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Abstract

Zero-resource cross-lingual transfer ap-
proaches aim to apply supervised models
from a source language to unlabelled target
languages. In this paper we perform an
in-depth study of the two main techniques
employed so far for cross-lingual zero-resource
sequence labelling, based either on data or
model transfer. Although previous research
has proposed translation and annotation
projection (data-based cross-lingual transfer)
as an effective technique for cross-lingual
sequence labelling, in this paper we exper-
imentally demonstrate that high capacity
multilingual language models applied in a
zero-shot (model-based cross-lingual transfer)
setting consistently outperform data-based
cross-lingual transfer approaches. A detailed
analysis of our results suggests that this might
be due to important differences in language
use. More specifically, machine translation
often generates a textual signal which is
different to what the models are exposed to
when using gold standard data, which affects
both the fine-tuning and evaluation processes.
Our results also indicate that data-based
cross-lingual transfer approaches remain
a competitive option when high-capacity
multilingual language models are not available.

1 Introduction

Sequence labelling is the task of assigning a label
to each token in a given input sequence. Sequence
labelling is a fundamental process in many down-
stream NLP tasks. Currently, most successful ap-
proaches for this task apply supervised deep-neural
networks (Lample et al., 2016; Akbik et al., 2018;
Devlin et al., 2019; Conneau et al., 2020). How-
ever, as it was the case for supervised statistical
approaches (Agerri and Rigau, 2016), their perfor-
mance still depends on the amount of manually
annotated training data. Additionally, deep-neural
models still show a significant loss of performance

Figure 1: In the data-based transfer approach we trans-
late and project the labels of the gold data into the target
language, and use the resulting silver data to train a
model for the target language. In the model-based trans-
fer approach we train a model with gold data in English
and use it in a zero-shot setting in the target language.

when evaluated in out-of-domain data (Liu et al.,
2021). This means that to improvie their perfor-
mance, it would therefore be necessary to develop
very costly manually annotated data for each lan-
guage and domain of application. Thus, consider-
ing that for most of the languages in the world the
amount of manually annotated corpora is simply
nonexistent (Joshi et al., 2020), then the task of de-
veloping sequence labelling models for languages
and domain-specific tasks, for which supervised
data is not available, remains a challenge of great
interest. This task is known as zero-resource cross-
lingual sequence labelling.
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Data-based cross-lingual transfer methods aim
to automatically generate labelled data for a target
language. Previous works on data-based transfer
have proposed translation and annotation projec-
tion as an effective technique for zero-resource
cross-lingual sequence labelling (Jain et al., 2019;
Fei et al., 2020). In this setting, as illustrated in Fig-
ure 1, the idea is to translate gold-labelled text into
the target language and then, using automatic word
alignments, project the labels from the source into
the target language. The result is an automatically
generated dataset in the target language that can be
used for training a sequence labelling model.

The emergence of multilingual language models
(Devlin et al., 2019; Conneau et al., 2020) allows
for model-based cross-lingual transfer. As Figure
1 illustrates, using labelled data in one source lan-
guage (usually English), it is possible to fine-tune
a pre-trained multilingual model that is directly
used to make predictions in any of the languages
included in the model. This is also known as zero-
shot cross-lingual sequence labelling.

In this work we present an in-depth study of
both approaches using the latest advancements in
machine translation, word aligners and multilin-
gual language models. We focus on two sequence
labelling tasks, namely, Named Entity Recogni-
tion (NER) and Opinion Target Extraction (OTE).
In order to do so, we present a data-based cross-
lingual transfer approach consisting of translating
gold labeled data between English and 7 other lan-
guages using state-of-the-art machine translation
systems. Sequence labelling annotations are then
automatically projected for every language pair.
Additionally, we also produced manual alignments
for those 4 languages for which we had expert an-
notators. After translation and projection, for the
data-transfer approach we fine-tune multilingual
language models using the automatically generated
datasets. We then compare the performance ob-
tained for each of the target languages against the
performance of the zero-shot cross-lingual method,
consisting of fine-tuning the multilingual language
models in the English gold data and generating the
predictions in the required target languages.

The main contributions of our work are the
following: First, we empirically establish the re-
quired conditions for each of these two approaches,
data-transfer and zero-shot model-based, to out-
perform the other. In this sense, our experiments
show that, contrary to what previous research sug-

gested (Fei et al., 2020; Li et al., 2021), the zero-
shot model-based approach obtains the best results
when high-capacity multilingual models including
the target language and domain are available. Sec-
ond, when the performance of the multilingual lan-
guage model is not optimal for the specific target
language or domain (for example when working
on a text genre and domain for which available
language models have not been trained), or when
the required hardware to work with high-capacity
language models is not easily accessible, then data-
transfer based on translate and project constitutes
a competitive option. Third, we observe that ma-
chine translation data often generates training and
test data which is, due to important differences in
language use, markedly different to the signal re-
ceived when using gold standard data in the target
language. These discrepancies seem to explain the
larger error rate of the translate and project method
with respect to the zero-shot technique. Finally,
we create manually projected datasets for four lan-
guages and automatically projected datasets for
seven languages. We use them to train and evaluate
cross-lingual sequence labelling models. Addition-
ally, they are also used to extrinsically evaluate
machine translation and word alignment systems.
These new datasets, together with the code to gen-
erate them are publicly available to facilitate the
reproducibility of results and its use in future re-
search.1

2 Related work

2.1 Data-based cross-lingual transfer

Data-based cross-lingual transfer methods aim to
automatically generate labelled data for a target
language. Some of these methods exploit parallel
data. Ehrmann et al. (2011) automatically annotate
the English version of a multi-parallel corpus and
projects the annotations into all the other languages
using statistical alignments of phrases. Wang and
Manning (2014) project model expectations rather
than labels, which facilities transfer of model un-
certainty across languages. Ni et al. (2017) use
a heuristic scheme that effectively selects good-
quality projection-labeled data from noisy data.
They also project word embeddings from a tar-
get language into a source language, so that the

1https://github.com/ikergarcia1996/
Easy-Label-Projection
https://github.com/ikergarcia1996/
Easy-Translate
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source-language sequence labelling system can be
applied to the target language without re-training.
Agerri et al. (2018) use parallel data from multiple
languages as source to project the labelled data to
a target language, showing that the combination of
multiple sources improves the quality of the pro-
jections. Li et al. (2021) uses the XLM-R model
(Conneau et al., 2020) for labelling sequences in
the source part of the parallel data and also for
annotation projection.

Instead of relying on parallel data, Jain et al.
(2019) and Fei et al. (2020), use machine transla-
tion to automatically translate the sentences of a
gold-labelled dataset to the target languages. The
translated data is then annotated by projecting the
gold labels from the source dataset. For this pur-
pose, Jain et al. (2019) first generate a list of pro-
jection candidates by orthographic and phonetic
similarity. They choose the best matching candi-
date based on distributional statistics derived from
the dataset. Fei et al. (2020) leverages the word
alignment probabilities calculated with FastAlign
(Dyer et al., 2013) and the POS tag distributions of
the source and target words.

High quality parallel data or machine translation
systems are not always available. Thus, Xie et al.
(2018) proposes to find word translations based
on bilingual word-embeddings. Alternatively, Guo
and Roth (2021) translate labelled data in a word-
by-word manner with a dictionary. Then, they
the construct target-language text from the source-
language annotations with a constrained pretrained
language model.

2.2 Model-based transfer

Language models trained on monolingual corpora
in many languages (Devlin et al., 2019; Conneau
et al., 2020) allow zero-shot cross-lingual model
transfer. Task-specific data in one language is used
to fine-tune the model for evaluation in another
language (Pires et al., 2019). The zero-shot cross-
lingual capability can be improved for the sequence
labelling task using different techniques. The ap-
proaches of Wang et al. (2019) and Ouyang et al.
(2021) use monolingual corpora to improve the
alignment of the language representations within
a multilingual model. Instead of using a single
source model, (Rahimi et al., 2019) propose to
use many models from many source languages to
improve the zero-shot transfer to a new language.
They learn to infer which are the most reliable mod-

els in an unsupervised manner. Wu et al. (2020)
take advantage of a Teacher-Student learning ap-
proach. NER models in the source languages are
used as teachers to train a student model on un-
labeled data in the target language. Bari et al.
(2021) propose an unsupervised data augmentation
framework to improve the cross-lingual adaptation
of models using self-training. Hu et al. (2021)
use the minimum risk training framework to over-
come the gap between the source and the target lan-
guages/domains. They propose a unified learning
algorithm based on the expectation maximization.

Using low-capacity multilingual language mod-
els such as mBERT, Fei et al. (2020) finds that their
data-based cross-lingual transfer approach is su-
perior to the zero-shot transfer method. However,
Li et al. (2021) when using XLM-RoBERTa, a
higher capacity multilingual model, obtain the best
results for German and Chinese applying the data-
based cross-lingual transfer approach, while the
zero-shot approach is best for Spanish and Dutch.
We extend their research on zero-resource settings
with two different Sequence Labelling tasks, seven
languages and three multilingual models of differ-
ent capacity. Our experiments and the error anal-
ysis carried out establish the required conditions
on which zero-shot and data-transfer approaches
outperform each other.

3 Translation and projection method

Our data-based cross-lingual transfer method to per-
form cross-lingual sequence labelling is the follow-
ing: we assume our source language to be English,
for which we have train and development data.
Furthermore, we also assume that the only gold-
labelled data available for the target language is
the evaluation set. In this setting, we automatically
generate data for the target language by translating
the gold-labelled English data. Then we project
the gold labels from the source sentences to the
translated sentences by leveraging automatic word
alignments. Given a sentence x = ⟨x1, ..., xn⟩ with
length n in the source language and a translated
sentence y = ⟨y1, ..., ym⟩ with length m in the tar-
get language, we use a word aligner to find a set
of pairs A = {⟨xi, yj⟩ : xi ∈ x, yj ∈ y} where for
each word pair ⟨xi, yj⟩ yi is the lexical translation
of xj . Next, given a sequence s = ⟨xa, ..., xb⟩ ∈ x
labeled with a category C we will label the se-
quence t = ⟨yc, ..., yd⟩ ∈ y with category C if
{∀yj ∈ t ∃xi ∈ s : (⟨xi, yj⟩ ∈ A)}. In other
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Figure 2: Illustration of the translation and annotation
projection method for Opinion Target Extraction (OTE).

(a) Illustration of the Opinion Target Extraction task.

(b) Illustration of the Named Entity Recognition Task.

Figure 3: Sequence Labelling tasks used in our experi-
ments.

words, if a word labelled with a category in the
source sentence is aligned to a word in the target
sentence, we label the target word with the cate-
gory from the word in the source sentence. Figure
2 illustrates our method.

When projecting annotations we find two main
problems: split annotations and annotation colli-
sion. In the first case, a labeled sequence in the
source sentence is split into multiple sequences in
the target sentence. This happens when the align-
ment for a word is missing. In this case, we merge
the sequences in the target sentence if the gap be-
tween them is just one word. If we still end up
with multiple sequences, we choose the longest
one. In the annotation collision case, a word in the
target sentence is aligned to two different labelled
sequences in the source language. If the two se-
quences are of the same category, we merge them
and we label the two sequences as a single one in
the target sequence. If they are of different category
we just consider the one with the longest length.
Finally, if a punctuation symbol in the target se-
quence is aligned to a labeled word in the source
sentence we remove this alignment.

4 Datasets

We conducted experiments in two sequence la-
belling tasks, namely, Opinion Target Extraction
(OTE) and Named Entity Recognition (NER). Fig-
ure 3 illustrates both tasks.

Opinion Target Expression (OTE): Given a

review, the task is to detect the linguistic expres-
sion used to refer to the reviewed entity. We use
the SemEval-2016 Task 5 Aspect Based Sentiment
Analysis (ABSA) datasets (Pontiki et al., 2016).
We experiment with the English, Spanish, Dutch,
French, Russian and Turkish datasets from the
restaurant domain.

Named Entity Recognition (NER): Given a
text, the task is to detect named entities and clas-
sify them in pre-defined categories. For Spanish
and Dutch we use the CoNLL-2002 datasets (Tjong
Kim Sang, 2002). For English and German we use
the CoNLL-2003 datasets (Tjong Kim Sang and
De Meulder, 2003) and for Italian we use Evalita
2009 data (Speranza, 2009). We map the Geo-
Political Entities from Evalita 2009 to location la-
bels to make them compatible with the CoNLL
data.

5 Experimental Setup

We perform 1-to-1 annotation projection in two di-
rections:
Translate-Train: We translate the English train
and development data to the target language. We
project the gold labels from the English data to
the translated dataset. We then train a sequence
labelling model using only the automatically gen-
erated dataset for the target language.
Translate-Test: We translate the target language
test set to English. We then use a model trained in
the English gold-labelled data to label the translated
test set. Finally, we project the labelled sequences
back to the target language.

These two data-based cross-lingual transfer ap-
proaches are compared with the zero-shot method
in which a fine-tuned model using English gold-
labelled data is evaluated by generating predictions
in the target language. Finally, we also fine-tuned
language models on the gold-labelled data, which
would constitute the upper-bound in our experimen-
tal setting.

5.1 Machine Translation

We tested DeepL2, MarianMT (Junczys-Dowmunt
et al., 2018; Tiedemann and Thottingal, 2020),
M2M100 (1.2B) (Fan et al., 2020) and mBART
(mbart-large-50) (Tang et al., 2020). A qualita-
tive analysis performed during the projection of
the OTE labels established that DeepL produced
the more fluent translations. Thus, we decided to

2https://www.deepl.com/
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use DeepL (web version during the second half of
2021) to perform the machine translation for our
data-based cross-lingual transfer experiments. The
exception was Turkish, which is not supported by
DeepL. In this case we use M2M100.

5.2 Word Alignments
For word alignments, we use the AWESoME (Dou
and Neubig, 2021) system. AWESoME leverages
multilingual pretrained language models and fine-
tune them on parallel text. Unsupervised train-
ing objectives over the parallel corpus improve the
alignment quality of the models. AWESoME au-
thors claim that the model works best with mBERT
(Devlin et al., 2019) as backbone, so we follow
their advice. Although we also experimented with
GIZA++ (Och and Ney, 2003), FastAlign (Dyer
et al., 2013) and SimAlign (Dou and Neubig, 2021),
systems based on alignments from AWESoME pro-
duced the highest F1 scores when comparing the
model projections and manually annotated projec-
tions (see Section 7).

To train the alignment models we use the English
gold-labelled dataset together with the respective
MT system translations as parallel corpora. We aug-
ment the training data with 50,000 random parallel
sentences from ParaCrawl v8 (Esplà et al., 2019)
for all the language pairs except Turkish, for which
we use 50,000 random parallel sentences from the
raw CCAligned v1 corpus (El-Kishky et al., 2020).
CCAligned has received some criticism (Kreutzer
et al., 2022), but the available English-Turkish par-
allel data is very limited. In Section 7 we ana-
lyze the performance of the alignment systems,
and we show that CCAligned does not hurt the
performance of the aligners.

5.3 Sequence Labelling Models
We use three state-of-the-art multilingual pre-
trained language models for sequence labelling:
multilingual BERT (mBERT) (Devlin et al., 2019)
and XLM-RoBERTa (XML-R) base and large
(Conneau et al., 2020). For both models, we add
a token classification layer (linear layer) on top of
each token representation. We use the sequence
labelling implementation of the Huggingface open-
source (Apache-2.0 License) library (Wolf et al.,
2019). F1 scores and standard deviation scores are
reported by averaging the results of 5 runs with
different random seeds. Details on models sizes,
hyper-parameters and datasets are provided in the
Appendix (A, B and C).

6 Experiments

6.1 Opinion Target Extraction
Opinion Target Extraction (OTE) results are re-
ported in Table 1. The zero-shot model transfer
using mBERT obtains better results for Spanish
and French. However, for Dutch, Russian and
Turkish the best results are obtained by the data-
transfer approaches. The overall picture changes
when using XLM-RoBERTa (XLM-R) base. First,
the zero-shot baseline is much closer to the gold
upper bound than that of mBERT. This shows that
XLM-R has better multilingual transfer learning ca-
pabilities for this task. In fact, the zero-shot transfer
outperforms the translate-train and translate-test ap-
proaches for all languages except Turkish. Second,
the XLM-R base results on gold-labelled data are
substantially better than those of mBERT. Finally,
XLM-R large offers the best cross-lingual trans-
fer capabilities, as the zero-shot transfer is clearly
superior for every language, including Turkish.

A common trait for all three models in the OTE
benchmark is that the translate-train approach is su-
perior to the translate-test approach in the large ma-
jority of the cases. As expected, all the approaches
achieve a performance significantly lower than the
gold upper bound.

6.2 Named Entity Recognition
If we compare the OTE results with those obtained
for NER (Table 2), we see a number of different pat-
terns. First, the zero-shot approach using mBERT
outperforms the data-based cross-lingual transfer
methods (translate-train and translate-test) for the
majority of languages . Second, unlike in OTE, the
translate-test is systematically better than translate-
train. Third, the mBERT performance on CoNLL
data is similar to that of XLM-R base. Finally, fine-
tuning XLM-R base on translated and projected
data obtains better results for German and Italian
than the zero-shot method. However, XLM-R large
provides obtains the same results as for OTE, ob-
taining the best results for every language in the
zero-shot setting. This validates the findings of the
OTE results, namely, that the performance of the
zero-shot method heavily depends on the character-
istics of the multilingual language model used.

Previous research has demonstrated that cross-
lingual transfer with mBERT works best for topo-
logically similar languages (Pires et al., 2019;
Wu and Dredze, 2020), which is somewhat co-
herent with the results obtained for Spanish and
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mBERT
Gold Zero-shot Trans-Train Trans-Test

EN 76.2 ± 0.9 - - -
ES 75.2 ± 0.5 68.4 ± 0.6 67.9 ± 0.8 62.2 ± 1.2
FR 74.0 ± 1.1 62.7 ± 1.2 59.7 ± 1.2 57.6 ± 1.1
NL 69.7 ± 0.9 61.7 ± 0.8 64.3 ± 1.5 67.0 ± 0.8
RU 72.5 ± 0.5 53.8 ± 2.2 62.9 ± 0.6 59.7 ± 0.4
TR 62.0 ± 1.2 45.3 ± 4.0 45.7 ± 2.3 35.5 ± 2.4

XLM-R base
Gold Zero-shot Trans-Train Trans-Test

EN 84.4 ± 0.9 - - -
ES 81.1 ± 0.7 78.2 ± 0.4 72.5 ± 0.7 62.9 ± 0.9
FR 80.2 ± 0.6 72.7 ± 0.3 64.7 ± 0.8 60.0 ± 0.6
NL 80.8 ± 1.7 75.5 ± 0.8 70.0 ± 1.6 71.0 ± 1.5
RU 81.5 ± 0.3 74.9 ± 0.9 69.5 ± 0.3 62.2 ± 1.6
TR 69.0 ± 1.1 58.1 ± 3.5 58.9 ± 1.8 36.4 ± 1.8

XLM-R large
Gold Zero-shot Trans-Train Trans-Test

EN 86.4 ± 1.1 - - -
ES 83.6 ± 0.1 79.3 ± 0.8 73.7 ± 1.1 64.0 ± 1.4
FR 82.2 ± 0.6 74.6 ± 1.7 66.1 ± 0.6 60.7 ± 0.6
NL 80.4 ± 2.1 77.7 ± 1.9 74.0 ± 1.3 72.9 ± 1.8
RU 82.8 ± 0.4 76.8 ± 1.3 69.3 ± 2.3 62.2 ± 1.3
TR 72.3 ± 2.4 62.4 ± 1.0 57.8 ± 2.4 33.7 ± 0.9

Table 1: OTE F1 score with models of different capacity.

French, where the zero-shot transfer is superior to
the Translate-train and Translate-test approaches,
while it is worse for Russian and Turkish. Addition-
ally, it is worth noting that mBERT has been trained
using only Wikipedia text for 104 languages.

In contrast, XLM-R (both base and large) have
been trained using CommonCrawl (Wenzek et al.,
2019), a much larger multilingual corpus with a va-
riety of texts extracted from the Web, perhaps also
including texts of similar domain to those in the
OTE datasets. This may also account for the large
differences in OTE performance between XLM-R
base and mBERT. In this sense, the similar per-
formance between mBERT and XLM-R base for
NER might be partially due to the fact that the
CoNLL and Evalita datasets consist of news stories
in which most of the labelled entities may appear in
the Wikipedia, the texts used to pre-train mBERT.

The performance of the XLM-R large shows
that pretrained models with larger capacity help to
obtain strong performance across languages, also
for zero-shot cross-lingual methods. Still, data-
based cross-lingual transfer (Translate-Train and
Translate-Test) approaches remain useful if access
to the required hardware for working with such
larger language models is not available.

Finally, Table 3 lists the results of previous meth-
ods that leverage parallel data and/or annotation
projections to perform cross-lingual transfer on
the NER CoNLL 2002-2003 data. By comparing
previous work with our zero-shot baselines using

mBERT
Gold Zero-shot Trans-Train Trans-Test

EN 90.7 ± 0.3 - - -
ES 87.4 ± 0.4 74.6 ± 0.4 69.5 ± 0.4 70.8 ± 0.6
DE 82.0 ± 0.4 71.0 ± 0.9 70.1 ± 0.3 70.6 ± 0.5
NL 90.8 ± 0.4 78.5 ± 0.5 74.4 ± 0.6 75.4 ± 0.8
IT 84.7 ± 0.3 68.2 ± 0.5 68.7 ± 0.5 70.7 ± 0.3

XLM-R base
Gold Zero-shot Trans-Train Trans-Test

EN 90.4 ± 0.2 - - -
ES 87.7 ± 0.2 75.0 ± 0.4 70.1 ± 0.6 72.5 ± 0.2
DE 83.1 ± 0.3 67.9 ± 0.5 70.5 ± 0.5 70.1 ± 0.8
NL 89.8 ± 0.2 78.1 ± 0.6 73.3 ± 0.9 74.7 ± 0.4
IT 84.3 ± 0.3 71.2 ± 0.5 71.1 ± 0.4 71.7 ± 0.3

XLM-R large
Gold Zero-shot Trans-Train Trans-Test

EN 92.4 ± 0.1 - - -
ES 88.9 ± 0.2 79.5 ± 1.0 70.9 ± 0.6 74.0 ± 0.5
DE 85.1 ± 0.6 74.5 ± 0.7 73.7 ± 0.5 72.9 ± 0.3
NL 92.9 ± 0.7 82.3 ± 0.6 77.5 ± 0.9 77.2 ± 0.6
IT 87.5 ± 0.2 76.0 ± 0.5 73.7 ± 0.4 73.5 ± 0.6

Table 2: NER F1 score with models of different capac-
ity.

Models ES DE NL
mBERT (Dou and Neubig, 2021) 64.3 - -
BiLSTM + CRF (Jain et al., 2019) 73.5 61.5 69.9
BiLSTM + CRF (Guo and Roth, 2021) 77.9 71.4 80.6
XLM-R large (Li et al., 2021) 78.9 76.9 79.7
mBERT (Ours - zero-shot) 74.6 71.0 78.5
XLM-R base (Ours - zero-shot) 75.0 67.9 78.1
XLM-R large (Ours - zero-shot) 79.5 74.5 82.3
XLM-R base (Ours - Translate train) 70.1 70.5 73.3
XLM-R base (Ours - Translate test) 72.5 70.1 74.7
XLM-R large (Ours - Translate train) 70.9 73.7 77.5
XLM-R large (Ours - Translate test) 74.0 72.9 77.2

Table 3: Comparison between the previous research
methods that leverage projections, the zero-shot base-
lines and our annotation projections in the 2002-2003
NER CoNLL datasets. F1 score reported

mBERT, XLM-R base and XLM-R large, we can
see that the XLM-R large in the zero-shot setting
still outperforms most previous approaches. The
only exception being the results obtained by Li et al.
(2021) for German.

7 Error Analysis

The experiments described in Section 6 showed that
translate-train and translate-test perform worse than
the zero-shot approach when using XLM-R large.
In this section we will assess the performance of the
machine translation and word alignment models.
Furthermore, we will undertake an error analysis
to better understand the shortcomings of translate-
train and translate-test with respect to the zero-shot
cross-lingual transfer.

6408



7.1 Evaluating the Projection Method
We start our experiments by analyzing the quality
of our automatically projected annotations. In order
to do that, human annotators manually projected
the labels from the English OTE gold-labelled data
to the automatic translations to Spanish, French and
Russian using DeepL and M2M100 for Turkish.
The annotators are NLP PhD candidates with either
native and/or proficient skills in both English and
the target language. See Section E for more details.

We compare the projections of the annotations
automatically generated by the different word align-
ment methods with those provided by the human
annotators. Table 4 shows that the language model-
based methods (SimAlign and AWESoME) out-
perform the statistically based methods (GIZA++
and FastAlign) by a wide margin in all languages.
Furthermore, AWESoME consistently outperforms
SimAlign for every language. The performance of
the AWESoME system confirms that it is possible
to generate high quality annotations close to those
generated by human experts. The results also show
that for Turkish performance is lower than for the
other languages. This is the case for the methods
that require parallel data (GIZA++, FastAlign and
AWESoME) as well as SimALign that does not
require parallel data. So we can attribute the lower
performance to the difficulty of projecting annota-
tions for the English-Turkish pair and not the usage
of the CCAligned corpus.

GIZA++ FastAlign SimAlign AWESoME
ES 77.0 75.0 86.7 91.5
FR 73.3 72.9 86.3 91.3
RU 72.4 76.9 87.7 93.4
TR 64.0 68.4 81.9 88.5

Table 4: OTE F1 score between the human annotation
projections vs the automatic projections generated using
different alignment models.

While Table 4 shows that we generate high qual-
ity annotation projections, the best model, AWE-
SoME, still makes some mistakes. To explore the
effect of these mistakes we fine-tune XLM-R large
models on the manually projected train datasets and
compare their performance on the gold-labelled test
sets with the models trained on the AWESoME au-
tomatically projected data. Table 5 shows that the
models obtained using the manually projected data
are sightly better, except for Turkish, which once
again acts as outlier. In any case, as the results
obtained by fine-tuning on the manually projected
data are still worse than the zero-shot method, this

experiment proves that the projection of annota-
tions is not responsible for the data-based cross-
lingual transfer methods to be inferior to the zero-
shot baseline.

XLMR Trans-Train Trans-Train (Manual)
ES 73.7 ± 1.1 75.1 ± 1.2
FR 66.1 ± 0.6 67.9 ± 1.0
RU 69.3 ± 1.3 69.4 ± 2.1
TR 57.8 ± 2.4 50.6 ± 1.4

Table 5: XLM-R large OTE F1 score when training with
automatically and manually projected datasets

7.2 Downstream Evaluation of Machine
Translation Models

In order to evaluate the influence of the machine
translation system used, we translate the English
gold-labelled data using four different translation
systems. We fixed AWESoME as the word aligner
for annotation projection. We fine-tune XLM-R
large with each of the generated training data and
evaluate it against the gold-labelled test data from
OTE. As Table 6 shows, there are no big differences
in the final F1 scores when using different transla-
tion systems (Turkish is again being the exception),
we decided to carry on using DeepL based on the
manual assessment mentioned in Section 3.

MarianMT Mbart M2M100 DeepL
ES 75.6 ± 0.8 75.3 ± 0.7 74.2 ± 0.8 73.7 ± 1.1
FR 64.5 ± 1.6 66.4 ± 1.1 64.9 ± 1.3 66.1 ± 0.6
NL 70.0 ± 2.0 68.8 ± 4.0 70.1 ± 3.1 74.0 ± 1.3
RU 66.6 ± 4.4 69.7 ± 1.4 69.7 ± 0.7 69.3 ± 2.3
TR 49.5 ± 2.9 56.1 ± 5.2 57.8 ± 2.4 -

Table 6: OTE F1 score of different XLM-R large models
trained using data generated with different translation
systems.

7.3 Where do the models fail?
To better understand what is happening we identify
the most common false negatives and positives for
both OTE and NER tasks. Table 7 shows the most
frequent false negatives and positives where there
is a big mismatch between methods.

As it has been previously noticed (Agerri and
Rigau, 2019), in the ABSA data the words “comida”
(food) and “restaurante” (restaurant) are highly am-
biguous, so we could expect the models to fail with
these words. In addition, we have found out 4 main
sources of errors, which are analyzed below.

Many-to-one translations: This is stereotypical
of targets such as “trato” and “atención” in Span-
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ish, which, in addition to “servicio”, are used to
refer to “service” in English. There are 160 sen-
tences in the English gold-labelled data containing
the word “service”; in 153 of them “service” is la-
belled as target. DeepL systematically translates it
as “servicio”. However, as shown by Table 8, in the
Spanish gold-labelled data “service” is also com-
monly referred as “trato” or “atención”, instead of
“servicio”.

This would result in a training set without any
occurrences of “trato” and “atención” which often
occur in the gold-labelled test data. Both the zero-
shot and the data-based cross-lingual transfer ap-
proaches fail to correctly label these words, which
shows a problem of using automatically translated
data. Interestingly, the zero-shot approach using
XLM-R large correctly classifies “trato” (only fails
to label 1 of the 19 occurrences). As shown by our
experimental results, XLM-R large is more robust
than mBERT and XLM-R base.

Something similar happens with the word
“place”, which in Spanish can be most frequently
translated as “lugar” or “sitio”. However, DeepL
almost always translates it as “lugar” which results
in “sitio” being absent in the automatically gener-
ated training data while being more frequent than
“lugar” in the gold-labelled data. Note that this is
not a problem for the “translate-test”, given that the
translation direction is Spanish to English.

Errors induced by incorrect or missing align-
ments: For NER we found errors of different
nature. Articles and prepositions (i.e. “de”, “la”)
are among the words with higher false positive rate
for the translate-test and translate-train approaches.
We can attribute it to word alignment errors. Large
multi-word named entities such as “Consejo Gen-
eral de la Arquitectura Técnica de España” (Gen-
eral Council of Technical Architecture of Spain)
are labelled as entities. Word aligners struggle to
correctly align articles in these complex expres-
sions specially when a one-to-many or many-to-
one alignment is required. In fact, in this example,
the word aligners we tested failed to correctly align
“of” with “de la”.

Errors induced by dataset inconsistencies: An-
other issue is the differences across languages in
the original gold-labelled annotations. Thus, “Go-
bierno” (Government) and “Estado” (State) are la-
belled as organizations in the Spanish gold-labelled
data, but they are not considered to be entities in

the English gold-labelled data. The opposite occurs
with demonym words. They are labelled as miscel-
laneous entities in the English data but in Spanish
they are not annotated. Cross-lingual models are
likely to fail labelling these cases.

Lost in Translation: Finally, there is another
group of words related to Spanish Government
names which are not commonly used in English
for the same contexts (i.e. “Economía” to refer
to the“Ministry of Economy” or “Ministerio de
Economía” in Spanish, “Junta” for “local gov-
ernment”, or “Plan” for “government projects”).
While these words appear frequently in the Spanish
data as part of commonly used named entities, that
is not the case in the English data, where it is cus-
tomary to use “Treasury Department” (or variations
thereof) which are correctly translated into Span-
ish by DeepL as “Departamento del Tesoro”. This
means that, during fine-tuning on the translated
data, the model is not receiving any signal to learn
that “Economy” may be part of an organization
entity. This may explain why the zero-shot method
performs better for cases such as “Economía”, “Ha-
cienda”, “Plan” and “Junta”, listed in Table 7.

Summarizing, we see that machine translation
data often generates a signal which is, due to in-
herent differences in language use, different to the
signal received when using gold-labelled data in
the target language. This disagreement seems to
be the most common reason for the larger number
of false positive and negatives of the data-based
cross-lingual transfer method with respect to the
zero-shot technique.

8 Concluding Remarks

In this paper we described an in-depth and compre-
hensive evaluation of model-based and data-based
zero-resource cross-lingual sequence labelling on
two different tasks.

Contrary to what previous research suggests,
zero-shot transfer approach is the best perform-
ing method when using high capacity multilingual
language models such as XLM-R large. However,
data-based cross-lingual transfer approaches are
still useful when having a model with poor down-
stream cross-lingual performance. For example,
when using a pretrained language model not trained
for a specific domain, or when the required hard-
ware for working with such larger language models
is not readily available.
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GOLD Zero-shot Tr-Train Tr-Test Total
B Xb Xl B Xb Xl B Xb Xl B Xb Xl

OTE False Negatives
comida 3 3 2 6 2 1 4 1 1 1 9 5 98
restaurante 7 5 7 9 5 6 7 6 6 7 12 10 43
servicio 2 2 2 2 1 1 2 0 1 1 1 2 85
trato 1 1 0 5 6 1 14 10 5 6 8 6 19
atención 2 3 3 8 2 3 7 1 3 7 7 7 13
lugar 0 0 0 2 0 0 1 0 0 0 1 0 12
sitio 1 0 0 5 1 1 3 3 3 2 1 1 14

NER False Negatives
de 32 29 33 45 51 90 233 252 264 148 146 167 450
la 4 5 3 10 12 16 63 62 62 45 44 45 174
Gobierno 0 0 0 17 53 64 72 70 75 30 45 67 80
Estado 0 0 0 4 4 8 9 8 9 6 6 8 10
Administación 0 0 0 4 8 11 10 11 11 5 5 7 11
Economía 0 0 0 2 6 2 7 8 8 5 6 8 8
Plan 0 0 0 1 2 2 3 5 5 1 4 7 8
Junta 0 0 0 0 0 0 4 10 8 2 3 5 24
Hacienda 0 0 0 1 3 0 4 4 4 4 3 4 5

NER False Positives
español 0 0 0 16 16 2 16 16 12 13 14 15 0
catalán 0 0 0 8 8 5 7 7 8 8 8 8 0

Table 7: Most common false negatives and positives were there is a big mismatch between methods and the total
number of labelled apperances of the word in the test data. B is the acronym for mBERT, Xb for XLM-R base and
Xl for XLM-R large.

En.Word Es.Word En Gold Es Gold Es Translate
Service Servicio 153 229 133

Treatment Trato 0 54 0
Attention Atención 2 35 0

Place Sitio 120 41 2
Place Lugar 120 19 91

Table 8: Number of times words appear as target words
in the train datasets

A detailed error analysis demonstrates that data-
based cross-lingual transfer is hindered by machine
translations which, although linguistically sound,
do not align with the cultural behaviour of the tar-
get language use. Moreover, the results also show
that the different word alignments methods (for
annotation projection) are of high quality, obtain-
ing comparable results with respect to manually
generated alignments.

In any case, our results establish that there is still
room for improving the cross-lingual performance
of zero-resource sequence labelling.

Acknowledgments

We are grateful to Nayla Escribano, Suna Şeyma
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Limitations

We compare baseline cross-lingual zero-shot model
transfer with machine translation and annotation
projection. We do not explore alternative cross-
lingual data-based methods, such as the usage of
available parallel corpora instead of a machine
translated corpus. We also skip evaluating methods
to improve model-transfer approaches such as the
ones described in Section 2.2. We may also con-
sider that our annotation projection approach and
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zero-shot model transfer approach work for Indo-
European languages, while their performance for
other language families remains unknown. Finally,
the error analysis was performed for the EN-ES
language pair only.

In any case, we believe that our main claim still
holds. Even though MT quality has substantially
improved over the last few years, our results indi-
cate the current optimal solution to perform cross-
lingual transfer is by using large multilingual lan-
guage models such as XLM-RoBERTa-large. Thus,
our error analysis suggests that this might be due
to important differences in language use. More
specifically, MT often generates a textual signal
which is different to what the models are exposed
to when using gold standard data, which affects
both the fine-tuning and evaluation processes. This
is confirmed by our error analysis which shows that
mistranslations are not the main source of errors in
the data-transfer method.
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A Model size

We experiment with multilingual BERT (mBERT)
(Devlin et al., 2019) and XLM-RoBERTa (XML-R)
base and large (Conneau et al., 2020). We list the
number of parameters of each model in Table 9

Model #params
multilingual BERT 110M
XLM-RoBERTa-base 250M
XLM-RoBERTa-large 560M

Table 9: Number of parameters for the language models
that we use in our experiments

B Hyper parameters

B.1 Word alignment models
We train AWESoME with 8 batch size and 2e− 5
learning rate for 40, 000 steps, with all the unsuper-
vised training objectives (mlm,tlm,tlm_full,so,psi)
and softmax extraction method. We use mBERT as
backbone. For SimAlign we run inference with 0.0
distortion rate, 1.0 null align rate and the "itermax"
matching method. We use bpe tokens and mBERT
backbone. We use the MGIZA multicore imple-
mentation 3 of GIZA++ with the recommended
configuration file 4. We use FastAlign with the
default hyper-parameters. For both, GIZA++ and
FastAlign we combine the forward and backward
directions of the alignments using the grow-diag-
final-and algorithm.

B.2 Sequence Labelling models
For OTE we use a batch size of 32, 5e − 5 learn-
ing rate, we train the model for 10 epochs and
128 maximum sequence length. Since only a train
and test splits are available for the OTE task, we

3https://github.com/moses-smt/mgiza
4https://pastebin.com/b1ksHtUy
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use the train set as both, train and development
data. For NER we use a batch size of 32, 2e − 5
learning rate, we train the model for 4 epochs and
256 maximum sequence length. We use the de-
fault values (sequence labelling implementation of
the Huggingface library 5) for the remaining hy-
perparameters. For both tasks we use the BILOU
encoding scheme.

C Datasets Size

We list the dataset size (number of sentences) of
the datasets we use.

For OTE we use the SemEval-2016 Task 5 As-
pect Based Sentiment Analysis (ABSA) datasets
(Pontiki et al., 2016). We list the size of the datasets
in Table 10.

Lang Train Test
EN 2000 676
ES 2070 881
FR 1664 668
NL 1722 575
RU 3655 1209
TR 1232 144

Table 10: Number of sentences in the OTE datasets

For NER we use the Spanish and Dutch data
from the CoNLL-2002 datasets (Tjong Kim Sang,
2002). For English and German we use the CoNLL-
2003 datasets (Tjong Kim Sang and De Meulder,
2003) and for Italian we use Evalita 2009 data
(Speranza, 2009). We list the size of these datasets
in Table 11.

Train Dev Test
EN 14987 3466 3684
ES 6871 1914 1516
DE 12705 3068 3160
NL 15806 2895 5195
IT 11227 0 4136

Table 11: Number of sentences in the NER datasets

D Computer infrastructure

We perform all our experiments using a single
NVIDIA A30 GPU with 24GB memory. The ma-
chine used has two Xeon Gold 6226R CPUs and
256GB RAM.

5https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
token-classification

E Manual Projection of the datasets

Human annotators manually projected the la-
bels from the English OTE gold data to the
automatic translations to Spanish, French and
Russian using DeepL and m2m10 for Turkish
The annotators are NLP PhD candidates with
either native and/or proficient skills in both
English and the target language. We describe the
experiment in Section 7.1. For the purpose of
this experiment, we developed an application to
assist during the annotation process. The annotator
sees the sentence in English, where there is a
highlighted target and must select the same target
in a translated target sentence. Figure 4 shows
two screenshots from the application. The full
guidelines and the code of the application provided
to the annotators are available at https:
//github.com/ikergarcia1996/
Annotation-Projection-App.
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Figure 4: Application used to manually annotate the projections
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