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Abstract

Performance of downstream NLP tasks on
code-switched Hindi-English (aka Hinglish )
continues to remain a significant challenge. In-
tuitively, Hindi and English corpora should aid
improve task performance on Hinglish. We
show that meta-learning framework can ef-
fectively utilize the the labelled resources of
the downstream tasks in the constituent1 lan-
guages. The proposed approach improves the
performance on downstream tasks on code-
switched language. We experiment with
Hinglish code-switching benchmark GLUE-
CoS and report significant improvements.

1 Introduction

In parts of the world where people speak more
than one language in day-to-day affairs, the mix-
ing of the languages often occurs naturally. This
phenomenon, termed as code-switching or code-
mixing, is observed for various language pairs, e.g.
Hindi-English, Spanish-English. Natural language
processing tasks such as sentiment analysis, named
entity recognition, question-answering are interest-
ing research challenges for Hinglish (Hindi-English
code-switching).

With the rise of multilingual language mod-
els (LM), pretrain-and-finetune approach has been
widely used for various downstream NLP tasks; it
is observed that when LMs are pretrained with large
corpora, they can be easily transferred to down-
stream tasks with limited fine-tuning data. Most
of the publicly available multilingual LMs are pre-
trained using combination of various monolingual
corpora (such as Hindi and English), but not us-
ing code-switched data (e.g. Hinglish). This leads
to sub-optimal LMs for the downstream tasks in
code-switched language.

Moreover, the downstream tasks on code-
switched language (e.g. Hinglish) usually suffers

1We use the term constituent to jointly refer to the matrix
and embedding languages.

Figure 1: The proposed approach for code-switched
NLP utilizing the downstream task data in Hindi and
English for improving Hinglish task performance.

from low-resource problem. Usually, the same task
on the constituent languages (e.g. Hindi and En-
glish) is not low-resource – which we see as an op-
portunity. We explore to utilize the constituent lan-
guage resources to fine-tune the LM for the down-
stream task in code-switched language. Based on
these intuitions, we propose a meta-learning based
approach to address the code-switching challenge,
as illustrated in Figure. 1. The meta-learner helps
leverage Hindi and English resources to improve
the performance on code-switched data.

During the fine-tuning of a pre-trained language
model, its weights adjust for the downstream task.
It has been shown that if the base pre-trained model
is multilingual, the fine-tuning with one language
helps achieve impressive performance on another
language in a zero-shot setting too (Pires et al.,
2019). It shows that fine-tuning teaches a multilin-
gual model how to perform the downstream task
in somewhat language-agnostic fashion. However,
such transfers are better when source and target
languages are closely related; obviously, the con-
stituent languages are the closest source languages
to the target code-switched language. However,
the models learned/fine-tuned with constituent lan-
guages may become specific to the source lan-
guages. Meta-learning approaches are good at
solving this problem by learning model parameters
suitable for multiple downstream tasks. Therefore,

3859



we aim to use meta-learning with constituent lan-
guage resources, to obtain a model state that serves
as better initialization point for fine-tuning with
limited code-switched samples. Overall, we focus
on the following inquiry: For various downstream
tasks, can we effectively use Hindi and English
resources to improve the performance on code-
switched data? and explore utility of meta-learning
for it.

2 Related Work

Varieties of downstream tasks in code-switched
languages have given rise to standard benchmarks
and need for synthesizing CS data.
Token-level Language Identification (LID) is
one of the earliest explored primary tasks
in code-switched NLP for dialectal Arabic-
Modern Standard Arab (Elfardy and Diab, 2012;
Solorio et al., 2014), Spanish-English, Nepalese-
English, Mandarin-English (Solorio et al., 2014),
and English-Indic languages (Sequiera et al.,
2015) (Zhang et al., 2018).
Part-of-speech (POS) tagging for Hindi-English
code-switching has been explored either via LID
route (Sequiera et al., 2015) that identified language
of text chunks and applied POS tagger of the re-
spective language; or by utilizing language-specific
word representations (Ball and Garrette, 2018).
Named Entity Recognition (NER) on code-
switched language pairs of Spanish-English,
Nepalese-English, Mandarin-English, Modern
Standard Arabic-Egyptian (Priyadharshini et al.,
2020; Winata et al., 2019; Aguilar et al., 2018;
Solorio et al., 2014) have been explored. Use
of meta-embeddings (Priyadharshini et al., 2020;
Winata et al., 2019) has also been explored for the
task of code-switched NER.
GLUECoS and LINCE benchmarks are created
by Aguilar et al. (2020) and Khanuja et al. (2020)
that include LID, POS-tagging, NER, Question-
answering (QA), Sentiment Analysis (SA), Natural
Language Inference (NLI), and Machine Transla-
tion (MT) for evaluating various models on several
language pairs across several tasks.
Code-Switched Text Generation is explored in
recent literature to address the data scarcity for
code-switched scenarios. Gupta et al. (2020) pro-
posed to create synthetic code-switched texts from
parallel corpus by replacing named entities, noun
phrases, adjectives in the Hindi sentence with cor-
responding English translation obtained from align-

ments. They train a deep learning model on this
synthetic data to generate more code-switched texts.
Rizvi et al. (2021) have released a toolkit for gen-
erating synthetic code-switched texts. They im-
plement two linguistic theories; the Equivalence
Constraint theory and the Matrix Language theory
to constraint the synthetic code-switched sentences
generated. Tarunesh et al. (2021b) use existing un-
supervised neural machine translation techniques
to generate code-switched sentences. However, in
our (limited) initial experimentation with genera-
tion approaches, we observe that generated CS text
suffers from unnatural switching and grammar vio-
lations.
Meta-learning frameworks are task-agnostic rep-
resentation learning that is widely used for
fast-adaptation to downstream tasks of interest.
MAML (Finn et al., 2017) and Reptile (Nichol
et al., 2018) are arguably two of the most popu-
lar meta-learning approaches. MAML’s compu-
tation and space complexity makes it somewhat
impractical – a problem that Reptile addresses with
heuristics without compromising on performance.
Meta learning is highly effective and shown to be
beneficial for a variety of NLP tasks such as low
resource machine translation, persona consistent
dialogues, low resource sales prediction, speech
recognition etc. We believe that its applications
can be extended to code-switched NLP too.

3 Our Approach

In this work we incorporate a technique to improve
the downstream task performance in Hinglish: by
utilize downstream task data of Hindi and English
in meta-learning framework. Overall, we aim
to utilize high resource unsupervised text corpora
and task corpora of constituent language (English
and/or Hindi) to initialize the model that can be
transferred to CS task effectively.

The idea behind meta learning algorithms such
as Reptile is to learn a better initialization for the
target task using a set of auxiliary source tasks. In
CS setting, this amounts to using constituent lan-
guages to learn a better initialization parameters
and then fine-tuning on small amount of available
code-switched data starting from the initialized pa-
rameters.

Our specific methodology is inspired from
Tarunesh et al. (2021a). To represent it more for-
mally, lets say the code-switched language has En-
glish (en) and Hindi (hi) as the constituent lan-
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Algorithm 1 Our Meta-learning Approach for CS
Input: Task data T en and Thi for English and Hindi, and
Thi−en for Hinglish
Output: The model for Hinglish downstream task
1: Initialize model weights θ
2: while not converged do
3: . Perform Reptile updates
4: Draw total of m random batches from T en and Thi

5: θout ← θ
6: for ith batch, 0 < i < m do
7: train and update model for k steps
8: θibatch ← θ
9: θ ← θout, reset the model

10: end for
11: θ′ ← 1

m

∑m

i=1
θibatch,

12: θvar ← θ′ − θout
13: θ ← θout + βθvar ,
14: end while . meta-learning ends.
15: while not converged do
16: Fine-tune the model on target Thi−en

17: end while

guages, lets represent tasks in theses languages
as T en and T hi and the task in target code-mixed
language as T hi−en. The proposed meta-learning
approach is described in Algorithm 1. First, the
model weights θ are initialized. The model con-
sists of a randomly initialized classifier head on top
of a pre-trained Language Model (LM). The outer
loop of the meta-learner executes for ne number
of epochs over T hi and T en task datasets; this is
our convergence criteria. Within each meta-step,
we sample m batches from the collective pool of
batches of English and Hindi. With a batch, the
model is trained for k steps, and the updated model
weights are persisted as θibatch, and the model is
reset to the θout state prior to the meta-step. θibatch
represents the the model state had it been trained
with the ith batch alone. Since each of these states
are too specific, their average θ′ represents some-
what generalized state of model for the downstream
task. We obtain the measure of the model deviation
as θvar that represents the direction of generalized
model state θ′ relative to the current state θout. Fi-
nally, the model weights are updated in that direc-
tion, with step size of β. At convergence, the model
state serves as a good initialization to fine-tune the
same network on the Higlish task data T hi−en.

4 Experiments and Results

We utilize GLUECoS (Khanuja et al., 2020)
benchmark as our test-bed for evaluation on Hindi-
English code-switching. The official benchmark
involves POS tagging (POS) (Universal Depen-
dency), Named Entity Recognition (NER), Sen-

timent Analysis (SA), Question Answering (QA)
and Natural Language Inference (NLI). We submit
test set predictions to the official benchmark portal
to obtain the F1-score metrics.

As part of meta-training and its ablations, we
utilize the publicly available datasets of each down-
stream task for Hindi and English languages. The
details of the monolingual task datasets used for
meta-training are described in Table 1.

4.1 Implementation Details
We use the code repository of Tarunesh et al.
(2021a) 2 as base code. We use NVIDIA Tesla
V100 GPU to run all experiments. We use
bert-base-multilingual-cased as base pre-
trained model in all our experiments. We tune
hyper-parameters based on loss on validation set
wherever available. We use the following range of
values for selecting the best hyper-parameter

• Batch Size: 8, 16, 32

• Learning Rate: 1e-3, 1e-4, 1e-5, 1e-6, 3e-3,
3e-4, 3e-5, 3e-6, 5e-3, 5e-4, 5e-5, 5e-6

We meta-train the model for ne = 5 epochs, select
the best model and fine-tune it further using code-
switched data. We set the number of meta update
steps k = 3, and number of batches in meta-step
m = 8. We set the meta training step size hyper-
parameter β = 1.0. Meta training requires 12
GPU hours and fine-tuning requires 1 GPU hour,
approximately.

4.2 Monolingual Labelled Datasets
Table 1 describes the English and Hindi monolin-
gual datasets used for meta-learning along with
their sources and their sizes.

4.3 Baselines and Our Models
To evaluate the effectiveness of our meta training
approach, we show comparison with following:

• CS that finetunes the base LM using only the
CS task data as reported in the leaderboard3

and we report our replication results too.

• EN→CS, HI→CS that first fine-tune base
LM on English (in EN→CS) or Hindi (in
HI→CS), which is then further fine-tuned for
the CS task.

2https://github.com/ishan00/
meta-learning-for-multi-task-multilingual

3https://microsoft.github.io/GLUECoS/
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Task English Hindi
name #samples name #samples

NER CoNLL 2003 217 K Hindi NER 60 K
POS UD UD 217K Hindi PUD 294 K
SA Twitter SA 57K Hindi Tweets 2.7 K
QA SQuAD v1.1 100 K SQuAD v1.1 Translated 100 K
NLI MultiNLI 235 K Translated-MNLI 263 K

Table 1: English and Hindi downstream task datasets.

• EN+HI→ CS that first fine-tunes base LM on
combined set of English and Hindi, which is
then further fine-tuned for the CS task.

• EN+HI+CS training uses concatenated and
shuffled English, Hindi and code-switched
data. Since there is imbalance in data across
three sources, we utilize temperature-based
sampling strategy (Arivazhagan et al., 2019)
that allows to sample proportional to their
dataset sizes (τ = 1) or uniformly (τ =∞).

• Meta-Trained model first uses meta-learning
to learn a better model initialization using con-
stituent languages (English and Hindi) and fur-
ther fine-tunes this meta-trained model using
code-switched data.

• Code-Mixed mBERT: We also compare
our results against the results reported by
(Tarunesh et al., 2021b). They further train a
mBERT model on synthetic code-mixed sen-
tences generated. The report the results on
tasks like NLI and Sentiment analysis.

We use bert-base-multilingual-cased (Devlin
et al., 2018) as the base model in all our experi-
ments.

4.4 Results and Analysis

Table 2 presents results of our experiments. Fol-
lowing are the key observations:

• Across different tasks, the general trend of
performance is observed as Meta-Trained
> CS. However, for joint fine-tuning and
transfer-learning experiments, we do not ob-
serve a clear pattern compared to the baseline
model. This indicates the importance of meta-
learning in utilizing the task-specific data of
the constituent languages in assisting the CS
task.

• Joint fine-tuning with EN+HI+CS yields
somewhat inconsistent results on different
tasks when sampling temperature τ = 1. We
attribute this to few orders of magnitude of
data imbalance between EN, HI, and CS sets.
However, enforcing sampling uniformity with
τ = ∞ alleviates the problems to some ex-
tent. We observe better performance on only
Question Answering and Sentiment Analysis
tasks.

• Meta-learning yields definite improvement
across the downstream tasks. It indicates that
meta-learning indeed yields a generalized ini-
tialization point better suited for fine-tuning
with CS.

Meta-learning and the EN+HI→CS, both, use
same fine-tuning data, yet the former yields su-
perior performance. Thus, the improvements
by using constituent language data cannot be
attributed to the inflated training set only.

Statistical Significance: To understand the
statistical significance of the results, we run
our replication of CS, transfer-learning exper-
iments, multi-task experiments and the pro-
posed Meta-Trained approach with 5 differ-
ent random seeds. We perform t-test between
the distributions of the obtained performance
metrics. We observe that with p < 0.05, the
proposed Meta-Trained approach outperforms
the CS approach, statistically on all the tasks
barring NLI task.

• As an auxiliary observation in Table 2, our
replication of the mBERT outperforms the
one reported on leaderboard and the results
reported by Tarunesh et al. (2021b). This
indicates towards non-trivial role of hyper-
parameter tuning on this benchmark.

Based on these observations, the answer to our
RQ is affirmative. In other words, Hindi and En-

3862



NER POS SA QA NLI

CS∗ 76.96 87.68 57.51 62.23 57.74
CS: Our Replication 76.25 ± 1.76 88.61 ± 0.35 59.69 ± 0.69 62.83 ± 2.26 59.50 ± 1.62

Tarunesh et al. (2021b) - - 59.39 ± 0.81 - 59.74 ± 0.96

EN→CS 77.22 ± 1.09 87.50 ± 1.38 59.40 ± 0.91 79.20 ± 0.04† 57.48 ± 0.44
HI→CS 76.38 ± 0.60 87.97 ± 0.38 58.00 ± 0.77 79.14 ± 2.15† 56.90 ± 0.80
EN+HI→CS 76.83 ± 0.52 88.23 ± 0.20 58.90 ± 0.56 74.15 ± 3.61† 57.48 ± 0.50
EN+HI+CS (τ = 1) 69.05 ± 4.49 87.53 ± 0.36 61.96 ± 0.78† 58.77 ± 0.89 49.63 ± 6.59
EN+HI+CS (τ =∞) 71.56 ± 2.08 88.76 ± 0.42 59.54 ± 0.61 76.05 ± 5.34† 56.58 ± 3.15
Meta-Trained 78.33 ± 0.37† 89.40 ± 0.20† 61.13 ± 0.68† 78.02 ± 1.27† 60.92 ± 1.11

Table 2: Results on various GLUECoS tasks. ∗ as reported in the leaderboard. Figures are the F1 metrics. QA
uses F1 as defined by squad protocols. Reported figures are mean±standard deviation. † indicates results which
are statistically significant compared to our replication of CS

glish resources help improve the performance on
CS task. The improvement is even pronounced
when combined with meta-learning approach.

4.5 Qualitative Analysis

We now present few examples from the QA task
comparing the predictions from our model and the
baseline model.

Example 1
Context: There is a song by Danish pop group
Toy - Box called "Tarzan & Jane", first released as
a single in Germany in 1998, and then released
worldwide in 1999 to coincide with the release of
the Disney film "Tarzan" (see "Film")
Question: Tarzan movie kis year me release hui
thi ? (In which year was Tarzan movie released?)
Baseline Prediction: 1998
Our Model: 1999
Ground Truth: 1999

Example 2
Context: The "Death Note" manga series was
first serialized in the Japanese manga magazine
"Weekly Shdnen Jump" published by Shueisha in
December 2003. . . . In April 2005, "Death Note"
was licensed for publication in North America by
Viz Media, and the first English language volume
was released on October 10, 2005. In February
2008, a one - shot special was released. . .
Question: Death note kis desh ka show hai ?
(Death Note show belongs which to country?)
Baseline Prediction: Japanese
Our Model: Japanese manga magazine Weekly
Shdnen Jump
Ground Truth: America

In the first example, our model predicts correctly
whereas the baseline fails. In Example 2, we ob-
serve that both the models fail to predict the correct
answer i.e., America and predicts similar incorrect
answers.

4.6 Limitations and Future Work

Limitations of this work spawns from 1. require-
ment of labeled training data in constituent lan-
guages and 2. assumption about availability of
multilingual pre-trained language model covering
both the constituent languages. As we consider the
classifier layer weights as part of θ, the universe
of labels of constituent languages should encom-
pass the labels for the code-switch data. However,
this constraint can be loosened by sharing classifier
weights between meta-training and training stages.
In future, we would like to validate the proposed
approach for other code-switching pairs, such as
Spanish-English; in this paper, due to the lack of
adequate task-specific datasets in the constituent
languages, we were unable to present findings for
the ES-EN pair.

5 Conclusion

We studied the usefulness of corpus in the con-
stituent languages, Hindi and English, for improv-
ing the performance of the NLP tasks in code-
switched language, Hinglish. We propose a Reptile
based meta-learning framework which learns better
initialization using task-specific labelled datasets
in the constituent languages and improves perfor-
mance for Code-switched language. Our results in-
dicate meta-trained models outperform other strong
baselines for all GLUECoS tasks.
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