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Abstract

While counterfactual data augmentation offers
a promising step towards robust generalization
in natural language processing, producing a
set of counterfactuals that offer valuable in-
ductive bias for models remains a challenge.
Most existing approaches for producing coun-
terfactuals, manual or automated, rely on small
perturbations via minimal edits, resulting in
simplistic changes. We introduce NeuroCoun-
terfactuals, designed as loose counterfactuals,
allowing for larger edits which result in natu-
ralistic generations containing linguistic diver-
sity, while still bearing similarity to the origi-
nal document. Our novel generative approach
bridges the benefits of constrained decoding,
with those of language model adaptation for
sentiment steering. Training data augmentation
with our generations results in both in-domain
and out-of-domain improvements for sentiment
classification, outperforming even manually cu-
rated counterfactuals, under select settings. We
further present detailed analyses to show the
advantages of NeuroCounterfactuals over ap-
proaches involving simple, minimal edits.

1 Introduction

Despite the enormous successes in natural language
processing, out-of-domain (OOD) generalization
still poses a challenge for even the most powerful
models, which achieve remarkable performance
in domain (Recht et al., 2019; Torralba and Efros,
2011). This can be attributed to the models’ re-
liance on spurious biases (Geirhos et al., 2020; Mc-
Coy et al., 2019; Gururangan et al., 2018), i.e. fea-
tures which co-occur with the ground truth without
any causal dependence (Simon, 1954). Adopting
methods from causal inference (Pearl, 2009; Feder
et al., 2022), training data augmentation with coun-
terfactuals (CFs) has been proposed for NLP as one
potential solution (Levesque et al., 2012; Kaushik
et al., 2019, 2021). Counterfactuals are designed
to study the change in a response variable (e.g., the
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Figure 1: Illustration of our approach. 1 We extract
tokens from an Original (negative) movie review that
evoke concepts from ConceptNet (§2.1). 2 We use a
GPT-2 model adapted to only reviews with the oppo-
site (positive) polarity as a sentiment steer (§2.2). 3
Finally, to ensure that the generation is similar to the
original, we use NeuroLogic, a constrained decoding
approach (§2.3; Lu et al., 2021), where the constraints
are extracted tokens from 1. This results in NeuroCoun-
terfactuals, which are loose counterfactuals of the orig-
inal, but are more naturalistic (§4; Tab. 1), compared to
minimal edit counterfactuals (bottom). 4 When used to
augment training data for sentiment classification, our
generations are valuable for OOD generalization (§3).

target label), following an intervention (e.g., alter-
ing a causal feature), typically in the form of edits
to the input text (Khashabi et al., 2020; Andreas,
2020). Training data augmentation with counter-
factuals can thus provide strong inductive biases
to help with robustness against spurious biases, re-
sulting in improved OOD generalization (Vig et al.,
2020; Eisenstein, 2022).

However, designing the appropriate interven-
tions to produce counterfactuals can be challenging.
Indeed, most counterfactuals are produced via ba-
sic edits to the input text, either manually (Gardner
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et al., 2020; Kaushik et al., 2019) or automatically
(Yang et al., 2021; Wang and Culotta, 2021; Wu
et al., 2021), such that the target label changes.
These minimal edits are made via substitution, in-
sertion or deletion of tokens in the original sen-
tence, resulting in simplistic generations, which are
often unrealistic and lack linguistic diversity.1 As a
result, counterfactuals via minimum edits often fail
to provide adequate inductive biases to promote ro-
bustness (Khashabi et al., 2020; Huang et al., 2020;
Joshi and He, 2022).

In this paper, we investigate the potential of more
realistic and creative counterfactuals, which go be-
yond simple token-level edits, towards improving
robust generalization. While allowing larger edits
reduces proximity to the original sentence, we be-
lieve that this is a worthwhile trade-off for more
realistic and creative counterfactuals, which offer
greater flexibility in sentiment steering, increasing
the likelihood that the counterfactual possesses the
desired label. We propose a novel approach that
can generate diverse counterfactuals via concept-
controlled text generation, illustrated in Figure 1.
In particular, our approach combines the benefits
of domain adaptive pretraining (Gururangan et al.,
2020) for soft steering of the target label (Liu et al.,
2021), with those of NeuroLogic decoding (Lu
et al., 2021), an unsupervised, inference-time algo-
rithm that generates fluent text while strictly satisfy-
ing complex lexical constraints. As constraints, we
use tokens that evoke salient concepts derived from
ConceptNet (Speer et al., 2017). Our resulting gen-
erations, called NeuroCounterfactuals2, provide
loose counterfactuals to the original, while demon-
strating nuanced linguistic alterations to change the
target label (§2).

Compared to minimal-edit counterfactuals, our
counterfactuals are more natural and linguistically
diverse, resulting in syntactic, semantic and prag-
matic changes which alter the label while preserv-
ing relevance to the original concepts (Table 1).
On experiments with training data augmentation
for sentiment classification, our approach achieves
better performance compared to competitive base-
lines using minimal edit counterfactuals (§3). Our
performance even matches baselines using human-
annotated counterfactuals, on some settings, while
avoiding the cost of human annotation. While Neu-

1For instance, the minimal edit counterfactual in Figure 1
contains the phrase “loose collection of intelligible analogies”,
a somewhat unnatural construction for a positive movie review.

2NeuroCFs, for short.

roCFs are designed to be loose counterfactuals, our
detailed analyses show that it is still important to
augment training data with examples possessing
a moderately high degree of similarity with the
original examples (§4). When the ultimate goal is
improving robust generalization, we show that go-
ing beyond minimal edit counterfactuals can result
in richer data augmentation.3

2 NeuroCounterfactuals

We describe our methodology for automatic gen-
eration of loose counterfactuals, NeuroCFs, for
sentiment classification. The key idea underlying
our approach is the need for retention of concepts
to ensure content similarity to the original text,
while steering the sentiment to the opposite po-
larity. Our method, illustrated in Figure 1, com-
bines a concept-constrained decoding strategy with
a sentiment-steered language model. First, we de-
tail our approach for extracting the salient concepts
from a document (§2.1). Next, we discuss language
model adaptation to produce sentiment-steered
LMs (§2.2). Finally, we provide an overview of
the NeuroLogic decoding algorithm for controlled
text generation, and how it can be adapted for the
task of generating sentiment counterfactuals (§2.3).

2.1 Extracting Salient Concepts

Our first step constitutes extraction of concepts
from the original document, which can be used to
reconstruct its content, when used as constraints
during decoding (§2.3). Specifically, we aim to
identify a set of constraints which will require the
counterfactual to be similar in content to the orig-
inal sentence while still allowing the generation
to be steered towards the opposite polarity. Using
extracted concepts as constraints achieves this be-
cause the concepts consist of the content-bearing
noun phrases as opposed to the sentiment-bearing
adjectives. For example, in the original sentence
from Figure 1, we seek to constrain our generated
counterfactual to contain concept-oriented phrases,
such as “movie”, “analogy”, and “plot devices”
without explicitly requiring the presence of other
tokens which may indicate the sentiment (e.g., “un-
intelligible”, “ill-conceived”).

We achieve this mapping via linking tokens and
phrases in the document to nodes in the ConceptNet
knowledge graph (Speer et al., 2017), thus evoking

3Our code and data are available at https://github.
com/IntelLabs/NeuroCounterfactuals
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Source Label Review

Original
Á

But this film decided to throw away the talents of the people involved in a simpering version so watered down from the
source material that it’s amazing they had the guts to call it Wuthering Heights at all.

W&C.
Á

But this film decided to throw away the talents of the people involved in a simpering version so watered down from the
source material that it s unimpressive they had the guts to call it wuthering heights at all

Y.et al.
Á

But this film decided to throw away the talents of the people involved in a simpering version so watered down from the
source material that it’s amazing they had the guts to call it wuthering heights at all.

NeuroCFs-1g
À

But the film guts its source material, and it does so with a version of the heights of artistry that people have come to
expect from the talents of jean renoir.

NeuroCFs-np
À

But this film decided to take the talents of the source material and make them its own, and it’s a gutsier version of the
people we know and love from the heights.

Original
À

Unfortunately I had to rent a Dreamcast to play it, but even though I did beat it I can’t wait to buy it for PS2.
W&C.

À
Fortunately i had to rent a dreamcast to play it but even though i did beat it i can t wait to buy it for ps2

Y.et al. ?? Unfortunately i had to rent a dreamcast to play it, but even though i did beat it i can’t wait to buy it for ps2.
NeuroCFs-1g

Á
Unfortunately it’s not nearly as good as the dreamcast ps2 version.

NeuroCFs-np
Á

Unfortunately i had to rent a dreamcast to play it but even though i did beat it i can’t recommend it for ps2 or xbox.

Table 1: Comparison of IMDB-S train examples (Original) with generated counterfactuals from different approaches:
W&C. (Wang and Culotta, 2021), Y.et al. (Yang et al., 2021), and our NeuroCF variants, designed to flip the target
label. The sentiment labels for the counterfactuals can be

À
(positive),

Á
(negative), or ?? (unclear), as assessed

by authors of this work. For the baselines, substitutions and insertions are underlined, ignoring punctuation and
capitalization, and deletions are struck out. NeuroCFs result in more complex changes to the original, and are more
successful in steering the sentiment for label flipping; minimal edits are at times unable to result in meaningful
changes to the sentiment, and result in reduced grammaticality. Concepts in the original sentence that were used as
constraints to generate NeuroCFs are in blue italics . Also see App §A; Tab. 14.

salient concepts. Nodes in ConceptNet are repre-
sented as non-canonicalized, free-form text. To this
end, we use COCO-EX (Becker et al., 2021), a
ConceptNet entity linking tool. COCO-EX im-
proves upon simple string-matching techniques
which have been commonly used for ConceptNet
entity linking in the past by selecting meaningful
concepts and mapping them to a set of concept
nodes based on relational information in the graph.
Most extracted concepts correspond to nominal en-
tities. Moreover, this mapping implicitly ensures
that our extraction refrains from sentiment-bearing
tokens and phrases.

We primarily use COCO-EX for its ability to
identify meaningful concepts, but also explore the
use of links to related concepts it provides in Sec-
tion 4.4. We also compare with a baseline using
noun chunks as constraints in App C.2.

2.2 Steering Sentiment via LM Adaptation

The second component for our method is a senti-
ment “steer”, i.e. an autoregressive language model
which has been trained or adapted via finetuning
(Gururangan et al., 2020) exclusively on sentences
with single (negative or positive) polarity. Specif-
ically, we use two steers for each sentiment label:
one which models positive sentiment text, (denoted
p`
θ ), and another which models negative sentiment

text, (denoted p´
θ ), where θ indicates the param-

eters of the adapted language model. In contrast

to the hard predicate constraints over specific to-
kens as given by the extracted concepts in §2.1, our
selective use of steering LMs can be viewed as a
softer type of constraint which biases the genera-
tions towards text containing the desired sentiment
polarity (Liu et al., 2021).

2.3 Decoding with Conceptual Constraints
Our method utilizes NeuroLogic Decoding (Lu
et al., 2021), a controlled text generation algorithm
to generate fluent text satisfying a set of lexical con-
straints from a pretrained language model. Given a
series of predicates Dpa,yq which are true iff a ap-
pears in the generated sequence y, NeuroLogic ac-
cepts a set of clauses tCi | i P 1, ¨ ¨ ¨mu consisting
of one or more predicates specified in Conjunctive
Normal Form (CNF):

pD1 _ D2 ¨ ¨ ¨ _ Diqlooooooooooomooooooooooon
C1

^ ¨ ¨ ¨^pDk _ Dk`1 ¨ ¨ ¨ _ Dnqlooooooooooooomooooooooooooon
Cm

where each predicate Di is a positive constraint,
Dpai,yq, which is satisfied (i.e., evaluates as true)
if the subsequence ai appears in the generated se-
quence y.

NeuroLogic employs a beam search approxima-
tion of an objective function which maximizes the
probability of the generated sequence while penal-
izing deviations from the set of m clauses:

ŷ “ argmax
yPY pθpy|xq ´ λ

mÿ

j“1

p1 ´ Cjq (1)
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where λ " 0 penalizes deviations from the set of
constraints. Candidates are scored at each stage
t of beam search according to their partial or full
satisfaction of the constraints:

fpyďtq “ log pθpyďt|xq ` λ max
Dpa,yďtq

|â|
|a| (2)

where â represents a subsequence of a in the cur-
rent generation and the maximum is taken over
all unsatisfied constraints consisting of more than
one token. This has the effect of preferring candi-
dates which at least partially satisfy multi-token
constraints; for example, a generated sequence
yďt “ “The boy climbs an apple” would be re-
warded for partially satisfying the constraint a “
“apple tree” via its subsequence â “ “apple”.

Unlike the top-k selection strategy used in tra-
ditional beam search, NeuroLogic performs prun-
ing, grouping, and selection steps to identify the
best candidates which satisfy the given constraints.
Specifically, candidates which irreversibly violate
one or more constraints are pruned, and the re-
maining candidates are grouped according to their
number of satisfied clauses in order to encourage
diversity. The best candidate within each group is
then selected according to the scoring function in
Equation 2.

Each word or phrase in the original example
which is linked to a ConceptNet node (§2.1) be-
comes a clause in our constraint set used with Neu-
roLogic. We allow each clause to be satisfied by
the lowercase or capitalized form of the concept
via an OR constraint. For the example in Figure 1,
this constraint set would be specified in CNF as
follows:

pMovie _ movieq ^ pPlot Devices _ plot devicesq^
pCollection _ collectionq ^ pAnalogies _ analogiesq
Once the constraints have been identified in the

original, we substitute the sentiment-steered LMs
(§2.2) into Equation 1, corresponding to a polarity
opposite to the original:

ŷ “ argmax
yPY piθpy|xq ´ λ

mÿ

j“1

p1 ´ Cjq. (3)

Here, piθ “ p`
θ when we aim to generate a positive-

sentiment example and piθ “ p´
θ , for a negative-

sentiment example. The resulting generation, ŷ, is
a NeuroCounterfactual (NeuroCF).

In Eq. 3, the generation is conditioned on x,
which indicates a prompt, comprising a prefix of

the original input; we investigate two variants for
x. When x is a unigram (1g) comprising the first
token of the original input, we call the generations
NeuroCFs-1g. When x is the longest neutral
prefix of the original input, we call the genera-
tions NeuroCFs-np; these are slightly tighter Neu-
roCFs containing a greater portion of the original
input. Table 1 provides examples showing the orig-
inal sentence and our generated NeuroCFs, high-
lighting words in the original that were included in
the concept-oriented constraint set for NeuroLogic
decoding. NeuroCFs are not guaranteed to not con-
tain new concepts, beyond the specifications of the
constraint set. See App. §A for further examples.

3 Data Augmentation with NeuroCFs

Our experiments compare NeuroCFs to CFs from
minimal edit approaches, for augmentation of sen-
timent classification training data.

3.1 Experimental Setup
Sentiment Steer Our positive and negative sen-
timent steers are based on a GPT-2 Large model
(Radford et al., 2019), finetuned on (positive and
negative, resp.) subsets of the Stanford Sentiment
Treebank (SST-2; Socher et al., 2013) corpus, in-
cluding train, test and validation splits.4

NeuroLogic For decoding with NeuroLogic,
we use a beam size of 20, length penalty of 0.3, and
an n-gram size of 2 for preventing repetitions. We
use β “ 1.25 as the reward factor for in-progress
constraint satisfaction and set the constraint sat-
isfaction tolerance to 2. Please refer to Lu et al.
(2021) for details on these hyperparameters.

For the generation of NeuroCFs-np, we iden-
tify the longest neutral prefix of the original input.
As candidates, we consider all prefixes containing
at least 4 tokens, such that the rest of the review
contains at least one identified concept. We filter
the longest candidate, predicted as neutral using an
off-the-shelf 5-way sentiment classifier.5

Following prior work (Kaushik et al., 2019), we
generate NeuroCFs for a subset of movie reviews
from the Internet Movie Database (IMDB; Pang
and Lee, 2005), comprising 2440 examples ran-
domly sampled and split into 70% training, 10%
validation, and 20% test partitions, for a sentiment
classification task (Maas et al., 2011). We aug-
ment the training data of a sentence-level version

4We use the sentiment experts released by Liu et al. (2021).
5From ShannonAI.
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of this dataset (IMDB-S)6, introduced by Wang
and Culotta (2021); see App. B.1 for details.

3.2 Baselines: Other CF sources
We compare with multiple sentiment classification
baselines employing counterfactuals for training
data augmentation. Kaushik et al. (2019) crowd-
source counterfactuals for IMDB, by soliciting min-
imal revisions to maintain coherence while flip-
ping the sentiment, creating both a counterfactually
augmented train as well as test dataset. We also
consider two approaches that produce automati-
cally generated counterfactuals. Wang and Culotta
(2021) generate counterfactuals by automatically
identifying causal words in the original example
and substituting them with their antonyms, ensur-
ing minimal edits. Similarly, Yang et al. (2021) au-
tomate counterfactual generation through the iden-
tification of causal terms which are either removed
or replaced; they then filter candidates using Mover-
Score (Zhao et al., 2019) to ensure minimal edits
were made to the original example. For all the
baselines above, we train on sentence-level IMDB
reviews, as well as sentence-level variants of the
counterfactuals.7

Sentiment Classifier We compare several mod-
els, based on a RoBERTa-base architecture (Liu
et al., 2019). Each model is trained on a counterfac-
tually augmented dataset, where the CFs are either
obtained via baselines above, or via our approaches
(§2). We additionally train a baseline only on the
original IMDB-S training data, without any CFs.
Details on model training are provided in App. B.3.

Evaluation We report classification accuracy on
a combination of in-domain and out-of-domain test
sets. As in-domain test sets, we evaluate on the
IMDB test set. We also evaluate on CFs for IMDB,
crowdsourced by Kaushik et al. (2019). In addition,
we evaluate on contrast sets (Gardner et al., 2020),
which are expert-annotated CFs for IMDB test data.
As another in-domain test set, we evaluate on the
SST-2 movie reviews test set.8 Wu et al. (2021) pro-
duce task-agnostic, minimal edit counterfactuals
with fine-grained semantic controls over different

6Initial experiments with NeuroLogic decoding with full
length IMDB paragraphs were prohibitively slow, which we
circumvented by using the sentence-level version.

7App. B.2 provides further details on our datasets.
8While our sentiment steers are trained on SST-2 data, we

use NeuroLogic decoding to obtain counterfactuals for IMDB,
which we use to train our sentiment classifier. Hence, it is
unlikely that the classifier is exposed to SST-2 directly.

types of perturbations, followed by human labeling;
we also evaluate on these so-called Polyjuice CFs
for SST-2 test.9 While SST-2 differs from IMDB
in terms of word length and style, we nevertheless
consider it in-domain for the purpose of our evalua-
tions because both datasets are comprised of movie
reviews.

For the OOD test sets, we consider the following
binary sentiment classification datasets:

• The Amazon dataset (Ni et al., 2019) consists
of consumer product reviews in the categories
of software, fashion, appliances, beauty, mag-
azines, and gift cards.

• The Twitter dataset (Rosenthal et al., 2017)
from SemEval-2017 Task 4 contains social
media posts collected from Twitter.

• The Yelp dataset10 contains consumer reviews
originating from the Yelp dataset challenge.

3.3 NeuroCFs for Train Data Augmentation

Table 2 shows our results. NeuroCFs outperform
alternative methods for automatic CF generation
across every in-domain as well as OOD setting,
including performance on CF test sets. The only
exception is IMDB test, where we match the per-
formance of the best approach (up to standard de-
viation). Across most CF and OOD test sets, the
magnitude of our improvements is similar to or
greater than the amount by which existing methods
improve on the no-counterfactual baseline. Fur-
thermore, most of these improvements are statisti-
cally significant pp ď 0.05q relative to the results
of both Yang et al. (2021) and Wang and Culotta
(2021). NeuroCFs even surpass the performance
of augmentation with crowdsourced counterfactu-
als from Kaushik et al. (2019) on most OOD set-
tings. However, training on manual CFs results in
higher performance when tested on human-written
CFs; this might be attributed to distributional sim-
ilarities (Geirhos et al., 2020; Koh et al., 2020).
Regardless, our performance is close enough, de-
spite using fewer training instances while avoiding
the significant cost of human annotation.

Both NeuroCF-variants have comparable perfor-
mance, with the NeuroCFs-np faring better on 4/8
benchmarks. Consistent with prior work (Wang
and Culotta, 2021), we observe that training with
CFs generally results in similar or slightly worse

9We cannot compare with a baseline trained on Polyjuice
CFs, as these are not available for IMDB, and would need
human labeling.

10https://www.yelp.com/dataset
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IMDB SST-2 Out-of-domain

Source of CFs |Dtrain| Test CF (K. et al.) Cont.Sets Test PolyJuice CFs Twitter Yelp Amazon

None 8,173 93.220.42 92.071.04 86.851.06 90.300.97 84.740.46 77.941.72 94.710.67 90.351.03

Yang et al., 2021 10,376 92.150.79 91.991.56 86.671.46 89.460.95 86.900.57 76.371.96 94.230.59 89.971.07
Wang and Culotta, 2021 10,744 92.880.45 94.030.91 89.690.87 89.261.55 85.970.69 77.091.97 94.470.61 90.880.89
NeuroCFs-1g 15,437 92.600.59 93.360.71 89.041.02 92.630.44 87.110.52 77.981.22 95.010.22 92.320.51

NeuroCFs-np 12,905 92.660.46 95.030.47 90.850.84 92.270.39 88.350.41 78.801.22 94.510.87 92.240.71

� Kaushik et al., 2019 16,679 92.630.48 97.340.37 95.220.45 89.730.76 90.100.29 81.281.60 93.940.52 91.960.44

Table 2: Sentiment classification accuracies, comparing IMDB-S training data augmentation with NeuroCFs vs.
other sources of counterfactuals. IMDB CF (K. et al.) and Cont.Sets refer to the human-authored counterfactuals
(Kaushik et al., 2019) and contrast sets (Gardner et al., 2020), respectively. |Dtrain| shows the total number of training
instances, including 8,173 original IMDB-S training examples. Results report mean over 30 differnt random seeds,
with s.d. as a subscript. All models are based on the RoBERTa-base architecture. Best results using auto-generated
CFs for training are in boldface. Results for NeuroCFs-1g and NeuroCFs-np are underlined when a one-tailed
t-test indicates that their improvements over both Yang et al., 2021 and Wang and Culotta, 2021 are statistically
significant (p ď 0.05q.� indicates manually created counterfactuals.

IMDB SST-2 Out-of-domain

|DCF
train| Source of CFs Test CF (K. et al.) Cont.Sets Test PolyJuice CFs Twitter Yelp Amazon

|D
tr

ai
n|

“
8
,1
7
3 0 None 93.220.42 92.071.04 86.851.06 90.300.97 84.740.46 77.941.72 94.710.67 90.351.03

2, 203

Yang et al., 2021 91.680.91 91.911.65 86.691.76 89.731.05 87.240.51 77.032.20 93.221.31 90.021.20
Wang and Culotta, 2021 92.660.52 94.171.21 89.411.50 89.151.30 85.870.53 77.621.67 94.230.70 90.980.84
NeuroCFs-1g 92.580.71 93.350.86 88.201.12 92.130.60 86.630.55 78.881.37 94.930.52 91.800.72
NeuroCFs-np 92.870.46 94.750.64 89.990.94 92.040.70 87.640.57 78.721.51 94.760.55 91.870.73

� Kaushik et al., 2019 93.090.46 96.060.37 92.810.79 90.990.82 88.480.43 80.301.60 94.520.81 91.870.89

Table 3: Results controlling for training data quantity (|Dtrain|), comparing different counterfactual data augmentaton
approaches. The first row shows a baseline trained without CFs. All other settings are identical to Table 2.

in-domain test performance on IMDB-Test, relative
to training without CFs.

Each source of CFs evaluated in Table 2 pro-
duces different amounts of training data, Dtrain. To
control for training data quantity, we present results
with downsampling the training data for unifor-
mity across settings, in Table 3. Surprisingly, even
lower amounts of NeuroCFs achieve the best per-
formance compared to other methods of autogen-
erating CFs. Notably, NeuroCFs-np achieves sta-
tistically significant improvements over both Yang
et al. (2021) and Wang and Culotta (2021) on ev-
ery evaluated dataset. These results demonstrate
that the performance improvements achieved on
OOD sets can be attributed to the quality of the
NeuroCFs. App. C.1 provides further results on
sentence-level tests.

Table 4 compares our NeuroCFs and CFs from
other sources, to the original, across three similar-
ity metrics: BLEU (n-gram“ 2) (Papineni et al.,
2002), Levenshtein edit distance (Levenshtein et al.,
1966), and MoverScore (Zhao et al., 2019). Ad-
ditionally, Table 4 provides the mean perplexity
of generated counterfactuals as measured by GPT-
J (Wang and Komatsuzaki, 2021) as well as the
Distinct-2 diversity measure (Li et al., 2015). Neu-

roCFs are loose counterfactuals by design, and
are therefore farther away from the original sen-
tence; NeuroCFs-np are tighter CFs compared to
NeuroCFs-1g. However, NeuroCFs have greater
fluency (as evidenced by lower mean perplexity)
and offer performance benefits over more similar
CFs via minimal edit approaches (Table 2). More-
over, more dissimilar variants, generated without
constraints for generation (§4.3), or with alternative
concepts (§4.4) also hurt performance.

4 Analysing NeuroCFs

We present further analysis of NeuroCF properties,
such as NeuroCFs size (§4.1), and similarity to the
original (§4.2), and also ablations of our method
(§4.3, §4.4).

4.1 Impact of NeuroCF quantity
In contrast to minimal edit approaches, our ap-
proach has the added advantage of producing more
than a single NeuroCF for each original exam-
ple, via NeuroLogic hyperparameter variation. We
seek to investigate how the quantity of NeuroCFs
for training data augmentation impacts OOD gen-
eralization. To investigate the effect of size beyond
results in Table 2, we generate more NeuroCFs-np
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Source of CFs BLEU Levenshtein MoverScore Ppl Distinct-2

� Kaushik et al., 2019 0.74 20 0.70 19.3 0.49

Yang et al., 2021 0.80 8 0.81 29.1 0.56
Wang and Culotta, 2021 0.56 13 0.65 65.6 0.58
NeuroCFs-np 0.50 48 0.46 12.7 0.45

w/ concept-altered 0.43 70 0.38 18.5 0.51
NeuroCFs-1g 0.10 89 0.20 14.1 0.38

w/o constraints 0.03 97 0.07 4.6 0.32

Table 4: Comparing fluency, diversity, and similarity of generated and human (�) CFs to the original, across
various metrics. NeuroCFs are loose counterfactuals by design, and are therefore farther away from the original
sentence.

by varying the length penalty in NeuroLogic from
0.1 to 0.7 in increments of 0.2. Among these candi-
date counterfactuals for each original instance, we
augment the training data with the generation with
the lowest MoverScore to our initial NeuroCFs-np.
This increases the quantity of NeuroCFs-np from
4,732 to 7,489.

0 1000 2000 3000 4000 5000 6000 7000
|DCF

train|

0.87

0.88

0.89

0.90

0.91

0.92

M
ea

n 
ac

cu
ra

cy

Amazon
IMDB Cont.Sets

Figure 2: Increasing NeuroCF quantity for training data
augmentation improves in-domain performance, while
OOD generalization plateaus.

Results in Figure 2 show monotonic increase in
accuracy on IMDB contrast sets (Gardner et al.,
2020) with NeuroCFs-np size. However, perfor-
mance on the Amazon OOD set plateaus, suggest-
ing overfitting to the IMDB domain; this echoes the
findings of prior work on the efficacy of counter-
factuals (Khashabi et al., 2020; Huang et al., 2020;
Joshi and He, 2022).

4.2 Impact of NeuroCF Similarity
We investigate the impact of the similarity of Neu-
roCFs to the original example on sentiment clas-
sification performance after augmentation. From
the NeuroCFs candidate set described in §4.1, we
create two sets of alternative NeuroCFs for each
instance: one with the lowest MoverScore (most

dissimilar) w.r.t. the original (NeuroCFs loose) and
the other with the highest MoverScore (most simi-
lar; NeuroCFs tight).

Table 5 compares these two alternatives via clas-
sifier performance across our in-domain and out-
of-domain tests. In general, we observe that tighter
(i.e., more similar to the original sentence) counter-
factuals improve generalization more when evalu-
ated on counterfactual and contrast sets. They also
improve out-of-domain generalization, with the ex-
ception of the Yelp dataset where both variants
result in similar performance. Tighter counterfac-
tuals are more likely to break spurious correlations
that help classifiers perform better on in-domain
test sets, which may explain why NeuroCFs loose
performs better on IMDB Test and SST Test. While
NeuroCFs are designed to be loose CFs, these re-
sults suggest that higher similarity between the
original and its NeuroCF is still important for gen-
eralization.

4.3 Impact of Constrained Decoding

Our approach uses a sentiment-steered LM to con-
trol the sentiment of the NeuroCFs, and constraint-
based decoding to encourage its similarity to the
original example. To investigate the impact of con-
straint decoding, we run an ablation without the
use of NeuroLogic, i.e., only using the sentiment
steer. Specifically, we use the first token of each
original sentence as a prompt and decode from our
sentiment experts using beam search with the same
hyperparameters as NeuroCFs.

Table 4 compares both variants by their similar-
ity to the original, and Figure 3 compares the per-
formance of training data augmentation with both
variants. The use of constrained-based decoding
results in substantial performance improvements
over the no-constraint baseline across all evalua-
tion sets except the in-domain IMDB test set. This
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IMDB SST-2 Out-of-domain

NeuroCF-Variants MoverScore Test CF (K. et al.) Cont.Sets Test CF (PolyJuice) Twitter Yelp Amazon

NeuroCFs loose 0.114 92.500.59 93.310.71 88.350.71 92.260.56 86.560.44 76.951.62 95.010.42 91.510.78
NeuroCFs tight 0.373 92.240.68 93.330.56 89.290.71 92.230.55 86.800.41 77.731.22 94.930.28 92.000.59

Table 5: Impact of the similarity of a NeuroCF to the original. NeuroCFs loose are more dissimilar to the original,
than NeuroCFs tight, as given by the mean MoverScore. Tighter NeuroCFs result in better performance.
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Figure 3: Conceptual constraint-based decoding with
NeuroLogic improves performance, as seen by the
comparison between training data augmentation with
NeuroCFs-np, and their counterparts generated without
any constraints. Reported RoBERTa-base accuracy is
averaged over 30 random seeds.

highlights the value of using constraints to encour-
age similarity to the original, thus resulting in a
NeuroCF, as opposed to simply a new example
of the opposite polarity. These results, along with
those from §4.2 indicate the existence of an opti-
mal degree of similarity, which is not as high as
minimal edit counterfactuals, and not as low as
constraint-free counterexamples.

Initial experiments further point to the value of
ConceptNet constraints, as opposed to nominal con-
straints; the former results in more similar Neu-
roCFs (see App. §C.2 for details).

4.4 Leveraging ConceptNet for alternative
constraint sets

Our use of COCO-EX for identifying concept con-
straint sets provides a link between each of our
constraints and a node in ConceptNet. We ex-
plore whether the structured knowledge contained
in ConceptNet can provide alternative constraint
sets for NeuroCFs.

For each concept in our original constraint sets,
we query ConceptNet for its most similar11 English-

11Via similarity scores calculated over pre-computed Con-

language node in the graph and use the label of
this nearest neighbor to replace our original con-
cept constraint (see Appendix C.3 for examples).
Table 6 compares the performance of a RoBERTa-
base classifier trained on NeuroCFs-np, and their
counterparts produced by alternative conceptual
constraints derived from ConceptNet, and a com-
bined set of NeuroCFs produced by both the orig-
inal and concept-altered constraints. We observe
that further increasing the size of our CFs using
concept-altered NeuroCFs increases performance
on in-domain CF test sets while retaining perfor-
mance on OOD test sets. While this pilot shows
promising results, we leave a systematic investi-
gation into ConceptNet knowledge to create coun-
terexamples for data augmentation, to future work.

4.5 Can NeuroCFs be used for evaluation?
Inspired by the success of NeuroCFs for train-
ing data augmentation, we further investigate if
these can be used as a challenge set for evaluation
(Rudinger et al., 2018). However, before deploying
them as test sets, we need to first verify that Neu-
roCFs indeed alter the target label, as intended by
the sentiment steering process (§2.2). We randomly
select 50 NeuroCFs, as well as CFs from baseline
approaches, to evaluate whether they successfully
steered the sentiment of the original example.12

Results show that NeuroCFs-np and NeuroCFs-
1g are more successful in steering sentiment com-
pared to the baseline approaches; however, only
about 50% of the resulting NeuroCFs-np actually
result in sentiment change; see further discussion
in App. C.4. Hence, we cannot reliably use gen-
erated counterfactuals for evaluation. Future work
might investigate manually labeling NeuroCFs for
use as challenge sets, following Wu et al. (2021).

5 Related Work

Counterfactual data augmentation is emerging as
a viable solution for improving model robustness

ceptNet Numberbatch embeddings.
12To ensure fairness, the source of the counterfactual as

well as the intended label was kept hidden during validation.
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IMDB SST-2 Out-of-domain

NeuroCFs Constraints Test CF (K. et al.) Cont.Sets Test CF (PolyJuice) Twitter Yelp Amazon

Original 92.660.46 95.030.47 90.850.84 92.270.39 88.350.41 78.801.22 94.510.87 92.240.71
Concept-altered 92.850.63 95.260.78 90.551.10 91.940.49 87.980.65 78.531.51 94.320.80 92.010.71
Original + concept-altered 91.830.65 96.040.46 91.861.06 91.380.42 88.350.43 78.571.63 93.900.92 92.030.63

Table 6: Impact of concept-altered constraint sets created from ConceptNet on classifier performance

towards spurious correlations (Geirhos et al., 2020).
In previous sections, we present comparisons to var-
ious minimal edit approaches for producing coun-
terfactuals (Kaushik et al., 2019; Wang and Culotta,
2021; Yang et al., 2021; Wu et al., 2021; Gardner
et al., 2020), either manually or automatically. Our
approach steers away from minimal edits, as well
as manual intervention for creating counterfactuals.

Beyond sentiment classification, this approach
has been employed for tasks such as question an-
swering (Paranjape et al., 2022), fairness in social
computing (Sen et al., 2021), and natural language
inference (Glockner et al., 2018). Most work focus
on minimal edits of training instances via small
perturbations to the causal features, via manually
editing instances. Madaan et al. (2021) introduce a
controlled text generation approach to create coun-
terfactuals containing specific attributes, but focus
on applications to debiasing and evaluation rather
than our objective of training data augmentation.
Hu and Li (2021) propose a structural causal model
for combing attribute-conditional generation and
text attribute transfer (i.e., minimal edits), but simi-
larly produce counterfactuals for different purposes
than ours. Ross et al. (2022) automate contrast
sets (Gardner et al., 2020) for question answering,
dependency parsing and relation extraction, via
training a generator with semantic control codes;
however, their method requires the user to specify
what changes in the original sentence are desired.

Beyond Counterfactuals: Srivastava et al.
(2020) collect human annotations for common-
sense reasoning behind examples, in a robust opti-
mization setting to minimize worst-case loss, with-
out explicitly collecting counterfactuals. Ribeiro
et al. (2018) demonstrate how state-of-the-art mod-
els are vulnerable to semantically-equivalent ad-
versarial examples constructed from a rule-based
method. Ribeiro et al. (2020) propose Checklists,
which contain heuristic edits of the evaluation data
instances. Other approaches employ perturbations
without creating actual data instances (Veitch et al.,
2021).

6 Discussion

We presented an approach to generate NeuroCFs,
via sentiment steering and concept-constrained de-
coding. Training data augmentation with Neu-
roCFs results in improvement on sentiment clas-
sification performance over existing minimal-edit
methods, both in and out of domain; even match-
ing human counterfactuals in some cases. We pre-
sented several analyses for NeuroCFs, and abla-
tions showing the effectiveness of our approach.
While NeuroCFs are loose by design, our analy-
ses indicate the existence of an optimal degree of
similarity, which is not as high as minimal edit
counterfactuals, and not as low as constraint-free
counterexamples.

While this work focused on NeuroCFs for
movie reviews only, our results show that training
on them transfers to other domains such as product
reviews and social media posts for the same senti-
ment analysis task. Future directions of research
might investigate generating NeuroCFs for eval-
uation, and tasks beyond sentiment classification.
Our approach is broadly compatible with tasks for
which a language model steer can be trained; fu-
ture applications of this work could therefore in-
clude other NLP tasks where global attributes are
available, such as toxicity removal or style transfer.
Further, we could consider generating a NeuroCFs
neighborhood around individual instances, similar
to contrast sets (Gardner et al., 2020).
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Limitations

Our approach to generate NeuroCFs is designed
specifically for binary sentiment classification in
English language only. For generating NeuroCFs,
we needed the knowledge of the original example’s
sentiment polarity; however, it is possible to pro-
duce NeuroCFs for both polarities without knowl-
edge of the original label. Applications to other
classification settings might involve the need to
train multiple language model steers, which can be
challenging in the absence of global labels (for e.g.
instance-specific labels in multiple-choice question
answering). NeuroCFs might need to be filtered
for grammaticality and for steering accuracy for
their use beyond training data augmentation. Our
approach investigated producing loose counterfac-
tuals at the sentence level; efficient extensions of
our approach to paragraph-level transformations
were not explored in this work. Throughout this
work, we use RoBERTa-base and GPT2-Large ar-
chitectures; however, there are more powerful ar-
chitectures which could potentially improve our
results.

It is possible that language generated through
automatic approaches, and labeled automatically
might contain their own annotation artifacts (Gu-
rurangan et al., 2018), leading to a different set of
spurious biases. Potential harms of generated lan-
guage include harmful social biases (Bender et al.,
2021), which were not investigated in this work.
Approaches that involve a human validation phase
after data collection (Liu et al., 2022), might be
explored in future work to mitigate such harms.

Ethical Considerations

We acknowledge that generated language is sus-
ceptible to harmful social biases (Bender et al.,
2021) and toxicity (Gehman et al., 2020). We cau-
tion practitioners against training models solely on
model generated data. We do not filter our train-
ing data or our generations for toxicity, bias, or
offensiveness. Hence, we recommend practitioners
interested in using our generations and replicating
this work to carefully check the generated content
before deployment in any real world application.

Our work uses only publicly available datasets.
To the best of our knowledge, these do not con-
tain any explicit information about a user’s identity,
health, negative financial status, racial or ethnic ori-
gin, religious or philosophical affiliation or beliefs,
beyond their reviews on movies and products.
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A Extended Qualitative Analysis

A larger qualitative analysis is provided in Table 14,
which further highlights how NeuroCFs result in
more complex changes to the original sentence,
and are more successful in sentiment steering than
minimal-edit counterfactuals. Minimal edits are at
times unable to result in meaningful sentiment flips,
and result in reduced grammaticality and pragmat-
ics, producing phrases such as “racism was best”
(W&C), and “part in the game” (Y et.al.).

A.1 Examples of cases where a counterfactual
was not generated

Table 9 provides examples of sentences for which
a NeuroCFs-np was not generated. In these cases,
no prefix of the original sentence at least 4 tokens
in length was predicted to be neutral. This can be
attributed to sentiment-bearing words being present
at the start of the sentence.

B Data Augmentation Experimental
Setup

B.1 Sentence-level IMDB
We augment the training data of a sentence-level
version of this dataset (IMDB-S), introduced by
Wang and Culotta (2021). Here, the original
paragraph-length examples were disaggregated, by
splitting the original paragraph into sentences and
selecting those which contain keywords highly cor-
related with labels predicted by a binary sentiment
classifier. Each sentence inherits its label from the
original paragraph, and Wang and Culotta (2021)
found that 96.8% of the inherited labels were accu-
rate based on a manual evaluation of 500 samples.

B.2 Dataset Sizes

Dataset |Dtrain| |Dtest|
IMDB-S 8173 2245
IMDB-S CF — 2381
IMDB — 488
IMDB CF (Kaushik et al., 2019) — 488
IMDB Cont.Sets (Gardner et al., 2020) — 488
SST-2 — 1821
SST-2 CF (Wu et al., 2021) — 3014
Twitter — 4678
Yelp — 38000
Amazon — 941534

Table 7: Size of datasets used in experiments

Table 7 provides details on the size of the
datasets used in our experiments. All datasets con-
sist of English language text which we used without

Source of CFs |Dtrain| Mean Training Time

None 8,173 641.90

Yang et al., 2021 10,376 773.79
Wang and Culotta, 2021 10,744 827.94
NeuroCFs-np 12,905 746.86
NeuroCFs-1g 15,437 927.50

: Kaushik et al., 2019 16,679 788.13

Table 8: Average time (in seconds) to train RoBERTa-
base on various sets of counterfactuals measured across
30 random seeds

modification. For training our baselines, Wang and
Culotta (2021) provided the sentence-level variants
for Kaushik et al. (2019)’s counterfactuals, and
we apply their method to obtain the sentence-level
counterfactuals from Yang et al. (2021).

B.3 Models and Hardware Details

Our sentiment classifier consists of a RoBERTa-
base model (Liu et al., 2019) finetuned on various
training data setups for a maximum of 10k steps us-
ing the AdamW optimizer (Loshchilov and Hutter,
2019) with a batch size of 16 and a learning rate of
1e-06. We evaluate performance every 500 steps on
a validation set randomly sampled from 20% of the
training data and terminate training early if there is
no improvement for 5 consecutive evaluations. All
sources of counterfactuals are evaluated using the
same hyperparameters and strategy for withholding
validation data.

Our experiments were conducted on a Slurm
linux cluster with Nvidia RTX 3090 GPUs. We
parallelized the generation of NeuroCFs across 32
GPUs in this environment, resulting in a total run-
ning time of 75 minutes. Table 8 reports the mean
time to train our RoBERTa-base classifier on the
various sets of counterfactuals, measured across
30 different random seeds. Each training run for a
given source of counterfactuals and seed was con-
ducted on a single GPU. RoBERTa-base has 125M
parameters.

C Additional Results

C.1 Evaluating on sentence-level test sets

Table 12 shows the results of all our approaches
and baselines on sentence-level test sets.

C.2 Noun Chunk Concepts as Constraints

As detailed in Section 2.1, we form our constraint
sets by using COCO-EX to identify meaningful
concepts in the original example. To investigate
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Candidate prompt Original sentence

Long , boring , Long, boring, blasphemous.
Do something worthwhile , Do something worthwhile, anything really.
Awful , despicable , Awful, despicable, unpleasant, unhappy, unredeemable saga of a complete Loser.
This is a good This is a good, dark film that I highly recommend.
I really liked the I really liked the black and white cinematography.

Table 9: Examples of cases where a NeuroCFs-np was not generated

Steering Acc.

Yang et al., 2021 0.24
Wang and Culotta, 2021 0.28
NeuroCFs-1g 0.40
NeuroCFs-np 0.46

Table 10: Accuracy of sentiment steering, based on man-
ual evaluation by authors of this work, on 50 randomly
sampled IMDB-S train instances for which CFs were
available from all approaches. Many generations from
each approach were ungrammatical and unpragmatic
(see examples in Table 1 and Table 14), and we consid-
ered them as incorrectly sentiment-steered.

how our concept-constrained generations differ
from those produced by constraint sets derived
from nouns, we generated an alternative set of Neu-
roCFs using constraints consisting of noun chunks
identified by spaCy14. We found that these alter-
native noun-chunk conceptual NeuroCFs had an
average MoverScore of 0.15 w.r.t. their correspond-
ing COCO-EX concept-constrained NeuroCFs, in-
dicating that the use of concepts for constraint for-
mulation produces substantially different counter-
factuals than the use of noun chunks for constraints.
Moreover, based on the evidence from Table 5, we
hypothesize that these alternative concepts might
not result in a performance boost.

C.3 Examples of concept-altered constraint
sets derived from ConceptNet

Table 13 provides examples of our original
NeuroCFs-np and their concept-altered versions
after replacing constraints with similar nodes from
ConceptNet.

C.4 Evaluating with NeuroCFs

Table 10 shows the steering accuracy of NeuroCFs
as well as CFs from baseline approaches, as eval-
uated by the authors of this work on a sample of
50 randomly selected examples from each. Some

14https://spacy.io/

Source of CFs |DCF
test| Acc. ∆pÒq

None 2245 80.46 0.0

� Gardner et al., 2020 4545 67.52 12.68
� Kaushik et al., 2019 2381 77.57 2.63

NeuroCFs-1g 2051 67.63 12.57
NeuroCFs-np 1322 56.81 25.39

Table 11: Classification accuracy of an off-the-shelf
sentiment classifier from the Huggingface Transformers
library (RoBERTa-base finetuned on the Yelp dataset).
Each row indicates an evaluation set comprised of coun-
terfactuals of the original IMDB-S test set (top row),
from different sources. |DCF

test| indicates size of the coun-
terfactual test set.� indicates manually created coun-
terfactuals. Greater the ∆, more challenging the CF test
set. However, NeuroCFs-1g and NeuroCFs-np do not
possess human-annotated target labels; also see §4.5.

IMDB-S

Source of CFs |Dtrain| Test CF (K. et al.)

None 8,173 80.460.55 75.210.84

Yang et al., 2021 10,376 79.680.50 77.630.71
Wang and Culotta, 2021 10,744 80.250.42 77.620.90
NeuroCFs-np 12,905 78.310.53 80.010.71
NeuroCFs-1g 15,437 79.030.56 77.870.77

� Kaushik et al., 2019 16,679 77.580.39 84.270.46

Table 12: Evaluation of counterfactual data augmenta-
tion on sentence-level test sets; other settings similar to
Table 2.

examples of this annotation can be seen in Table 14
in Appendix A and in Table 1.

We report the performance of a RoBERTa-base
classifier finetuned on the Yelp dataset15 using the
original IMDB dataset and various CF test sets in
Table 11.

15https://huggingface.co/VictorSanh/
roberta-base-finetuned-yelp-polarity
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Original Sentence Original Constraints Constraints w/ Al-
tered Concepts

NeuroCFs-np Concept-altered NeuroCFs-np

This is one of the worst movies I saw! (movies) (citizen kane) This is one of the funniest movies I
have seen in a long time.

This is one of the best movies I’ve
seen in a long time, and it’s also a
movie that will make you laugh, cry,
think and feel a little bit like citizen
kane.

It’s maybe the worst comedy spoof
ever made.

(spoof) ^ (comedy) (parodied) ^
(comedic)

It’s maybe the best spoof comedy I’ve
seen in a long time.

It’s maybe the most parodied
comedic film I’ve seen in a long time.

Unlike many modern stories which
seem to revel in dark witchcraft, this
is simply a magical tale of hocus
pocus that is cute, light hearted, and
charming.

(hocus pocus) ^
(tale)

(mumbo jumbo)
^ (story)

Unlike many modern stories which
seem to revel in dark witchcraft this
is simply a tale of hocus pocus and
sleight of hand.

Unlike many modern stories which
seem to revel in dark witchcraft this
is simply a story about mumbo jumbo
and a lot of it.

He really just wants to be a good boy,
to do the right thing, and to make his
brother proud of him.

(brother) (younger sibling) He really just wants to be a good boy
to do the right thing for his brother,
but he just can’t do it.

He really just wants to be a good boy
to do the right thing, but his younger
sibling isn’t buying it.

Table 13: Examples from IMDB-S and their corresponding NeuroCFs-np, generated with original and with
concept-altered constraints (see §4.4). The prompt (history) used for NeuroLogic decoding is colored orange.
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Label Review

Original
À

A good enough film that unfortunately leaves you a little sad at the end.
W&C.

À
A good enough film that luckily leaves you a little sad at the end

Y.et al.
À

A good enough film unfortunately leaves you a little sad at the end.
NeuroCFs-1g ?? A film about the end of the world as we know it.
NeuroCFs-np

Á
A good enough film that unfortunately leaves you a little sad at the end, but it’s not a great one.

Original
À

Crash tried to show how racism was bad (and Crash actually had a built-in anti Asian bias) and to come at it from a
morally superior position.

W&C.
Á

Crash tried to show how racism was best and crash actually had a built in anti asian bias and to come at it from a morally
superior position

Y.et al. ?? Crash tried to show how was bad ( and crash actually had a built - in anti asian bias ) and to come at it from a morally
superior position.

NeuroCFs-1g ?? Crash crash, anti racism position, asian stereotypes, and.
NeuroCFs-np

Á
Crash tried to show how racism was bad and crash actually had a built-in anti asian bias and to come at it from a morally
superior position, it didn’t do much of either.

Original
À

Many references to the directors obvious love of film history (a great "Bicycle Thief" homage") and some whimsical scenes
which work with out being pretentious.

W&C.
À

Many references to the directors obvious love of film history a little bicycle thief homage and some whimsical scenes which
work with out being pretentious

Y.et al.
À

Many references to the directors obvious love of film history ( a great " bicycle thief " homage " ) and some whimsical
which work with out being pretentious.

NeuroCFs-1g
Á

Many history buffs will love this film, but it’s not for directors or actors, and it doesn’t have the charm of scenes like this
one, in which a bicycle thief references the film.

NeuroCFs-np
Á

Many references to the directors obvious love of film history and scenes from the classics are made, but the film is so
formulaic that it’s hard to care about the characters or the bicycle thief.

Original
Á

The motorcycle is the worst part in the game.
W&C.

À
The motorcycle is the good part in the game

Y.et al. ?? The motorcycle is the part in the game.
NeuroCFs-1g

À
The best part of the game is the motorcycle chase sequence.

NeuroCFs-np
À

The motorcycle is the best part of the film, and it’s a game changer.

Original
Á

Where this weakness is most apparent is in his humor, which is poised and logical, so the joke is dead before it’s delivered.

W&C.
Á

Where this weakness is most apparent is in his humor which is poised and logical so the well is dead before it s delivered
Y.et al.

Á
Where this is most apparent is in his humor, which is poised and logical, so the joke is dead before it’s delivered.

NeuroCFs-1g
À

Where the joke is, the humor comes from the characters.
NeuroCFs-np

Á
Where this weakness is most apparent is in his humor which is poised and logical so the audience doesn’t have to guess
what the joke is.

Original
À

Jacknife is never getting boring as it shows its heroes clear of any typical Hollywood’s typical character elements.
W&C.

Á
Jacknife is never getting interesting as it shows its heroes clear of any typical hollywood s typical character elements

Y.et al.
Á

Jacknife is getting boring as it shows its heroes clear of any typical hollywood’s typical character elements.
NeuroCFs-1g

Á
Jacknife offers elements of hollywood melodrama, character development and heroes and villains.

NeuroCFs-np
Á

Jacknife is never getting the character elements hollywood heroes are supposed to have.

Original
Á

The scenery looks like cheap Theatre.
W&C.

À
The scenery looks like expensive theatre

Y.et al. ?? The scenery looks like cheap theatre.
NeuroCFs-1g

À
The scenery, the music, and the theatre are all top notch.

NeuroCFs-np ?? The scenery looks like it could have come straight out of a movie theatre.

Table 14: Further qualitative analysis, extending Table 1.
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