MTE/QE fairly accu-
rately starting from the source text alone, which
corroborates our RQ.

Overall, the best performing batch size for the
single-task model is 32, also thanks to its reduced
training time, even though it is certainly more costly
in terms of memory requirements.

Especially encouraging are the Pearson’s correla-
tion scores. Not only do they confirm the results ob-
tained using the RMSE values, but they are also in
line with the latest results of the WMT shared task
in Quality Estimation for the English—German lan-
guage pair, where the top-performing IST-Unbabel
submission to the segment-level evaluation track
has obtained a correlation score of 0.559 (Rei et al.,
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Table 4: Correlation values between the predictions of the
most accurate models and the original evaluation metrics. The
score is calculated using Spearman’s p. The best result on each
metric is in bold.

2022; Zerva et al., 2022). It is also interesting to
note the higher correlation achieved by our model
with QE scores in comparison to MTE scores, a
division clearly visible in Tables 3 and 4. Given
that in our case the model is completely blind to the
target sentences, these results coult be connected
to the findings of Sun et al. (2020), who show that
QE metrics tend to assign higher scores to fluent
translations or source segments with low complex-
ity, regardless of their semantic similarity to the
original source sentence. These correlations should
be further investigated to better understand what
are the implications for QE models with respect to
the source text.

Considering all of the above, we conclude that
the RQ is corroborated by the results obtained by
the single-task model, meaning that it is possible to
accurately predict evaluation scores from the source
text alone.

With regards to which approach is better suited

to the problem, the answer is indeed more challeng-
ing. Although the single-task model appears to be



decidedly better than the multi-task model in 3 out
of 4 target scores, there certainly is room for im-
provement for the multi-task model, given that it
never showed a tendency to converge to the mean,
contrary to the single-task model, and especially
on BERTScore, the knowledge transfer obtained by
training on multiple metrics seemed to be beneficial.
The results for all other metrics are overall stable,
showing no noticeable sign of improvement past
the 5-epoch margin (see Table 2). As stated in the
previous section, this might be a sign of overfitting
which, based on the current results and their sta-
bility, might be solved by scaling to bigger batch
sizes, meaning the model could indeed experience
an increased benefit from seeing multiple segments
at once. In this regard, researching higher batch
sizes would thus be the natural follow-up step to
the current study.

The low error margins and the good correlation
values shown in these experiments point towards
the possibility to achieve an accurate estimate of the
quality of MT based on the source text alone, with-
out needing to even obtain a machine translated ver-
sion of the given segment. Additionally, given that
these automatic metrics are not perfect themselves,
future research should focus on testing this model
on either Human DA provided by WMT (Zerva et
al., 2022), similarly to Don-Yehiya et al. (2022), or
by assessing post-editing effort based on the scores
produced, working towards the definition of thresh-
olds to generate an actual implementation of the
workflow sketched in Figure 1.

Nevertheless, it is also imperative to stress two
limitations of this study. The corpus which was
used in this study contains segments which have
likely been seen by the MT system already during
training. Although a set of exploratory experiments
has shown no significant difference between unseen
and seen texts, this remains an aspect that requires
further attention, since it would be possible to argue
that to properly learn how difficult a text was for
a given system, this had to never be seen by the
system during training in the first place.

We also need to consider the issue of sustainabil-
ity. In recent years the carbon footprint of large lan-
guage models has become increasingly impactful
and longer training times have been disincentivised
by the research community (Anthony et al., 2020;
Bannour et al., 2021). The multi-task model used
for this study took around 32 hours to train, much
longer than the single-task model, which took a
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fifth of the time, further decreased to 2:30 hours
when scaling to higher batch sizes. Additionally,
since it needs to load four distinct copies of the
same XLM-R model, the total number of parame-
ters used increases from 125 million to 500 million
in training. This led to the experiments for the multi-
task model to be only carried out on a batch size of
2 and, given the significant improvements obtained
by the single-task model both in training time and
performance, a greater batch size could therefore
not only improve the performance of the multi-task
model but also reduce its carbon footprint.

6 Conclusions

This work attempted to answer one main research
question: is it possible to accurately predict the Ma-
chine Translation Evaluation or Quality Estimation
score from the source text alone? It was motivated
by the increasing need to automatically assess the
quality of machine translation in a way that is both
dynamic and scalable, without the limitation of pro-
viding very expensive reference translations.
While there exists a field entirely dedicated to
reference-less metrics, namely Quality Estimation,
this paper tried to explore innovative techniques
that would focus entirely on the source text. Such
an approach offers an alternative that could further
reduce the costs of machine translation by stream-
lining the post-editing process without the need to
first generate every time the machine-translated ver-
sion of all the segments, given that many will be
inevitably discarded, which constitues a net loss.
In fact, it might even be beneficial to avoid having
these low-quality segments undergo post-editing,
since recent studies have pointed towards lower
lexical variation of post-edited machine translation
segments, leading to an overall lower quality of the
resulting translation (Volkart and Bouillon, 2022).
Additionally, post-editing also leads to several
challenges in liaising with the post-editors them-
selves, especially with respect to what constitutes
an error in a given scenario and how to provide
quality assurance, leading to increased costs (Nun-
ziatini and Marg, 2020). In order to streamline
these processes, reducing costs and improving ef-
ficiency, our proposed model can be integrated as
part of a workflow which includes a Machine Trans-
lation Suitability module to reroute a source text to
MT, PE or human translation (HT) depending on
the assessed level of suitability (See Figure 1).
The scripts and corpora used for the experiments



are available for research purposes.'* While further
studies involving human evaluation are still needed,
by obtaining an RMSE score as low as 0.11 and
good correlations of up to 0.688 with MTE/QE met-
rics, we show a possible link between MT quality
prediction and the source text. We also show that,
while the multi-task model might be well-suited for
this task, its performance is subpar when compared
to the single-task model and there remain concerns
regarding its computational cost and sustainability
issues. Nevertheless, the results point toward the
possibility of obtaining accurate machine transla-
tion evaluations starting from the source text alone,
paving the way for further research in the field of
MT Suitability.

Future research could improve many aspects
touched by this work. Exploring correlations with
Human DA scores, research on source text translata-
bility for humans or assessing post-editing effort
based on the scores produced are all paramount as-
pects to investigate in order to correctly define the
thresholds for the workflow proposed in Figure 1.
Moreover, since XLM-R is a multilingual model,
an additional focus could be posed on extending
the experiments to other language pairs, surveying
significant differences among different language
combinations and directions to further confirm the
current findings. Especially interesting would be
to expand the analysis on the higher correlation
between our metric and the QE metrics when com-
pared to MTE metrics, because it may shed further
light on what state-of-the-art QE models are actu-
ally predicting. Additionally, adding a pipeline for
terminology recognition in the source text could
offer valuable information for the final prediction,
given how terminology is still a problematic aspect
for many MT systems (Dinu et al., 2019). Lastly,
two main aspects could be improved in order to
surpass the current limitations: the training corpus
and the training methodology, especially by scaling
the current architecture to greater batch sizes.
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A  Mann-Whitney U Test

In order to perform the Mann—Whitney U Test, we
have selected three recently published texts avail-
able on the Globalvoices website!” in both English
and German, which have been manually extracted

Bhttps://globalvoices.org/about/



and segmented. This website was selected because
one of the subcorpora from OPUS, the News subcor-
pus, contains some texts from Globalvoices (Tiede-
mann, 2012).'® The Mann-Whitney U test assesses
whether two independent populations belong to the
same distribution. In order to perform the test, four
assumptions are needed: (1) the dependent variable
should be measured at the ordinal or continuous
level (evaluation metrics are continuous), (2) the
independent variable should consist of two categori-
cal, independent groups (i.e., the corpus with “seen”
texts and the corpus with “unseen” texts), (3) there
is independence of observations (there is no inher-
ent relationship among the various segments), and
(4) the two variables are not normally distributed.

hLEPOR BERTScore COMET TransQuest
glob| 0.8555 0.6642  0.5651 0.7346
std| 0.1548 0.1841  0.4232 0.0155
med| 0.8875 0.6720  0.6941  0.7368
min 0.0 0.0 24113 0.6548
max 1.0 1.0 1.3308  0.7759

Table 5: ModernMT corpus scores distribution

U p-value
hLEPOR 749851.0 0.0713
BERTScore | 808062.0 0.4736
COMET 764728.0 0.1338
TransQuest | 670510.5 0.0004

Table 6: Mann-Whitney U Test results for the comparison
among the ModernMT and Globalvoices dataset distributions

1We do not use this corpus as a test set, because it is restricted
to the “news” domain and only contains 128 TUs.
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hLEPOR BERTScore COMET TransQuest

0.888 0.672 0.694 0.737
0.879 0.671 0.714 0.740

train
glob

Table 7: Median values for comparison between the training
dataset and the Globalvoices dataset.

Our data adheres to these assumptions, as ob-
served in Table 5. Tables 6 and 7 show the results of
the test. There is no significant difference (p>0.05)
between the training and the Globalvoices dataset
for all metrics except for TransQuest. This gives
confidence that both corpora belong to the same
non-gaussian distribution, meaning we can safely
proceed with assuming there is no difference in the
quality scores obtained by texts translated using our
training corpus and a corpus containing texts not
seen by the MT system.

B Multi-task Setting Details

We test the multi-task architecture using the same
settings as the single-label one, with the major dif-
ference being the effective training batch size. In
order to generate the multi-task model, it is nec-
essary to load four copies of the same language
model simultaneously on the GPU. As a result, the
total parameters see an increase from 125 million to
500 million. This led us to only test the multi-task
model with an effective training batch size of 2 due
to its significant computational cost. All experi-
ments were carried out using an NVIDIA Quadro
P4000 8 GB GPU; the training lasted 6 hours for
each single-task model and 32 hours for the multi-
task model.
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Abstract

Beam search is the most popular decoding
method for Neural Machine Translation
(NMT) and is still a strong baseline com-
pared with the newly proposed sampling-
based methods. To better understand the
beam search, we investigate its two well-
recognized issues, beam search curse and
search error, not only on the test data as
a whole but also at the sentence level. We
find that only less than 30% of sentences in
the WMT17 En—De and De—En test set ex-
perience these issues. Meanwhile, there is
a related phenomenon. For the majority of
sentences, their gold references get lower
probabilities than the predictions from the
beam search. We also test with differ-
ent levels of model errors including a spe-
cial test using training samples and mod-
els without regularization. In this test, the
model has an accuracy of 95% in predict-
ing the tokens on the training data. We
find that these phenomena still exist even
for such a model with very high accuracy.
These findings show that it is not promis-
ing to improve the beam search by seeking
higher probabilities and further reducing
the search errors in decoding. The relation-
ship between the quality and the probabil-
ity at the sentence level in our results pro-
vides useful information to find new ways
to improve NMT.

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

wenjie.li@polyu.edu.hk

1 Introduction

Beam search has been the most popular decoding
(inference) method for Neural Machine Transla-
tion (NMT) (Bahdanau et al., 2014). Fernandes
et al. (2022)" and our experimental results (in Ap-
pendix A) show that the beam search is still a very
strong baseline compared with the recently pro-
posed sampling-based methods, including Top-k
sampling, Nucleus (Top-p) sampling (Holtzman et
al., 2019) and Minimum Bayes Risk (MBR) de-
coding (Eikema and Aziz, 2021; Freitag et al.,
2022). This is verified with different evaluation
methods: BLEU, Meteor, and Comet (Rei et al.,
2020).

Meanwhile, there are still open issues deserving
further exploration for the beam search.

One widely recognized issue is a phenomenon
called beam search curse (Koehn and Knowles,
2017; Yang et al., 2018; Meister et al., 2020).
Beam search tends to get worse performance when
the beam size increases. This issue is counter-
intuitive. Usually, it is expected that using a larger
beam size finds a sequence with higher probability
in the search space and gets better quality.

Another issue is search error (Stahlberg and
Byrne, 2019; Shi et al., 2020), which means
that the beam search as a heuristic method is not
guaranteed to find the sequence with the largest
probability in the search space. Stahlberg and
Byrne (2019) implement exact search which can
find the global maximum for experiments. They
use it to assess the search errors in the beam search.

This paper aims to better understand these two

'Their conclusion is that MBR with Comet as the utility func-
tion outperforms the beam search if Comet is also used as the
metrics. But if BLEU is used as the metrics, the beam search
is still the best for the large models as shown in their Table 1
and Table 2.

Nurminen, Brenner, Koponen, Latomaa, Mikhailov, Schierl, Ranasinghe, Vanmassenhove, Vidal, Aranberri, Nunziatini, Escartin, Forcada,

Popovic, Scarton, Moniz (eds.)
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issues via empirical analysis.

We look into beam search curse at the sentence
level. Although the beam search curse is consis-
tently verified on the whole test set at the cor-
pus level, only a small portion of sentences suffer
from this issue. One-sixth of sentences in WMT17
En-De and De-En test sets get worse translations
when the beam size increases, meanwhile a similar
number of sentences get better translations. One of
the reasons for the beam search curse is model er-
ror, which means that the model is not well fitted
to the data. We investigate the beam search curse
using the model checkpoints with different valida-
tion accuracies. We find that there is no strong cor-
relation between the beam search curse and model
accuracy if the corpus BLEU score is used for eval-
uation. But there is an obvious correlation using
the oracle BLEU score.

We assess search error using exact search with
a length constraint. Exact search can be regarded
as a beam search with its beam size as large as
the size of vocabulary. We find that only less than
30% of sentences suffer from search errors using
the beam search even with a small beam size like
5. For the majority of sentences, beam search can
generate the sequences with the largest probability.
We also compare exact search with beam search
in terms of the quality of the predictions. Exact
search gets significantly worse BLEU scores than
beam search at the corpus level. At the sentence
level, the number of sentences with worse quality
from exact search is only slightly larger than those
with better quality. This result is consistent with
the experiments in the beam search curse issue.

Our experiments also demonstrate one phe-
nomenon that is related to these two issues. The
majority of the gold references get lower probabil-
ities than the predictions from beam search. Al-
though beam search seeks the sequences with high
probability in principle, this result shows that it is
the wrong direction to further pursue larger proba-
bilities and smaller search errors.

To investigate how beam search performs under
very low model errors, we test a special case. We
use models without regularization which have an
accuracy of around 95% on training data. The test
data in this case are samples from training sets to
reduce the mismatch of data distributions between
training and testing. In this case, the phenomena
about exact search and gold references are still ob-
served.
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These findings may contribute to future im-
provements in decoding and training methods.

2 Related Work

There are two approaches for decoding to-
day: mode-seeking decoding and sampling-
based stochastic decoding. Mode-seeking is also
known as Maximum-A-Posteriori (MAP) decod-
ing (Smith, 2011; Eikema and Aziz, 2020). Its
objective is to predict a translation by searching
a sequence y* that maximizes log P(y|src;6),
where src is the source sentence and 6 is the
model parameter set. Exact search (Stahlberg and
Byrne, 2019) aims to find the global maximum in
the whole search space. Due to the vast search
space, exact search is intractable in real applica-
tion. Beam search (Lowerre, 1976; Graves, 2012)
is used as a viable approximation by extending the
N most probable partial solutions at each decoding
step, where N is called beam size. Beam search is
widely used for NMT.

Recently the sampling-based stochastic decod-
ing (Fan et al., 2018; Holtzman et al., 2019;
Eikema and Aziz, 2021; Freitag et al., 2022) is ac-
tively investigated. Sampling methods are used in
decoding to get a set of candidate sequences, then a
decision rule is used to choose the final prediction
among these candidates. Although these meth-
ods are used for open-ended text generation tasks
such as story generation, Fernandes et al. (2022)
and our experimental results (in Appendix A) show
that beam search is still a very strong baseline
compared with these sampling-based methods for
NMT.

Beam search curse is recognized as one of six
challenges in NMT (Koehn and Knowles, 2017).
Murray and Chiang (2018) and Yang et al. (2018)
attribute its root cause to the length ratio problem
via empirical study. With beam size increasing,
beam search tends to get shorter predictions and
results in lower BLEU due to the brevity penalty
in the definition of BLEU scores. But it is a
usual practice using length normalization methods
and the issue of short predictions is significantly
mitigated. On the other hand, the beam search
curse also consistently exists with other evaluation
methods such as Meteor and Comet. Cohen and
Beck (2019) investigate the discrepancy gap which
is defined as the difference in log-probability be-
tween the most likely token and the chosen token.
They find that the majority of discrepancy happen



in early positions and increasing the beam width
leads to more early discrepancies. We investigate
the beam search curse at the sentence level, which
is orthogonal to their conclusion about the position
of tokens.

Search error in NMT is intensively investigated
by Stahlberg and Byrne (2019). They use an al-
gorithm based on the deep first search to explore
whether there is a sequence with a higher proba-
bility than the prediction from beam search. They
also implement the exact search to find the se-
quence with the largest probability in the search
space.

In these research, the beam search curse and the
search error are mainly investigated on the whole
test set at the corpus level, not at the sentence level.
And it’s not investigated how these issues are re-
lated to model errors. The model error means that
the model is not well fitted to the data.

3 Methodology

We choose the widely used language pairs: En—
De and De-En. Besides a standard test, we con-
duct a special cleanroom test to investigate the is-
sues with very low model errors. Figure 1 de-
picts the distribution of sentence length in all test
sets. Comparing it with our experimental results, it
shows that the sentence length is not an influential
factor in the conclusions.

Standard test In this test, we use Transformer
Big and Transformer Base models and use the
corpora from WMT17%: Europarl v7, News-
commentary-v12 and Common Crawl] for training,
Newstest2014 for validation, Newstest2017 for the
test which has 3004 sentence pairs.

Cleanroom test In this test, we investigate how
the decoding methods work when the model is fit-
ted well to the test data. The model errors are very
small in this test. For this purpose, we randomly
select 2000 sentences from the training set and use
them as the test data. To further reduce the model
errors in this test, we use models without regular-
ization. Dropout (Srivastava et al., 2014) and la-
bel smoothing (Szegedy et al., 2016)) are used in
Transformer as regularization methods to prevent
neural networks from overfitting. The models that
we used in this test are trained with both methods
turned off.

nttp://www.statmt.org/wmt17
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Models We use the notations below for three
models in our experiments.

* Base and Big for the normal Transformer
Base and Transformer Big models. They use
regularization methods.

* NoReg are based on Transformer Big except
that they are trained with dropout and label
smoothing turned off. These models have an
accuracy larger than 95% on the training data.

Decoding methods For beam search, we use
two beam sizes and compare their results to inves-
tigate the issue of beam search curse. One is 5 and
the other is 100. For exact search, we reimplement
the algorithm in Stahlberg and Byrne (2019). In
this algorithm, the search only extends a partial se-
quence if its probability is larger than a baseline
value. A large baseline value can speed up the ex-
act search. We get the probabilities of the predic-
tions from the beam search with a series of beam
sizes: 1-20, 50, and 100. We also get the proba-
bility of the gold reference under the model. Then
we get the largest probability among these 23 in-
stances for each sentence in the test set and use it
as the baseline value for the exact search. We sort
the test sets with the baseline values in descend-
ing order so that sentences with higher baseline
values are translated before those with lower base-
line values. We continue to run the search on one
Nvidia GF1080Ti GPU for nearly 100 days. Ta-
ble 3 lists how many sentences are translated using
the exact search. We apply one of the length con-
straints used by Stahlberg and Byrne (2019) for ex-
act search: the length of the target sentences is con-
strained to be no less than 1/4 of the length of their
source sentences. Stahlberg and Byrne (2019) also
use some tighter constraints to further mitigate the
search errors. We aim to investigate the details at
the sentence-level in the exact search. Therefore
we choose a loose and practical constraint.

Training and Evaluations Our implementation
is based on the OpenNMT-tf toolkit (Klein et al.,
2020) with a typical configuration®. The Base
models are trained for 200,000 steps on 4 GPUs,
while the Big and NoReg are trained for 300,000
steps on 8 GPUs. All GPUs are Nvidia GF1080Ti.
We use the unigram (Kudo, 2018) in Sentence-
Piece* for subwords with 32,000 updates and use a
*https://opennmt .net/OpenNMT-py/FAQ.html\
#how-do-i-use-the-transformer-model
*https://github.com/google/sentencepiece
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Figure 1: The histograms of sentence length for test sets. The number of subwords are counted for each sentence.

En-De De-En

Model Base Big Base Big

Metrics | BLEU Meteor Comet| BLEU Meteor Comet| BLEU Meteor Comet| BLEU Meteor Comet
Beam5 282 291 0490 | 289 292 0498 | 335  36.5 0.520 | 33.8 36.7 0.539
Beam100 | 27.7 26.0 0450 | 274 28.8 0.426 | 33.5  36.5 0.521 | 33.2 36.5 0.527

Table 1: Performance of the beam search using beam size 5 and 100, denoted as Beam5 and Beam100 respectively.
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Figure 2: Investigate the beam search curse at sentence level for En-De.
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shared vocabulary for source and target. For eval-
uation, we use BLEU, Meteor, and Comet to com-
pare the beam search with sampling-based stochas-
tic decoding methods. Since the results are consis-
tent, we stick to BLEU in the investigation of the
beam search. For BLEU, We use SacreBLEU 7
(Post, 2018) ®. For Meteor’, we use version 1.5.
For Comet®, we use the wmr20-comet-da model.

4 Beam Search Curse

4.1 Only a Small Portion of Sentences
Experience Beam Search Curse

The beam search curse has been consistently ver-
ified at the corpus level. Our results in Table 1
demonstrate this issue using the comparison be-
tween beam size 5 and beam size 100, denoted as
Beam5 and Beam100 respectively.

However, our experiments reveal that this issue
is not ubiquitous at the sentence level.

We investigate the gap of the sentence BLEU
score between Beam100 and Beam5 for each sen-
tence. The results from a standard test using the
Big model are shown in Table 2. It illustrates
how many sentences in the standard test set get
larger, equal, and smaller sentence BLEU scores
from Beam100 compared with Beam 5. Smaller
sentence BLEU scores from Beam100 imply the
beam search curse for these sentences. It shows
that only about one-sixth of sentences have this is-
sue. For En—De, the number of sentences with the
beam search curse is less than those that Beam100
gets better performance than BeamS5.

Total Sent. >Beam5 =Beam5 <Beam5
En-De | 3004 506 1968 530
De-En | 3004 515 1976 513

Table 2: The number of sentences that Beam100 gets larger,
equal and smaller sentence BLEU compared with Beam 5,
denoted as >Beam5, =Beam5 and <Beam5 respectively.

Figure 2a illustrates the gap of sentence BLEU
scores for En—De. The sentences with a zero
BLEU gap are not counted in this figure.

We also investigate the relationship between
the gap of sentence BLEU and the gap of log-
probability for each sentence, as illustrated in Fig-
ure 2b. For most sentences, Beam100 gets larger

Shttps://github.com/mjpost/sacreBLEU
8case.mixed+numrefs. 1+smooth.exp+tok.13a+version.1.4.14
"nttp://www.cs.cmu.edu/~alavie/METEOR/
8https://github.com/Unbabel/COMET
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log-probabilities than Beam5. Beam search with a
larger beam size has more opportunities to find se-
quences with larger log-probabilities. The major-
ity of sentences have small log-probability gaps.
For these sentences, the gap of sentence BLEU
has a similar probability to be positive or nega-
tive. When the log-probability gap increases, the
BLEU gap tends to be more negative. This small
portion of sentences result in worse quality at the
corpus level. Potentially we can find a way to iden-
tify these sentences and apply a small beam size
for them. Meanwhile, we can use a large beam
size to improve the quality of other sentences. The
sentences with a zero log-probability gap are not
counted in this figure.

We conduct experiments using out-of-domain
test sets and get consistent results which are illus-
trated in Appendix B.

4.2 Correlation between Beam Search Curse
and Model Accuracy

It is an interesting question whether the beam
search curse is mitigated for a model with higher
accuracy. We record the checkpoints at every
10,000 steps till 300,000 steps in training the Big
model. The values of their validation accuracy are
depicted in Figure 3a. As shown in Figure 3b, we
surprisingly find that there is no strong correlation
between model accuracy and beam search curse in
terms of the corpus BLEU.

However, we find two correlations related to
the model accuracy. One is the number of sen-
tences with zero gap. When the model accuracy
increases, Beam100 and Beam5 tend to have more
sentences that have the same BLEU scores, as il-
lustrated in Figure 3c. The other is oracle cor-
pus BLEU, which is calculated given that the gold
references are used to pick the best predictions
from candidates. More candidates usually con-
tain better oracle hypotheses. It is not surpris-
ing that Beam100 has much better oracle BLEU
scores than Beam5. The interesting result in Fig-
ure 3d is the strong correlation between the gap
of the oracle corpus BLEU and the model accu-
racy. This means that there are better candidates
in the top 100 candidates with higher model accu-
racy. But current Beam100 cannot make use of it
to make better predictions because the usual beam
search method uses the probabilities of candidates
to decide the final output. Better candidates do
not necessarily have the larger probabilities. They
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Figure 3: Investigate the correlation between beam search curse and model accuracy

Total Sent. Exact Beam5 A <Beam5 =Beam5 >Beam5
Std+Big En-De | 2319 27.33 30.49 -3.16 431 1638 250
De-En | 2375 32.80 35.70 290 424 1701 250
Sample+NoReg En-De | 2000 52.47 53.80 -1.33 259 1606 135
De-En | 2000 58.51 60.23 -1.72 264 1623 113

Table 3: Corpus BLEU of exact search (denoted as Exact) and comparison with Beam5. Total Sent is the total number of
sentences that the exact search finishes translation. Columns <Beam5, =Beam5 and >Beam5 are how many sentences that
exact search gets lower, equal, and greater BLEU compared with Beam5.

are probably discarded in the final decision. This a zero probability gap as well, which means zero
implies a potential solution to improve the beam search error for Beam5.

search. Beam search may benefit from the mod-
els with lower model errors in case that we have a
suitable reranking method on the candidates.

The results at the sentence level in Table 3 re-
veal that the beam search works quite well in terms
of the search error. Even with a small size like 5,

. beam search is capable to find the sequences with
S Zero Search Error Gets Worse Quality the largest probability for about 70% of sentences.

We compare the BLEU scores from exact search

with Beam5 at both the corpus level and the sen- Table 3 also shows that the exact search gets sig-
tence level. In our experiments, we find that a zero  nificantly worse corpus BLEU scores than Beam5.
gap of the sentence BLEU score usually implies  Figure 4a and Figure 4b shows the results of the

96



160

140

120

100

75

50

25

0

BLEU Gap

=25

=50

=75

-1000 12 1 16

2

4 6 8 10
Log-Prob Gap (Search Error)

b) Gaps of probability (x-axis) and gaps of sentence BLEU (y-

axis): Std+Big

2100
G
o 80
-
o
60
40
20
oo 75 -50 -25 0 25 50 75 100
Log-Prob Gap (Search Error)
(a) Gaps of sentence BLEU: Std+Big (
160
140
120
2100
6]
D 80
-
o
60
40
20
—0150 -75 -50 -25 0 25 50 75 _TOO
Log-Prob Gap (Search Error)
(c) Gaps of sentence BLEU: Sample+NoReg (

100

75

50

BLEU Gap
N
o &

I
N
%

|
v
=]

|
~
v

-100 2 12 14 16

o

4 6 8 10
Log-Prob Gap (Search Error)

d) Gaps of probability (x-axis) and gaps of sentence BLEU (y-

axis):Sample+NoReg

Figure 4: Comparison between exact search and Beam5: En—De. All gaps are exact search minus Beam5.

standard test with the Big model. Figure 4c and
Figure 4d show the results of the training samples
with the NoReg model. In this case that the model
errors are very small, the gap of the corpus BLEU
score is mitigated. But in both cases, when the gap
of log-probability between two methods increases,
the gap of BLEU is more likely to be negative.

In all these four figures, sentences having a zero
BLEU gap are not counted.

6 Gold References Get Lower Probability
than Predictions from Beam Search

The experiments above show that sequences with
higher log-probabilities do not necessarily get bet-
ter BLEU scores. This leads us to investigate the
log-probabilities of gold references. We find that
gold references get lower log-probability than the
predictions from the beam search even with very
low model errors.

Figure 5a illustrates the gap of log-probability
between the gold references and Beam5 for En—
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De. Only for a few sentences, the gold references
have higher log-probabilities than the predictions
of Beam5. Figure 5b demonstrates the strong cor-
relation between the gap of log-probability (as the
x-axis) and the sentence BLEU scores of Beam5
(as the y-axis). When the gold references get
lower log-probabilities than Beam5, the sentence
BLEU scores of Beam5 decrease. These two fig-
ures are results from the standard test with the Big
model. We also test using the training samples
with models without regularization. Results are
illustrated in Figure 5c and Figure 5d. Compar-
ing these two test cases, we find that the gaps are
reduced when the model errors are smaller in the
latter case. However, the correlation between the
log-probability and the sentence BLEU still exists
even for a model with an accuracy of 95% in the
cleanroom test.

Case study and analysis Table 4 illustrates an
example in the test using training samples and
models without regularization. There is only one
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Source _Die _Aktionsplidne _der _Hoch rang igen _Arbeitsgruppe _zielen _zwar _auf _die _zukiinftige
_Begrenzung _des _Einwanderung s strom s _ab , _doch _tragen _sie _in _keiner -Weise _zur
_Verbesserung _der _Situation _hinsichtlich _der ‘Menschenrechte _und _der _Grundfreiheiten
_sowie _der _wirtschaftliche n _Situation _der _betroffenen _Lénder _bei .
Prediction| _Although _action _plans _established _by _the _high - level _working _group _aim _to _limit | Log  Prob-
_migratory _flows _in _the _future , _these _plans _do _nothing _to _.improve _human _rights , | ablity:
_civil _liberties _and _the _economic _situation _of _the _countries _concerned . -2.4142
Gold _Although _action _plans _established _by _the _high - level _working _group _aim _to _limit | Log  Prob-
Refer- _migratory _flows _in _the _future , _these _plans _do _nothing _to _improve _human _rights, | ablity:
ence _civil _liberties _and _the _economic _situation _in _the _countries _concerned . -6.9390

Table 4: An example that a gold reference gets a lower log-probability than Beam5. There is only one token that is different

between the prediction of Beam5 and the gold reference.

token that is different between the gold reference
and the prediction of Beam5. This small differ-
ence results in a significantly lower log probability
for the gold reference.

This result can be explained by the objective in
training.

We use s and ¢; to denote the source sequence
and the ground truth token at the target side for the
step i. t; is a token different from ¢; at step i. At
step k, the usual training objective is to maximize
log P(tg|s,t1, ..., tg—1). If the model is effectively
trained, it implies
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log P(tk|8,t1,...,tk71) > log P(t;c|87t1,...,tk71). 1)

However, the inequality below is not part of the
training objective:

log P(tk|s,t1,...,tk—1) > log P(tk|s,t1, ...,t;e,l) 2)

This can lead to the phenomenon that gold ref-
erences get lower probabilities than potential se-
quences in the search space even in a model with
very small model errors.



7 Conclusion

Experiments show that the beam search still out-
performs most stochastic decoding methods in
NMT. We investigate the beam search in the de-
tails at the sentence level. We find that two well-
recognized issues, beam search curse and search
error, only happen to a small portion of sentences
in the test set. Meanwhile, for the majority of
sentences, their gold references get lower log-
probabilities than the predictions from the beam
search. We also test with different levels of model
errors including a cleanroom test using training
samples and models without regularization. The
results show that these issues still exist even for a
model with an accuracy of 95%. These findings
show that we cannot improve the beam search by
further seeking higher log-probability during the
search. In other words, further reducing search er-
rors are not promising. Our results about the re-
lationship between the quality and the gap of log-
probability provide useful information for two po-
tential ways to improve NMT. One is to find better
reranking methods or decision rules to find good
translations among the candidates from the beam
search. The other is to find a new way to train
the model so that the sequences with higher log-
probabilities get better performance.
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A Comparing Beam Search to other
Decoding Methods

Table 6 shows the comparison between beam
search and some of sampling-based decoding
methods. We use the notations below for the de-
coding methods.

¢ Beam5: beam search, the beam size is 5.

* Top5k10 and Top5k30: Top-k sampling, us-
ing top 10 and top 30 for the range for sam-
pling respectively, the beam size is 5.

* Top5p75 and Top5p90: Nucleus (Top-p) sam-
pling, using 75% and 90% for the sampling
probability mass respectively. The beam size
is 5.

* MBR300: the MBR decoding using 300 can-
didates from the unbiased sampling. The de-
cision rule (utility function) is the similarity

100

in terms of the sentence BLEU score between
any two candidates. Fernandes et al. (2022)
also use other utility functions such as Comet.
These methods use some pre-trained models
and introduce extra knowledge in the deci-
sion rule. Since we focus on the comparison
of different decoding methods, we only use
the ngram-based decision rule for MBR in our
experiments.

B Out-of-Domain Test sets

We use the test sets in EMEA ° for out-of-domain
(OOD) tests.

Figure 6a illustrates the gap of sentence BLEU
scores for En—De. Figure 6b illustrates the rela-
tionship between the gap of sentence BLEU and
the gap of log-probability for each sentence. Ta-
ble 5 shows the number of sentences that Beam100
gets larger, equal and smaller sentence BLEU
compared with Beam 5 These results are consis-
tent with the in-domain tests, shown in Figure 2a,
Figure 2b and Table 2 in Section 4.1 respectively.

Total Sent. >Beam5 =Beam5 <Beam5
En-De 1267 347 434 486
De-En | 1267 275 646 346

Table 5: Out-of-domain (OOD) tests: the number of sen-
tences that Beam100 gets larger, equal and smaller sentence
BLEU compared with Beam 5, denoted as >Beam5, =Beam5
and <BeamS5 respectively.

‘http://https://opus.nlpl.eu/EMEA.php



En-De De-En

Model Base Big Base Big

Metrics | BLEU Meteor Comet| BLEU Meteor Comet| BLEU Meteor Comet| BLEU Meteor Comet
Beam5 28.2 29.1 0.490 | 28.9 29.2 0.498 | 33.5 36.5 0.520 | 33.8 36.7 0.539
TopSk10 | 22.5 26.0 0.391 | 239 26.8 0.426 | 28.1 34.2 0.442 | 29.5 34.8 0.481
TopSk30 | 21.4 25.5 0.357 | 23.2 26.3 0.413 | 27.2 33.5 0.420 | 28.5 34.3 0.456
TopSp75 | 24.6 27.2 0.415 | 25.7 27.7 0.457 | 30.0 35.1 0462 | 314 35.6 0.502
Top5p90 | 20.6 24.9 0.292 | 22.5 25.9 0.379 | 26.4 32.8 0.357 | 28.1 33.8 0.420
MBR300 | 24.9 27.0 0.181 | 26.5 27.9 0.298 | 30.7 34.2 0.301 | 319 35.0 0.377

Table 6: Comparison between beam search, Top-k sampling, Nucleus (Top-p) sampling and MBR decoding for En—De and
De-En.
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Abstract

Knowledge distillation (KD) is a well-
known method for compressing neural
models. However, works focusing on dis-
tilling knowledge from large multilingual
neural machine translation (MNMT) mod-
els into smaller ones are practically nonex-
istent, despite the popularity and superior-
ity of MNMT. This paper bridges this gap
by presenting an empirical investigation
of knowledge distillation for compressing
MNMT models. We take Indic to English
translation as a case study and demonstrate
that commonly used language-agnostic
and language-aware KD approaches yield
models that are 4-5x smaller but also suf-
fer from performance drops of up to 3.5
BLEU. To mitigate this, we then experi-
ment with design considerations such as
shallower versus deeper models, heavy pa-
rameter sharing, multi-stage training, and
adapters. We observe that deeper compact
models tend to be as good as shallower
non-compact ones, and that fine-tuning a
distilled model on a High-Quality subset
slightly boosts translation quality. Over-
all, we conclude that compressing MNMT
models via KD is challenging, indicating
immense scope for further research.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau et
al., 2015; Vaswani et al., 2017) is a state-of-the-
art approach to machine translation that has gained

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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Figure 1: A comparison of the major distillation techniques
and models we experimented with. Note that the red incre-
ments in the bar plots denote the improvements due to HQ
fine-tuning for those models.

significant attention in recent years. With the avail-
ability of large corpora and compute, Multilingual
NMT (MNMT) (Zhang et al., 2019; Firat et al.,
2016; Aharoni et al., 2019) has gained popularity
since it enables a single model to translate between
multiple languages. Large MNMT models trained
on substantial data have shown higher levels of
performance. However, these models are impracti-
cal for deployment on a commercial or production
scale due to their size, which contains millions, if
not billions, of parameters. Therefore, they need
to be compressed into smaller models for efficient
and convenient usage.

In practice, models are compressed via two
methods: Firstly, by stripping unnecessary and re-
dundant parameters from the existing model (Bu-
cilud et al., 2006), and secondly, by transferring
knowledge from the larger “teacher” model to a
smaller “student” model using distillation (Hin-
ton et al., 2015). This study focuses on the lat-
ter, as the former can be done post-hoc (Diddee
et al., 2022). Although existing literature mainly
discusses bilingual-to-multilingual or bilingual-to-

Nurminen, Brenner, Koponen, Latomaa, Mikhailov, Schierl, Ranasinghe, Vanmassenhove, Vidal, Aranberri, Nunziatini, Escartin, Forcada,

Popovic, Scarton, Moniz (eds.)

Proceedings of the 24th Annual Conference of the European Association for Machine Translation, p. 103-114
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bilingual distillation, to the best of our knowledge,
there is no work in end-to-end multilingual-to-
multilingual knowledge distillation for compres-
sion in a setting with a mix of low, medium, and
high resource languages. Therefore, we aim to
distill a large MNMT model into a smaller one
taking Indic to English language translation as a
case study and perform an empirical investigation
of prominent techniques such as language agnostic
and language-wise word-level and sequence-level
distillation. We also look into architectural varia-
tions, multi-stage training, and High-Quality data
filtering to improve our performance.

Our contributions can be summarized as follows:
1. We investigate the effect of existing distillation
techniques for compressing MNMT models and
find that all of them produce comparable results,
indicating that the simplest methods are sufficient.
2. We explore the outcome of language-specific
architectures such as Adapters and Language-
Queues and conclude that they failed to sufficiently
specialize the models for significant gains.

3. We analyze the performance gains due to multi-
stage training and find that High-Quality fine-
tuning boosts performance in a noisy scenario.

4. We analyze the trade-off between width and
height for Transformers (Vaswani et al., 2017) and
determine that thinner but deeper models comprise
fewer parameters but perform comparably to wider
but shallower models.

2 Related works

This paper focuses on Knowledge Distillation
(KD) for compressing Multilingual Neural Ma-
chine Translation (MNMT) models.

Multilingual Neural Machine Translation
(Zhang et al., 2019; Firat et al., 2016; Aharoni et
al., 2019) is the favored approach for developing
machine translation systems that can handle
multiple languages. MNMT systems incorporate
language-specific information through the use
of shared encoder and decoder architecture and
language-specific embeddings. MNMT systems
often require less training data than separate
bilingual models for each language, making it an
attractive area of research. A detailed analysis
of MNMT can be found in the survey paper by
(Dabre et al., 2020).

Model compression, which involves pruning or
reparameterizing large models to reduce their
sizes, has been explored in previous studies
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(Bucilud et al., 2006; Wang et al., 2020; Behnke
and Heafield, 2020; Behnke et al., 2021). Or-
thogonally, compression can be achieved by
heavy parameter sharing, especially across lay-
ers (Dabre and Fujita, 2019). (Dabre et al.,
2022) have investigated this in their IndicBART
work, demonstrating that a significant parameter
reduction leads to decreased performance, but
knowledge distillation can help overcome this
gap. We also explore this parameter sharing across
layers, noting that we focus on compressing larger
models in higher resource settings.

Knowledge Distillation (Hinton et al., 2015;
Kim and Rush, 2016) is yet another orthogonal
approach for model compression, to extract
essential information from a larger model and
transfer it to a smaller model while minimizing
the drop in performance. (Dabre and Fujita, 2020)
present an approach leveraging Sequence-Level
Distillation (Kim and Rush, 2016) with Transfer
Learning for efficiently training NMT models in
a highly low-resource scenario. However, their
setup focused on relatively minor data scales,
whereas we mainly operate in a medium to high
resource scenario with multilingualism. (Do and
Lee, 2022) propose a multilingual distillation
technique but use multiple multilingual strong
teacher models of similar languages, similar to the
method of (Tan et al., 2019) where they employ
bilingual teacher models to distill into a single
multilingual student. Our work differs from both
in two aspects: (a) we do not use multiple bilin-
gual/multilingual models as teachers, but instead
focus on distilling one single robust multilingual
model into another multilingual model end-to-end
(b) we aim to compress where they do not. We do
not use their techniques because our preliminary
investigations showed that our teacher model was
better than individual bilingual or multilingual
models of similar languages.

To the best of our knowledge, previous research
on distillation has focused on distilling bilingual
networks or training an equally sized student
model from multiple strong bilingual/multilingual
teacher models. Therefore, we believe our work
is a first-of-its-kind introductory investigation in
the domain of end-to-end distillation of MNMT
models for compression.



3 Methodology

This section describes the KD approaches and de-
sign considerations we focused on in this paper.

3.1 KD Approaches

We describe the fundamental language-agnostic
KD approaches, such as word and Sequence-Level
KD and a language-aware KD approach using
queues.

Word-Level Distillation (WLD): Following (Hin-
ton et al., 2015), (Kim and Rush, 2016) pro-
posed Word-Level Distillation, which aims to min-
imize the KL-Divergence/Cross-Entropy between
the student and teacher models at each time-step.
However, we did not test this method because
(Kim and Rush, 2016) showed that it is not a good
approximation of the sequential learning task, as it
focuses on the current timestep only and not on the
entire sequence.

Sequence-Level Distillation (SLD): (Kim and
Rush, 2016) argued that the student model should
capture the Sequence-Level distribution of the
teacher model rather than the individual word-level
distribution at each timestep. Therefore, they pro-
posed that capturing the best beam search output
of the teacher, which can approximate the distribu-
tion, can be used as hard pseudo-labels for the stu-
dent. These hard pseudo-labels are called the dis-
tilled targets. We extensively used this Sequence-
Level Distillation technique to train all our stu-
dent models because it is easy to implement and
has been proven to give better results than regular
word-level distribution.

Word + Sequence-Level Distillation (W+S LD):
(Kim and Rush, 2016) further proposed that Word-
Level Distillation can be carried out in congruence
with Sequence-Level Distillation to aid the student
model in capturing both the word-level distribu-
tion at each timestep and the overall Sequence-
Level distribution. This allows the student model
to mimic the generalization of the teacher better.
Hence, we applied this technique to determine if
there were any improvements in performance over
vanilla Sequence-Level Distillation.

Selective Distillation: (Wang et al., 2021) showed
that some samples are “hard” to distill and require
additional distillation signals to train, while others
are “easy” and do not. Therefore, they proposed
the idea of identifying “hard” samples from a batch
and applying a word-level distillation loss specif-
ically to them. They further extended the Batch-
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Level selection to Global-Level selection, where
they select “hard” samples from a large queue
comparable in size to the entire dataset to better
approximate the negative log-likelihood loss dis-
tribution used to identify “hard” samples. Since
we operate with a mix of low, medium, and high-
resource languages, we chose to investigate both
their Batch-Level (BL) and Global-Level (GL)
selection strategies to promote low-resource lan-
guages, which might be challenging to distill due
to their scarcity during training.
Global-Language-wise Distillation (GLwD):
The selection strategy proposed by (Wang et al.,
2021) at the global level is designed for bilingual
settings. However, in multilingual settings with
mixtures of languages with varying levels of
abundance, a single global queue may not be
suitable because it may become populated with
samples mainly from high-resource languages. As
a result, the selection algorithm may be biased
toward resource-rich languages. Therefore, we
propose a novel modification to this technique
involving a language-wise selection strategy.
Specifically, we propose to push samples from
each language into their respective global queues,
remove the oldest samples to maintain the queue
size, and apply an additional distillation loss to the
“harder” samples from each queue, similar to the
Global-Level selection.

3.2 Design Considerations

Apart from the core distillation approaches above,
we also explore the impact of several architectural
and training pipeline design considerations. In par-
ticular, we focus on the impact of variable depth,
extreme parameter-sharing, dataset filtering and
multi-stage training, and language-specific distil-
lation via adapters.

Width vs. Height: Based on the findings of
(Tay et al., 2022), we opted to analyze thinner but
deeper models, as we found these models to have
fewer parameters than wider but shallower models.
Recurrent-Stacking: We also train models on the
distilled data with recurrently stacked layers, fol-
lowing the idea of (Dabre and Fujita, 2019) in
which layer parameters are tied across layers. This
limited the number of parameters to 207M but gave
the effect of a model with multiple layers.
Multi-stage Training with High-Quality Data:
We observed that the distilled data contained a
few noisy samples that hindered training. To ad-
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dress this issue, we experimented with a multi-
stage training setup. First, we trained a smaller
model on the complete dataset, and then we fine-
tuned it on the High-Quality data filtered from the
complete dataset. We filtered the data based on
the LaBSE! (Feng et al., 2022) cosine similarity
scores, selecting only those translation pairs whose
similarity score was greater than puy, +ko, for each
language, where ur, and o denote the mean and
standard deviation of the translation scores for lan-
guage L. We empirically chose k to limit the High-
Quality data size to approximately 20% of the to-
tal, with a uniform sampling of data from each lan-
guage.

Adapters: Adapters are small feed-forward mod-
ules introduced in pre-trained models and fine-
tuned on a downstream task while freezing the
trained model’s parameters (Houlsby et al., 2019;
Bapna and Firat, 2019). They add only a tiny frac-
tion of parameters to the model but provide addi-
tional parameterization for the model to adapt to
additional languages/domains independently with-
out requiring complete fine-tuning. Adapters are
particularly useful for distillation, as they should
help recover any loss in performance due to com-
pression via fewer additional parameters. Further-
more, they should help the model adjust to var-
ious languages’ specifics during translation. To
investigate the effects of language similarity and
cross-lingual inference on distillation, we have ex-

"https://huggingface.co/
sentence-transformers/LaBSE
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ing our set of experiments

perimented with fine-tuning distilled models with
adapters for individual languages and language
families (Chronopoulou et al., 2022).

4 Experiments

We now focus on Indic-to-English translation as a
case study and describe experiments we conducted
to compress IndicTrans, a 474M parameter model.

4.1 Datasets

We use or create the following datasets:

Original data: We use Samanantar (Ramesh et
al., 2022) as the original (undistilled) dataset, the
statistics for which are in Table-1 in the column
#Pairs. This dataset was used to train IndicTrans,
our teacher model, and we use it for generating the
distilled data and conducting comparative studies.
Distilled data: The distilled data used for train-
ing student models was generated by performing
beam search (with a beam size of 5) over Samanan-
tar in the Indic-En direction with IndicTrans., i.e.,
using the Sequence-Level distillation technique of
(Kim and Rush, 2016). The best beam output was
then utilized as the hard pseudo-labels for train-
ing smaller models. Following Section 3.2, we
filter this data to obtain a smaller, higher quality
version, the statistics for which are in the column
#HQ-Pairs in Table-1.

Evaluation data: We use Flores101 (Goyal et al.,
2022) for evaluation, where the dev set (997 pairs
per language) is used for validation and the test set
(1012 pairs) for testing.



Lang ISO code #Pairs #HQ Pairs
Assamese as 0.1 0.02
Odia or 1.0 0.2
Punjabi pa 3.0 0.6
Gujarati gu 3.1 0.6
Marathi mr 3.6 0.8
Kannada kn 4.1 0.9
Telugu te 4.9 1.1
Tamil ta 5.3 1.0
Malayalam ml 5.9 1.3
Bengali bn 8.6 1.7
Hindi hi 10.1 2.0
Total - 49.8 10.3

Table 1: The number of original (#pairs) sentence pairs per
language (in millions) in the distilled (and original). #HQ-
Pairs indicates High-Quality distilled pairs. The languages
are categorized into low, medium, and high-resource groups.

4.2 Pre-Processing and Vocabulary

We follow (Ramesh et al., 2022) and transliterate
all the Indic source sentences into Devanagari us-
ing the Indic-NLP-Library? before training, to take
advantage of the script-similarity between vari-
ous Indian languages. The dev-test set is likewise
transliterated, and language tags are added before
evaluation. For consistency, we use the same vo-
cabulary as IndicTrans, which contains 32K sub-
words for all 11 Indic languages and separate 32K
subwords for English.

4.3 Evaluation Metrics

We use BLEU (Papineni et al., 2002) as the pri-
mary evaluation metric. We also report Chrf++
scores (Popovié, 2017) in the Appendix.

4.4 Training setup

We train our models using fairseq® (Ott et al.,
2019). We obtained the implementation for KD
from LeslieOverfitting*. The Transformer archi-
tecture (Vaswani et al., 2017) is used throughout
our experiments. The hyperparameters used for
training are presented in Appendix-A Table-9.
Unlike IndicTrans, we use GELU activation
(Hendrycks and Gimpel, 2016) instead of ReLU
activation. Additionally, pre-normalization is ap-
plied to all modules, and layer normalization (Ba
et al., 2016) is applied to the embedding. These
modifications led to more stable training. Where

https://github.com/anocopkunchukuttan/
indic_nlp_library
*https://github.com/VarunGumma/fairseq
‘https://github.com/LeslieOverfitting/
selective_distillation

early stopping for IndicTrans was done using loss
on the development set, we used BLEU score.

4.5 Model Configurations

We trained models with various configurations (as
listed in Table-2). The smallest model is “base”,
the same as Transformer-base in (Vaswani et al.,
2017). The largest is “huge” which is the same
size as IndicTrans, and “hugerg” is its equivalent
where all layers have the same parameters.

Model P dy drprp L H
base 95.4 512 2048 6 8
basel2L  139.5 512 2048 12 8
basel8L  183.7 512 2048 18 8
base24L 227.8 512 2048 24 8
big 278.9 1024 4096 6 16
hugers 207.3 1536 4096 1 16
huge 4749 1536 409 6 16

Table 2: The table presents the architectural description
of various Transformer models that were tested. Here, the
columns represent the number of parameters (P) in millions,
the dimension of the model (dxs), the dimension of the feed-
forward network (dzr), the number of layers (L) and the
number of attention heads (H). It is worth noting that the
huge rs model contains only one unique layer, but it is recur-
rently stacked 6 times. This means the other 5 layers in the
encoder/decoder are simply references to the original layer.

5 Results

This section presents the results of applying
Knowledge Distillation (KD) approaches to com-
press the IndicTrans Indic-to-English teacher
model.

5.1 Main Results

Table-3 compares various distillation approaches
using a student model with the base configura-
tion. As compared to a base model trained on
the original data, which is around 3.6 BLEU be-
low the IndicTrans model, we can observe im-
provements for both low and high-resource lan-
guages through the use of conventional distillation
methods. The simplest among these, Sequence-
Level distillation (SLD), shows an improvement of
0.3 BLEU on average compared to its undistilled
equivalent. Significantly, low-resource languages
such as Assamese and Odia and a few medium-
resource languages like Kannada benefit the most.
In contrast, resource-rich languages like Hindi and
Bengali have comparable or a slight drop in perfor-
mance. The Batch-Level selection approach (BL)
was the best among all distillation approaches and
showed the best results for 6 out of 11 languages.
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Lang OG_base IT |SLD W+SLD BL GL GLwD

as 184 233|197 19.8 20.5 20.3 20.5
bn 289 31.8/28.8 289 29.1 283 287
gu 306 34.1|30.6 315 31.7 31.3 309
hi 343 375|341 342 34.7 344 346
kn 252 287|261 258 259 260 258
ml 277 31.4|282 279 28.227.6 28.0
mr 274 31.0/281 28.0 27.8275 278
or 263 298|268 270 27.0 271 265
pa 31.0 358|312 314 313314 31.1
ta 253 284|251 251 254252 252
te 304 33.4|304 30.6 30.2 30.6 304
Avg 278 314|28.1 282 283282 281

Table 3: BLEU scores of base model distilled with various
distillation techniques. Note that the scores of the base model
trained on the Original Samanantar data (OG_base) and In-
dicTrans (IT; huge) in the first and second columns are for
reference. The best scores of distilled models are bolded.

On the other hand, Global-Level selection (GL)
did not perform as well, indicating that adaptation
is best done per batch since Global-Level selec-
tion may update similar examples whereas Batch-
Level adaptation would choose diverse examples.
Further, we observed that the queue size should be
meticulously tuned in case of a mix of languages.

To our surprise, active distillation (W+S LD)
failed to significantly improve despite leverag-
ing distilled data and the parent model’s soft la-
bels. Also, or adaptation of Global-Level selection
to Global-Language-wise Distillation (GLwD) re-
sulted in only minor variations when compared
to the base model that was trained using regu-
lar Sequence-Level distillation and Global-Level
distillation. Interested readers can check Chrf++
scores in Appendix-B, Table-11, and observe that
they follow the same trend.

No matter the approach, however, the distilled
model consistently underperforms the teacher, in-
dicating the high difficulty of distilling MNMT
models. Indeed, where the base model trained
without distilled data was behind by 3.6 BLEU,
the best-distilled model is behind by 3.1 BLEU on
average. Going forward, for the ease of rapidly
conducting large-scale experiments, we only re-
port and discuss the results of remaining models
trained using Sequence-Level distillation, i.e., by
directly training them on the distilled dataset.

5.2 Analyses and Further Investigation

We now investigate factors that influence distil-
lation. We analyze the quality of the distillation
data, the impact of different model architectures,
and multi-stage training using High-Quality data
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for further training models or with adapters with-
out High-Quality data. These experiments can help
us ascertain whether the poor performance of dis-
tilled models can be remedied.

Distilled Dataset Analysis: LaBSE cosine-
similarity scores were used to assess the quality
of translation pairs in the distilled data. The dis-
tilled dataset was significantly better, as evidenced
by higher mean and lower standard deviation of the
LaBSE scores, as shown in Table-4.

| 0G | Distilled
Lang pair | mean std.dev | mean std_dev
en-as 0.6460 0.2773 | 0.7850 0.1297
en-bn 0.7974  0.1286 | 0.8446  0.0726
en-gu 0.8007  0.1515 | 0.8487  0.0699
en-hi 0.7988 0.1159 | 0.8524  0.0737
en-kn 0.8129  0.1240 | 0.8469  0.0680
en-ml 0.8018  0.1310 | 0.8432 0.0743
en-mr 0.7886  0.1471 | 0.8472 0.0672
en-or 0.8283  0.0877 | 0.8474  0.0666
en-pa 0.7958  0.1383 | 0.8579  0.0726
en-ta 0.7762  0.1691 | 0.8415 0.0771
en-te 0.8152  0.1089 | 0.8448  0.0685

Table 4: LaBSE cosine similarity scores between translation
pairs of Original and Distilled data

Impact of Deeper vs. Shallower Models on Per-
formance and Inference Time: Table-5 shows
that thinner but deeper networks perform compa-
rably with the wider but shallower models while
having fewer parameters. However, Table-6 also
highlights that the deeper models often suffer from
longer latency during inference due to the numer-
ous sequential transformations to the input in both
the encoder and decoder. Furthermore, we ob-
served diminishing returns in performance as we
increased the number of layers.

Impact of extreme parameter sharing: From
Table-5 we can see that recurrent stacking
(hugergs) is not particularly impactful. Note that
the key difference between the huge and hugerg
models is that the latter has shared layer param-
eters. (Dabre et al., 2022) showed that recur-
rent stacking models, when trained with distilla-
tion data, can reach the performance of the par-
ent model (huge), but this does not appear to be
the case in our setting. Note that, in our case,
our training data is much larger than (Dabre et
al., 2022), indicating that recurrent stacking mod-
els might not be suitable here. Next, the infer-
ence time for hugers is almost the same as its
huge counterpart because the input is still trans-
formed the same number of times, but just using



the same layer. Comparing with the deeper base
models (basel2L, baselSL, base24L), increasing
the width of models increases parameters but re-
sults in only a slight increase in inference times,
unlike increasing the depth of the network.

Lang hugers Dbasel2l. basel8L base24L

as 19.2 21.6 233 229
bn 279 29.8 30.9 31.1
gu 304 325 339 33.9
hi 34.1 36.0 36.6 36.2
kn 254 27.0 28.3 28.0
ml 26.7 29.3 29.8 30.5
mr 26.7 29.5 304 30.6
or 254 28.3 29.5 29.6
pa 31.2 33.0 34.0 34.2
ta 24.6 26.3 274 27.9
te 29.6 314 33.0 33.0
Avg 27.4 29.5 30.6 30.7

Table S: Performance of models with varying depth

Multi-stage training: The rationale behind High-
Quality data fine-tuning is that it enables the model
to relearn the richer set of examples and disregard
the previously noisy examples, which hurt the per-
formance. We observed that the performance of
the model improves with fine-tuning® an existing
distilled model with HQ data (see Table-7). The
maximum improvement was observed for the Re-
current Stacked model, which showed the weakest
performance thus far, given its size. Note the im-
provement of the base model from 28.1 (SLD in
Table 3) to 28.4, by 0.3 BLEU. The previous gap
between the parent (IndicTrans; huge) and base
model was 3.3, and it has now come down to 3.0,
indicating that the gap can be overcome, but that
multilingual model compression is still very chal-
lenging.

The increments resulting from High-Quality
fine-tuning were averaged across multiple models
and languages, and the findings are presented in
Figure-3. It is observed in Figure-3 that multi-
stage training had the least effect on high-resource
languages such as Bengali and Hindi since the
model well learned these languages due to the
ample amount of training data available. Con-
versely, low-resource languages, such as Odia
and Assamese, benefited from multi-stage train-
ing. Our analysis showed that Malayalam expe-
rienced the most significant improvement with HQ
fine-tuning.

SFor optimal fine-tuning, it is recommended to use a lower
learning rate (3e-5) and a smaller batch size (24K).
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Lang base basel2 basel8L base24L big hugers huge

as 83 157 19.4 259 94 99 158
bn 7.8 13.1 18.8 237 86 92 88
gu 89 134 18.2 256 84 91 99
hi 88 13.0 18.4 242 107 93 87
kn 124 13.1 18.5 236 98 91 90
ml 87 1338 20.7 262 97 9.0 90
mr 9.1 129 18.0 244 89 92 89
or 92 137 20.9 243 93 94 90
pa 89 137 19.3 247 89 92 9.0
ta 84 134 20.3 238 87 98 94
te 80 13.0 20.1 261 86 102 9.0
Avg 9.0 135 19.4 248 92 94 97

Table 6: Inference time per language (in seconds) with a
batch size of 64 on the Flores101 test set (1012 sentences
per language). As seen from the above table, base24L has the
highest latency due to the highest number of layers in the en-
coder and decoder.

Lang base basel2L basel8L base24L big hugers

as 06 07 0.3 03 -01 12
bn 02 05 0.3 05 -01 0.9
gu 06 06 0.1 02 04 1.1
hi 02 0.1 0.2 04 00 10
kn 03 06 0.2 05 02 08
ml 05 06 0.8 06 04 14
mr 0.0 05 0.4 03 07 12
or 05 06 .
pa 03 03 0.4 0.6 .
ta 02 06 0.1 02 03 08
te 02 04 0.5 05 04 06

Avg 03 05 0.3 04 03 10

Table 7: Multistage training improvements. Once again,
all these models were trained and fine-tuned on the distilled
dataset. The absolute scores, i.e., score of model trained
on the distilled data + the increment by fine-tuning on HQ-
distilled data is available in Table-14 of Appendix-B

Adapters: Adapters were introduced on top of the
distilled base model for each language and promi-
nent language families, such as Eastern Indo-
Aryan (Assamese-Bengali-Odiya), Western Indo-
Aryan (Hindi-Gujarati-Punjabi-Marathi), and Dra-
vidian (Kannada-Malayalam-Tamil-Telugu). No-
tably, these adapters were again fine-tuned on the
unfiltered distilled dataset. As presented in Table-
8, the outcomes revealed that the language-wise
and language-family adapters exhibited minimal
or no improvement in the given setting. This lack
of improvement could be attributed to the inad-
equacy of the added parameters in learning new
representations from languages to enhance per-
formance. Language-wise adapters outperformed
language-family adapters since high-resource lan-
guages dominate the low-resource ones when
building language families. In other words, when



big

base18L

base

huge

Model

base24L

base12L

huge_RS

BLEU improvement

Language

BLEU improvement

Figure 3: Top: Comparative bar plot of improvements due to
HQ fine-tuning averaged over various languages vs. Model
Bottom: Comparative bar plot of improvements due to HQ
fine-tuning averaged over various models vs. Language

working with adapters, their limited capacity can
only handle limited data. Although we do not
show it, given our positive results with High-
Quality data, we expect that fine-tuning on the
same might lead to higher improvements. The
specific hyperparameters used for language-wise
and language-family adapters can be found in
Appendix-A Table-10.

Lang base LW LF
as 19.7  21.0 20.6
bn 28.8 28.8 29.2
gu 306 30.8 30.8
hi 341 344 342
kn 26.1 261 26.1
ml 28.2 282 279
mr 28.1 28.0 277
or 26.8 267 27.2
pa 312 313 312
ta 251 250 251
te 304 307 304
Avg  28.1 283 28.1

Table 8: Results of language-wise (LW) and language-family
(LF) adapter fine-tuning of base SLD model.

5.3 Key Takeaways and Recommendations

We have the following lessons:
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1. The use of active learning techniques produced
comparable results, and no single approach stood
out as the best. Batch-Level distillation exhibited
the strongest numerical performance, but the im-
provements were statistically insignificant.

2. Multiple metrics should be used to evaluate
translations. Paraphrases of the target did not score
well in BLEU but were rated highly with Chrf++.

3. Multistage training, involving complete dataset
training followed by fine-tuning on a High-Quality
fraction, improves model performance. To main-
tain consistent distribution, the proportions of
translation pairs from each language should be
similar during data filtering, and the length distri-
bution should resemble the original dataset.

4. The use of adapters did not improve model
performance, attributed to insufficient parameter-
ization. With learning rate and batch size tuning,
equal language family proportions should be main-
tained during multilingual adapter fine-tuning.

5. Narrower but deeper models can achieve com-
parable performance to wider but shallower mod-
els, despite having fewer parameters. Increasing
depth by adding layers can lead to diminishing re-
turns with increasing inference latency.

6. Recurrently-stacked networks, despite their
promise, do not deliver in multilingual settings like
ours with low to high-resource languages. How-
ever, multi-stage training is recommended for such
models and, generally, for lower-parameter ones.

6 Conclusion and Future Work

In this paper we have empirically studied the com-
pression of MNMT models, taking Indic to En-
glish translation as a case study, and explored the
effectiveness of prominent knowledge distillation
approaches. We have also studied the impact of
model size, parameter sharing, multi-stage train-
ing, and quality of training data. We confirm the
high difficulty of this task but make several rec-
ommendations that we expect will benefit practi-
tioners. Having noted the positive impact of High-
Quality data, we will explore this aspect in further
detail in the future. We will also expand to MNMT
models focusing on other language groups. Fi-
nally, the impact of post-training quantization ap-
proaches and low-precision decoding will also be
investigated.
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A Hyperparameter Details

Hyperparameter Value
Global Batch size 64K
Dropout 0.2

Label smoothing 0.1
Gradient clipnorm 1.0
Early-stopping patience 5
Optimizer Adam
Adam betas (0.9,0.98)
learning_rate 5e-4
Ir_scheduler inverse-sqrt decay
Warmup steps 4000

Table 9: Hyperparameters employed for training the student
models, identical to those used for training IndicTrans

Hyperparameter LW LF
Global Batch size 2K (as), 8K 24K
Adapter Dropout 0.1 0.1
Adapter Activation GELU GELU
Adapter Bottleneck 256 256
learning_rate le-3 le-3
‘Warmup steps 1000 (as), 2000 (gu), 1600 (or), 4000 4000

Table 10: Hyperparameters employed for Adapter fine-
tuning. Note that, the rest of the model hyperparameters are
the same as in Table-9

B Additional Analysis

This section presents the remaining Chrf++ results
for Distillation techniques, Adapter fine-tuning,
Width-vs-Height Analysis, and Multistage train-
ing.

Lang OG_base IT |SLD W+SLD BL GL GLwD

as 43.0 482|448 449 455452 451
bn 546 569|547 546 55.0 543 54.6
gu 55.9 587|562 56.8 56.9 56.6 56.5
hi 589 61.3(58.7 59.0 59.359.0 59.0
kn 514 546|522 521 522521 522
ml 53.6 572|543 543 54.6 539 544
mr 532 56.4|54.0 539 54.2 5377 53.6
or 522 555|530 532 529 53 528
pa 56.2 60.0/56.4 567 56.9 56.8 56.7
ta 51.1 541|511 511 513512 513

Table 12:

Lang base LW LF
as 458 456 45.1
bn 547 547 549
gu 56.2 564 563
hi 58.7 58.8 58.7
kn 522 524 522
ml 543 542 54.1
mr 54.0 53.8 537
or 53.0 527 53.0
pa 564 563 562
ta 51.1 509 50.8
te 55.7 559 55.6
Avg 537 538 537

Chrf++ Results of language-wise (LW) and

language-family (LF) adapter fine-tuning of base SLD model.

Lang hugers

basel2L. basel8L base24L

as 42.9 46.6 48.0 47.9
bn 529 554 56.3 56.4
gu 552 58.0 58.6 58.8
hi 584 60.1 60.5 60.3
kn 51.2 532 54.1 54.1
ml 52.5 554 55.8 56.3
mr 52.0 55.1 559 56.2
or 50.7 54.3 55.3 55.5
pa 56.1 58.1 58.7 59.0
ta 50.1 52.3 53.1 53.5
te 542 56.6 57.7 57.9
Avg 524 55.0 55.8 56.0

Table 13: Chrf++ scores for Width-vs-Height analysis

Lang base basel2L basel8L base24L big hugers

as 203 223 23.6 232 233 204
bn 29.0 303 31.2 31.6 31.1 286
gu 312 331 34.0 341 342 315
hi 343 36.1 36.8 36.6 365 35.1
kn 264 276 28.5 285 28.1 262
ml 28.7 299 30.6 311 306 28.1
mr 28.1 30.0 30.8 309 312 279
or 273 289 29.3 29.9 301 26.7
pa 315 333 344 348 343 322
ta 253 269 27.5 281 277 254
te 30.6 31.8 33.5 33.5 333 302
Avg 284 30.0 30.9 31.1 309 284

Table 14: Absolute BLEU scores obtained by Multi-stage

training.

te 55.3 58.2(55.77 559 557 558 558 J
AVg 53.2 56.5 ‘ 53.7 53.9 54.0 53.8 53.8 Lang base basel2L basel8L base24 L big huger g
as 455(0.7)  47.5(09)  487(0.7)  485(0.6)  482(0.1) 443 (14)
. e ; : bn 550(03)  559(05) 56.6(03)  568(04)  566(0.2)  54.1(12)
Tgble 1.1. Chrfﬂ— scores of base model .dzstllled with various o €907  WAOL 9004 0103 38905 365013
distillation techniques. Note that the IndicTrans (IT) scores in hi 50.1(04)  602(0.1) 608(03) 60.7(04)  608(04)  59.4(1.0)
the first column are for reference. kn 525(0.3) 537(05) 545(04) 547(06)  541(03)  522(1.0)
ml 549(0.6) 56.1(0.7) 566(0.8) 57.0(0.7) 568(0.7)  54.0(1.5)
mr 543(03) 559(08) 564(0.5)  566(04)  56.7(0.5)  53.6(1.6)
or 53.4(04) 550(07) 555(02) 559(04) 558(0.9) 52.6(19)
pa 569(0.5) 583(02) 592(0.5)  59.6(0.6) 59.2(0.3)  572(Ll)
ta 514(03) 528(05) 533(02) 54005  53.6(04) 512(LI)
te 56.1(0.4)  57.2(0.6) 58.1(04) 584(05)  58.1(0.5)  552(10)
Avg  541(05) 555(0.5) 562(04) 565(0.5)  562(04)  53.7(13)
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Table 15: Multistage training Chrf++ results. The bracketed
number denotes the Chrf++ improvement due to High-Quality
fine-tuning.



C Note on Evaluation

This paper mainly relies on BLEU and Chrf++,
but lately, COMET’ is becoming popular. How-
ever, COMET is unavailable for most Indic lan-
guages we study. Therefore, we leave this for fu-
ture work.

"https://unbabel.github.io/COMET/html/
index.html
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Abstract

This paper aims to investigate the effec-
tiveness of the k-Nearest Neighbor Ma-
chine Translation model (KNN-MT) in
real-world scenarios. KNN-MT is a
retrieval-augmented framework that com-
bines the advantages of parametric mod-
els with non-parametric datastores built us-
ing a set of parallel sentences. Previous
studies have primarily focused on evaluat-
ing the model using only the BLEU met-
ric and have not tested KNN-MT in real-
world scenarios. Our study aims to fill this
gap by conducting a comprehensive analy-
sis on various datasets comprising different
language pairs and different domains, us-
ing multiple automatic metrics and expert-
evaluated Multidimensional Quality Met-
rics (MQM). We compare kNN-MT with
two alternate strategies: fine-tuning all the
model parameters and adapter-based fine-
tuning. Finally, we analyze the effect of the
datastore size on translation quality, and
we examine the number of entries neces-
sary to bootstrap and configure the index.

1 Introduction

The remarkable advances in neural models have
brought significant progress in the field of machine
translation (Sutskever et al., 2014; Bahdanau et al.,
2015; Vaswani et al., 2017). However, current sys-
tems rely heavily on a fully-parametric approach,
where the entire training data is compressed into
*Equal contribution.

Contact: {pedro.martins, joao.alves } @unbabel.com.

© 2023 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

the model parameters. This can lead to inade-
quate translations when encountering rare words
or sentences outside of the initial training do-
main (Koehn and Knowles, 2017), requiring sev-
eral stages of fine-tuning to adapt to data drift or to
new domains.

By combining the advantages of parametric
models with non-parametric databases built from
parallel sentences, retrieval-augmented models
showed to be a promising solution, particularly
in domain adaptation scenarios (Gu et al., 2018;
Zhang et al., 2018; Bapna and Firat, 2019; Meng
et al., 2021; Zheng et al., 2021; Jiang et al., 2021;
Martins et al., 2022a; Martins et al., 2022b).

One notable example is the k-Nearest Neighbor
Machine Translation model («NN-MT) (Khandel-
wal et al., 2021), known for its simplicity and very
promising results. The model first creates a token-
level datastore using parallel sentences, and then it
retrieves similar examples from the database dur-
ing inference, enhancing the generation process
via interpolation of probability distributions.

However, despite its potential, the KNN-MT
model has yet to be tested in real-world scenar-
i0s. Previous studies have primarily focused on
evaluating it using only the BLEU metric, which
correlates poorly with human judgments. In or-
der to gain a deeper understanding of when and
how ENN-MT can be effective, we conduct a
thorough analysis on various datasets which com-
prise 4 different language pairs and 3 different do-
mains, using BLEU (Papineni et al., 2002; Post,
2018), COoMET (Rei et al., 2020), and Multidi-
mensional Quality Metrics (MQM) — quality as-
sessments obtained from the identification of error
spans in translation outputs by experts (Lommel et
al., 2014; Freitag et al., 2021).

To sum up, our main contributions are:

Nurminen, Brenner, Koponen, Latomaa, Mikhailov, Schierl, Ranasinghe, Vanmassenhove, Vidal, Aranberri, Nunziatini, Escartin, Forcada,

Popovic, Scarton, Moniz (eds.)

Proceedings of the 24th Annual Conference of the European Association for Machine Translation, p. 115-124

Tampere, Finland, June 2023.
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Figure 1: Diagram of the k\NN-MT model.

* We compare using kNN-MT with directly us-
ing a pre-trained multilingual model, fine-
tuning all the model parameters, and with
adapter-based fine-tuning, reporting results in
several automatic metrics.

* We analyze the effect of the datastore size
on the quality of KNN-MT’s translations and
examine the number of entries necessary to
bootstrap and configure the datastore’s index.

* We perform MQM evaluation of the transla-
tions generated by a pre-trained model with
and without retrieval, and by a fully fine-
tuned model with and without retrieval.

2 k-Nearest Neighbor Machine
Translation

In machine translation, the goal is to take a sen-
tence or document in a source language, repre-
sented as * = [z1,...,2r], and generate a cor-
responding translation in a target language, rep-
resented as y = [y1,...,yn]. This is typi-
cally achieved using a fully-parametric sequence-
to-sequence model (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017). In these
models, the encoder takes in the source sentence
and outputs a set of hidden states. The decoder
then generates the target translation one token at a
time by attending to these hidden states and out-
putting a probability distribution over the vocab-
ulary for each step, pNmT(Yt|Y<t, ). Finally, a
search procedure, such as beam search (Reddy,
1977), is applied using these probability distribu-
tions to generate the final translation.

The k-nearest neighbor machine translation
model (KNN-MT) (Khandelwal et al., 2021), il-
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PN (Yt | y<t, )
A\ 4
Interpolation
(Yt | y<t, @)
’ Datastore ‘
Translation contexts Targets
Keys Values
[z y<i] Yi
f([=5 y<t]) Yt
J'ai été a Paris. | have been HEEEE been
J'avais été a la maison. | had | had
J'apprécie I'été. | enjoy summer 3> EEEEE summer
T
J'ai ma propre chambre. have have

Figure 2: Diagram of the kNN-MT datastore.

lustrated in Figure 1, is a retrieval-augmented
model. It combines a standard sequence-to-
sequence model as the one described above, with
an approximate nearest neighbor retrieval mecha-
nism, that allows the model to access a datastore
of examples at inference time.

2.1 Building the Datastore

Building KNN-MT’s datastore, D, requires a par-
allel corpus, S, with the desired source and tar-
get languages, process illustrated in Figure 2. The
datastore is a key-value memory, where each key is
the decoder’s output representation of the context
(source and ground-truth translation until current
step), f(x,y<;) € RY The value is the corre-
sponding target token y; € V:

D={(f(®y<t),y) V| (x,y) €S} (D)

Therefore, to construct the datastore, we simply
need to perform force-decoding on the parallel cor-
pus S and store the context vector representations
and their corresponding ground-truth target tokens.



Source

Reference

En-Tr The Company has a 65+ year track record in sup- Sirket, oral kat1 ve sivi formlarda yiiksek kaliteli
plying high quality pharmaceutical products across ilag iriinleri tedarikinde 65 yili agkin ge¢mise
oral solid and liquid forms. sahiptir.

En-Ko A South Korean detective looks into the reason for W3le] A= 271 ISk 9AE o] & ot
his counterparts visit. W 22 2} 3ot

En-De (1) When I track your order it seems like it is lost in Wenn ich lhre Bestellung schicke, scheint es, als ob
transit, [ am so sorry about this. sie beim Versandverfahren verloren gegangen ist.

Es tut mir sehr leid.

En-De (2) I have put the request in to cancel the order. Ich habe um eine Stornierung der Bestellung

gebeten.

En-Fr Sorry to hear about your domains, you can move Désolé d’apprendre ce qui s’est passé pour vos do-

them, so we can look at that together.

maines, vous pouvez les déplacer, afin que nous
puissions examiner cela ensemble.

Table 1: Datasets translation examples.

2.2 Searching for £-NN

To find the closest examples in the datastore, the
standard approach is to use a library for efficient
similarity search such as FAISS (Johnson et al.,
2019) to perform k-nearest neighbor search. To do
this, a searchable index that encapsulates the datas-
tore vectors must first be created. Since exact kNN
search is computationally expensive, an approxi-
mate kNN search is performed by segmenting the
datastore. This can be done by defining Voronoi
cells in the d-dimensional space, which are defined
by a centroid, and assigning each datastore key to
one of these cells using k-means clustering (Mac-
Queen, 1967). Then, during inference, the model
searches the index hierarchically to approximately
retrieve the set of k nearest neighbors \.

2.3 Combining kNN with the NMT model

After retrieving the k£ nearest neighbors, we need
a way to leverage this information. In kNN-MT
this is done by computing a probability distribu-
tion based on the neighbors’ values, which is then
combined with the parametric component’s distri-
bution, at each step of the generation.

The retrieval distribution, prnn(yt|ly< t, ),
is calculated wusing the neighbors’ distance
to the current decoder’s output representation,

d(f(z, y<t),-):

PENN (Y| Y<t, @) = (2
Z(kj,vj)EN ]lyt:v]' exp (_d (kja f(ma y<t)) /T)
>k wen exp (—d(kj, f(x,y<t)) /T) ’

R

where 7' is the softmax temperature, k; denotes the
key of the 5 neighbor and v; its value.

Finally, the retrieval distribution,
pPNMT(Ye|Y<t, ) and the parametric compo-
nent distribution, prNN(yt|y<t, ), are combined,
by performing interpolation, to obtain the final dis-
tribution, which is used to generate the translation
through beam search:

P(ytly<e,x) = (1 — X) pnmr (ve|y<e, ) (3)
+ A pnn (Ye|y<t, ),

where A € [0,1] is a hyperparameter that controls
the weight given to the two distributions. This in-
terpolation allows the model to benefit from the
strengths of both the parametric component and
the retrieval component.

3 Experimental Settings

In order to analyze how kKNN-MT performs in real-
world scenarios, we performed experiments using
datasets from several domains and different lan-
guage pairs (as described in §3.1). We compared
the results with that of a pre-trained multilingual
model (referred to as the base model; see §3.2),
fine-tuning all the parameters of the base model (as
discussed in §3.3), and using adapter-based fine-
tuning (as described in §3.4). The specific settings
of kNN-MT are detailed in §3.5 and the automatic
metrics employed are described in §3.6.

3.1 Datasets

In our experiments, we use 5 proprietary datasets
across 4 different language pairs: English-
Turkish  (En-Tr), English-Korean (En-Ko),
English-German (En-De (1) and En-De (2)), and
English-French (En-Fr). The En-Tr and En-Ko
datasets are composed of sentences related to press
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En-Tr En-ko En-De (1) En-De (2) En-Fr
kA T k T kA T k X T k X T
kKNN-MT 16 04 10 16 0.5 10 4 05 100 4 05 10 4 06 10
Fine-tuned (Adapters) + kENN-MT 16 0.3 10 16 03 10 4 0.3 100 8 03 10 8§ 04 10
Fine-tuned (Full) + ANN-MT 8 0.5 100 4 03 10 4 03 10 16 0.2 100 16 03 1

Table 2: Hyperparameters values: number of neighbors k, interpolation coefficient A, and retrieval softmax temperature 7'.

releases and media descriptions, respectively. The
En-De (1), En-De (2) and En-Fr datasets belong
to the customer service domain. We provide some
translation examples in Table 1 as well as the data
splits for each dataset in Table 3.

Train set Validation Set Test set
En-Tr 10,281 944 492
En-Ko 197,945 973 496
En-De (1) 10,599 1000 2000
En-De (2) 556,972 1000 2000
En-Fr 1,353,257 1000 2000

Table 3: Number of sentences in each dataset split.

3.2 Base Model

The mBARTS50 model (Tang et al., 2020) serves as
the base model for our study. Its “one-to-many”
variation is pre-trained to translate English into 49
other languages, including the languages used in
our study. The model architecture is a transformer-
based encoder-decoder, with 12 layers in the en-
coder, 12 layers in the decoder, a hidden layer di-
mension of 1024 and 16 heads, encompassing a
total of approximately 610 million parameters. It
was first trained on a denoising task using mono-
lingual data from 25 languages (mBART; (Liu et
al., 2020)), and then further pre-trained on a larger
set of monolingual data from 50 languages. It was
then fine-tuned on parallel data for all 50 languages
to adapt the model to the machine translation task.

3.3 Fine-tuning

We compare applying kANN-MT with fine-tuning
all the base model parameters. To do so, we fine-
tune the base model for each dataset, using its
training set, the Adam optimizer with a learning
rate of 3x 10~°, a batch size of 16, and gradient ac-
cumulation of 8 steps. We perform early stopping
on the validation set, with a patience of 5 check-
points, being the validation step computed every
100 steps for the En-Tr and En-De (1) datasets,
every 500 steps for the En-Ko dataset, and every
1000 steps for the En-De (2) and En-Fr datasets.
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3.4 Adapter-based Fine-tuning

We also explore the use of adapter-based fine-
tuning as a method of light-weight adaptation.
Adapters (Houlsby et al., 2019) are small resid-
ual layers inserted into the middle of a pre-trained
model and are used to adapt the model to a
new task, in this case, adapting the model to the
dataset’s domain. As it is possible to incorporate
adapters corresponding to different datasets to the
same model, this method is an efficient solution in
terms of model parameters, since we only need to
save one set of parameters for multiple datasets.
For each domain we add adapters with 12.5M pa-
rameters, approximately 2% of the total number of
parameters of the pretrained model (610M). To im-
plement it, we employ the same hyper-parameters
and training settings as previously described in
the methodology section for fine-tuning the entire
model. This allows a fair comparison of the effec-
tiveness of adapter-based fine-tuning versus tradi-
tional fine-tuning methods.

3.5 ENN-MT

For the ANN-MT we build the token-based
datastores using the training sets’ parallel sen-
tences. To set the parameters for AKNN-MT,
we conduct a grid search on the validation set
for the interpolation coefficient A, the temper-
ature 7', and the number of retrieved neigh-
bors k.  The grid search is performed on
A € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}, T €
{1,10, 100}, and k € {4,8,16}. The chosen val-
ues for each dataset are listed in Table 2. To per-
form the KNN search, we use the FAISS library
(Johnson et al., 2019) with the IVFPQ index and
set the number of centroids to 2000, the code size
to 64, and perform the search over 32 partitions.

3.6 Automatic Metrics

To evaluate the model we use two automatic met-
rics: BLEU (Papineni et al., 2002; Post, 2018) — n-
gram matching based metric — and COMET (Rei et
al., 2020) — metric based on fine-tuned pre-trained
language models.



En-De (1) En-De (2) En-Fr Average
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Base Model 42.6 0.534 38.0 0.492 49.1 0.716 43.2 0.581
KNN-MT 48.0 0.668 49.2 0.673 71.2 0.945 56.1 0.762
Fine-tuned (Adapters) 532 0.737 53.9 0.720 78.9 1.009 62.0 0.822
Fine-tuned (Full) 53.5 0.742 52.4 0.720 76.8 1.004 61.5 0.822
Fine-tuned (Adapters) + KNN-MT 53.2 0.748 54.7 0.724 78.5 1.014 62.1 0.829
Fine-tuned (Full) + kNN-MT 54.1 0.751 53.2 0.724 71.5 1.011 61.6 0.829

Table 4: BLEU and COMET scores on the English-German and English-French customer-service test sets.

En-Tr En-Ko Average
BLEU COMET BLEU COMET BLEU COMET
Base Model 24.5 0.672 7.9 0.273 16.2 0.473
kKNN-MT 31.1 0.857 19.2 0.545 25.2 0.701
Fine-tuned (Adapters) 33.8 0.912 20.9 0.574 274 0.743
Fine-tuned (Full) 35.7 0.931 23.0 0.612 29.4 0.772
Fine-tuned (Adapters) + KNN-MT 35.1 0.927 22.6 0.597 28.9 0.762
Fine-tuned (Full) + kNN-MT 36.2 0.956 24.0 0.626 30.1 0.791

Table 5: BLEU and COMET scores on the English-Turkish and English-Korean test sets.

4 Results with Automatic Metrics

We report the results of our experiments using au-
tomatic metrics in Tables 4 and 5, which we dis-
cuss in the following sections.

4.1 Does KNN-MT improve the base model’s
performance?

When comparing the performance of KNN-MT to
the base model (mBARTS50) using automatic met-
rics, we see that kENN-MT leads to significant im-
provements in all datasets. Specifically, by retriev-
ing examples from a datastore, kKNN-MT results in
an average increase of 12.9 BLEU points and 0.181
COMET points for the customer service datasets,
and 9 BLEU points and 0.228 COMET points for
the En-Tr and En-Ko datasets.

4.2 1Is kNN-MT better than fine-tuning?

When comparing with fine-tuning all the model
parameters or performing adapter-based fine-
tuning (using each dataset’s training data), KNN-
MT falls short, according to the automatic metrics.
However, MQM evaluation leads to different con-
clusions, as we will see in §5.

On average, for the customer-service datasets,
ENN-MT results in a decrease of 5.9 BLEU points
and 0.060 COMET points compared to adapter-
based fine-tuning and of 5.4 BLEU points and
0.060 COMET points compared to fine-tuning the
entire model. For the remaining datasets, KNN-
MT shows an average decrease of 2.2 BLEU points
and 0.042 COMET points compared to adapter-

based fine-tuning and of 4.2 BLEU points and
0.071 COMET points compared to full fine-tuning.
Despite these findings, applying kNN-MT can be
computationally cheaper, since it reduces the need
to fine-tune the model, and avoids having different
models (or adapters) for each dataset.

4.3 Does K NN-MT improve fine-tuned model
performance?

Applying kNN-MT to fine-tuned models results
in small improvements. On customer-service
datasets, it increases BLEU by 0.1 points and
COMET by 0.007 points compared to adapter-
based fine-tuning and fine-tuning the entire model.
On other datasets, kNN-MT shows an average
increase of 1.5 BLEU points and 0.019 COMET
points compared to adapter-based fine-tuning, and
0.7 BLEU points and 0.019 COMET points com-
pared to fine-tuning the entire model.

4.4 How does the datastore size influences the
translation quality?

We analyzed the effect of the number of entries
in the datastore on the translation quality of the
model by using the base model (mBARTS50) ex-
tended with KNN-MT on the En-De (2) and En-Fr
test sets. We calculated the COMET score for dif-
ferent datastore sizes and plotted the results in Fig-
ure 3. The results show that, for both datasets, as
the number of entries in the datastore increases, the
COMET score also improves. The rate of improve-
ment is steepest for small datastore sizes but still
present as the size increases. Additionally, we ob-
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Figure 3: COMET scores when varying the number of entries on the datastore for the En-De (2) and En-Fr datasets, respectively.
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Figure 4: COMET scores when varying the number of entries used to train the FAISS index for the En-De (1) and En-De (2)

datasets, respectively.

served that even using small datastores (250,000
and 1,000,000 entries for the En-De (2) and En-
Fr datasets) already leads to a substantial improve-
ment when compared to the base model.

4.5 How many entries are needed to train
datastore index?

We also investigated the optimal number of entries
to use for training the FAISS index for hierarchical
approximate k-nearest neighbor search. We evalu-
ated the performance of the ANN-MT model on the
En-De (1) and En-De (2) datasets by measuring the
COMET score using different numbers of entries
for training the index. The results, as shown in
Figure 4, indicate that a relatively small number of
entries is sufficient for achieving the best COMET
scores. For example, in the left plot, we can see
that using only 2,000 or 5,000 entries leads to a re-
duction in COMET score, but increasing the num-
ber of entries to 10,000 results in a similar score
as using the entire number of entries (261,669).
Similarly, in the right plot, we see that even when
using only 5,000 entries, the translation quality is

already comparable to using the entire number of
entries (1,000,000). This suggests that it is possi-
ble to create a datastore and train its index with a
limited amount of data, and then add more entries
as more data becomes available.

5 Results with MQM Assessments

To complement this analysis, we evaluated the per-
formance of the pre-trained model with and with-
out retrieval, as well as the fully fine-tuned model
with and without retrieval using Multidimensional
Quality Metrics (MQM) — quality assessments ob-
tained from the identification of error spans in
translation outputs (Lommel et al., 2014; Freitag
et al., 2021). To conduct this assessment, we had
professional linguists assessing the models’ trans-
lations for the En-Ko, En-De (2), and En-Fr test
sets. We asked the annotators to identify all er-
rors and independently label them with an error
category (accuracy, fluency, and style, each with
a specific set of subcategories) and a severity level
(neutral, minor, major, and critical).

Table 6 presents the MQM results while Fig-
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En-De (2) En-Fr En-Ko
MINOR MAJOR CRITICAL MQM MINOR MAJOR CRITICAL MQM MINOR MAJOR CRITICAL MQM
Base Model 1301 896 439  61.24 499 237 266  88.42 713 185 28 75.23
kKNN-MT 928 417 75 86.22 335 116 137 93.77 527 95 6 85.72
Fine-tuned 982 471 72 85.03 377 131 3 97.14 513 101 3 85.56
Fine-tuned + kNN-MT 800 391 62 88.03 363 118 5 96.87 466 99 5 85.97

Table 6: Error severity counts and MQM scores.
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Figure 5: Error typology and severity level breakdown for the En-De (2) test set.

ures 5, 6, and 7 provide a breakdown of the er-
ror typology distribution. The MQM assessment
indicates that both fine-tuning and kNN-MT sig-
nificantly improve translation performance when
compared to the base model, resulting in a substan-
tial increase in MQM score and a notable reduction
in critical, major, and minor errors. Interestingly,
according to the MQM scores and in contrast to the
automatic metric scores, KkNN-MT slightly outper-
forms fine-tuning in two out of the three datasets.
Moreover, in the customer service datasets (En-Fr
and En-De (2)), kNN-MT proved to be useful in
mitigating source sentence errors, which are preva-
lent in this domain and can adversely impact the
translation quality (Gongalves et al., 2022). Addi-
tionally, combining kANN-MT with fine-tuning re-
sults in marginal improvements for two datasets.
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6 Related Work

In recent years, retrieval-augmented models have
gained attention for their effectiveness in vari-
ous text generation tasks. One such model is
the k-nearest neighbor language model (ANN-
LM; (Khandelwal et al., 2019)), which combines
a parametric model with a retrieval component.
Other works have proposed methods to integrate
the retrieved tokens using gating mechanisms (Yo-
gatama et al., 2021) or cross-attention (Borgeaud
et al., 2021), and techniques to improve the ef-
ficiency of the kNN-LM by performing datastore
pruning, adaptive retrieval (He et al., 2021) and
adding pointers to the next token on the original
corpus to the datastore entries (Alon et al., 2022).
Retrieval-augmented models have also been ex-
plored in the field of machine translation. Ear-
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lier works have proposed using a search engine
to retrieve similar sentence pairs and incorporat-
ing them through shallow and deep fusion (Gu et
al., 2018) or attention mechanisms (Bapna and Fi-
rat, 2019), or retrieving n-grams to up-weight to-
ken probabilities (Zhang et al., 2018). More re-
cently, the KENN-MT model has been proposed as
an adaptation of the kNN-LM for machine trans-
lation (Khandelwal et al., 2021), and was then ex-
tended with a network that determines the num-
ber of retrieved tokens to consider (Zheng et al.,
2021). As kNN-MT can be up to two orders of
magnitude slower than a fully-parametric model,
(Meng et al., 2021) and (Wang et al., 2021) pro-
posed the Fast and Faster KNN-MT, in which the
model has a higher decoding speed by creating a
different datastore based on the source sentence
for each example. (Martins et al., 2022a) proposed
efficient ANN-MT by adapting the methods intro-
duced by (He et al., 2021) to machine translation
and introducing a retrieval distributions cache to
speed-up decoding. (Martins et al., 2022b) pro-
posed retrieving chunks of tokens instead of single
tokens. However, most of these methods have been
evaluated on a limited number of datasets and lan-
guage pairs, and using only the BLEU metric. Our
paper addresses this gap by evaluating kNN-MT
across five “real-world” datasets and four language
pairs using COMET and MQM evaluation.

7 Conclusions

In this paper, we conducted a study to assess the
performance k-Nearest Neighbor Machine Trans-
lation (kKNN-MT) in real-world scenarios. To do
so, we augmented a pre-trained multilingual model
with kKNN-MT’s retrieval component and com-
pared it against using the pre-trained model, per-
forming fine-tuning, and doing adapter-based fine-
tuning on five datasets comprising four language
pairs and three different domains. The results on
automatic metrics, COMET and BLEU, revealed
that while kKNN-MT significantly improves the
translation quality over the pre-trained language
model, it falls short when compared to fine-tuning
and adapter-based fine-tuning. Furthermore, we
observed that incorporating KNN-MT’s retrieval
component into a fine-tuned model resulted in
small improvements. We also assessed the KNN-
MT model using Multidimensional Quality Met-
rics (MQM) by having professional linguists eval-
uate the translations for the En-Ko, En-De (2), and

En-Fr test sets. The MQM scores revealed a signif-
icant improvement in the KNN-MT model over the
base model, with KNN-MT slightly outperform-
ing fine-tuning in two out of three language pairs.
Combining ANN-MT with a fine-tuned model re-
sulted in minor improvements. Additionally, we
analyzed the effect of the number of entries in the
datastore on translation quality and the number of
entries required to train the FAISS index. Our
findings suggest that having larger datastores im-
proves translation quality, with the improvement
steepness being higher when increasing the size of
a small datastore. The number of entries used to
train the FAISS index has a small impact on the
final translation quality, which is relevant when
creating a dynamic datastore that can be updated
when more data becomes available.
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Abstract

In this paper, we focus on how cur-
rent Machine Translation (MT) tools
perform on the translation of emotion-
loaded texts by evaluating outputs from
Google Translate according to a frame-
work proposed in this paper. We pro-
pose this evaluation framework based
on the Multidimensional Quality Met-
rics (MQM) and perform a detailed er-
ror analysis of the MT outputs. From
our analysis, we observe that about
50% of the MT outputs fail to pre-
serve the original emotion. After fur-
ther analysis of the errors, we find that
emotion carrying words and linguistic
phenomena such as polysemous words,
negation, abbreviation etc., are com-
mon causes for these translation errors.

1 Introduction

To express feelings and attitudes is one of lan-
guage’s major functions (Waugh, 1980). In
this digital age, people can easily share their
emotions or opinions online using social media
platforms. This results in the generation of a
large amount of emotion-loaded and opinion-
ated texts. It is important to convey the cor-
rect emotion or opinion in the text to a large
audience from different linguistic or cultural
backgrounds for cross-cultural communication.
Otherwise, misinformation or even toxic emo-
tions (Frost, 2003) can permeate cross-cultural
communication, resulting in harmful implica-
tions for the parties involved. Due to the
© 2023 The authors. This article is licensed under a

Creative Commons 4.0 licence, no derivative works, at-
tribution, CC-BY-ND.

asynchronous nature and sheer quantity of this
generated text online, it is impossible for hu-
man translators to be present in the loop and
perform accurate translations. Hence, ma-
chine translation (MT) remains the only vi-
able choice for the task of translating emotion-
loaded microblog texts (Carrera et al., 2009).

Social media texts on Sina Weibo!, the Chi-
nese microblog platform, have their unique
characteristics due to certain features of the
Chinese language. Since Chinese is a tonal
language, there are many characters which
share the exact same or very similar pronunci-
ation but with drastically different meanings.
Chinese netizens commonly use this language
phenomenon to create emotional slang by re-
placing the original character /word with a ho-
mophone character/word to avoid censorship.
Similarly, substitution with homographs is an-
other way to create slang, as Chinese is a hi-
eroglyphic language. For example, using “H
H”, which means “eye field”, and substitut-
ing them for “H [l ”, meaning “freedom” is an
example of homograph substitution (King et
al., 2013). We can observe that “H H” looks
very similar to “H H”, where a few strokes
of the two characters are omitted to refer to
the lack of freedom. Abbreviation of long ex-
pressions or transliteration of Chinese charac-
ters is another observed phenomenon in social
media texts. Such features in this new on-
line language variant pose severe challenges to
the MT of Chinese social media texts, espe-
cially the emotion-loaded and opinionated mi-
croblogs. These challenges are different from
the ones observed in translating tweets with

"https://weibo. com/
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hashtags or non-standard orthography present
in the other languages (Saadany et al., 2021b).

There are several studies and datasets which
focus on the translation of social media texts,
such as TweetMT (San Vicente et al., 2016),
the tweet corpus proposed by Mubarak et
al. (2020) and the Weibo corpus developed by
Ling et al. (2013). However, none of these fo-
cus on the translation of emotions. To the best
of our knowledge, there is no research which
focuses on the Chinese-English machine trans-
lation (C-E MT) of emotion-loaded texts. We
endeavour to make our contributions to this
area as summarised below:

e A quality assessment framework for the
machine translation of emotion-loaded
texts is proposed for evaluating the MT
quality in terms of emotion preservation.

e A detailed error analysis is performed to
find out linguistic phenomena that are
more likely to cause C-E MT errors in
terms of emotions.

« A dataset?, annotated with translation er-
rors and severity levels, is released to sup-
port tasks like error detection and quality
estimation of emotion translation.

Section 2 describes the related literature in
emotion translation and quality assessment of
MT. Our proposed framework for human eval-
uation of the MT quality of emotion-loaded
texts is described in Section 3. In Section 4,
we introduce the dataset and methodology for
quality assessment. The result of human evalu-
ation and error analysis is presented and anal-
ysed in Section 5. Section 6 discusses the con-
clusion and future plan after summarising the
whole paper.

2 Related Work

2.1 Translation of Emotions and

Emotion-Loaded Texts

The awareness of emotions in translation has
been discussed in the early stages of transla-
tion studies when the emotional reaction of
the reader was of significance in the trans-
lation of the Bible (Lehr, 2020). Nida and
Taber (1969) emphasised the importance of
transferring emotional elements from source to

*https://github.com /shenbingian/HADQAET
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target and proposed to translate the emotion-
ality of the text with a focus on the final trans-
lation product.

Many studies focused on the emotional dif-
ference or emotion translation between lan-
guages, most of which emphasised on the
translation of emotion lexica. Russell and
Sato (1995) compared 14 emotional words such
as ‘happy’ or ‘sad’ in English, Chinese and
Japanese to observe similarities and differ-
ences post-translation. Choi and Han (2008)
raised concerns about cross-cultural communi-
cation regarding the difficulty of finding the
equivalence of some emotional concepts such
as ‘shimcheong’ (a combination of empathy,
sympathy, and compassion) i