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Abstract

Expressing empathy is important in everyday
conversations, and exploring how empathy
arises is crucial in automatic response genera-
tion. Most previous approaches consider only a
single factor that affects empathy. However, in
practice, empathy generation and expression is
a very complex and dynamic psychological pro-
cess. A listener needs to find out events which
cause a speaker’s emotions (emotion cause ex-
traction), project the events into some experi-
ence (knowledge extension), and express em-
pathy in the most appropriate way (communi-
cation mechanism). To this end, we propose a
novel approach, which integrates the three com-
ponents - emotion cause, knowledge graph, and
communication mechanism for empathetic re-
sponse generation. Experimental results on the
benchmark dataset demonstrate the effective-
ness of our method and show that incorporating
the key components generates more informa-
tive and empathetic responses.

1 Introduction

According to Hoffman (2000), empathy is an affec-
tive response more appropriate to another’s situa-
tion than one’s own, which is the spark of human
concern for others and the glue that makes social
life possible. It is a complex human trait and dy-
namic psychological process related to emotion and
cognition, where emotional empathy refers to vi-
carious sharing of emotion and cognitive empathy
refers to mental perspective taking (Smith, 2006).
Since 1990s, the study of empathy has been widely
applied to mental health support (Bohart and Green-
berg, 1997; Fitzpatrick et al., 2017), quality of care
improvement (Mercer and Reynolds, 2002), and
intelligent virtual assistants (Shin et al., 2019).

Expressing empathy becomes more important in
today’s dialogue systems. However, there are chal-
lenges in developing an empathetic model, such
as preparing a proper training corpus, learning to
get a comprehensive understanding of the dialogue

Figure 1: An example of empathetic response from EM-
PATHETICDIALOGUES dataset. In the teal box are
emotion and causes detected from the dialogue context.
In the orange box is extended knowledge via COMET.
The colored texts in the final reply show two types of
communication mechanisms.

context, and designing an appropriate empathy ex-
pression strategy.

Recently, there has been some work to address
these issues. A standard benchmark containing
large-scale empathetic conversations was proposed,
laying the cornerstone of empathetic dialogue re-
search (Rashkin et al., 2018). Some researchers
try to gain a deeper understanding of contextual
information. For example, Gao et al. (2021) ap-
plied an emotion cause extractor to conversations
and used the extracted causes to guide the response
generation process. Li et al. (2022) incorporated
external commonsense information to enrich the
context. During the language generation process,
some researchers focus on controlling emotions of
generated responses using emotional blending to
imitate the speakers’ emotions (Majumder et al.,
2020; Lin et al., 2019).

All the above work considers only a single aspect
that affects empathy. However, in practice, empa-
thy generation and expression is a very complex
and dynamic process. According to research work
in the field of psychological science, we believe
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that three different but related factors matter in em-
pathy: emotion (the automatic proclivity to share
emotions with others), cognition (the intersubjectiv-
ity to interpret others’ intentions and feelings while
keeping separate self and other perspectives), and
behavioral outcome (the actions to express empa-
thy) (Decety and Meyer, 2008; Heyes, 2018). Con-
sequently, we divide the entire empathy process
into five functional modules: emotion perception,
cause extraction, experience projection, dialogue
reaction, and verbal expression. Specifically, emo-
tion perception aims to sense emotions from others.
Cause extraction is to determine detailed events cor-
responding to the emotions. Experience projection
enriches the contextual information through knowl-
edge extension from the emotion causes. Dialogue
reaction decides the response strategies by learning
from the contexts. Verbal expression is the final
step in a dialogue system to generate responses in
terms of languages.

Towards this end, we propose a novel approach
IMAGINE, a.k.a. Integrating eMotion cAuses,
knowledGe, and communIcatioN mEchanisms for
empathetic dialogue generation. Using these com-
ponents improves cognitive understanding of con-
texts and enhances empathy expression in the gen-
erated responses. Our framework involves three
stages – emotion cause extraction, knowledge-
enriched communication, and response generation.
We evaluate our approach on the EMPATHETICDI-
ALOGUES dataset. Extensive experimental results
demonstrate the effectiveness of IMAGINE in au-
tomatic and human evaluations, showing that our
approach generates more informative and empa-
thetic responses (An example is shown in Figure
1 ).

Our contributions can be summarized as follows:
1) We propose a new approach IMAGINE

which integrates emotion causes, knowledge, and
communication mechanisms into a dialogue sys-
tem, demonstrating that they are significant factors
in the generation and expression of empathy.

2) We divide relationships within a knowledge
graph into several categories, including Affect, Be-
haviour, Physical, and Events. Meanwhile, we
design a three-stage process of emotion cause ex-
traction, knowledge-enriched communication, and
response generation based on the dialogue history.

3) Experimental results show that our proposed
approach significantly outperforms other compar-
ison methods, with more informative and empa-

thetic responses.

2 Related Work

2.1 Empathetic dialogue generation

Empathetic response generation is a sub-task of
emotion-aware response generation. Rashkin et al.
(2018) first proposed a standard benchmark con-
taining large-scale empathetic conversations. Some
researchers focus on understanding the dialogue
context. Li et al. (2021) and Gao et al. (2021)
identified the emotion causes of the conversation
to understand the context related to emotions bet-
ter. Sabour et al. (2021) and Li et al. (2022) lever-
aged external knowledge, including commonsense
knowledge and emotional lexical knowledge, to
explicitly understand and express emotions. Some
researchers focus on the language generation pro-
cess, for example, controlling emotions of gener-
ated responses through mixture model (Lin et al.,
2019), adversarial framework (Li et al., 2019), and
mimicking the emotions of the speaker (Majumder
et al., 2020). Sharma et al. (2020) and Zheng et al.
(2021) explore the expressive factors that elicit em-
pathy. Moreover, as big models are popular today,
Lin et al. (2020) adapted GPT2 (Radford et al.,
2019) to produce empathetic responses via transfer
learning, active learning, and negative training.

2.2 What affects empathy?

Emotion Cause The emotion cause (also
called antecedents, triggers, or stimuli) (Ellsworth
and Scherer, 2003) is a stimulus for human emo-
tions. Recognizing the emotion cause helps un-
derstand human emotions better to generate more
empathetic responses. The cause could also be
a speaker’s counterpart reacting towards an event
cared for by the speaker(inter-personal emotional
influence). For example, understanding the sen-
tence, "I like summer as it is a great time to surf,"
is not only to detect the positive emotion, HAPPY,
but also to find its cause – "it is a great time to surf."
The emotion cause recognition method (Poria et al.,
2021) is used in our work.
External Knowledge A major part of cogni-
tive empathy is understanding the situations and
feelings of others. Conversations are limited in
time and content. Therefore, using our experience
(e.g., external knowledge) is important to connect
what is explicitly mentioned and what is associated
with it. In this work, we use the ATOMIC-2020
dataset (Hwang et al., 2020) as our commonsense
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Figure 2: An overall framework of IMAGINE.

knowledge base, which is a collection of common-
sense reasoning inferences about everyday if-then
contexts. Detailed information about ATOMIC is
covered in Appendix A .

Communication Mechanism (CM) For em-
pathy generation, both conveying cognitive under-
standing (Truax and Carkhuff, 1967) and express-
ing stimulated emotions (Davis et al., 1980) are
essential. Sharma et al. (2020) presented a com-
putational approach to understanding empathy ex-
pressed in textual, asynchronous conversations and
addressing both emotional and cognitive aspects of
empathy. They developed components of an empa-
thetic expression, consisting of three communica-
tion mechanisms - Emotional Reaction (express-
ing emotions such as warmth, compassion, and con-
cern), Interpretation (conveying an understanding
of feelings and experiences), and Exploration (im-
proving understanding of the seeker by exploring
the feelings and experiences).

2.3 Task Formulation

We formulate the task of empathetic response gen-
eration as follows. Given dialogue transcripts S
= {s0, s1, ..., sk} with k utterances, we firstly de-
tect the emotion and extract emotion causes C =
{c0, c1, ..., cu} which are a subset of S. Each ut-
terance ci = {ci,1, ci,2, ..., ci,li} is a sequence of
tokens, where li denotes the length. Then, our
goal is to generate an empathetic response Y =
{y1,y2, ...,yn} given the sequence C, with the as-
sistance of external knowledge and communication
mechanisms.

3 Approach

Our proposed model, IMAGINE, is built upon the
standard Transformer (Vaswani et al., 2017) and its
overview is illustrated in Figure 2 . It has three
stages consisting of five functional modules: emo-
tion cause extraction (emotion perception, cause
extraction), knowledge-enriched communication
(dialogue reaction, experience projection), and re-
sponse generation (verbal expression). Emotion
perception predicts emotions of the input. Cause
extraction extracts causes related to the emotions
from the input. Experience projection acquires
knowledge based on the causes mentioned above.
Dialogue reaction decides the response strategies
by learning from the contexts. Verbal expression
integrates the information obtained from the above
four modules and generates appropriate responses.

3.1 Emotion Cause Extraction

Given a dialogue context consisting of k utterances
with the context emotion, the goal of emotion cause
extraction is to identify which utterances in the
dialogue context contain the emotion cause. We
leverage an existing model which is trained on an
open-domain emotional dialogue dataset named
RECCON, for identifying emotion causes at utter-
ance level in conversations (Poria et al., 2021). Gao
et al. (2021) has verified the model’s validity, and
we follow the method in the first stage of our work.

3.1.1 Emotion Perception
It is a classification problem aiming at predicting
the emotion ε within the dialogue context. Given
the dialogue context S = {s0, s1, ..., sk} as the in-
put, the tokens are then fed into a transformer-based
encoder to obtain a sequence of contextualized rep-
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resentations HS . Hence, we pass HS through a
linear layer followed by a softmax operation to
produce the emotion category distribution:

êemo = WeHS [0]+be, (1)

P̂(ε|S) = softmax(êemo), (2)

where We and be are trainable parameters. During
training, we employ negative log-likelihood as the
emotion perception loss:

Lemo = −log(P̂(ε = e∗|S)), (3)

where e∗ denotes the emotion label, and ε denotes
the predicted output. Emotional vectors êemo will
be fed into the decoder as a crucial emotional signal
to guide the empathetic response generation.

3.1.2 Cause Extraction
Given the dialogue context S and its emotion ε,
we extract emotion causes C = {c0, c1, ..., cu} ac-
cording to the approach in Poria et al. (2021). The
causes C are a subset of S and will be used as
the input of the next two stages. Following previ-
ous work (Lin et al., 2019; Majumder et al., 2020;
Sabour et al., 2021), we concatenate the utterances
indicating emotion causes and prepend a special
token [CLS] to obtain the cause input C = [CLS]
+ c0 + c1 + ... + cu. Each utterance ci contains a se-
quence of tokens: ci = {ci,1, ci,2, ..., ci,li}, where
li is the length of ci.

Each token is represented from three aspects:
its semantic meaning, its position in the sequence,
and who said it. Suppose that the token ID and
the position ID of ci,j are wci,j ∈ [0, |V|) (V is
the vocabulary) and pci,j , respectively. Addition-
ally, in multi-turn dialogue settings, distinguishing
a listener from a speaker is helpful. So we in-
corporate the dialogue state embedding into our
input sequence. Specifically, each utterance ci is
labeled with its corresponding role sci ∈ {0, 1} (0
for speaker and 1 for listener).

The token ci,j is represented by summing up
the word embedding, positional embedding, and
dialogue state embedding:

Eci,j = EW [wci,j ] +EP [pci,j ] +ES [sci ], (4)

where EW ∈ R|V |×d, EP ∈ R1024×d, ES ∈ R2×d

denote the embedding matrices of word, position,
and state. [·] denotes the indexing operation, and
d is the dimensionality of embeddings. We feed

the entire sequence of token embeddings EC orga-
nized by Eci,j to a cause encoder to produce the
contextual representation:

HC = Cause-Encoder(EC), (5)

where HC ∈ R|L|×d, L is the length of the se-
quence, and d is the hidden size of the cause en-
coder.

Next, we use the hidden state at the [CLS] of the
cause encoder, hc = HC [0], to predict CM strate-
gies in the following stage.

3.2 Knowledge - Enriched Communication
3.2.1 Dialogue Reaction
CM Prediction While no empathetic conver-
sation corpora provide annotations of diverse em-
pathy factors, there are abundant publicly available
resources that make automatic annotation feasible.
We use two corpora annotated with CM provided
by Sharma et al. (2020). There are three commu-
nication factors named Emotion Reaction (ER),
Interpretation (IP), and Exploration (EX). Each
mechanism has different degrees. In our work, we
merge "weak" and "strong" into "yes" and differen-
tiate each mechanism’s degree into two types: "no"
and "yes".

We pass hc through a linear layer followed by
a softmax operation to produce the CM category
distribution:

ecmi = Wcmihc+bcmi, cmi ∈ {er, ip, ex}
(6)

P̂cmi = softmax(ei), (7)

The negative log-likelihood loss is calculated:

Lcm =
∑

cmi∈{er,ip,ex}
−log(P̂cmi), (8)

Finally, eer, eip, eex are summed up, weighted by
their predicted degree, as a crucial CM signal:

êcm = P̂er · eer + P̂ip · eip + P̂ex · eex, (9)

3.2.2 Experience Projection
Knowledge Acquisition We extend the
contexts by selecting from the knowledge graph
those that are speaker-centered and contribute
positively to the speaker. Finally, we split
ATOMIC-2020 (Hwang et al., 2020) into four
types: Affect, Behaviour, Physical, and Events,
containing 11 relations [r1, r2, ..., r11] in total
(See Figure 3 ). In Affect, we select one
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relation: ([XReact]). In Behaviour, we select
five relations: ([XIntent], [XNeed], [XWant],
[XEffect], [XAttr]). In Physical, we select
three relations: ([HasProperty], [CapableOf ],
[Desires]). In Events, we select two relations:
([Causes], [XReason]). For an input sequence
C, we use COMET (Lewis et al., 2019) to
generate five commonsense-inferred entities [sri1 ,
sri2 , sri3 , sri4 , sri5 ] for each relation ri. Then we
concatenate all entities generated from relations
belonging to the same relation type. Through
this way, we obtain four commonsense sequences
for each input sequence: SAffect, SBehav,
SPhys, and SEvents. For example, SEvents =

[s
[Causes]
1 , ..., s

[Causes]
5 , s

[XReasons]
1 , ..., s

[XReasons]
5 ].

We prepend [CLS] to SBehav, SPhys, and SEvents.
SAffect does not change because the entities for
Affect are usually independent emotion words
(e.g., happy, surprise, sad) rather than semantically
coherent sequences. The commonsense sequences
are fed to the knowledge encoder:

HKABPE
= Knowledge-Encoder(SKABPE

),
(10)

where KABPE ∈
{Affect, Behav, Phys,Events}.
HKABPE

∈R|LKABPE
|×d, with |LKABPE

| be-
ing lengths of the commonsense entity sequences.

Next, we use hidden representations of the first
position to represent sequences SBehav, SPhys, and
SEvents, respectively:

hKBPE
= HKBPE

[0] (11)

where KBPE ∈ {Behav, Phys,Events}.
Moreover, we use the mean of hidden represen-

tations to represent SAffect:

hAffect = Average(HAffect)|axis=0, (12)

Knowledge Refinement In order to refine the
emotion causes by knowledge information, we con-
catenate each commonsense relation representation
hKABPE

to the cause representation HC at the to-
ken level. In contrast to sequence-level concatena-
tion, token-level concatenation enables us to fuse
knowledge within each word in the cause sequence:

UKABPE
= HC ⊕ hKABPE

, (13)

where UAffect,UBehav,UPhys,UEvents∈R|L|×2d.

Figure 3: The four modules of the Knowledge Graph.

Accordingly, we encode the fused representa-
tions and obtain knowledge-refined cause represen-
tations for each relation type:

Href
KABPE

= Refine-Encoder(UKABPE
),
(14)

where Href
KAffect

,Href
KBehav

,Href
KPhys

,Href
KEvents

∈R|L|×d.
We believe that relations of the Affect type mat-

ter to emotional empathy, meanwhile relations of
Behavior, Physical, and Events types matter to
cognitive empathy. Hence, we re-represent the
knowledge-refined cause representations as below:

H̃KBPE
= Href

KBPE
⊕Href

Affect, (15)

where H̃Behav,H̃Phys,H̃Events∈R|L|×2d.
Next, to highlight important features within the

knowledge-refined cause representation, we assign
importance scores to H̃KBPE

, followed by a Multi-
Layer Perception (MLP) layer with ReLU:

ĤKBPE
= MLP(σ(H̃KBPE

) · H̃KBPE
) (16)

where ĤBehav,ĤPhys,ĤEvents∈R|L|×d, and · de-
notes element-wise multiplication.

Finally, ĤBehav,ĤPhys,ĤEvents and êcm
(Equation 9 ), are fed into the decoder:

ĤC = ĤBehav ⊕ ĤPhys ⊕ ĤEvents ⊕ êcm (17)

where ĤC∈R|L|×4d.

3.3 Response Generation
Verbal Expression To acquire emotion depen-
dencies, we concatenate the intermediate emotional
signal êemo with word embeddings of the expected
response and get [y∗

0,y∗
1, y∗

2, ..., y∗
n]. Here y∗

0

is êemo. We then feed the embeddings into the
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response decoder. Our decoder is built based on
Transformer layers:

P(yt|y<t,C) = Decoder(Ey<t , ĤC), (18)

where Ey<t denotes embeddings of tokens that
have been generated. Note that the cross attention
to the encoder outputs is modified to the knowledge-
refined cause representation ĤC , which has fused
the information from both the cause and the
commonsense-inferred entities.

3.4 Model Training
We use negative log-likelihood of the ground-truth
words y∗

t as the generation loss function:

Lgen = −
n∑

t=1

logP(yt = y∗
t |y0, ...,yt−1,C)

(19)
Dialogue generation models sometimes gener-

ate repetitive phrases or generic responses, such
as "That is a good idea" and "Oh, it is bad." To
solve this problem, we apply the Response Diver-
sity Loss in our model, implementing Frequency-
Aware Cross-Entropy (FACE) (Jiang et al., 2019)
as an additional loss to penalize high-frequency
tokens using a weighting scheme. Hence, during
training, prior to receiving a new batch of samples,
we derive the frequency-based weight wi for each
vocabulary token vi in the training corpus:

wi = a× FQi + 1, (20)

FQi =
freq(vi)∑V
j=1 freq(vj)

, (21)

where V denotes the vocabulary size, a =
−(max0<j<V (FQj))

−1 is the frequency slope
and 1 is added as the bias so that wi falls into
[0,1]. Lastly, we normalize wi to have mean of 1,
as done by (Jiang et al., 2019). The diversity loss
would then be calculated as below:

Ldiv = −
n∑

t

V∑

i

wiδ(vi = y∗
t )logP(vi|y<t,C)

(22)
where vi is a candidate token in the vocabulary and
δ is the indicator function, which equals to 1 if and
only if vi = y∗

t and 0 otherwise. All parameters
of our proposed model are trained and optimized
based on the weighted sum of four losses:

L = λ1Lgen+λ2Lemo+λ3Lcm+λ4Ldiv, (23)

where λ1, λ2, λ3 and λ4 are hyper-parameters that
we use to control the influence of the four losses.
Loss weights λ1, λ2, λ3 and λ4 are set to 1, 1, 1,
and 1.5, respectively.

4 Experimental Settings

4.1 Dataset

We conduct our experiments on the EMPATHETIC-
DIALOGUES dataset (Rashkin et al., 2018). It is a
large-scale multi-turn empathetic dialogue dataset
containing 25k dialogue sessions, each having 3-5
rounds of dialogue. There are 32 different distri-
butions of emotion labels. Following the original
dataset definitions, we use the 8:1:1 train/valid/test
subset split.

4.2 Comparison Methods

The following models are selected as baselines:
1) Transformer (Vaswani et al., 2017): A Trans-
former based encoder-decoder model.
2) Multi-TRS (Rashkin et al., 2018): An extension
of the Transformer model that has an additional
unit for emotion prediction.
3) MoEL (Lin et al., 2019): Another extension
of Transformer model which softly combines the
response representations from different decoders.
4) MIME (Majumder et al., 2020): Another exten-
sion of transformer model which considers emotion
clustering and emotional mimicry. Besides, it also
introduces sampling stochasticity during training.
5) EMPDG (Li et al., 2019): A multi-resolution
empathetic adversarial chatbot which exploits
multi-resolution emotions and user feedback.
6) CEM (Sabour et al., 2021): A Transformer
encoder-decoder model that integrates affection
and cognition into commonsense knowledge.
7) KEMP (Li et al., 2022): A contextual-enhanced
empathetic dialogue generator that leverages multi-
type external knowledge and emotional signal dis-
tilling for response generation.

More implementation details of our IMAGINE
model is covered in Appendix B .

4.3 Evaluation metrics

Automatic Evaluations Four automatic met-
rics are applied for evaluation:
1) PPL (Serban et al., 2015): The perplexity (PPL)
represents the model’s confidence in its set of can-
didate responses. A low PPL value means high
confidence. PPL can be used to evaluate the gen-
eral quality of the generated responses.
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Models PPL BLEU-2 Dinstinct-1 Distinct-2 ACC Fluency Relevance Empathy

Transformer 37.62 1.32 0.45 2.02 - 3.04 2.49 2.50
Multi-TRS 37.75 1.31 0.41 1.67 33.57 2.99 2.51 2.59
MoEL 36.93 1.32 0.44 2.10 30.62 3.28 2.57 2.63
MIME 37.09 1.34 0.47 1.90 31.36 3.14 2.52 2.59
EmpDG 37.29 1.30 0.46 2.02 30.41 3.07 2.69 2.72
CEM 36.11 1.35 0.66 2.99 39.11 3.40 2.96 2.94
KEMP 36.89 1.34 0.55 2.29 39.31 3.27 2.68 2.68
IMAGINE 35.10 1.37 0.76 3.40 39.60 3.58 3.09 3.09

Table 1: Results of automatic and human evaluations.

Models PPL BLEU-2 Dinstinct-1 Distinct-2 ACC

IMAGINE 35.10 1.37 0.76 3.40 39.60
W/O cause 35.43 1.35 0.64 2.57 38.60
W/O cm 35.58 1.34 0.63 2.84 38.88
W/O know 35.0 1.36 0.64 2.92 38.50
W/O DIV 34.50 1.37 0.68 2.94 39.10

Table 2: Ablation study.

Models Win% Lose% Tie%

Ours VS Transformer 49.18 16.83 33.99
Ours VS Multi-TRS 42.34 17.66 40.00
Ours VS MOEL 45.49 27.42 27.09
Ours VS MIME 47.34 19.33 33.33
Ours VS EmpDG 47.18 19.60 33.22
Ours VS CEM 42.96 25.80 31.24
Ours VS KEMP 41.90 23.98 34.12

Table 3: Results of human A/B test.

2) BLEU-2 (Papineni et al., 2002): It calculates
the co-occurrence frequency of n-grams between
candidates and references.
3) Distinct-1 and Distinct-2 (Li et al., 2015): It is
the proportion of the distinct unigrams/bigrams in
all the generated results to indicate the diversity.
4) ACC: To evaluate the model at the emotional
level, we adopt Emotion Accuracy (ACC) as the
agreement between the ground truth emotion labels
and the predicted emotion labels.
Human Ratings Evaluating open-domain di-
alogue systems is challenging due to the lack of
reliable automatic evaluation metrics (Gao et al.,
2021b). Thus, human judgments are necessary. We
randomly sample 100 dialogues and generate cor-
responding responses from different models. Five
well-educated native English speakers who work in

literary writing, psychology, and teaching are hired
to give each response a rating score from three as-
pects – Fluency, Relevance, and Empathy. Each
aspect is on a scale from 1 to 5, where 1, 2, 3, 4, and
5 indicate unacceptable, not good, moderate, good,
and excellent performance, respectively. In order
to keep the anonymization of compared methods,
the order of responses in each dialogue is shuffled.
Human A/B Test In the human A/B test, to
make sure fairness, we re-sample another 700 di-
alogues (100 for each comparison between our
model and a baseline model) and form them into
A-vs-B types, where A is our model and B is
a baseline model. Another three annotators are
asked to choose a better response. They can
also choose a Tie if they think both are good or
bad. All human evaluation tasks are conducted on
https://www.fanhantech.com.

5 Experimental Results

5.1 Automatic Evaluation Results

Table 1 reports the evaluation results on auto-
matic metrics. Our model IMAGINE achieves the
lowest perplexity, indicating that the overall qual-
ity of our generated responses is higher than the
baselines. Moreover, the results of Distinct-1 and
Distinct-2 show that our model generates much
more diverse responses than baselines. As for the
emotion accuracy, we can see that our model is
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Figure 4: Case study of the generated responses by IMAGINE and the baselines.

valid for recognizing emotions.

5.2 Human Evaluation Results

Table 1 illustrates that IMAGINE obtains the
best performance on Fluency, Relevance, and Em-
pathy scores. It proves that integrating emotion
causes, knowledge, and communication mecha-
nisms can generate more informative and empa-
thetic responses. In addition, from the results of
the human A/B test in Table 3 , we see that re-
sponses from IMAGINE are more often preferable
to humans than the responses from other baseline
models, which strongly supports the advantages of
our approach.

5.3 Ablation Analysis

We conducted ablation studies to verify the effec-
tiveness of each component in our model. Table
2 reports the results.

1) W/O cause: Looking at Table 2 , we can see
that removing the emotion cause extraction part
leads to a significant performance decrease of both
models in terms of response generation and emo-
tion recognition. The original dialogue history may
contain emotion-irrelevant information, which re-
sults in a shift of focus. The result indicates that
emotion cause extraction plays an important role
in strengthening the understanding of users’ emo-
tions, which improves the generation of empathetic
responses.
2) W/O CM: By removing the communication

mechanism from the response generation module,
as shown in Table 2 , we can see that our model is
less empathetic and also has a tendency to decline
in emotion prediction. The communication mech-
anism is a state of understanding how people feel;
without it, our model will have fewer communica-
tion skills.
3) W/O know: When we remove the knowledge
module, as shown in Table 2 , we can see that the
quality and diversity of the model’s responses are
declined, as a lack of knowledge leads to weaker
ability to enrich emotion causes. It also affects the
closeness and relevance of the generated responses
to the context.
4) W/O DIV: If the diversity loss is removed, we
can see from Table 2 that Distinct-1 is reduced
from 0.76 to 0.68, and Distinct-2 is reduced from
3.4 to 2.94. It indicates the effectiveness of this
loss in generating more diverse responses.

5.4 Case Study

We also present some examples of responses gener-
ated by our models and baseline models in Figure
4 . Compared with baseline models, our model

generates responses closer to the "gold" responses.
As shown in the first example, our model can rea-
son deeply about the emotion cause and get a good
result in terms of knowledge acquisition. In the sec-
ond example, from the dialogue context, we learn
that the user "studied hard and got good grades."
Through the knowledge base, we infer richer in-
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formation like "prepared, successful, and pass the
exam." Finally, our model congratulates and praises
the user and poses an unasked question to him/her.

6 Conclusion

This paper presents a novel framework that inte-
grates emotion causes, knowledge graphs, and com-
munication mechanisms for empathetic response
generation. The emotion cause detection allows us
to determine what events stimulate a user’s emotion.
We can understand the events with the knowledge
graph, enriching the contextual information. Fur-
thermore, the communication mechanisms enhance
our ability to let users feel that we are tryining to
feel what they feel. Automatic and human evalua-
tions show that our proposed approach can generate
more informative and empathetic responses.

Limitations

The first challenge is a common problem current
chatbots face, e.g., traceability of models and rea-
soning ability. Second, for mental health support
chatbots, each person is analyzed on a case-by-case
basis. Each person with a mental health impairment
needs a personalized approach to communication,
which is not overly generalized. Finally, the short-
comings of the knowledge graph - size, breadth,
diversity, and rationality - directly determine the
quality of the causes’ associative expansion and
also affect the closeness and relevance of the gen-
erated responses to the context.

Ethics Statement

The empathetic-dialogues dataset (Rashkin et al.,
2018) used in our paper protects the privacy of real
users. Furthermore, we make sure anonymization
in the human evaluation process. We believe our
research work meets the ethics of EMNLP.
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A knowledge Graph

In this work, we use the ATOMIC-2020 dataset
(Hwang et al., 2020) as our commonsense knowl-
edge base, which is a collection of common-
sense reasoning inferences about everyday if-
then contexts. They fall into three natural cat-
egories based on their meaning: physical-entity,
social-interaction, and event-centered common-
sense, which are 22 relationships under three cat-
egories ( e.g., XReact, XWant, XReason, Capa-
bleOf) (See Fig 5 ). Based on the given con-
texts, we select those that are speaker-centered
and contribute positively to the speaker. We ne-
glect (oReact,oEffect,oWant, Etc.) in our work. Fi-
nally, We have extracted 11 important relationships
from ATOMIC. These relationships are divided
into four modules, which are Physical (CapableOf,
HasProperty, Desires), Affect (XReact), Behaviour
(XEffect, XNeed, XWant, XIntent, XAttr), Events
(Causes, XReason). As shown in Fig 6 .

B Implementation Details

Our models are implemented using Pytorch, a
modularized, versatile, and extensible toolkit for
machine learning and text generation tasks. We
used 300-dimensional word embedding and 300-
dimensional hidden size everywhere in our exper-
iments. The word embedding is initialized using
pre-trained Glove vectors. We initialize the trans-
former encoder with one layer and two attention
heads for the task. We train our models using Adam
optimization with a learning rate of 0.0001. Early
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Figure 5: Example generations of models on relations from ATOMIC-2020 dataset (Hwang et al., 2020).

Figure 6: Our knowledge graph, which uses 11 relationships and is inspired by psychology, is divided into four
modules: Physical, Affect, Behaviour, Events
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stopping is applied during training. We use a batch
size of 1 and a maximum of 30 decoding steps
during testing and inference.
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