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Abstract
In this paper, we introduce a novel method
for lexical entailment tasks, which detects a
hyponym-hypernym relation among words. Ex-
isting lexical entailment studies are lacking in
generalization performance, as they cannot be
applied to words that are not included in the
training dataset. Moreover, existing work eval-
uates the performance by using the dataset that
contains words used for training. This study
proposes a method that learns a mapping from
word embeddings to the hierarchical embed-
dings in order to predict the hypernymy re-
lations of any input words. To validate the
generalization performance, we conduct exper-
iments using a train dataset that does not over-
lap with the evaluation dataset. As a result, our
method achieved state-of-the-art performance
and showed robustness for unknown words.

1 Introduction

Lexical entailment (LE) is a task to predict
hypernym-hyponym relationships between two
words, such as “A swan is a bird.” and organize
terms in a hierarchical order. LE can be used not
only for the construction of thesaurus (Camacho-
Collados, 2017; Yu et al., 2020), but also for se-
mantic disambiguation (Martins et al., 2019) and
visualization (Tanaka et al., 2018) of the substantial
amount of information extracted from texts.

Methods utilizing hierarchical word embeddings
are the recent mainstream for LE, and they can
be classified into two categories. One is based on
the distributive inclusion hypothesis (DIH), which
assumes that if the specific word like "swan" is
semantically entailed by the more general word
like "bird", then the context in which "swan" oc-
curs is relatively less frequent than and is included
in the context in which "bird" occurs (Geffet and
Dagan, 2005). Based on DIH, Vulíc and Mrkšíc
(2018) developed LEAR, a method to post-process
the pre-trained distributed representations to ob-
tain embeddings emphasizing hypernymy relations.

This type of embedding in Euclidian space is easy
to apply in multiple ways(Iwamoto et al., 2021),
such as visualization of lexicons and cross-lingual
word translation(Vulić et al., 2019). Embedding
hierarchical structures in hyperbolic space is the
other category. Hyperbolic space’s characteristic
of exponentially increasing volume at points far
from the origin is well suited to tree structure with
multiple child nodes. Thus research on embedding
in hyperbolic spaces has been attracting attention
in the field of machine learning (Ganea et al., 2018)
and also in LE (Nickel and Kiela, 2017).

Another stream is pattern-based approach that
examines appearance patterns of hypernymies
in large corpus. They began with Hearst pat-
terns(Hearst, 1992; Roller et al., 2018), and in re-
cent years, a variety of methods have been pro-
posed, including using the Hierarchical Attention
Network (Yu et al., 2020) or combining patterns
with word embedding operations(Akhmouch et al.,
2021).

One of the major drawbacks of these methods
is that they are not able to predict hypernymies
between unknown words, which are not included
in the train dataset and/or corpus. Existing studies
define the vocabulary set in advance and directly
learn the distributed representation of each word
as a parameter. Furthermore, this situation forces
the performance evaluation to be laden with leak-
age. The evaluation datasets generally used in LE
tasks consist of words contained in a train dataset,
such as WordNet (Miller, 1994). This makes it
impossible to evaluate generalization performance
for unknown words properly, which is an undesir-
able situation in machine learning. Considering the
real-world application of LE, the ability to locate
unknown words that correspond to brand-new tech-
nologies and concepts at appropriate coordinates
is critical. Only a few researches have coped with
this problem, such as using GANs imitating the
LEAR embeddings(Kamath et al., 2019), learning
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word-relation vectors by simulating the hypernymy
generation process(Wang and He, 2020), and sim-
ply conducting unsupervised learning of GloVE on
a hyperbolic space(Ifrea et al., 2019). However, the
accuracy of the first study is limited by the perfor-
mance of LEAR, and the rest have problems with
embedding applications.

In this paper, we propose a method to obtain a
hierarchical embedded representation that can be
applied to unknown words, while maintaining the
distinctiveness and usability. In order to acquire
generalization performance for unknown words,
our method is designed to learn the mapping from
the pre-trained word vectors to the hierarchical em-
beddings, instead of hierarchical embeddings them-
selves. In addition, we aim to obtain representa-
tions more discriminative for hypernymy relations
by using ranked list loss (Wang et al., 2019), a deep
metric learning method, for learning this mapping
function.

To evaluate the quality of our embeddings, we
conducted an evaluation with standard word-level
LE task datasets, such as BLESS (Baroni and Lenci,
2011). In order to evaluate the generalization per-
formance for unknown words, training data were
created with no word overlap with the evaluation
dataset. Experimental results demonstrate that our
method achieved state-of-the-art prediction perfor-
mance and is robust to unknown words. We also
confirm that the embedding is sufficiently expres-
sive even with a low dimensionality of 5.

2 Methodology

Figure 1 illustrates the method for acquiring em-
beddings of hierarchical structures proposed in this
paper. The category of a word is represented by
the angle of the word embedding, and the concrete-
ness is represented by its norm. Synonym pairs and
hyponym-hypernym pairs with similar meanings
are close in terms of the angle, and hyponyms have
larger norms than hypernyms. The details of our
method is explained as follows.

Train Dataset Let BA = {(w1
l , w

1
r), ..., } be a

set of synonym pairs and BL be a set of hyponym-
hypernym pairs, which are used as train datasets.
As described in a previous study (Vulíc and Mrkšíc,
2018), every pair is extracted from the thesaurus
and divided into subsets consisting of K pairs for
mini-batch training. Particularly in BL, we always
assign hyponym as wl, while specifying a hyper-
nym as wr.

Figure 1: Overview of our proposed method.

Encoding Hierarchy In the next step, initial
word embeddings are acquired with fastText (Bo-
janowski et al., 2017). As word embeddings are
calculated by summarizing the vectors of its sub-
words, fastText provides two functions: estimating
the representation for unknown words and retrain-
ing the model for additional words.

Then fastText representaions are transformed
into a hierarchy embedding. Let fΘ : Rdft → Rdhe

be the mapping from the fastText representation
v in dft dimension to the hierarchical embedded
u in dhe dimension. fΘ is represented as a Fully-
connected Neural Network (FNN) with an identity
function as the activation function in the last layer
and ReLU functions in the others.

Loss Function Here we enter into the details of
the loss function used to train FNN. In order to
learn a hierarchical embedded representation, the
angle and norm are learned separately. Our loss
function consists of two terms, Langle and Lnorm

for the angle and norm, respectively.
For Langle, we use ranked list loss (RLL; Wang

et al., 2019), a deep metric learning method used
in image classification. The concept of RLL is pre-
sented in Figure 2. Positive pairs (query-positive)
are restricted close within a positive boundary,
while negative pairs (query-negative) are kept far-
ther away than a negative boundary. In this study,
we use synonymies and hypernym/hyponym as pos-
itive examples, and all other pairs in the mini-batch
are used as negative examples. The loss functions
for positive and negative pairs are respectively de-
fined as:

Lp(ul,ur) = [dcos(ul,ur)− (α−m)]+(1)

Ln(u, t) = [α− dcos(u, t)]+ (2)

Here, dcos represents the cosine distance (i.e. 1−
cosine_similarity). It is employed to learn the
angles of hierarchical embeddings efficiently. Then,
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Figure 2: Concept of ranked list loss.

the loss for the entire mini-batch is defined as

Langle(B)

=
∑

(ui
l ,u

i
r)∈B

(
2 · Lp

(
ui
l,u

i
r

)

+ mean
tk∈B,k ̸=i

(
Ln(u

i
l, t

k) + Ln(u
i
r, t

k)
))

(3)

With regard to Lnorm, we first quantify the dif-
ference between two words in terms of semantic
hierarchy. Following Vulíc and Mrkšíc (2018), the
hierarchical difference is defined as

D(ul,ur) =
∥ul∥ − ∥ur∥
∥ul∥+ ∥ur∥

(4)

where ul and ur are embeddings of hyponym and
hypernym, respectively.
Lnorm is defined to optimise the distance be-

tween this semantic hierarchy for all hypernymy
pairs as follows:

Lnorm(B) =
∑

(ui
l ,u

i
r)∈B

−D(ui
l,u

i
r) (5)

In total, the loss function is summarized as:

L(BA,BL) = Langle(BA ∪ BL) + Lnorm(BL) (6)

Lexical Entailment Finally, we present methods
for predicting lexical entailment between words
based on hierarchical embeddings. In the Detection
task, which discriminates implicated word pairs
from other word pairs, the modified HyperScore
shown in Equation 7 is used to make prediction.

HyperScore′(ul,ur) = cos(ul,ur)·ln
( ∥ul∥
∥ur∥

)

(7)
This is a modification of the existing judgment
index, HyperScore (Nguyen et al., 2017), to fit
the characteristics of embedded representations ob-
tained by the proposed method.

For the Directionality task, which determines the
directionality of hypernymy relations, we simply
compare the magnitude of the norm of the embed-
dings.

For the Graded Entailment task, which quantifies
the strength of entailment relationships, we define
GradeScore as a quantitative measure according
to Vulíc and Mrkšíc (2018):.

GradeScore(ul,ur) = cos(ul,ur) +D(ul,ur)
(8)

where cos(ul,ur) represents the cosine similarity
for semantic proximity, and D(ul,ur) denotes the
hierarchical distance defined in Equation 4.

3 Experiment

3.1 Setup

Dataset This study utilized datasets commonly
used for evaluation in Lexical Entailment re-
searches. Specifically, we used two types of de-
tection tasks (BLESS (Baroni and Lenci, 2011),
WBLESS (Weeds et al., 2014)), two types of di-
rectionality tasks (DBLESS (Nguyen et al., 2017),
BIBLESS (Kiela et al., 2015)), and one graded en-
tailment task (HYPERLEX (Vulić et al., 2017)).

The training data was created based on the En-
glish WordNet 2020 (McCrae et al., 2020) for two
setups: inclusive and exclusive. In the inclusive
setup, all pairs from the thesaurus were used as
is. In the exclusive one, we omitted pairs contain-
ing words that were duplicated with the evaluation
dataset. Accordingly, the vocabulary in the evalua-
tion dataset can be considered pseudo-new words
that are not included in the training data. By com-
paring the two setups, we can evaluate the general-
ization performance of the proposed method.

Implementation Details As for the model we
used, the number of layers H in FNN and the em-
bedding size dft were respectively set to 2 and
50. For the loss function, m was set at 0.6 follow-
ing the previous study (Vulíc and Mrkšíc, 2018)
and α = 0.7 for negative examples. We applied
L2-normalization to each FNN parameter with nor-
malization factor λ = 10−7. Lastly, we fixed the
number of epochs to 20, the size of mini-batches to
1024, and the learning rate to 0.01 during training.

Baseline Methods As a baseline method, we
chose LEAR (Vulíc and Mrkšíc, 2018). LEAR has
higher prediction accuracy among existing meth-
ods, and like the proposed method in this paper,
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task Detection Directionality Graded
BLESS WBLESS DBLESS BIBLESS HYPERLEX

evaluation index AP AP Acc. Acc. ρ
Baseline - inclusive 0.527 0.924 0.956 0.764 0.435

Ours - inclusive 0.690 0.973 0.990 0.867 0.493
Ours - exclusive 0.535 0.962 0.985 0.799 0.430

Table 1: Performance of the baseline method and the proposed method for each task. AP, Acc., and ρ respectively
denote average precision score, accuracy, and Spearman’s rank correlation coefficient.

it can be trained using only a thesaurus and pre-
trained word vectors. Nevertheless, as LEAR only
acquires embeddings for words included in the
training data, we only considered the results ob-
tained under an inclusive condition.

3.2 Results
Table 1 shows the performance of the baseline
method and the proposed method for each task. Our
method outperformed the baseline method trained
on the same data in almost all cases with overlap.
Furthermore, for many metrics, the difference in
performance between the inclusive and exclusive
conditions is less than 5%. In addition, for some
tasks, the exclusive setting of the proposed method
outperforms the baseline method. Particularly in
the Detection and Directionality tasks, our model
showed high generalization performance, with an
accuracy of 4% over the existing study (Kamath
et al., 2019; Ifrea et al., 2019) in the exclusive setup.

4 Discussions

4.1 Effect of RLL
As demonstrated above, the proposed method is
useful in extracting entailment relations. In this
section, we demonstrate that RLL improved the per-
formance. To accomplish this, we replace only the
loss function in the proposed method with Triplet
Loss (Wang et al., 2014) and N-pair Loss (Sohn,
2016). All verifications were conducted under the
exclusive setup with BLESS and WBLESS tasks.

The results are presented in Table 2. RLL demon-
strated the highest performance among all tasks,
confirming its usefulness for hierarchical embed-
ding. In particular, the BLESS task achieved an
accuracy improvement of more than 25% in AP
scores. This is due to the fact that BLESS task con-
tains a lot of associated words and co-hyponyms as
negative examples, and they are fairly difficult to
distinguish from hypernymies. The Positive Bound-
ary setting of RLL is thought to have brought hyper-
nymy pairs closer together, and therefore resulted
in a more discriminative embedding space.

BLESS WBLESS
Acc. AP Acc. AP

RLL 0.852 0.690 0.907 0.973
N-pair 0.757 0.344 0.861 0.936
Triplet 0.723 0.425 0.870 0.914

Table 2: Performance comparison over loss functions.

dft 2 5 20 50 100
AP 0.367 0.490 0.484 0.535 0.529

Accuracy 0.792 0.815 0.818 0.829 0.821

Table 3: BLESS performance over dimentionalities.

dft 2 5 20 50 100
AP 0.927 0.951 0.963 0.962 0.958

Accuracy 0.843 0.881 0.896 0.879 0.883

Table 4: WBLESS performance over dimentionalities.

4.2 Dimensionality Study

In addition, we examine the relationship between
the dimensionality dhe and the extraction perfor-
mance for comparison with other hierarchical em-
bedding techniques. The verification was con-
ducted under the exclusive setup in both BLESS and
WBLESS tasks. As presented in Table 3 and 4, it
is confirmed that the difference in the accuracy be-
tween the 50D and 5D was only less than 5%. Addi-
tionally, we achieved 0.881 accuracy with dhe = 5,
exceeding 0.86 accuracy of Poincaré Embedding
with the same dimension. Based on this result, it’s
possible to obtain an embedded representation that
captures the hierarchical structure with relatively
low dimensions even in the Cartesian coordinate
system, which is consistent with the findings of
Iwamoto et al. (2021).

5 Conclusion

This study proposed a method for embedding ar-
bitrary input by learning mappings, and evaluated
its discriminative and generalization performance.
The method combines subword representations,
FNN-based mappings, and a deep metric learn-
ing technique RLL to obtain hierarchical represen-
tations. Experimental results indicated that RLL
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improved accuracy and FNN-based mapping con-
tributed to generalization performance. Moreover,
from the subsequent discussion, we found that the
obtained embedding representation was sufficiently
expressive even at low dimensions. In conclusion,
this study confirmed the effectiveness of deep met-
ric learning in acquiring hierarchical embedding
representations, succeeded in developing an effec-
tive method for extracting entailment relations for
arbitrary words, and extended the possibility of
application of lexical entailment1.

6 Limitations

There are two limitations to this study. The first
is that fastText has to return correct output for in-
put words, and the second is that a certain amount
of annotated hypernym-hyponym pairs must be
available for training. However, since the fastText
model can be additionally trained with a very small
corpus, the first assumption is not considered to be
a major limitation.
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