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Abstract

Reinforcement learning (RL) is frequently em-
ployed in fine-tuning large language models
(LMs) to penalize them for undesirable fea-
tures of generated sequences, such as offensive-
ness or harmfulness. In this paper, we analyze
challenges associated with treating language
models as RL policies and show how avoiding
those challenges requires moving beyond the
RL paradigm.

We start by observing that naïve maximisation
of the standard RL objective unavoidably leads
to distribution collapse: turning the LM into
a degenerate distribution. Then, we analyze
KL-regularised RL, a widely used recipe for
fine-tuning LMs, which additionally constrains
the fine-tuned LM to stay close to its original
distribution. We show that KL-regularised RL
is equivalent to variational inference: approx-
imating a Bayesian posterior which specifies
how to update a prior LM to conform with evi-
dence provided by the reward function.

Based on these observations, we sketch a
Bayesian perspective that provides a first-
principles derivation for KL-regularised RL.
The Bayesian perspective also separates the
modelling problem (defining a target distribu-
tion specifying the desired behaviour of an LM)
and the inference problem (approximating that
target distribution). Finally, it suggests that RL
is not a good formal framework for thinking
about fine-tuning LMs.

1 Introduction

Large language models (LMs), such as GPT-3
(Brown et al., 2020), tend to generate outputs that
reflect undesirable features of their training data
such as offensiveness (Gehman et al., 2020), so-
cial bias (Bender et al., 2021), harmfulness (Bai
et al., 2022) or dishonesty (Lin et al., 2021). Ad-
dressing these biases and constraining LMs to be
honest, helpful and harmless is an essential part of
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Figure 1: In the paper, we argue that aligning language
models (LMs) with human preferences is a Bayesian in-
ference problem and RL with KL penalties corresponds
to solving it via variational inference.

the problem of aligning LMs with human prefer-
ences (Askell et al., 2021). One intuitive approach
to aligning LMs is reinforcement learning (RL):
capturing human preferences as a reward function
and fine-tuning the LM to maximise the reward
expected under LM distribution. A practical recipe
for implementing this idea is RL from human feed-
back (Ziegler et al., 2019): first, a reward model
is trained to predict which of two texts a human
prefers and then a pretrained LM is fine-tuned to
maximise reward given by the reward model while
also being penalized for Kullback-Leibler (KL) di-
vergence from its initial distribution. However, de-
spite immense popularity of RL from human feed-
back (Stiennon et al., 2020; Ouyang et al., 2022;
Perez et al., 2022; Bai et al., 2022), the motivation
for KL penalty is not widely understood.

In this paper, we discuss an underappreciated
perspective on KL-regularised RL — the objec-
tive employed by RL from human feedback for
fine-tuning LMs — which explains its empirical
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success. We start with describing a problem that
arises from naively applying the standard RL ob-
jective: distribution collapse. The optimal pol-
icy under the RL objective would be a minimal-
entropy LM generating a small set of sequences
that obtain the highest reward. Then, we discuss
how KL-regularised RL avoids distribution col-
lapse due to its KL penalty. This constraint, we ar-
gue, transforms the problem from RL to Bayesian
inference: updating a prior to conform with ev-
idence provided by the reward. The Bayesian
perspective moves KL-regularised RL closer to
other divergence-minimisation-based approaches
to fine-tuning LMs (Khalifa et al., 2021) and, more
broadly, to other divergence-minimisation-based
accounts of control (Levine, 2018; Hafner et al.,
2020). These divergence minimisation approaches
naturally avoid the distribution collapse problem
because they formalize the agent as a generative
model. In contrast, RL avoids distribution collapse
only with reward functions that make it equivalent
to divergence minimisation. Therefore, we con-
clude, RL is not an adequate formal framework for
problems such as fine-tuning LMs.

2 Fine-tuning language models using
standard RL and distribution collapse

Let X be the set of sequences of tokens from some
vocabulary. An LM π can be seen as a probabil-
ity distribution over X . While most modern LMs
are autoregressive, for simplicity we will only talk
about full sequences, e.g. π(x) denotes the prob-
ability of a sequence x ∈ X . Similarly, a reward
function r assigns sequences x ∈ X with scalar
rewards. In practice, r(x) could represent human
preferences we would like π to be aligned with,
e.g. a non-offensiveness reward would assign low
values to sequences that are offensive.

If πθ is our parametric LM (with parameters θ),
the RL objective for fine-tuning it with our reward
function r is just the reward expected under LM
distribution:

JRL(θ) = Ex∼πθ
r(x). (1)

Intuitively, maximising JRL(θ) means sampling a
number of sequences from the LM and rewarding
the LM for good sequences and penalising for bad
ones (e.g. offensive sentences).

The problem with the RL objective is that it
treats the LM as a policy, not as a generative model.
While a generative model is supposed to capture

a diverse distribution of samples, a policy is sup-
posed to chose the optimal action. Since we don’t
have a notion of state for LMs, the RL objective
reduces to searching for x∗, the sequence with high-
est reward. If there is one, the optimal policy π∗ is
a degenerate, deterministic generative model that
puts entire probability mass on that single sequence:

π∗ = argmaxθJRL(θ) = δx∗ , (2)

where δx∗ is a Dirac delta distribution centred on
x∗. If there are multiple optimal sequences x∗,
probability mass would be put only on them.

This failure mode is not purely theoretical. Em-
pirically, distribution collapse induced by maximis-
ing reward manifests as decreased fluency and di-
versity of samples from the LM, which can be mea-
sured in terms of perplexity, entropy and the fre-
quency of repetitions. Degeneration of this kind
was observed in multiple language generation tasks
ranging from translation (Choshen et al., 2019),
summarisation (Paulus et al., 2018), story genera-
tion (Tambwekar et al., 2019), video captioning (Pa-
sunuru and Bansal, 2017), dialogue (Jaques et al.,
2019), to code generation (Korbak et al., 2021) and
LM debiasing (Khalifa et al., 2021).

While the distribution collapse problem is exac-
erbated by RL failure modes such as insufficient
exploration or reward hacking, it is distinct from
exploration-exploitation trade-off or reward mis-
specification. Even with perfect exploration (if we
sampled sequences uniformly from X as opposed
to sampling from πθ), the optimal policy will still
put all probability mass on x∗. Similarly, even if
r perfectly captures human preferences across the
whole space of possible sequences X and if x∗ is
truly the best thing, we still would not want the
LM to generate only x∗.1 Essentially, the distri-
bution collapse problem arises from the fact that

1There is a case to be made that in conditional generation
(e.g. translation or summarisation) one really cares only about
the single best output for a given context (e.g. summary of a
document). There are still, however, substantial benefits of
caring about distributional aspects in conditional generation.
First, when the LM produces a full distribution, we are able to
measure its uncertainty. For larger models, these uncertainty
estimates happen to be well-calibrated and allow for safer
deployment in high-stakes scenarios (Kadavath et al., 2022).
Second, MAP estimates of the output distribution (the single,
most likely output) are frequently of poor quality and can be
substantially improved upon with decoding procedures taking
into account the entire distribution, e.g. minimum Bayes risk
in translation (Eikema and Aziz, 2020) or self-consistency
chain-of-thought in question answering (Wang et al., 2022).
Dohan et al. (2022) provide a unifying perspective on multi-
step generation as latent variable modelling.
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the RL objective for LM alignment is flawed: it
does not care about preserving distributional prop-
erties of an LM and will always penalise the LM
for putting any probability mass on non-optimal
sequences until the LM collapses into a degenerate
distribution.

3 Fine-tuning language models via
KL-regularised RL

There is an obvious solution to the distribution col-
lapse problem: including preserving distributional
properties of an LM as part of the reward function.
The notion of preserving distributional properties
of an LM πθ can be formalised as penalising for
Kullback-Leibler (KL) divergence between πθ and
some other, pretrained LM π0. Typically, πθ is ini-
tialised to π0 and then fine-tuned to maximise the
following objective:

JKL-RL(θ) = Ex∼πθ
[r(x)]− βDKL(πθ, π0). (3)

The first term in the right-hand side of (3) is equiv-
alent to JRL(θ) in (1) while the second additionally
constrains πθ to stay close (in terms of KL) to π0.
Almost always some reward needs to be sacrificed
for that; the coefficient β determines the trade-off
of how much reward is needed to justify departing
from π0 by a certain distance. This objective is
commonly used as part of a popular recipe for fine-
tuning LMs termed “RL from Human Feedback”
(RLHF) and works surprisingly well in practice
(Ziegler et al., 2019; Stiennon et al., 2020; Perez
et al., 2022; Bai et al., 2022). Earlier approaches to
fine-tuning LMs employing this objective used the
called it “conservative fine-tuning” (Jaques et al.,
2017) or KL-control (Jaques et al., 2019). Here,
we focus only on the policy optimisation part of
this setup, which we term “KL-regularised RL”.

The KL-regularised RL objective (3) can easily
be reformulated as just expected reward as in (1).
We only have to define a new reward function r′θ(x)
which incorporates the original reward r and the
KL penalty, using the definition of KL divergence:

JKL-RL(θ) = Ex∼πθ
[r′θ(x)],where

r′θ(x) = r(x) + β(log π0(x)− log πθ(x)).
(4)

But is framing the maximisation of (4) as RL really
necessary? In the next section, we will develop an
alternative view of this objective – as an approx-
imate solution to a Bayesian inference problem –
and argue that it is a more appealing framing.

4 KL-regularised RL as variational
inference

Fine-tuning a pretrained LM π0 to align with pref-
erences encoded by a reward function r is essen-
tially a Bayesian inference problem. Intuitively,
Bayesian inference is the problem of updating a
distribution to conform with new evidence. In our
setting, we’re updating πθ, which is initially equal
to a prior π0 to conform with evidence provided
by the assumption that πθ is optimal in terms of r.
A reward function can be represented as a distri-
bution over X that makes high-reward sequences
more likely that low-reward sequences. A simple
way of doing that is exponentiating reward r and
renormalizing it. Then, the posterior is given by:

π∗
KL-RL(x) =

1

Z
π0(x) exp(r(x)/β), (5)

where π0 is the prior, exp(r(x)/β) is the evidence
provided by the reward function (scaled by temper-
ature β) and Z is a constant ensuring that π∗

KL-RL is
a normalised probability distribution. π∗

KL-RL rep-
resents a version of π0 updated to account for the
reward r. As we demonstrate in the Appendix, it
also happens to coincide with the optimal policy
for JKL-RL:

π∗
KL-RL = argmaxθJKL-RL(θ) (6)

Moreover, the KL-regularised RL objective can
be cast as minimising the KL divergence between
the LM πθ and this target distribution π∗

KL-RL:

JKL-RL(θ) ∝ −DKL(πθ, π
∗
KL-RL) (7)

This divergence is different from the KL penalty
term DKL(πθ, π0) in (3). Minimising this new
divergence coincides with a variational inference
(Blei et al., 2017), a well-known approach to ap-
proximating Bayesian inference. More formally,
JKL-RL(θ) is the evidence lower bound (ELBO)
on the log likelihood of πθ being optimal under
r, assuming a prior π0. Minimising this bound
makes πθ approximate the true posterior π∗

KL-RL. A
derivation of these equalities can be found in the
Appendix below.

Why is this picture insightful? It explains
where the KL penalty term βDKL(πθ, π0) in KL-
regularised RL’s original objective comes from. It
is necessary to transform the problem from RL to
minimising a divergence from a target distribution
π∗

RLKL. This in turn makes the distributional char-
acter of an LM a first-class citizen which explains
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why KL-regularised RL is able to maintain the flu-
ency and diversity of the original LM π0.

5 Separation of modelling and inference

The Bayesian perspective suggests that that align-
ing an LM with task preferences is a two-step
process. It consists of, first, defining a distri-
bution specifying the desired behaviour of your
LM, and second, solving the problem of sampling
from that posterior. These two steps roughly corre-
spond to modelling and inference in probabilistic
programming (Goodman and Stuhlmüller, 2014).
Modelling is encoding knowledge in probabilistic
terms (usually by defining a probabilistic graphical
model) while inference corresponds to using this
model to answer queries. It is hard to overstate how
useful — theoretically and practically — separat-
ing these two concerns could be. Let us discuss
these two steps, separately, below.

Modelling The LM is natively a probability dis-
tribution and autoregressive models allow for both
sampling and evaluating likelihoods. Therefore,
most modelling decisions are usually around in-
terpreting task preferences in probabilistic terms.
Turning a reward function r into a distribution by
exponentiating it ( 1

Z exp(r(x)) is the standard ap-
proach, but there are others. In some cases, task
preferences can be binary, for instance a dialogue
system might be required to never generate a curse
word (but is free to behave normally otherwise).
Then, following (Khalifa et al., 2021), one could
define π∗(x) = 1

Zπ0(x)b(x), where b(x) = 1 if x
contains a curse and 0 otherwise. Then, sequences
x containing curses have probability zero accord-
ing to π∗ (hence π∗ is non-cursing) but all other
strings keep the original probability π0(x) up to Z
(hence no degeneration).

Inference The posteriors mentioned above are
generally non-parametric: they might lie outside
the class of probability distributions representable
by parametric LMs. Designing an algorithm able
to generate samples matching this posterior distri-
bution constitute the inference problem. Broadly,
there are two families of algorithms for inference
on probabilistic graphical models: variational infer-
ence and sampling-based approaches. Variational
inference tries to find the set of weights θ that give
rise to a distribution πθ closest (in terms of KL)
to the true posterior. Sampling-based techniques,
such as MCMC (Brooks et al., 2011), do not rep-

resent the true posterior explicitly, but compute
samples from a distribution resembling the true
posterior. In the previous section, we have shown
that KL-regularised RL corresponds to inference
via variational inference. But sampling-based in-
ference algorithms also have analogues for LMs in
decoding-time methods. Decoding-time methods
boil down to simulating a posterior, aligned LM π∗

by modifying the generation procedure applied on
top of the original LM π0. The simplest example of
that is filtering (also known as rejection sampling):
if the LM generates an unacceptable sample, it
is discarded and a new sample is generated (Xu
et al., 2020). More elaborate decoding-time meth-
ods include weighted decoding (See et al., 2019)
or PPLM (Dathathri et al., 2019).

To summarise, the Bayesian view provides a
unifying perspective on fine-tuning and decoding-
time approaches to LM alignment. They mirror
variational inference and sampling-based inference
algorithms for probabilistic graphical models. But
a more fundamental advantage, to our mind, is the
separation of concerns between defining a desired
behaviour of an LM and approximating it. The
choice of posterior is independent of how it is go-
ing to be approximated. This, in turn, separates
two failure modes: misspecifying the model (i.e.
not capturing task preferences) and failing to ap-
proximate the model well enough.

6 Is RL a good framework for fine-tuning
language models?

There is a family of other divergence minimisa-
tion approaches to fine-tuning LMs which are not
equivalent to RL. Take Generative Distributional
Control (GDC) (Khalifa et al., 2021; Korbak et al.,
2022a), an approach to fine-tuning LMs that ob-
tains results comparable with KL-regularised RL
but minimises a slightly different divergence (for-
ward as opposed to reverse KL). However, JGDC(θ)
is no longer equivalent to RL (Korbak et al., 2022b)
because the expectation in forward KL divergence
is with respect to a π∗

KL-RL, not πθ. Similarly, stan-
dard supervised training objective can be seen as
minimising DKL(π

∗
MLE, πθ), a divergence from the

empirical distribution π∗
MLE provided by the train-

ing set.
One can therefore mount a double dissociation

argument in favour of the divergence minimisa-
tion perspective on KL-regularised RL: RL with-
out KL divergence minimisation leads to degenera-
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tion while KL divergence minimisation without RL
works well. Therefore, it is the KL divergence min-
imisation aspect of KL-regularised RL that seems
to account for its success, not the reward maximisa-
tion aspect. In consequence, calling it RL is just a
redescription of it that happens to be correct under
a particular choice of reward function r′θ. However,
this redescription does not provide motivation for
this choice of r′θ and does not hold for alternative
divergence minimisation approaches to fine-tuning
LMs such as GDC (Khalifa et al., 2021).

The divergence minimisation perspective on KL-
regularised RL we presented stems from a general
framework known as control as inference (Levine,
2018). Control as inference provides a formalisa-
tion of intelligent decision making as inference on
a probabilistic graphical model representing the
agent, its preferences and environmental dynamics.
While control as inference is typically considered
with graphical models parameterised to make it
equivalent to RL, it does not have to be. More-
over, there are frameworks such as active inference
(Friston et al., 2010; Buckley et al., 2017) or action
and perception as divergence minimisation (Hafner
et al., 2020) that further generalise control as in-
ference to a principle of minimising the KL diver-
gence from a probability distribution representing
desired behaviour of the agent. In contrast with RL,
they conceptualise the agent as a generative model,
not as a decision rule represented as a probability
distribution out of convenience. Therefore, they
naturally avoid the distribution collapse problem
and preserve the distributional properties of the
agent. What if RL simply isn’t an adequate formal
framework for problems such as aligning LMs?

Limitations

In the paper, we discussed some limitations of stan-
dard approaches to using RL for fine-tuning LMs
and sketched an alternative framing – based on
Bayesian inference – of RLHF, a commonly used
approach to RL fine-tuning. However, our discus-
sion itself is limited in scope as we do not cover
other shortcomings of RLHF and our own Bayesian
proposal is not devoid of weaknesses. We take ad-
vantage of this section to examine these two sets of
limitations.

Other limitations of RLHF RLHF consists of
(i) training a reward model to predict which of
two texts a human prefers and (ii) fine-tuning a pre-
trained LM to maximise reward given by the reward

model. Our discussion focused on (ii) and took (i)
as a given. But a reward model is always a proxy
for the underlying task preferences and is limited
in its ability to fit human feedback. Reward mod-
els are vulnerable to adversarial examples (Grosse
et al., 2016; Hosseini et al., 2017) and LMs opti-
mised against them can exploit these adversarial
examples (Pan et al., 2022).

Moreover, training a reward model involves
a multitude of non-technical design choices that
shape the reward function the LM is optimised
against. These design decisions involve data cura-
tion, annotation guideline preparation as well as
annotator selection and compensation. Unintended
bias can be introduced at each of these stages. For
instance, crowdsource workers might be biased
towards particular language varieties (Sap et al.,
2019). More generally, preferences elicited from
crowsource workers might not represent the pref-
erences of the general population due to selection
effects. For instance, most studies using RLHF
recruits crowdsource workers either solely from
the United States (Bai et al., 2022) or from United
States and Southeastern Asia (Stiennon et al., 2020;
Ouyang et al., 2022). Crowdsource workers fre-
quently disagree among themselves and with re-
searchers conducting the study.2 This diversity of
preferences makes the notion of a ground truth for
the reward model problematic; see (Ouyang et al.,
2022, sec. 5.3-5.3) for an extended discussion and
(Gabriel, 2020) for a philosophical examination of
the notion of ground truth human preferences.

Limitations of the Bayesian perspective We ar-
gued that RL with KL penalties and, more broadly,
aligning language models with human preferences,
can be seen as Bayesian inference and that this
perspective is a more insightful theoretical ground-
ing for RLHF than the standard RL perspective.
However, our proposal as laid down above is only
preliminary and does not account for some em-
pirical regularities found in RLHF experiments.
For instance, Bai et al. (2022) found that ex-
pected reward Ex∼πθ

r(x) is approximately linear
in

√
DKL(πθ, π0) throughout RLHF training. The

Bayesian perspective remains to be developed to
explain why such a relationship holds. Moreover,
the Bayesian perspective currently offers limited

2The annotator-annotator agreement rates are 68% in (Sti-
ennon et al., 2020) and 72% in (Ouyang et al., 2022) while the
the annotator-researcher agreement rates are 77% in (Stiennon
et al., 2020) and 63% in (Bai et al., 2022).
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guidance for design choices in RLHF experiments
such as hyperparameter selection.

Ethics statement

Our paper is a contribution to important lines of
work on social bias in large language models and on
aligning artificial intelligence with human prefer-
ences. The first line of work is primarily concerned
with risks associated with an over-representation of
certain hegemonic (e.g. sexist, racist, homophobic)
viewpoints and voices present in the training data
for large language models, which consists primar-
ily of crawled, uncurated user-generated content.
Deploying language models exhibiting social bi-
ases poses a risk of amplifying and perpetuaing
these biases (Sheng et al., 2019; Blodgett et al.,
2020; Bender et al., 2021). The second line of work
is concerned more broadly with ensuring that ob-
jectives that machine learning systems pursue are
aligned with human values (Amodei et al., 2016;
Russell, 2019). Large language models, due to their
capabilities, can be a testbed for alignment tech-
niques for future, more powerful machine learning
systems (Askell et al., 2021; Bowman, 2021). Re-
search on RLHF for fine-tuning LMs – such as
our paper – can therefore be motivated by both
narrower (social bias) and broader (alignment) con-
siderations. As a theoretical contribution, our paper
is not expected to pose significant risk. However,
RLHF is a dual use technology: it can be diverted
to malicious uses such as spreading misinformation
or generating harmful content.
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Appendix

Let’s assume we have a prior distribution over se-
quences of tokens π0(x) and a reward function r
which is (for technical reasons) always negative
(from −∞ to 0). We can also represent r as a bi-
nary random variable O (the optimality variable).
O = 1 if a certain LM π is optimal. We can define
O in terms of r as

p(O = 1|x) = exp(r(x)), (8)

which is normalised because r(x) is always nega-
tive. For instance, if r(x) is a log probability that
a sequence x is non-offensive, p(O = 1|x) is a
probability that x is non-offensive and the marginal
p(O = 1) is the average offensiveness score of
π (or a probability that a random sample from π
is non-offensive). The problem of aligning LMs
can be seen as inferring p(x|O = 1), a distribu-
tion over sequences of tokens conditioned on being
non-offensive. This can be computed by applying
Bayes rule as

p(x|O = 1) =
p(O = 1|x)p(x)

p(O = 1)
(9)

=
1

Z
a(x) exp(r(x)/β), (10)

where we chose the prior p(x) = π0(x), redefined
the marginal p(O = 1) as the normalising constant
Z, used the definition of p(O = 1|x) and chose
β = 1. p(x|O = 1) here is equivalent to π∗

KL-RL,
the optimal policy under objective in (3) (up to the
choice of β which can be absorbed into r).

p(x|O = 1) is a non-parametric distribution: it
doesn’t have to lie in the family of distributions
representable by a parametric model. In general,
we’d like to find a parametric model πθ closest
to π∗

KL-RL. This can be formalised as finding πθ
minimising DKL(πθ, π

∗
KL-RL). Here, however, we

will derive this objective from a yet more general
perspective: inferring a random latent variable x
that best explains the assumption that certain LM
π is optimal given a prior π0(x). This can be seen
as maximising the log-likelihood of O = 1 via
variational inference:

log p(O = 1) = log
∑

x

p(O = 1, x) (11)

= log
[∑

x

p(O = 1|x)π0(x)
]

(12)

= log
[∑

x

πθ(x)p(O = 1|x)π0(x)
πθ(x)

]

(13)

≥
∑

x

πθ(x) log
[
p(O = 1|x)π0(x)

πθ(x)

]

(14)

= Ex∼πθ
log

[
exp(r(x))

π0(x)

πθ(x)

]

(15)

In this derivation, we first introduce a latent vari-
able x using the sum rule of probability (11), fac-
torize a joint distribution (12), introduce a vari-
ational distribution πθ over that latent variable
(13), use Jensen’s inequality to obtain a bound
(ELBo) (14) and, finally in (15), use the definition
of p(O = 1|x). This new bound can be alterna-
tively expressed in two different ways:

Ex∼πθ
[r(x)]−DKL(πθ, a), (16)

−Ex∼πθ
log

πθ(x)

π0(x) exp(r(x))
. (17)

(16) is just KL-regularised RL objective JKL-RL(θ)
with β = 1. (17) is proportional (up to a con-
stant − logZ) to negative DKL(πθ, π

∗
KL-RL), where

π∗
KL-RL = 1

Zπ0(x) exp(r(x)) is the target distribu-
tion (or optimal policy for JKL-RL(θ)). Their equiv-
alence proves that KL-regularised reward maximi-
sation is equivalent to minimising divergence from
π∗

KL-RL.
More broadly, the derivation above shows that

JKL-RL(θ) can be derived from first principles
under a framework called control-as-inference
(Levine, 2018). The central idea here is to start
from a Bayesian inference problem: inferring a
distribution over x (an LM) that reconciles the as-
sumption that this LM is optimal (p(O = 1) = 1,
which plays we role of evidence) with a prior π0(x).
KL-regularised RL arises as we solve this inference
problem approximately via variational inference,
i.e. by introducing a variational distribution πθ
and optimising it to maximise a lower bound on
log p(O = 1).
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