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Abstract

Models for Visual Question Answering (VQA)
often rely on the spurious correlations, i.e.,
the language priors, that appear in the biased
samples of training set, which make them brit-
tle against the out-of-distribution (OOD) test
data. Recent methods have achieved promis-
ing progress in overcoming this problem by re-
ducing the impact of biased samples on model
training. However, these models reveal a
trade-off that the improvements on OOD data
severely sacrifice the performance on the in-
distribution (ID) data (which is dominated by
the biased samples). Therefore, we propose a
novel contrastive learning approach, MMBS1,
for building robust VQA models by Making
the Most of Biased Samples. Specifically, we
construct positive samples for contrastive learn-
ing by eliminating the information related to
spurious correlation from the original training
samples and explore several strategies to use
the constructed positive samples for training.
Instead of undermining the importance of bi-
ased samples in model training, our approach
precisely exploits the biased samples for unbi-
ased information that contributes to reasoning.
The proposed method is compatible with vari-
ous VQA backbones. We validate our contribu-
tions by achieving competitive performance on
the OOD dataset VQA-CP v2 while preserving
robust performance on the ID dataset VQA v2.

1 Introduction

Visual Question Answering (VQA), aiming to an-
swer a question about the given image, is a multi-
modal task that involves the intersection between
vision and language. Despite the remarkable per-
formance on many VQA datasets such as VQA
v2 (Goyal et al., 2017), recent studies (Antol et al.,
2015; Kafle and Kanan, 2017; Agrawal et al., 2016)

∗Corresponding author: Zheng Lin.
1Joint work with Pattern Recognition Center, WeChat

AI, Tencent Inc, China. The code is available at https:
//github.com/PhoebusSi/MMBS.

Figure 1: Qualitative comparison of our method
LMH+MMBS against the plain method UpDn and the
debiasing method LMH. In VQA-CP v2 (upper), the
question types (‘Does the’ and ‘How many’) bias UpDn
to the most common answers (see Fig. 5 for the an-
swer distribution). LMH alleviates the language priors
for yesno questions (upper left), while it fails on the
more difficult non-yesno questions (upper right). Be-
sides, LMH damages the ID performance, giving an
uncommon answer to the common sample from VQA
v2 (lower left). MMBS improves the OOD performance
while maintains the ID performance (lower right).

find that the VQA systems rely heavily on the lan-
guage priors. They are caused by the strong spuri-
ous correlation between certain question category
and answers, e.g., the frequent co-occurrence of
the question category ‘what sport’ and the answer
‘tennis’ (Selvaraju et al., 2019). As a result, the
VQA models, which are over-reliant on the lan-
guage priors of training set, fail to generalize to the
OOD dataset, VQA-CP v2 (Agrawal et al., 2018).

Recently, several methods achieved remarkable
progress in overcoming this language prior prob-
lem. They assign less importance to the biased sam-
ples that can be correctly classified with the spu-
rious correlation. However, most of them achieve
gains on VQA-CP v2 at the cost of degrading the
model’s ID performance on the VQA v2 dataset
(see Tab. 2). This trade-off suggests that the suc-
cess of these methods merely comes from biasing
the models to other directions, rather than endow-
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ing them with the reasoning capability and robust-
ness to language priors. Ideally, a robust VQA
system should maintain its performance on the ID
dataset while overcoming the language priors, as
shown in Fig. 1.

We think the essence of both language-prior and
trade-off problems is about the learning of biased
samples. The former is caused by over-reliance on
biased information from biased samples, while the
latter is caused by undermining the importance of
biased samples. Therefore, if a model can precisely
exploit the biased samples for intrinsic information
of the given task, both problems can be alleviated
simultaneously.

Motivated by this, we propose a self-supervised
contrastive learning method (MMBS) for building
robust VQA systems by Make the Most of Biased
Samples. Firstly, in view of the characteristics of
the spurious correlations, we construct two kinds
of positive samples for the questions of training
samples to exploit the unbiased information, and
then design four strategies to use the constructed
positive samples. Next, we propose a novel algo-
rithm to distinguish between biased and unbiased
samples, so as to treat them differently. On this
basis, we introduce an auxiliary contrastive train-
ing objective, which helps the model learn a more
general representation with ameliorated language
priors by narrowing the distance between original
samples and positive samples in the cross-modality
joint embedding space.

To summarize, our contributions are as follow:
i) We propose a novel contrastive learning method,
which effectively addresses the language prior prob-
lem and the ID-OOD performance trade-off in
VQA, by making the most of biased samples. ii)
We propose an algorithm to distinguish between
biased and unbiased samples and treat them dif-
ferently in contrastive learning. iii) Experimental
results demonstrate that our method is compatible
with various VQA backbones and achieve compet-
itive performance on the language-bias sensitive
VQA-CP v2 dataset while preserving the original
accuracy on the in-distribution VQA v2 dataset.

2 Related Work

Overcoming Language Priors in VQA. Re-
cently, the language biases in VQA datasets raised
the attention of many researchers (Goyal et al.,
2017; Antol et al., 2015; Agrawal et al., 2016; Ker-
vadec et al., 2021). In response to this problem,

numerous methods are proposed to debias the VQA
models. The most effective ones of them can be
roughly divided into two categories: Ensemble-
based methods (Grand and Belinkov, 2019; Be-
linkov et al., 2019; Cadene et al., 2019; Clark et al.,
2019; Mahabadi and Henderson, 2019; Niu et al.,
2021) introduce a biased model, which is designed
to focus on the spurious features, to assist the train-
ing of the main model. For example, the recent
method LPF (Liang et al., 2021) leverages the out-
put distribution of the bias model to down-weight
the biased sample when computing the VQA loss.
However, these methods neglect the useful informa-
tion that helps reasoning in biased samples. Data-
balancing methods (Zhu et al., 2020; Liang et al.,
2020) balance the training priors. For example,
CSS and Mutant (Chen et al., 2020; Gokhale et al.,
2020) generate samples by masking the critical
object in images and word in questions and by se-
mantic image mutations respectively. These meth-
ods usually outperform other debiasing methods
with a large margin on VQA-CP v2, because they
bypass the challenge of the imbalanced settings
(Liang et al., 2021; Niu et al., 2021) by explicitly
balancing the answers’ distribution at the training
stage. Though our method constructs the positive
questions, it does not change the training answers’
distribution. We also extend our method to the
data-balancing method SAR (Si et al., 2021).

Contrastive Learning in VQA. Recently, the
contrastive learning is well-developed in unsuper-
vised learning (Oord et al., 2018; He et al., 2020)
while its application in VQA is still in initial stage.
CL (Liang et al., 2020) is the first work to employ
contrastive learning to improve VQA model’s ro-
bustness. Its motivation is to learn a better relation-
ship among the input sample and the factual and
counterfactual sample which are generated by CSS.
However, CL brings weak OOD performance gain
and ID performance drop based on CSS. In con-
trast, our method attributes the key point of solving
language bias to the positive-sample designs for
excluding the spurious correlations. It is model-
agnostic and can boost models’ OOD performance
significantly while retain the ID performance.

3 Method

Fig. 2 shows MMBS’s overview, which includes:
1) A backbone VQA model; 2) A positive sample
construction module; 3) An unbiased sample selec-
tion module; 4) A contrastive learning objective.

6651



Figure 2: Overview of our method. The question cate-
gory words are highlighted in yellow. The orange circle
and blue triangle denote the cross-modality representa-
tions of the original sample and positive sample. The
other samples in the same batch are the negative sam-
ples, which are denoted by the gray circles.

3.1 Backbone VQA Model
The backbone VQA model is a free choice in
MMBS. The widely-used backbone models (Ander-
son et al., 2018; Mahabadi and Henderson, 2019)
treat VQA as a multi-class multi-label classifica-
tion task. Concretely, given a VQA dataset D =
{Ii, Qi, Ai}Ni=1 with N samples, where Ii ∈ I ,
Qi ∈ Q are the image and question of the ith sam-
ple. Ai ∈ A is the ground-truth answer which is
usually in multi-label form, and tgti is the corre-
sponding target score of each label. Most exist-
ing VQA models consist of four parts: the ques-
tion encoder eq(·), the image encoder ev(·), the
fusion function F (·) and the classifier clf(·). For
example, LXMERT (Tan and Bansal, 2019) en-
codes image and caption text separately to extract
visual features Vi = ev(Ii), and textual features
Ti = eq(Qi) , in two streams. Next, the higher co-
attentional transformer layers fuse the two features
and project them into the cross-modality joint em-
bedding space, i.e., F (Vi, Ti). Finally, the classifier
outputs the answer prediction:

P (A|Ii, Qi) = clf(F (Vi, Ti)) (1)

The training objective minimizes the multi-label
soft loss, Lvqa , which can be formalized as follow:

Lvqa =− 1

N

∑N

i=1
[tgti · log(δ(F (Vi, Ti)))

+ (1− tgti) · log(1− δ(F (Vi, Ti)))]
(2)

where δ denotes the sigmoid function.

3.2 Positive Sample Construction

To make the most of the unbiased information con-
tained in the biased sample, we first construct the
positive samples which exclude the biased informa-
tion. According to the construction of VQA-CP v2,
there is a shift between the training and test set in
terms of answer distribution under the same ques-
tion category (Teney et al., 2020; Agrawal et al.,
2018). As a result, the frequency co-occurrence of
certain answer and question category in the train-
ing set produces a major source of bias. Therefore,
we construct two kinds of positive questions (Q+

i )
by corrupting the question category information of
each input question (Qi):

Shuffling: We randomly shuffle the words in
the question sentence so that the question category
words are mixed with the other words. This in-
creases the difficulty of building the correlations
between question category and answer.

Removal: We remove the question category
words from the question sentence. It eliminates
the co-occurrence of answer and question category
words completely.

We notice that the construction process could
induce some unexpected noise in the positive sam-
ples. To tackle this concern, we present more pos-
itive samples in Appendix A.1 and discuss their
quality and potential impact on our method.

We also propose four strategies for using the
constructed positive questions during training:

S: Use the Shuffling positive questions.
R: Use the Removal positive questions.
B: Use both positive questions.
SR: Use the Shuffling positive questions for non-

yesno (i.e., ‘Num’ and ‘Other’) questions and use
the Removal ones for yesno (i.e., ‘Y/N’) questions.

The SR strategy deals with yesno and non-yesno
questions in different ways based on their char-
acteristics. Intuitively, the question categories of
the yesno questions usually contain little informa-
tion, as they are mostly comprised of ‘is’, ‘do’, etc.
By contrast, the question categories of non-yesno
questions tend to contain more information which
is important for answering correctly. Therefore,
Removal is not applied to non-yesno questions.

Adopting any strategy above, we can ob-
tain the positive samples {Ii, Q+

i }Bi=1 for in-
put samples{Ii, Qi}Bi=1. The negative samples
{Ib, Qb}Bb=1, where b ̸= i, are the other samples in
the same batch. B is the batch size of training.
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Figure 3: The answers’ distributions of the yesno ques-
tions with “Does the” (left) and non-yesno questions
with “How many” (right). The former has a low entropy
and the latter has a high entropy.

3.3 Unbiased Sample Selection
Following Kervadec et al. (2021), we define unbi-
ased (or OOD) samples as the infrequent samples
in the answers’ distribution of each question cate-
gory in training set. Therefore, the unbiased sam-
ples are unlikely to contain spurious correlations,
which makes them beneficial to OOD robustness.
Moreover, some unexpected noise in the positive
samples may negatively impact the learning of un-
biased samples. For the above reasons, we do not
construct positive samples for the unbiased sam-
ples. To filter out the unbiased samples, we propose
a novel algorithm, consisting of three steps: (i) cal-
culating the answer frequencies; (ii) determining
the unbiased answer proportion; (iii) selecting the
unbiased samples.

Answer frequencies. We denote the ith sample’s
question category, ground truth answer and soft
target score as Ci ∈ C (65 categories in total), Ai

and tgti respectively. We measure how frequent
the answer Aj appears in the question category Ck

as follows:

Freq
Aj

Ck
=

∑MCk

i=1
(tgti) , if Ai = Aj (3)

where MCk
is the number of all samples with the

same category Ck. If a sample has a multi-label an-
swer Ai, we count each answer’s score respectively.
A lower value of Freq

Aj

Ck
indicates weaker spurious

correlations between Aj and Ck, and thus the cor-
responding samples are deemed as unbiased. We
introduce a hyper-parameter β ∈

[
0, 1

]
to control

the proportion of the unbiased samples.

Entropy-based correction factor. The answers’
distributions of |C| question categories are differ-
ent. Empirically, when the entropy of an answers’
distribution is lower, more answers will be associ-
ated with only a few samples, so that the unbiased
answer proportion should be higher. Otherwise, it
should be lower. An illustration is given in Fig. 3.

Therefore, we propose an entropy-based correction
factor WCk

to dynamically adjust the β for each
category Ck:

WCk
= 1− sigmoid(ECk

−mean(E))

ECk
= Entropy(FreqCk

/SUM)
(4)

where E represents {ECk
}|C|
k=1 and SUM repre-

sents the sum of FreqCk
. When the entropy is

lower, the WCk
is closer to 1, and otherwise WCk

is closer to 0. Finally, we obtain the unbiased an-
swer proportion PCk

= WCk
∗ β.

Selecting unbiased samples. For each question
category Ck, we obtain a list of unbiased answers
which rank in the last PCk

in FreqCk
. Then we

determine the samples whose ground truth (highest-
score) answer belongs to this list as unbiased sam-
ples. The unbiased sample statistics are shown in
Appendix A.2. If a sample is biased, we adopt the
strategy mentioned in previous section to construct
its positive sample. If it is unbiased, we use the
original sample as its positive sample.

3.4 Contrastive Learning Objective
Given input sample (Ii, Qi), we have the pos-
itive sample (Ii, Q+

i ) and the negative samples
(Ib, Qb)Bb=1 in the same batch, where b ̸= i. Af-
ter feeding them into the VQA model, we obtain
the cross-modality fusion representation of the in-
put sample, F (Vi, Ti), positive sample F (Vi, T

+
i )

and negative samples F (Vb, Tb)
B
b=1, which are de-

noted as the anchor a, the positive p and the nega-
tive nb

B
b=1 respectively. Following (Robinson et al.,

2020; Liang et al., 2020), we use the cosine similar-
ity, cos(·), as the scoring function. The contrastive
loss (Oord et al., 2018) is formulated as:

Lcl = E
a,p,nb

[
− log

ecos(a,p)

ecos(a,p) +
∑B

b=1 e
cos(a,nb)

]

(5)
By minimizing it, the models can focus on the

unbiased information from the positive question.
The overall loss of MMBS is formulated as: L =
Lvqa + α ∗ Lcl , where α is the weight of Lcl.

3.5 Inference Process
After training with this contrastive loss, the models
can handle the question in original, Shuffling and
Removal forms (Sec. 3.2) in the inference phase.2

2The models without MMBS performs much worse when
the question is in Shuffling or Removal forms.
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VQA-CP v2 test VQA v2 val
Methods All Y/N Num Other Gap ↑ All Y/N Num Other Gap ↑

Pl
ai

n
M

od
el

s BAN 37.03 41.55 12.43 41.4 +10.60 63.9 81.42 45.18 55.54 +0.88+MMBS 47.63 66.18 16.36 46.49 64.78 82.03 46.48 56.51
UpDn 39.74 42.27 11.93 46.05 +8.45 63.48 81.18 42.14 55.66 +0.36+MMBS 48.19 65.00 14.05 48.75 63.84 79.61 44.23 57.05
LXM 47.19 50.55 24.06 51.77 +9.32 71.01 88.24 54.07 62.39 -0.16+MMBS 56.51 79.83 28.70 51.92 70.85 88.25 55.67 61.63

D
eb

ia
si

ng
M

od
el

s

LMH 52.01 72.58 31.12 46.97 +4.43 56.35 65.06 37.63 54.69 +5.52+MMBS 56.44 76.00 43.77 49.67 61.87 75.86 40.34 56.95
SAR 66.73 86.00 62.34 57.84 +1.66 69.22 87.46 51.20 60.12 +0.21+MMBS 68.39 87.30 65.21 59.36 69.43 87.39 50.37 60.82

Table 1: Results on VQA-CP v2 test and VQA-v2 validation set based on different VQA models. ‘Gap’ denotes the
accuracy improvement of MMBS over the base model.

We find that in the framework of MMBS, Shuf-
fling can further boost OOD performance for the
plain models (e.g., UpDn and LXM), while origi-
nal performs the best for debiasing methods (e.g.,
LMH, SAR). Therefore, we shuffle the question
words at test time when applying MMBS to the
plain models. Detailed discussions are shown in
the next section.

4 Experiments

4.1 Datasets and Evaluation

We evaluate our models on the OOD VQA-CP v2
(Agrawal et al., 2018) and the ID VQA v2 (Goyal
et al., 2017) with the standard evaluation metric
(Antol et al., 2015) based on accuracy. Previous
works (Chen et al., 2020; Si et al., 2021; Gokhale
et al., 2020) think that a minor accuracy differ-
ence between VQA v2 and VQA-CP v2 shows the
real robustness. This encourages the researchers
to work in the direction that increases the accuracy
on VQA-CP v2 by sacrificing the performance on
VQA v2. However, a robust VQA model should
perform well on both datasets. Therefore, we com-
pute the relative accuracy between each method
and its base method on both ID and OOD datasets.

4.2 Baselines and Implementations

Our approach is general to various VQA back-
bones. In the work, we evaluate MMBS based
on three plain VQA models (which are not spe-
cially designed for overcoming language priors):
BAN (Kim et al., 2018), UpDn (Anderson et al.,
2018) and LXMERT (LXM), and two debiasing
methods: LMH (Clark et al., 2019) and SAR (Si
et al., 2021).

We also compare our methods with the state-of-
the-art methods on VQA-CP v2, which contain:
1) The ensemble-based methods: AdvReg. (Ra-

makrishnan et al., 2018), GRL (Grand and Be-
linkov, 2019), RUBi (Cadene et al., 2019), DLR
(Jing et al., 2020), LMH (Clark et al., 2019), CF-
VQA (Niu et al., 2021), LPF (Liang et al., 2021).
2) The data-balancing methods: SSL (Zhu et al.,
2020), CSS (Chen et al., 2020), CL (Liang et al.,
2020), SAR (Si et al., 2021) and MUTANT (best-
performance method) (Gokhale et al., 2020).

Following the baselines above, the checkpoint
for evaluation is also picked by the test set directly
in the work due to the lack of val set (Teney et al.,
2020; Agrawal et al., 2018). In this paper, we
mainly report the results with SR strategy. We also
conduct experiments to analyze the impact of differ-
ent positive-sample construction strategies. More
implementation details are shown in Appendix B.

4.3 Main Results

Performance based on different VQA models.
As can be seen in Tab. 1, regardless of the backbone
architectures and debiasing methods, our proposed
method consistently outperforms the baselines with
comfortable margin (1.66 ~10.60 absolute accuracy
improvement) on OOD VQA-CP v2. For the plain
models, MMBS particularly improves the perfor-
mance on yesno questions (22.73 ~29.28) because
the simple yesno questions are more susceptible
to the influence of language bias (Zhu et al., 2020;
Liang et al., 2021). In terms of the ID dataset, the
baselines’ performance can also be also improved
or at least maintained with MMBS, while most de-
biasing methods sacrifice the accuracy on VQA v2
(see the corresponding column in Tab. 2). Espe-
cially, compared with LMH, LMH+MMBS gets
a prominent accuracy boost of 5.52 on VQA v2.
This is because making the most of biased samples
can effectively alleviate the ID performance decline
resulting from the debiasing method LMH.

6654



VQA-CP v2 test VQA v2 val Gaps
Methods All Y/N Num Other Gap ↑ All Gap ↑ Sum
UpDn 39.74 42.27 11.93 46.05 63.48
+AdvReg. 41.17 65.49 15.48 35.48 +1.43 62.75 -0.73 +0.70
+GRL 42.33 59.74 14.78 40.76 +2.59 51.92 -11.56 -9.00
+RUBi 44.23 67.05 17.48 39.61 +4.49 61.16 -2.32 +2.17
+DLR 48.87 70.99 18.72 45.57 +9.13 57.96 -5.52 +3.61
+LMH 52.01 72.58 31.12 46.97 +12.27 56.35 -7.13 +5.14
+CF-VQA 53.55 91.15 13.03 44.97 +13.81 63.54 +0.06 +13.87
+LPF 55.34 88.61 23.78 46.57 +15.60 55.01 -8.47 +7.13

+LMH+MMBS 56.44 76.00 43.77 49.67 +16.70 61.87 -1.61 +15.09
LXM 47.19 50.55 24.06 51.77 71.01
+LMH* 63.34 78.28 65.95 54.79 +16.15 69.49 -1.52 +14.63
+U-SAR* 64.98 81.89 59.65 57.61 +17.79 69.17 -1.84 +15.95

+LMH+MMBS 65.70 81.70 61.24 58.54 +18.51 70.29 -0.72 +17.79
+U-SAR+MMBS 68.01 86.55 64.69 59.21 +20.82 69.29 -1.72 +19.10

Table 2: Comparison with the state-of-the-art ensemble-
based methods. ‘Gap’ denotes the accuracy improve-
ment of the debiasing methods over their base models.
* denotes the strong baselines introduced in this paper.

Comparison with ensemble-based SOTAs. The
upper part of Tab. 2 compares the methods based
on the UpDn backbone. We can observe that: 1)
Compared with UpDn, most ensemble-based meth-
ods suffer from obviously performance drops on
VQA v2. This phenomenon attests to the trade-
off between the ability to overcome the language
priors and the ability to memorize the knowledge
of in-distribution samples. Though to a certain
extent, CF-VQA alleviates the phenomenon, its ac-
curacy on VQA-CP v2 is prominently lower than
our method. 2) LMH+MMBS performs the best
on VQA-CP v2 and rivals the accuracy of the back-
bone on VQA v2, clearly surpassing the previous
best in ‘GapsSum’. This shows that the trade-
off problem is effectively alleviated by the pro-
pose method. 3) The previous methods, e.g., CF-
VQA and LPF, achieve high accuracy on the simple
yesno question where the language biases are more
likely to exist. By contrast, our method substan-
tially improves over them on the more challenging
non-yesno question, while achieves relatively good
performance on the yesno questions.

The methods in the lower part of Tab. 2 are based
on the LXM backbone. LXM is a cross-modal pre-
trained model that has been used as backbone in
some data-balancing method to further boost per-
formance (Si et al., 2021; Gokhale et al., 2020).
However, the performance of LXM with ensemble-
based methods has not been fully investigated. We
introduce two strong baselines based on LXM, i.e.,
LXM+LMH and U-SAR. LXM+LMH represents
the LXM model trained with LMH method, which
is widely used as an essential component by ex-
isting methods (Chen et al., 2020; Liang et al.,
2020; Si et al., 2021). U-SAR is a variants of the
two-stage method SAR, with the data-balancing

VQA-CP v2 test VQA v2 val Gaps
Methods Base All Gap↑ All Gap↑ Sum
SSL UpDn 57.59 +17.85 63.73 +0.25 +18.10
LMH+CCS UpDn 58.95 +19.21 59.91 -3.57 +15.64
LMH+CCS+CL UpDn 59.18 +19.44 57.29 -6.19 +13.25
SAR LXM 66.73 +19.54 69.22 -1.79 +17.75
MUTANT LXM 69.52 +22.33 70.24 -0.77 +21.56
SAR+MMBS LXM 68.39 +21.20 69.43 -1.58 +19.62

Table 3: Comparison with the state-of-the-art data-
balancing methods.

Method Strategy All Y/N Num Other
UpDn Base* 41.06 43.13 13.71 47.48

S 42.26 45.11 13.99 48.52
R 42.83 57.74 12.25 43.41
B 44.37 51.58 14.94 48.67
SR 48.19 65.00 14.05 48.75

LXM Base* 47.19 50.55 24.06 51.77
S 47.90 52.71 26.48 51.26
R 52.11 63.65 27.89 52.72
B 50.76 61.33 29.21 51.14
SR 56.51 79.83 28.70 51.92

LMH Base* 52.58 67.10 36.59 49.36
S 55.89 76.67 37.64 50.01
R 55.87 76.79 34.96 50.65
B 55.62 76.47 35.71 50.15
SR 56.44 76.00 43.77 49.67

Table 4: Results of different positive-sample construc-
tion strategies on the VQA-CP v2 test set.

method SSL replaced with UpDn. We can see that
MMBS further promotes the two strong baselines,
enhancing the OOD performance and relieving the
ID performance drop. Moreover, the LXM-based
MMBS is even competitive with the data-balancing
methods that generate samples.

Comparison with data-balancing SOTAs. We
can derive three observations from the results in
Tab. 3: 1) Most data-balancing methods also hurt
the ID performance, which is the result of a mis-
match between the balanced training priors and the
biased test priors. 2) Another existing contrastive
learning model LMH+CSS+CL (Liang et al., 2020),
which can only be applied to the data-balancing
method LMH+CSS, achieves a mild improvement
of 0.23 on VQA-CP v2 and sacrifices the accu-
racy on VQA v2. Compared with it, our MMBS
is general to various VQA backbones and does not
hurt the ID performance. 3) Our SAR+MMBS
brings encouraging performance gain over the
strong baseline SAR and achieves competitive per-
formance against the best-performing method MU-
TANT without utilizing extra manual annotations
to construct extensive data.

4.4 Analysis on Individual Components and
Hyper-Parameters

The effect of positive sample construction strate-
gies. As shown in Tab. 4, we conduct experi-
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Figure 4: Results of UpDn+MMBS and LMH+MMBS
on VQA-CP v2 with varying of β (upper) and α (lower).

ments based on three widely used methods, i.e., the
plain model UpDn, pre-trained model LXM and
UpDn with the debiasing method LMH. From the
results UpDn and LXM, we can observe that: 1)
Both S and R strategies gain performance boost.
This shows that the designs of both of them are
sound and effective, and their benefits outweigh the
potential semantic noise. 2) R strategy has a bet-
ter overall performance than S because the model
may still learn the superficial correlation between
answer and the question category even when the
category words are shuffled with the other words
of the sentence. 3) SR strategy performs the best
among the four strategies, especially on the yesno
questions. The reason is that R strategy signifi-
cantly outperforms S strategy on the yesno ques-
tions while the S strategy performs well on the
non-yesno questions. SR strategy combines the
advantages of both strategies. 4) B strategy is ob-
viously inferior to the SR strategy. This is because
learning from two positive samples for each sample
simultaneously may confuse the model.

From the results of LMH, we find that all the
strategies considerably boost the performance, in-
cluding the S strategy. This is because the unbiased
information contained in biased samples, which is
useful for reasoning, is also being neglected by the
ensemble-based methods. Through the contrastive
learning objective, both Shuffling and Removal
positive samples give them another channel to learn
and utilize the useful information. SR strategy still
has the best performance among all the strategies.

The effect of β and α. As shown in the upper
plots of Fig. 4, the accuracy rises first and then de-
creases as β increases. There is a trade-off behind
this phenomenon: when β is too small, the method
will construct the positive samples for the unbiased

Method All Y/N Num Other
UpDn 41.06 43.13 13.71 47.48
UpDn+SR 47.62 62.72 13.92 48.95
UpDn+SR+β 48.00 64.06 14.10 48.89
UpDn+SR+β+WC 48.19 65.00 14.05 48.75
LXM 47.19 50.55 24.06 51.77
LXM+SR 55.26 77.13 27.33 51.47
LXM+SR+β 55.66 78.64 28.10 51.17
LXM+SR+β+WC 56.51 79.83 28.70 51.92
LMH 52.01 72.58 31.12 46.97
LMH+SR 55.41 76.50 37.20 49.35
LMH+SR+β 56.15 77.46 37.90 50.00
LMH+SR+β+WC 56.44 76.00 43.77 49.67

Table 5: Results of ablation study on VQA-CP v2.

Method Form S R B SR
UpDn original 42.20 42.38 42.69 42.80

Shuffling 42.26 33.68 44.37 48.19
Removal 26.15 42.83 43.19 22.67

LMH original 55.89 55.87 55.62 56.44
Shuffling 54.14 39.93 52.3 52.64
Removal 31.46 49.4 47.48 32.43

Table 6: Results of UpDn+MMBS and LMH+MMBS
with three question forms at test on VQA-CP v2. S, R,
B and SR are the four strategies to use positive sample
in training.

samples, which may affect the learning of robust
information from the unbiased samples. When β
is too large, the method will not construct positive
samples for some biased samples. This demeans
the profits from the contrastive learning objective.

The lower plots of Fig. 4 also revel a trade-
off with the increase of α. This suggests that
the contrastive learning objective is beneficial
but paying too much attention to this objective
hurts the final performance. we also find that the
best α for LMH+MMBS is smaller than that for
UpDn+MMBS. This is because LMH itself already
has certain ability to alleviate language priors.

Ablation study. Tab. 5 investigates the effect
of each component of MMBS, i.e., the backbone
models, the positive-sample construction module
(SR) and the unbiased sample selection module (β)
which includes the correction factor WC . We find
that: 1) +SR constantly outperforms the base mod-
els significantly, especially on the yesno questions
where the language biases tend to exist. We also
conduct experiments for further validation of the
effectiveness of the SR strategy in Appendix C. 2)
Comparing the performance of +SR and +SR+β,
we can find that the unbiased sample selection mod-
ule always benefits MMBS. This attests to the in-
tuition that we do not need to construct the pos-
itive samples for the unbiased samples. 3) The
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Figure 5: The answer distribution of the training sets,
test sets, and three methods.

correction factor WC consistently has a positive
impact on the model performance. This further
demonstrates that dynamically adjusting the unbi-
ased sample proportion for each question category
is a useful strategy.

4.5 Performance with different question
forms at test.

After contrastive learning using the positive ques-
tions, the models trained with MMBS can also take
the positive question as input in the inference phase,
while normal models cannot. For more comprehen-
sive analysis, we report the results of three question
forms here. Because the annotation of question cat-
egories should not be available at test, the Removal
questions are not used in the other experiments.
From the results shown in Tab. 6, we find that: 1)
For UpDn with the S, B and SR strategies (which
involve the Shuffling positive sample), the perfor-
mance is the best when the test question is in the
Shuffling form. This shows that the Shuffling form
input question, when used in the test stage, may
further prevent the model from relying on the su-
perficial correlations. 2) For LMH, when the input
question during test is original, the models always
perform the best. This is probably because the
LMH+MMBS method is robust enough and will
not be easily biased by the superficial correlations
in the original questions. On the in-distribution set-
tings, all the models obtain the best performance on
VQA v2 when the test questions are in the original
form.

4.6 Qualitative Analysis on the Effectiveness
of MBSS

Figure 6: (a) The attention graph of the last cross-
attention of cross-modality encoder, which averages
the attention of all visual regions to each question word.
(b) The attention graph of the last self-attention layer of
the language encoder.

Visualization of the answers’ distribution. To
better understand the effectiveness of MBSS, we
compare the distribution of the predicted an-
swers by three methods, i.e., UpDn, LMH and
LMH+MMBS, and the real answer distribution of
the training and test sets of VQA-CP v2 (left) and
VQA v2 (right) in Fig. 5. From the left part, we
find that UpDn tends to output the most frequent
answers of training set, which demonstrates that it
overfits the training priors. In comparison, LMH
alleviates the domination of the biased answers and
MBSS further mitigates the impact training priors,
resulting in answer distributions that are closet to
the test set. This explains why MBSS generalizes
the best to the OOD VQA-CP v2 test set.

From the upper right plot, we see that for the
relatively easy yesno question ‘Is the’, when the
training set is balanced in answer distribution, the
three methods can also produce balanced answer
distributions similar to the test set. For the question
type ‘How many’ on VQA v2, the most frequent
answers in the training set, i.e., ‘2’ and ‘1’, account
for much smaller proportion in the answer distribu-
tion of LMH. This is because that LMH diminishes
the training signal from biased samples. Conse-
quently, LMH performs worse on VQA v2 where
most questions can be correctly answered by the
common answers. By contrast, our method exploits
the biased samples using contrastive learning rather
than undermining them like LMH, and thus MBSS
recovers the answers’ distribution of ID test set.

Attention graph of question words. The atten-
tion graphs of LXM+LMH+MMBS, LXM+LMH
and LXM are shown in Fig 6. As highlighted in
the red boxes, we focus on the question category
words, i.e., ‘What color is’ or ‘color’, and the sub-
ject words, i.e., ‘flip flop’. We observe that: 1) For
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the cross-modality encoder (a) that extracts higher
level representation for classification, LXM pays
low attention to the subject words and high atten-
tion to the question category words, which is the
source of language bias. In comparison, the intro-
duction of LMH alleviates this problem and MBSS
further shifts the attention to the subject words,
which contain less biased information and have
more specific visual groundings. 2) For the ques-
tion encoder (b) that summarizes information from
the textual domain, LXM+LMH pays less attention
to the question category word ‘color’, as compared
with the other two methods. We conjecture that
this can partly explain the poor performance of
LMH on the ID dataset that contains strong lan-
guage priors, because the word ‘color’ is essential
to the meaning of the question. LXM pays more
attention to ‘color’ but relatively less attention to
the subject words. By contrast, our method assigns
sufficient attention to both the question category
and subject words, which can produces a better
question representation.

5 Conclusion

In this paper, we propose a novel contrastive learn-
ing method to ameliorate the ID-OOD trade-off
problem faced by most existing debaising methods
for VQA models. Instead of undermining the im-
portance of the biased samples, our method makes
the most of them via contrastive learning. Con-
sidering the characteristics of language priors, we
design the positive samples which eliminate the
biased information. On this basis, we investigate
several strategies to use the positive samples and
design an algorithm that treat biased and unbiased
samples differently in contrastive learning. The pro-
posal is compatible with multiple backbone models
and debiasing methods, and achieves competitive
performance on OOD VQA-CP v2 while maintain-
ing the performance on ID VQA v2. Meanwhile,
our approach provides insights on how to avert
the trade-off between in-distribution and out-of-
distribution performance.

6 Limitations

Teney et al. point out some practical issues in
the use of VQA-CP v2, which has become the
current OOD benchmark in VQA. These issues
widely exist in the most of recent works (e.g.,
RUBi(Cadene et al., 2019), LMH(Clark et al.,
2019), GRL(Grand and Belinkov, 2019), DLR(Jing

et al., 2020), AdvReg.(Ramakrishnan et al., 2018),
SAR(Si et al., 2021), SCR(Wu and Mooney, 2019),
MUTANT(Gokhale et al., 2020), etc.). Our method
also suffers from them. Specifically, 1) our method
is designed for the known biases (i.e., language
priors) and the known construction of OOD splits
of VQA-CP v2 (i.e., the inverse distribution shifts
under the same question category between test and
training sets). Therefore, once the bias is unknown,
or the training and test sets do not conform to such
a construction procedure, MMBS may fail to gen-
eralize. 2) Following all the baselines listed in Sec.
4.2, the checkpoint for evaluation is also picked by
the test set directly in the work due to the lack of
the val set of VQA-CP v2. Admittedly, an OOD
benchmark with a val set is needed to standardize
the OOD testing for VQA community.
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A More Details of the Proposed Method

A.1 Discussion about the positive samples.

We give more examples of Shuffling and Removal
positive questions in Tab. 7. We can see that the in-
tention of the ‘Y/N’ questions can still be inferred
from the Removal questions. By contrast, the in-
tention of the Removal questions for non-‘Y/N’
questions is ambiguous. This attests to the rational-
ity of the proposed SR strategy, which treats ‘Y/N’
and non-‘Y/N’ questions differently.

Although the positive samples could cause some
confusion/ambiguity, it may not impact our method
too much, because: 1) In MBSS, the model only
makes prediction on the original samples during
training, and thus it does not directly associate the
answers with the positive questions, which are only
used in contrastive learning. 2) Shuffling could
change the original questions to a conflicting mean-
ings, e.g., , ‘How many bananas are next to the
apples?’ and ‘How many apples are next to the ba-
nanas?’. However, such special cases are very rare.
For a question whose length is 73, the probability
of shuffling to a conflicting meaning is 1

7! . In most
cases, the Shuffling just eliminates the sequential
information of the questions, but basically conveys
the same meaning. 3) In terms of Removal, we
only construct this kind of positive questions for
the ‘Y/N’ questions, which does not change the
intended meaning of the original question as dis-
cussed in the above paragraph. 4) Additionally,
the proposed unbiased sample selection module
prevents the potential noise in positive questions
from affecting the unbiased samples, which are
beneficial to OOD generalization.

A.2 Unbiased sample statistics.

To further investigate how the unbiased-sample-
selection algorithm treats different types of ques-
tions , i.e. ‘Y/N’, ‘Num’ and ‘Other’ questions,
we roughly divide all the question categories into
the three types according their semantics, and
then do some statistical analysis about the ques-
tion types and the corresponding unbiased sam-
ples. We set the initial unbiased answer proportion

3The average length of questions in the training set is 7.14

(hyper-parameter) β = 20%. As the detail statis-
tics shown in Tab. 8, we find that: 1) the ‘Other’
questions have the largest answer space while the
‘Num’ questions have the smallest one. Counter-
intuitively, the ‘Y/N’ questions also have a rela-
tively large number of candidate answers. For ex-
ample, ‘red’ is also annotated as the answer to the
question ‘Is this flower red?’. However, this rarely
happens compared with the answer ‘yes’. 2) The
proposed correction factor WC is close to 1 when
the question is a ‘Y/N’ question and the WC is
close to 0 when the question is a ‘Other’ question.
Correspondingly, the adjusted unbiased answer pro-
portion PC is close to β for ‘Y/N’ questions while
it is relative smaller for ‘Other’ questions. This is
consistent with the phenomenon that most ground
truth of ‘Y/N’ questions concentrate on much fewer
answers (e.g., ‘Yes’) than that of ‘Other’ questions.

B More Experimental Setups

B.1 Implementation details.

Following existing works, we use the Faster R-
CNN (Ren et al., 2015) to extract fixed 36 objects
feature embeddings with 2048 dimensions for each
image. All the questions are trimmed or padded
to 14 words. For the UpDn backbone model, we
apply a single-layer GRU to encode the word em-
beddings( initialized with Glove (Pennington et al.,
2014)) of the question into a 1280-dimensional
question embeddings. We follow (Zhu et al., 2020)
and adopt a multi-step learning rate that halves ev-
ery 5 epochs after 10 epochs. For the LXMERT
backbone, we use the tokenizer of LXMERT to seg-
ment each input question into words. We adopt the
cosine learning rate decay following the warmup in
the first 5 epochs. We train the models with batch
size of 128. The detailed hyper-parameter settings
of our methods in the main results are shown in Tab.
9. The details of computational experiments of our
method based on UpDn and LXMERT are shown
in Tab. 10. We keep the same random seed during
training and testing for Shuffling method. As the
change of seed has little effect on each method,
following most of previous works, we also report
the results with a single run.

B.2 Positive sample construction for SAR.

SAR (Si et al., 2021) is a two-stage framework: it
first selects the most relevant candidate answers,
and then combines the question and each candi-
date answer to produce dense captions, and finally,
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Type original Shuffle Removal
Y/N Is this indoors or outside ? Is ? indoors outside or this indoors or outside ?
Y/N Are these buildings new ? new these buildings ? Are buildings new ?
Y/N Does this person eat healthily ? this ? person healthily eat Does person eat healthily ?
Num How many people will be dining ? ? be many people How will dining people will be dining ?
Num How many small zebra are there ? there zebra small ? are How many small zebra are there ?
Other What is the smallest kid holding ? the is smallest What ? holding kid smallest kid holding ?
Other Who is on the screen ? Who screen ? the is on on the screen ?
Other What are people wearing on their heads ? their are wearing ? on people heads What people wearing on their heads ?
Other What animals are walking on the road ? road the are on What animals ? walking animals are walking on the road ?
Other What color is the food inside the bowl ? the color the food What is bowl inside ? food inside the bowl ?

Table 7: More examples of two types of positive samples.

Type n(Cqtype) m(ZC) m(WC)% m(PC)% m(Zunb
C )

Y/N 28 209 92.60 18.52 39
Num 4 156 56.84 11.37 19
Other 33 836 3.76 0.75 10

Table 8: The statistics about the question type (e.g.,
Y/N) and the corresponding unbiased samples with the
setting of β=20%. For all question categories (e.g, what
color) in each question type, (Cqtype) represents the
number of them; m(ZC) represents the mean value of
their label space size; m(WC ) represents the mean value
of their correction factors which are used to dynamically
adjust β; m(PC ) represents the mean value of their unbi-
ased answer proportions after being adjusted; m(Zunb

C )
represents the mean value of their unbiased answer num-
ber.

Model Epo α β Lr N ′

BAN+Ours 25 1 0.5 1e-4 -
UpDn+Ours 60 1 0.6 1e-4 -
LXM+Ours 40 1 0.2 5e-6/5e-5 -
LMH+Ours 60 0.18 0.5 1e-4 -
LXM+LMH+Ours 40 0.18 0.2 5e-6/5e-5 -
U-SAR+Ours 10 0.18 0.5 1e-5 2,20 / 2,2
SAR+Ours 10 0.18 0.5 1e-5 2,20/ 2,20

Table 9: The detailed hyper-parameter settings of our
methods. The Epo represents the number of training
epochs. Lr represents the initial learning rate of Adam
optimizer on VQA-CP v2/VQA v2. N ′, is a SAR-
specific hyper-parameter, represents the number of can-
didate answers for yesno, non-yesno questions during
test on VQA-CP v2/VQA v2.

reranks the dense captions based on visual entail-
ment. They design two ways to construct the dense
captions, including 1) replacing the question cate-
gory prefix with answer and 2) concatenating ques-
tion and answer directly. To apply MMBS to SAR,
we construct the positive dense captions for the
rerank stage. Specifically, we directly use the first
kind of captions as S positive captions, because the
question category prefix has already been removed.
For the second kind of captions, we randomly shuf-
fle the words to construct the R positive captions.

Model Param. Training Time Infrastructure
UpDn+Ours 36M 0.38h/epo TITAN RTX

24GB GPU
LXM+Ours 213M 1.73h/epo 2 x TITAN RTX

24GB GPUs

Table 10: The details of computational experiments of
our methods based on UpDn and LXM.

Method All Y/N Num Other
UpDn 41.06 43.13 13.71 47.48
UpDn+orig. 41.39 42.23 13.7 48.54
UpDn+rand-SR 44.21 51.19 15.05 48.56
UpDn+SR 47.62 62.72 13.92 48.95
LXM 47.19 50.55 24.06 51.77
LXM+orig. 48.14 51.25 25.63 52.69
LXM+rand-SR 51.07 62.22 29.68 51.09
LXM+SR 55.26 77.13 27.33 51.47
LMH 52.01 72.58 31.12 46.97
LMH+orig. 55.25 74.84 41.11 48.87
LMH+rand-SR 55.50 75.36 35.67 50.54
LMH+SR 55.41 76.50 37.20 49.35

Table 11: Results on VQA-CP v2 for validating the
effectiveness of SR strategy. The models here do not
contain the unbiased sample selection module.

The input dense caption during training and test
are the second kind of captions. Following Si et al.
(2021), we set the number of candidate answers for
training to 20. During test, we set the number of
the candidate answers to N ′ shown in Tab. 9.

C More Experiments and Analysis

C.1 Further validation of the effectiveness of
SR strategy.

To better validate the effectiveness of SR strategy,
we also evaluate the model performance directly us-
ing the original sample as positive sample ( +orig.),
or randomly adopting one of S and R as positive
sample ( +rand-SR) for each sample. We can ob-
serve from Tab. 11 that: 1) +orig. constantly
outperforms the backbone models because the con-
trastive learning itself is helpful for learning a better
feature representation. 2) It is worth noting that
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when we apply +orig. on LMH, the performance
improvement is much more obvious. This is be-
cause ensemble-based methods have relieved the
language priors to some extent at the cost of almost
entirely attenuating the positive information from
the biased samples. Our method makes up for this
drawback and forces the model to pay attention
again to this information by minimizing contrastive
learning loss which does not cause superficial cor-
relations, unlike the normal VQA loss. This can
also explain that the performance of +orig., +rand-
SR and +SR is similar based on the ensemble-based
methods. 3) For UpDn and LXM: a) +rand-SR out-
performs +orig. considerably, which demonstrates
that the design of positive samples by excluding
the correlations between the question category and
answer benefits MMBS in overcoming language
priors; b) Compared with +rand-SR, +SR achieves
prominent performance boost on ‘Y/N’ questions,
and slightly improves the performance or maintains
competitive performance on the other two types of
questions, which attests to the soundness of the
motivation of strategy SR.
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