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Abstract

Prompt-based learning has achieved excellent
performance in few-shot learning by mapping
the outputs of the pre-trained language model to
the labels with the help of a label mapping com-
ponent. Existing manual label mapping (MLM)
methods achieve good results but heavily rely
on expensive human knowledge. Automatic
label mapping (ALM) methods that learn the
mapping functions with extra parameters have
shown their potentiality. However, no effective
ALM model comparable to MLM methods is
developed yet due to the limited data. In this
paper, we propose a Latent Pseudo Label Map-
ping (LPLM) method that optimizes the label
mapping without human knowledge and extra
parameters. LPLM is built upon a probabilistic
latent model and is iteratively self-improved
with the EM-style algorithm. The empirical
results demonstrate that our LPLM method is
superior to the mainstream ALM methods and
significantly outperforms the SOTA method in
few-shot classification tasks. Moreover, LPLM
also shows impressively better performance
than the vanilla MLM method which requires
extra task-specific prior knowledge.

1 Introduction

With the advent of the powerful pre-trained lan-
guage model (PLM) such as GPT-3 (Brown et al.,
2020), prompt-based learning becomes blooming
in recent years because it can effectively bridge
the gap between pre-training tasks and downstream
tasks (Liu et al., 2021). Several corresponding stud-
ies show better performance than the traditional
fine-tuning methods in few-shot learning tasks (Cui
et al., 2022), where few-shot learning is generally
considered as N-way K-shot learning. Each task
consists of N classes with K instances per class.

The pipeline of vanilla prompt-based learning
for classification tasks is composed of a prompting
phase and a prediction phase. In the prompting
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Figure 1: The evolutionary process of the selected class
representative and the improvement of the overall per-
formance by adopting the EM-style algorithm.

phase, the input sentence is reconstructed into a
cloze-type sentence with a pre-defined template
containing a <MASK> slot. In the prediction phase,
the PLM tries to fill the <MASK> slot with cor-
responding words in the vocabulary based on the
context. One challenge in this pipeline is mapping
the fill-in word with the expected class label. To
address this challenge, label mapping is introduced
into the pipeline, assigning a class representative
to each class to associate the PLM output with the
expected class label. Typically, each class repre-
sentative is one or a set of human-chosen word(s)
that should be highly relevant to each class. Based
on the word-occurrence probability, the model can
calculate the occurrence probability of the class
representatives. Finally, the label of the input sen-
tence is inferred from the class representative with
the highest occurrence probability.

As label mapping plays an important role in
prompt-based learning (Liu et al., 2021), design-
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ing more effective label mapping becomes sig-
nificant. The recent label mapping methods can
be divided into two branches: manual label map-
ping (MLM) and automatic label mapping (ALM).
MLM method manually selects the class represen-
tative for each class, and it is proven to be very
powerful in many tasks (Liu et al., 2021). How-
ever, this method is time-consuming and labor-
intensive. Humans need to thoroughly understand
the downstream tasks first and select the appro-
priate words for each class representative. Addi-
tionally, relying heavily on human subjectivity can
cause different problems. Thus, ALM methods
are proposed to eliminate the effects of human in-
volvement. They can be further divided into soft
label mapping, search-based label mapping, and
prototypical label mapping. Soft label mapping
(Hambardzumyan et al., 2021) replaces the con-
crete tokens with trainable tokens to generate class
representatives. Search-based label mapping (Gao
et al., 2021) aims to find a subset of candidate
words from the vocabulary using algorithms or ad-
ditional networks with additional parameters. Pro-
totypical label mapping (Cui et al., 2022) projects
the <MASK> vector onto a new embedding space
with additional linear networks and fine-tunes the
model with contrastive learning. However, these
ALM methods involve extra parameters which re-
quire a big amount of instances to train, where in
practice, the available data is scarce in few-shot
scenarios, making it difficult to train the model to
find optimal class representatives. Consequently,
inexpressive class representatives may degrade the
final classification performance.

To address the above problem, we propose a La-
tent Pseudo Label Mapping (LPLM) model. LPLM
first uses a Majority Voter that shares the same pa-
rameters with PLM to automatically generate class
representatives. As the class representatives pro-
duced by this method may be noisy, we build a
latent variable model and introduce an EM-style al-
gorithm to gradually reduce the noise and enhance
the expressiveness of each class representative, as
shown in Figure 11.

The novel prompt-based learning pipeline with
LPLM has the advantage that no additional param-
eters or human knowledge are required to generate
class representatives. In the E-step, the distribu-
tions of latent variables are updated with a Majority

1To be intelligible, we illustrate our motivation with the
4-way 4-shot classification task, which is consistent with one
of the settings in our experiments.

Voter and the class representatives are re-selected
based on the parameters optimized in the previ-
ous M-step. In the M-step, predictions are made
according to the generated class representatives
from the E-step, and the parameters of the PLM
are updated based on the prediction results. The
two steps perform alternately to obtain increasingly
optimal distributions for class representatives and
to improve the overall performance. Moreover, we
introduce two strategies for selecting the keywords
in each class representative, which are discussed in
Section 3.3.

To verify the effectiveness of LPLM, we conduct
a series of experiments on widely-used classifica-
tion datasets. Since our method can be applied
to any classification task, we deliberately choose
three different types of datasets, a sentiment classi-
fication dataset SST-2 (2-way), a well-known text
classification dataset AG’s News (4-way), and a
popular entity typing dataset Few-NERD (66-way).
The experimental results show that LPLM signifi-
cantly outperforms the other three ALMs and even
outperforms MLM. The contributions of this paper
can be summarized as follows:

• We introduce the latent variable model in
prompt-based learning and propose LPLM
that optimizes the label mapping without hu-
man knowledge or extra parameters.

• We propose LPLM to automatically gener-
ate the class representative for each class us-
ing the majority voting mechanism, and alter-
nately optimize the parameters of PLM and
the distributions of latent variables by the EM-
style algorithm.

• We conduct a series of experiments to com-
pare the performance of LPLM with other
baseline label mappings, which demonstrates
that LPLM outperforms not only all other
ALMs, including the SOTA, but also MLM.

2 Related Work

2.1 Prompt-based Learning

As the demand for effectively fine-tuning large-
scale language models such as GPT-3 gets bigger,
the popularity of prompt-based learning (in-context
learning) has also increased. To fine-tune the model
with prompt-based learning, the template with a
<MASK> slot is used to reconstruct the input texts,
like ‘<TEXT>. The category is <MASK>.’. In
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recent works, prompt-based learning has achieved
impressive performance in many downstream tasks,
such as text classification (Gao et al., 2021), knowl-
edge probing (Petroni et al., 2019), and data con-
struction (Choenni et al., 2021).

Although prompt-based learning consists of two
parts, namely template designing and label map-
ping, most of the existing works focus on the for-
mer due to its simplicity. However, as discussed
in Section 1, label mapping is also an important
part that determines the performance of prompt-
based learning as it builds a bridge between the
word-occurrence possibility and the class labels.
To accomplish this more effectively, in this paper,
we propose a novel method for ALM.

2.2 Mainstream Label Mappings

While label mapping has a crucial impact on the
performance of prompt-based learning (Gao et al.,
2021), each of the four mainstream label mapping
approaches has its shortcoming.

Manual label mapping engages human-
involvement to select the class representative for
each class (Schick and Schütze, 2021). As this
method is heavily dependent on human knowledge,
side effects may occur. Contrary to expectations,
the level of human knowledge may not always
be guaranteed as each task requires different
background knowledge. If the selected class
representatives are not expressive enough, the
overall performance could fluctuate greatly (Gao
et al., 2021).

Soft label mapping directly uses trainable con-
tinuous tokens as class representatives and aims
at optimizing them at the fine-tuning stage (Ham-
bardzumyan et al., 2021). However, to achieve this,
enough data is required for optimization, which is
not realistic in practical few-shot scenarios.

Search-based label mapping obtains candidate
words from the entire vocabulary and uses the vali-
dation set to select the best class representatives for
fine-tuning the PLM. (Gao et al., 2021). However,
this method also faces the same difficulty as soft
label mapping. It is difficult to optimize the model
to find suitable candidates from a large vocabulary
when there are only a few instances available.

Prototypical label mapping takes inspiration
from contrastive learning to introduce an additional
contrastive loss for the fine-tuning process (Cui
et al., 2022). Specifically, after projecting the in-
stances into a new embedding space, the instances

Figure 2: Pipeline of prompt-based learning with LPLM
based on the EM-style algorithm. ‘repre’s denote the
selected class representatives.

that belong to the same class are summarized and
the ones belonging to different classes are sepa-
rated. Nonetheless, this method also requires train-
ing additional randomly initialized parameters for
the projecting function. When only a few instances
are available (e.g., K=1), it is difficult to train the
projecting networks and the different classes may
hardly be distinguished.

3 Latent Pseudo Label Mapping

In order to remedy the shortcomings of the methods
mentioned in Section 2.2, we introduce LPLM to
effectively exploit the knowledge provided by the
limited instances. It is built upon a latent variable
model and optimized with the EM-style algorithm.
In this section, we first define the necessary nota-
tions in few-shot classification tasks and introduce
the overall architecture of LPLM. Then, we ex-
plain the detailed mechanism of the E-step and the
M-step with the mathematical derivation and the
learning process of the EM-style algorithm.

3.1 Task Definition
In the N-way K-shot setting, a set of labeled in-
stances is defined as X which has the size of
|X| = N ∗ K as it consists of K instances for
each of the N classes. The corresponding set of
ground-truth labels is defined as Y which also
contains |Y | = N ∗ K elements where each
yi ∈ {1, . . . , N}

The proposed LPLM focuses on few-shot classi-
fication tasks and aims at predicting the label zi for
the input instance xi ∈ X . The optimization target
is to maximize

L(θ) =
N∗K∑

i=1

log pMθ
(zi|xi, yi, X, Y ; θ, T (·))

(1)
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where pMθ
(zi|xi, yi; θ, T (·)) is the probability that

zi is predicted to be yi given the task-specific tem-
plate T (·) and the pre-trained language model Mθ

with the parameter θ. In total, N ∗ K few-shot
instances are used by the model to optimize its
parameter θ.

3.2 LPLM Architecture

The architecture of LPLM is designed on the ba-
sis of the classic principle-based EM algorithm
(Dempster et al., 1977).

In prompt-based learning, Mθ only provides the
probability of each word in the vocabulary V oc-
curring in the <MASK> slot. To bridge the gap
between the word-occurrence probability and the
expected label zi, we introduce latent variables
W = {w1, . . . , wN} where each element denotes
a class representative. The distribution of W and
each wi ∈W is updated in each E-step. The objec-
tive function is extended to

L(θ) =
N∗K∑

i=1

log pMθ (zi|xi, yi, X, Y ; θ, T (·))

=
N∗K∑

i=1

log
∑

W

pMθ (zi|W,xi, yi, X, Y ; θ, T (·))

· pMθ (W |xi, yi, X, Y ; θ, T (·))

(2)

where p(W |xi, yi, X, Y ; θ, T (·)) represents the
probability of choosing W as the class representa-
tives.

E-step: Each input instance is first wrapped with
a template (with a <MASK> slot) and fed into the
PLM Mθ after the parameters are updated in the
previous M-step. Mθ outputs the distribution over
all the vocabulary at the <MASK> slot. Since Mθ

contains prior knowledge, and a task-specific tem-
plate is used for PLM, the distribution is highly
related to its contextual semantics. After averag-
ing the distributions of all instances in the same
class, LPLM updates the class representatives wis
with the keywords of the Top-k highest probabili-
ties. The weights of the keywords are calculated
by normalizing their corresponding probabilities.

M-step: For each wrapped instance, LPLM
obtains the distribution at the <MASK> slot by
feeding it into Mθ. The probability of each la-
bel is calculated by weighted averaging the word-
occurrence probability of the keywords in each
class representative. The parameters in Mθ are up-
dated to increase the probability of predicting the
correct class label for each instance.

EM-style iteration: The EM algorithm itera-
tively performs E-steps and M-steps to gradually
mine the class-specific semantics in few-shot in-
stances with Mθ. In the E-step of round t, the
distributions of the latent variables are optimized
with θt which is updated in the previous M-step.
The class representatives Wt−1 in round t − 1 is
updated to Wt by Mθt . Then, in the M-step, based
on the classification result predicted with Wt, θt is
updated to θt+1 and Mθt is updated to Mθt+1 .

3.3 E-step Details
In E-steps, LPLM generates the class representa-
tives, namely the latent variables, subsequent to
the optimization of the distributions based on the
parameter θ updated in the previous M-step. The
core idea of the generation is for each instance to
vote for the class representative of its own class.

3.3.1 Majority Voter
The Majority Voter Vθ is the main component in
E-steps to determine the class representative for
each label where θ is shared with Mθ since it also
uses the PLM Mθ as its basis. The distribution of
class representatives are obtained by the voter

W ← Vθ(X,Y ). (3)

For each wrapped instance xi ∈ X , Vθ outputs a
V-dimension distribution at <MASK> slot, where
V is the vocabulary for Mθ. This distribution is the
likelihood of each word in the vocabulary repre-
senting its class, namely the vote from xi. LPLM
averages the distributions (votes) of all instances
in the same class according to Y and selects key-
words with the highest probability using a specific
selection strategy to form W .

In practice, each class representative wi ∈ W
is a V-dimension vector that represents a set of
highly related keywords that can best express the
corresponding class. Since each dimension in the
averaged distribution corresponds to one keyword
in V , LPLM sets the dimensions of the unselected
keywords to 0 and normalizes the distribution to
get wi.

3.3.2 Selection Strategy
After obtaining the averaged distribution with Vθ,
LPLM selects the highly relevant keyword(s) as
class representative for each class. For determining
the class representatives, we next introduce two
selection strategies, Champion selection and Top-k
selection.
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Champion Selection Champion selection strat-
egy simply picks one keyword with the highest
probability in the averaged distribution as the class
representative. And in the next E-step, the class
representatives are re-selected based on the updated
distribution with the parameter-updated Vθ.

Although Champion selection strategy can ef-
fectively mine the hidden knowledge in PLM, it
cannot work well when different classes have sim-
ilar semantics. In this situation, LPLM is likely
to select the same word for different classes as its
representatives, which will further lead to a equal
probability for predicting these class labels. It will
disturb the model to distinguish these classes due
to the unique predicting process of prompt-based
learning, which we have mentioned in Section 1.
Eventually, it will result in a limited improvement
of the overall performance. Moreover, Champion
selection strategy only considers the semantics con-
tained in one word. Intuitively, if multiple words
are selected together, LPLM can extract more se-
mantic information, which will be more beneficial
for the prediction.

Top-k Selection We propose Top-k selection
strategy to solve the potential issue of Champion
selection strategy. Top-k strategy selects the set of
keywords with top-k highest probabilities as the
class representative (k = 2, 3, . . . , |V |). After set-
ting the value of unselected dimensions to 0 and
normalizing the averaged distribution, LPLM cal-
culates the class representative wi for each class.

3.3.3 Latent Variable for Each Instance
Similar to traditional EM algorithm, LPLM ar-
ranges each instance with a latent variable accord-
ing to its corresponding class,

wyi ← F (xi, yi,W ) (4)

where F (·) is an arrangement function. Therefore
the instances from the same class should have iden-
tical latent variables, namely wyis.

This voting system is consistent with the most
basic prediction of PLM—calculating the proba-
bility that each word to be filled in the <MASK>
slot. In other words, they play the same role in the
internal process and this is the reason why Vθ can
directly use the Mθ as its backbone and share θ
with the PLM Mθ.

3.3.4 Distribution of Class Representatives
Every wi in W has a distribution in probability
space R. For Champion selection strategy, R for

wi is same with V . Therefore the averaged distribu-
tion of Vθ can be directly treated as the distribution
for the latent variables as

pMθ
(wi|xi, yi, X, Y ; θ, T (·)), wi ∈ R|V|.

Therefore, the distribution for W is

pMθ
(W |xi, yi, X, Y ; θ, T (·)), wi ∈ R(|V|)N .

Similarly, for Top-k selection strategy, the size
of R is determined by Ck

|V|, where k = 2, 3, ..|V|.
Also, the occurrence probability of each element in
R can be derived from the majority voting result
and assigned to all instances in each class, namely

pMθ
(wi|xi, yi, X, Y ; θ, T (·)), wi ∈ RCk

|V| .

Therefore, the distribution for W is

pMθ
(W |xi, yi, X, Y ; θ, T (·)), wi ∈ R(Ck

|V|)
N

.

3.4 M-step Details
The target of M-step is to make predictions based
on the class representatives, namely the latent vari-
ables wis. In this prediction phase, the above
weights are applied to calculate the weighted av-
erage of the word-occurrence probabilities of the
selected words, so as to obtain the probability of
classifying the input sentence xi as the class zi,

pMθ
(zi|W,xi, yi, X, Y ; θ, T (·)) = wyi · hM∑

w∈W w · hM
(5)

where hM is the last layer’s hidden state of the
<MASK> slot in the wrapped xi after LPLM feeds
each wrapped instance into Mθ

hM = Mθ(T (xi)) (6)

3.5 Learning with the EM-style algorithm
With the introduced latent variable W , the objective
function is extended as 2

L(θ) =
N∗K∑

i=1

log p(zi|xi, yi, X, Y ; θ, T (·))

=
N∗K∑

i=1

log
∑

W

p(zi|W,xi, yi, X, Y ; θ, T (·))

· p(W |xi, yi, X, Y ; θ, T (·))

(7)

p(zi|W,xi, yi, X, Y ; θ, T (·)) represents the prob-
ability of the predicted zi same with the ground-
truth label yi of the input instance xi with the help

2Due to the page limitation, we abbreviate pMθ in the
second line to p in this section.
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of W . While p(W |xi, yi, X, Y ; θ, T (·)) represents
the probability of choosing W as the class repre-
sentatives.

Next, Q-function Qi(W ; θ) is introduced to rep-
resent the posterior probability of the latent variable
W after θ is updated based on the prediction zi of
the previous M-step. Equation 7 is derived as

L(θ) =
N∗K∑

i=1

log
∑

W

Qi(W ; θ)

p(zi|W,xi, yi, X, Y ; θ, T (·))p(W |xi, yi, X, Y ; θ, T (·))
Qi(W ; θ)

≥
N∗K∑

i=1

∑

W

Qi(W ; θ) log

p(zi|W,xi, yi, X, Y ; θ, T (·))p(W |xi, yi, X, Y ; θ, T (·))
Qi(W ; θ)

(8)

So far, the original objective is transformed into
raising the lower bound of the inequality in Equa-
tion 8. Next, we elaborate on E-step and M-step in
detail.

E-step: In E-step, based on the updated param-
eter θ, the posterior probability distribution of W
is updated. We refer to the previous work (Chen
et al., 2019) for the calculation method and expand
the Q-function as

Qi(W ; θ) =

p(zi|W,xi, yi, X, Y ; θ, T (·))p(W |xi, yi, X, Y ; θ, T (·))∑
W p(zi|W,xi, yi, X, Y ; θ, T (·))p(W |xi, yi, X, Y ; θ, T (·))

=
p(W, zi|xi, yi, X, Y ; θ, T (·))
p(zi|xi, yi, X, Y ; θ, T (·))

= p(W |zi, xi, yi, X, Y ; θ, T (·))
(9)

where
∑

W Qi(W ; θ) = 1.

M-step: Given the updated latent variables and
computed Q-function in E-step, the parameter θ is
then optimized in M-step to maximize the lower
bound of the inequality in Equation 8.

θ = argmax
θ

L(θ)

= argmax
θ

N∗K∑

i=1

∑

W

Qi(W ; θ) log

p(zi|W,xi, yi, X, Y ; θ, T (·))p(W |xi, yi, X, Y ; θ, T (·))
Qi(W ; θ)

(10)

4 Experiments

We conduct a series of experiments in few-shot sce-
narios to demonstrate the effectiveness of LPLM.

Dataset Training Set Validation Set Test Set

SST-2 2*K 2*K 1821
AG’s News 4*K 4*K 7600
FewNERD 66*K 66*K 96901

Table 1: Size of the datasets used in the classification
experiments.

In this section, we first introduce the experimental
setups in use, then present and discuss the experi-
mental results.

4.1 Datasets and Implementation Details
We select three well-known classification datasets:
SST-2 for 2-way sentiment classification tasks,
AG’s News for 4-way topic classification tasks, and
Few-NERD for 66-class NER tasks. The training,
validation, and test set of each dataset are non-
overlapping to ensure basic fairness.

In addition, we also keep the size of validation
sets consistent with the training sets to further en-
sure unique fairness in ‘few-shot’ settings (Perez
et al., 2021), as shown in Table 1.

Experiments are conducted on K=1/2/4/8/16 for
K-shot learning tasks. For the evaluation metric,
we use an average accuracy over three randomly
picked seeds. In order to ensure fairness, we use a
fixed template for each task to highlight the perfor-
mance of different label mapping methods. For the
same reason, we uniformly use RoBERTa-large as
the pre-training model for all tasks with a fixed
learning rate lr = 0.00003. The EM-style al-
gorithm is performed in a total of 10 fine-tuning
epochs.

4.2 Baselines
As introduced, we mainly compare LPLM with
four mainstream label mapping methods. Among
them, MLM exploits prior knowledge of humans.
We separately highlight those results that rely on
human knowledge with italics, e.g., the Manual
method in Table 2. For more convincing results,
we employ the four label mapping methods with
OpenPrompt (Ding et al., 2022) using the PyTorch
framework. For PLM, we use the interface pro-
vided by HuggingFace (Wolf et al., 2020) and it is
optimized by AdamW optimizer (Kingma and Ba,
2015).

4.3 Template Setting
The core of prompt-based learning is to fine-tune
the PLM using templates and label mappings to
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Knowledge Method SST-2 AG’s News Few-NERD
K=1 K=2 K=4 K=8 K=16 K=1 K=2 K=4 K=8 K=16 K=1 K=2 K=4 K=8 K=16

With Manual 54.07 61.58 80.76 89.12 92.04 80.12 81.59 85.28 85.73 85.81 40.39 48.94 50.43 54.17 60.29

Without

Soft 51.63 52.39 61.89 65.11 80.01 48.33 57.02 74.21 79.72 81.44 15.49 32.89 50.07 61.69 64.41
Search 49.93 58.94 71.66 77.76 88.65 48.02 67.13 78.61 81.68 84.03 23.67 38.57 51.11 56.21 60.47
Proto(SOTA) 52.83 59.73 78.04 86.67 92.05 73.40 79.71 81.34 83.53 85.13 25.08 38.78 54.44 62.62 65.15

LPLM 55.49 63.37 82.63 92.78 94.08 80.39 84.06 86.16 86.86 87.29 40.52 51.63 60.46 64.41 66.04

Table 2: The overall performance. Manual, Soft, Search, and Proto represent the four baselines, Manual Label
Mapping, Soft Label Mapping, Search-based Label Mapping, and Prototypical Label Mapping, respectively.

find the best class label for each instance. For
all compared label mapping models in our experi-
ments, we use the identical initialed PLM with the
same template for each dataset. In this setting, the
improvements of different label mapping methods
can be observed obviously. The templates are se-
lected from the ACL22 Best demo OpenPrompt
platform as shown in Table 3.

Dataset Template

SST-2 <TEXT> is <MASK>.
AG’s News [ Category : <MASK> ] <TEXT>
Few-NERD <TEXT> In this sentence, <ENTITY> is a <MASK>.

Table 3: The selected templates for each dataset.

4.4 Value Selection

To address the shortcomings of Champion selec-
tion strategy mentioned in Section 3.3.2, we use
Top-k selection strategy in our experiments. To
explore the best value of k in Top-k selection strat-
egy, we conduct a series of experiments with dif-
ferent values for k on all datasets for K=1/2/4/8/16.
As shown in Figure 3, as k grows, the classifi-
cation performance starts to increase and peaks
when k is around 50 or 500, then gradually de-
creases. To elaborate this, first note that we expect
to mine more semantics carried in the majority vot-
ing results of the instances. For instance, if four
words are contained in a class representative, it will
carry about twice as much semantic information
as the class representative of two-word combina-
tion. However, the value of k is not larger the
better. When k is larger than a certain threshold,
numerous identical words can appear in the class
representatives of different classes, which will blur
the distinction between the class representatives.
This tendency may be related to the interpretability
of the PLM, but it is not the focus of this paper.
Therefore, we use the values that shows the best
performance as a reference for k.

Figure 3: The fluctuation of performance when choos-
ing the different k value for Top-k selection strategy on
AG’s News (left) and Few-NERD (right).

4.5 Results

4.5.1 Overall Performance

Table 2 shows the overall performance. On SST-
2, one of the famous GLUE datasets (Wang et al.,
2018), LPLM outperforms the SOTA ALM method
by 2.66%, 3.64%, 4.59%, 6.11%, 2.03% for
K=1/2/4/8/16 respectively. It even surpasses MLM
that uses human prior knowledge by 1.42%, 1.79%,
1.87%, 3.66%, 2.04% respectively.

On AG’s News dataset, LPLM has a significant
improvement over other ALM methods and out-
performs the SOTA benchmark by 6.99%, 4.35%,
4.82%, 3.33%, 2.16% respectively. Moreover, it
also surpasses MLM by 0.27%, 2.47%, 0.88%,
1.13%, 1.48% respectively.

In the 66-way entity typing task, it outper-
forms the SOTA ALM method by 15.44%, 12.85%,
6.02%, 1.79%, and 0.89% respectively. Besides,
LPLM surpasses MLM by 0.13%, 2.69%, 10.03%,
10.24%, and 5.75% respectively.

These experimental results show that our pro-
posed LPLM successfully finds the class represen-
tatives that are rich in semantic information for the
corresponding classes. The discriminativeness of
the class representatives generated by LPLM not
only outperforms other ALM methods but also out-
performs MLM which relies on human knowledge.
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Method K=1 K=2 K=4 K=8 K=16

Manual(One) 40.39 48.94 50.43 54.17 60.29
Manual(Multi) 46.63 50.60 56.78 59.96 61.98

LPLM 40.52 51.63 60.46 64.41 66.04

Table 4: Comparison with MLM which artificially se-
lects one or multiple words for each of the 66 classes.

4.5.2 Different Number of Words Considered
in MLM Class Representatives

Intuitively, assigning one word to each class is the
most common approach in MLM. However, in prac-
tice, the class representatives can also be obtained
by combining multiple words.

In order to eliminate the effect of different num-
bers of considered words in MLM, we further
carry out experiments on Few-NERD and compare
the performance of MLM and LPLM under the
same setting of both considering multiple words
in each class representative. As shown in Table 4,
MLM(Multi) only takes advantage when K=1, and
it is surpassed by LPLM when K is larger than 1.
This shows that as long as there are two or more
instances for each class, LPLM can extract more se-
mantic information than the human-specified way.
Notably, for MLM(Multi), we manually design the
combination of one to five words for each class
representative, while for LPLM, each class repre-
sentative considers the semantics in 500 concrete
words. The fairness of the comparison is further
discussed in Section 5.4

5 Analysis

In this section, we further analyze the details of
LPLM. For convenience, the following experi-
ments are performed on AG’s News dataset.

5.1 LPLM vs. Search-based Label Mapping

While the voting process in LPLM may seem simi-
lar to the process of finding a subset of candidate
words in search-based label mapping, the core moti-
vations of the two mappings are of great difference.

Search-based label mapping contains two sepa-
rated parts. One is to optimize class representatives
from random initialization, while the other is to use
them to fine-tune the PLM.

Yet, LPLM operates based on an iterative pro-
cess. The initial class representatives in the E-step
are obtained by PLM with θ. After the class repre-
sentatives help the PLM optimization in the M-step,

Method K=1 K=2 K=4 K=8 K=16

LPLM 80.39 84.06 86.16 86.86 87.29
LPLM−Topk 57.46 72.62 79.35 83.68 86.47
LPLM−Topk−EM 48.02 67.13 78.61 81.68 84.03

Table 5: Ablation study of LPLM.

Class Name Epoch 0 Epoch 3 Epoch 9

Class 0: Sports
‘ Sports’ ‘ Sports’ ‘ Sports’
‘ News’ ‘ Football’ ‘ Teams’

Class 1: World
‘ News’ ‘ Terrorism’ ‘ Terrorism’

‘ Politics’ ‘ Politics’ ‘ War’

Class 2: Business
‘ News’ ‘ Finance’ ‘ Finance’

‘ Business’ ‘ Companies’ ‘ Financial’

Class 3: Sci/Tech
‘ News’ ‘ Technology’ ‘ Technology’

‘ Technology’ ‘ Tech’ ‘ Technical’

Table 6: Evolutionary process based on EM-style algo-
rithm for K=16 task on AG’s News. The Top-2 words
are demonstrated.

in the next round of the E-step, since there is al-
ready an updated θ, the new class representatives
perform more distinctively and more accurately.

In summary, even though both methods aim to
optimize θ, search-based label mapping has to be
a blocking process [Search]n → θ , while LPLM
can be abstracted into a smooth evolutionary chain,
e.g., [LPLM → θ]n.

5.2 Ablation Study

To show the effectiveness of Top-k selection strat-
egy, we conduct an ablation study. In this subsec-
tion, three different settings of models, the origi-
nal LPLM, LPLM without Top-k strategy, LPLM
without Top-k and the EM-style algorithm are com-
pared. For the model without Top-k, Champion
selection strategy is used instead, and denoted as
LPLM−Topk. For LPLM without the EM-style al-
gorithm, it is in fact difficult to concretely exclude
the EM-style algorithm because the E-step and the
M-step together form a tightly locked process in
the model. Though, as discussed in Section 5.1,
it may not be very accurate, the search-based la-
bel mapping can be used as an alternative. This
model is referred to as LPLM−Topk−EM where
Top-k strategy is also not applied.

The experimental results of the ablation study
are concluded in Table 5. It can be observed that
when K is relevantly small, the Top-k selection
strategy can greatly improve the performance, and
when K is larger, the EM-style algorithm grows
more helpful for performance improvement.
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Figure 4: Comparison between MLM and LPLM with different values for k in Top-k on AG’s News, where the
solid lines represent the performance of LPLM and the dashed lines represent the performance of the MLM.

.

5.3 Evolutionary Process of the EM-style
algorithm

To further demonstrate the effectiveness of the EM-
style algorithm, we show the evolution of class
representatives during optimization. As shown
in Table 6, at the beginning, all initialized class
representatives are noisy because they contain the
same word ‘news’. After three rounds of the E-step
and M-step process, the dissimilarity gradually in-
creases between class representatives of different
classes. After all rounds are performed, each class
representative further enhances its distinctions and
carries more prominent semantics. This demon-
strates that our EM-style algorithm can effectively
find the distinct class representative with unique
semantics for each class.

5.4 Fairness of Top-k and Breakthrough Point
of Label Mapping

The class representative of each class in MLM
(Multi) is selected by combining one to five
manually-selected words. In LPLM, the number
of selected words for each class representative can
reach 500 or bigger. This may raise concerns that
the comparison between MLM and LPLM is unfair.
However, the ultimate goal of ALM is to improve
the overall few-shot classification performance by
making the model automatically generate N class
representatives for N classes without using human
prior knowledge. Therefore, the focus should lie
on how differentiated the class representatives are
and how much semantic information they can con-
tain. MLM helps N class representatives to contain
strong semantics from the beginning by introducing
human prior information, while LPLM extracts the
discriminative semantic information of each class
by selecting Top-k words and integrating them into
each class representative. The SOTA ALM (Cui
et al., 2022) also incorporates the semantics of all
words in the vocabulary into their proposed ‘class

prototypes’ when calculating class representatives.
Therefore, the core of label mapping research is no
more than to find a semantically rich class represen-
tative for each class. In conclusion, compressing
more words with different semantics into one class
representative is of great significance, especially
on few-shot tasks.

Moreover, while human ability is limited, there
is another advantage of LPLM where it effectively
summarizes a big amount of words. That is, the
semantic information of hundreds of words can be
automatically integrated into the class representa-
tives by the Top-k strategy, which is beyond the
reach of humans.As shown in Figure 4, for all set-
tings of K, LPLM always has a range of k values
over which it outperforms MLM. Therefore, in
practice, it is not necessary to traverse all possible
k values. Instead, simply choosing a value of k
between 50 and 1000 is sufficient to obtain a better
performance than MLM.

6 Conclusion

In this paper, we propose a novel automatic label
mapping model that excludes the reliance on hu-
man knowledge in manual label mapping methods
by automatically generating a set of keywords as
each class representative. To increase the distinc-
tion of the class representatives, we further intro-
duce an EM-style algorithm to optimize the distri-
bution of latent variables, namely the class repre-
sentatives, to discover better class representatives
and improve the overall classification performance.
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Limitations

Although LPLM achieves remarkable results in
our experiments with 2-way, 4-way and 66-way
datasets without using prior human knowledge or
additional parameters, it may not necessarily be
the most appropriate model for datasets where rep-
resentatives have a large probability space R or
for tasks where N*K is large. According to Equa-
tion 10, we need to compute Qi for each instance,
which requires O(N ∗K) computation complex-
ity. And computing each Qi need sum over all
W ∈ R(Ck

|V|)
N

with a computation complexity
of O((Ck

|V|)
N ), which results in total O(N ∗K ∗

(Ck
|V|)

N ) computation complexity at E-step. This
property of the EM-style algorithm may lead to
an efficiency degradation of LPLM. In our imple-
mentation, we adopt to simplify the calculation,
incorporating the distribution update process of
latent variables into pMθ

(W |xi, yi, X, Y ; θ, T (·))
and adopt an approximation of the Q-function with
value 1 for the W consistent with the voting result
and 0 for the other W s so that the computation
complexity can be reduced to O(N ∗K).

In brief, how to keep efficiency with large rep-
resentative selecting space or numerous of tasks
becomes an interesting direction for future work.
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