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Abstract

Language models (LMs) have been shown to
memorize a great deal of factual knowledge
contained in their training data. But when an
LM generates an assertion, it is often difficult
to determine where it learned this information
and whether it is true. In this paper, we pro-
pose the problem of fact tracing: identifying
which training examples taught an LM to gen-
erate a particular factual assertion. Prior work
on training data attribution (TDA) may offer
effective tools for identifying such examples,
known as “proponents”. We present the first
quantitative benchmark to evaluate this. We
compare two popular families of TDA methods
— gradient-based and embedding-based — and
find that much headroom remains. For example,
both methods have lower proponent-retrieval
precision than an information retrieval baseline
(BM25) that does not have access to the LM
at all. We identify key challenges that may
be necessary for further improvement such as
overcoming the problem of gradient saturation,
and also show how several nuanced implemen-
tation details of existing neural TDA methods
can significantly improve overall fact tracing
performance. 1

1 Introduction

Research has shown that language models (LMs)
acquire significant amounts of world knowledge
from the massive text corpora on which they are
trained (Petroni et al., 2019; Raffel et al., 2020).
This development has enabled exciting advances

1Code for the experiments is released at
https://github.com/ekinakyurek/influence,
and the datasets can be downloaded from https:
//huggingface.co/datasets/ekinakyurek/ftrace.
Correspondences to akyurek@mit.edu

Figure 1: FTRACE benchmark for tracing a language
model’s predictions back to training examples (“pro-
ponents”): We provide two fact attribution datasets:
one with real facts (FTRACE-TREX) and one with
synthetic facts (FTRACE-SYNTH). We evaluate com-
monly studied attribution methods, including gradient-
based and embedding-based approaches for their ability
to identify true proponents.

in knowledge-intensive NLP tasks such as open-
domain question answering (Roberts et al., 2020)
and knowledge base population (Petroni et al.,
2019). LMs have also been shown to generate fac-
tually incorrect statements (Lee et al., 2018; Tian
et al., 2019), which is problematic for many appli-
cations where trustworthiness is important. Hence,
there is an urgent need to understand exactly how
LMs acquire and store knowledge so that we may
improve their accuracy and coverage.

Training Data Attribution Ultimately, a lan-
guage model’s “knowledge” must derive from its
training data. But there has been little research
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on attributing an LM’s factual assertions back to
specific training examples — a task we call fact
tracing. Training data attribution methods (TDA)
are the main literature concerned with linking pre-
dictions back to specific training examples (known
as “proponents”). Influence functions (Hampel,
1974; Koh and Liang, 2017) and TracIn (Pruthi
et al., 2020) are among the first methods to do this
for neural networks, by estimating the marginal
effect of a training example on the loss of a test-
time example. However, most work on TDA has
focused on classification and regression tasks that
do not necessarily involve fine-grained factual in-
formation (Han et al., 2020; Hara et al., 2019).

Several obstacles have limited research on fact
tracing for large, pre-trained LMs. First, since pre-
training corpora are very large, it has not been clear
how to obtain ground truth labels regarding which
pre-training example was truly responsible for an
LM’s prediction. Second, TDA methods have tra-
ditionally been computationally prohibitive. In this
paper, we present one of the first computationally
tractable studies of fact tracing for LMs. To do so,
we construct:

(1) Two specially designed evaluation datasets,
FTRACE-TREX and FTRACE-SYNTH,
which contain unambiguous ground-truth in-
formation about the origin of specific facts.

(2) A tractable procedure for evaluating fact-
tracing methods on large-scale LMs.

Obtaining Ground Truth Proponents To es-
tablish (1) ground truth data for fact tracing, we
propose a new recipe, which we call “novel fact
injection”. First, suppose that we can identify a set
of “facts” that the pre-trained LM does not know
— we call these “novel facts”. We can convert each
novel fact into an LM training example, and then
fine-tune the LM on these extra examples until it
memorizes the novel facts (i.e. “injecting” them
into the LM). With a few caveats, we now know
that the LM must have learned these facts from our
newly injected examples. We also know which ex-
amples are responsible for teaching each fact, since
we constructed each example from a particular fact.
Hence, we now have ground-truth “proponents” for
every novel fact, and can evaluate any TDA method
on its ability to identify these proponents – i.e. to
retrieve the true proponents out of a large set of
training examples.

We implement this recipe using the TREx dataset
(Elsahar et al., 2018) as our source of novel facts.
TREx is a large text corpus where each sentence
has been comprehensively annotated with the facts
that it expresses, in the form of relational knowl-
edge tuples. To identify novel facts present in
TREx, we filter for knowledge tuples that the pre-
trained LM did not already know, as tested using
masked LM prompting. The sentences in TREx
expressing these tuples are then “injected” via fine-
tuning and labeled as proponents. We call this setup
FTRACE-TREX.

There are two caveats for the above setup. First,
we must be careful about how we define what an
LM “knows”. For example, if an LM generates a
particular assertion with 10% probability, does this
count as “knowing” or not? Second, some facts
can be indirectly inferred from other facts. For
example, suppose we want to know how an LM
learned that Barack Obama was born in Hawaii. It
could learn this from a literal mention of the fact:
“Obama was born in Hawaii”, or indirectly infer it
from “Obama was born in Honolulu”. Our TREx
setup only identifies literal proponents (the former),
but not indirect proponents (the latter).

To address these two issues, we introduce an
additional, more controlled setup, FTRACE-
SYNTH, featuring synthetically generated novel
facts that could not have possibly been known by
the pre-trained LM, and which also have no cor-
relation with any existing facts – making indirect
inferences impossible.

Mitigating Computational Cost To mitigate (2)
the high computational cost of most TDA meth-
ods, we propose a simple reranking setup that is
commonly used in information retrieval (IR) exper-
iments. Rather than running a TDA method over all
training examples, we run it only over a small sub-
set of “candidate” examples that is guaranteed to
include the ground truth proponents as well as some
“distractor” examples that are not true proponents.
In this way, a TDA method always has the oppor-
tunity to identify the true proponents while still
facing challenging distractors, which enables us to
differentiate the performance of multiple methods.

Key Results Having developed data and quanti-
tative evaluation methods for fact tracing, we use
them to evaluate two popular families of TDA meth-
ods: gradient-based methods (such as Pruthi et al.,
2020), and embedding-based methods (Rajani et al.,
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2020). As a reference point, we also compare these
TDA methods against a simple baseline: BM25
(Robertson et al., 1995; Lv and Zhai, 2011), a stan-
dard IR technique that simply selects proponents by
retrieving training examples that have high lexical
overlap with the query.

We experiment with several design choices for
neural TDA methods, such as layer selection, and
we improve them by introducing a novel way of
accounting for the optimizer momentum (Shazeer
and Stern, 2018). Beside the improvements and
the proposed setup that eliminated previously
used approximations, all methods under-perform
BM25 in FTRACE-TREX dataset. We note that
this does not imply that BM25 is optimal for this
task, but rather that there are clearly ways in which
TDA methods could do better. On our more con-
trolled FTRACE-SYNTH, we observe that the
upper-bound on neural TDA methods significantly
above of the standard IR methods, especially when
we introduce lexical variation in the way facts are
expressed. We conclude that significant headroom
remains for TDA methods to successfully address
fact tracing in datasets.

2 Retrieval Methods

We begin with a formal description of the different
TDA methods we study in this paper: gradient-
based methods (Koh and Liang, 2017; Pruthi et al.,
2020) and embedding-based methods (Rajani et al.,
2020). To contextualize the performance of these
two families of approaches, we also describe a
widely used information retrieval baseline, BM25,
which uses surface lexical similarity and thus tells
us how effectively we can perform fact tracing with-
out even having to access a model.

2.1 Gradient-based Attribution

Influence functions (Hampel, 1974; Koh and Liang,
2017) provide one of the first and best-known at-
tribution methods. Given a training example z =
(x, y) and a test example zquery = (xquery, yquery),
influence functions seek to estimate the change in
the loss on zquery given an ϵ increase in the weight
of a particular training example z at training time.
Computing the influence of a training example z in-
volves first estimating the change in the optimal pa-
rameters θ̂, given that the example z is up-weighted
by ϵ in the training objective, then calculating how
much the loss on zquery changes w.r.t. the parameter
change. The resulting influence score for convex

loss functions is shown to be:

I(z, zquery) =

−∇θL
(
zquery, θ̂

)⊤
H−1

θ̂
∇θL

(
z, θ̂

)
(1)

where ∇θL(z, θ) denotes the gradient of the loss
function on example z evaluated at model parame-
ters θ, and Hθ̂ denotes the Hessian of the training
objective evaluated at the final converged model
parameters, θ̂ (see Koh and Liang (2017) for the
derivation). In this form, influence functions can be
roughly viewed as the weighted dot product of the
gradients for zquery and z, where the weight is the
inverse Hessian of the training objective at θ̂. Due
to the complexity of inverse Hessian calculation,
the naive computational complexity is O(np2+p3)
(n is dataset size, p is parameter size). Even after
the sampling approximations proposed in Koh and
Liang (2017), the cost is still too high to directly
apply influence functions for fact tracing.2

Therefore, we turn to a more recent TDA method
that has demonstrated both better tractability and
strong empirical results: TracIn (Pruthi et al.,
2020), which seeks to estimate influence by asking
a credit-assignment question rather than a coun-
terfactual perturbation question. During training,
when we take a gradient step on training example z
(input, output) at time t, we ask how much the loss
changes on test example zquery. TracIn employs
a first-order Taylor approximation to answer this
question, yielding the following estimate, which is
simply the dot product of gradients at a particular
step t:

It(z, zquery) = ∇θL
(
zquery, θt

)⊤∇θL (z, θt) (2)

If we have taken K gradient steps on the training
example, this yields the total influence:

I(z, zquery) =

K∑

k=1

∇θL
(
zquery, θt(k)

)⊤∇θL
(
z, θt(k)

)
(3)

where t(k) denotes the training step at which we
took the kth gradient step on training example z.

The sum over time steps is generally approxi-
mated by using some fixed set of training check-
points, which need not coincide with the actual

2Schioppa et al. (2022) propose more tractable approxima-
tions for Hessian based influence, but the memory requirement
of the proposed method is still infeasible without projecting
gradients into lower dimensions. Please refer to (Basu et al.,
2021) for additional shortcomings.
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steps where z was visited. A known issue is that
gradient similarity may be dominated by outlier
training examples with large gradients. A simple
fix proposed in previous work (Barshan et al., 2020;
Han and Tsvetkov, 2021) is to unit-normalize the
gradients, effectively replacing the dot product in
Equation (2) with cosine similarity:

I(z, zquery) =

K∑

k=1

∇θL
(
zquery, θt(k)

)⊤∇θL
(
z, θt(k)

)

∥∇θL
(
zquery, θt(k)

)
∥∥∇θL

(
z, θt(k)

)
∥

(4)

We hereafter refer to I in Equation (4) as TRACIN.

2.2 Embedding-based Attribution

Hidden representations of neural networks are
known to embed high-level features that are often
useful for similarity search. While not as theo-
retically justified, prior work (Rajani et al., 2019)
has found that such representations can outperform
gradient-based methods. Following prior work, we
extract the intermediate layer outputs of a Trans-
former language model, and average over decoding
time-steps to obtain a single vector representation
for any example. In our experiments, we consider
representations at different layers of the Transform-
ers, as well as their concatenations. Similar to the
case of gradient-based methods, the association be-
tween a training example and a model prediction is
defined by a cosine product:

I(z, zquery) =

LM inter.(z)
⊤LM inter.(zquery)

∥LM inter.(z)⊤∥∥LM inter.(zquery)∥
(5)

where LM inter. denotes some hidden representation
internal to the model LM . We refer to I in Equa-
tion (5) as EMBED.

2.3 Baseline: BM25

In the previous sections, we used attribution meth-
ods to define a model-specific similarity function
between examples. But it is also possible to iden-
tify facts in a model-agnostic way: In the classic IR
literature, word-overlap based methods have been
shown to be both simple and effective.

Among these approaches, BM25 (Robertson
et al., 1995; Lv and Zhai, 2011), the best perform-
ing variant, has been consistently used as a baseline
for information retrieval benchmarks (Thakur et al.,

Figure 2: Dataset Creation: From the original TREx
(Elsahar et al., 2018) data, we construct masked sen-
tences and annotate their facts by using provided fact
annotations. We assume a fact is expressed when either
the object or subject is masked in the sentence. Given
a query from the LAMA dataset (Petroni et al., 2019),
we identify proponents by matching all TREx training
examples expressing the same fact. (The outputs of the
masked examples are omitted in the figure.)

2021) . When using BM25, we consider an ex-
ample as a bag of words consist of the input and
the output words. The score is proportional to to-
ken overlap between the query and the candidate,
inversely weighted with the frequency of such to-
kens, and the importance of weights regulated by
hyperparameters. Refer to Appendix A for details.

3 Fact Tracing Datasets

We propose two datasets to measure fact tracing ap-
proaches: FTRACE-TREX, a natural language
dataset with real facts derived from the TREx
dataset, and FTRACE-SYNTH, a synthetic dataset
with novel facts using made-up entities and rela-
tions. For each dataset, we define an attribution
set containing all LM training examples that might
be considered proponents and a query set contain-
ing test examples, each annotated with their ground
truth proponents from the attribution set. The ex-
amples in these sets are masked language modeling
examples, each a (masked input, output, facts) tu-
ple.

3.1 FTRACE-TREx

We create an attibution set using TREx (Elsahar
et al., 2018) and query set using LAMA (Petroni
et al., 2019) datasets. TREx consists of DBPedia
(Brümmer et al., 2016) abstracts, ai ∈ A. Each
abstract contains a set of sentences, sj = aij ,
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FTRACE-TREX FTRACE-SYNTH
Statistics Attribution Query Attribution Query

Length 1,560,453 31,479 3,190,000 10,000
Unique Facts 552,381 31,479 50,000 5,000
Avg. #proponents – 83 – 62
Facts per example 8.28 1 2 1
Unique Predicates 488 41 37 37
Unique Objects 49,166 2,266 5,000 5,000
Unique Subjects 310,197 29,464 5,000 5,000

Table 1: FTRACE-TREX: We extract 1M masked ex-
amples from TREx (Elsahar et al., 2018), and match
them with 27k queries from LAMA (Petroni et al., 2019)
to construct our fact tracing benchmark. FTRACE-
SYNTH: To evaluate influence methods on completely
novel facts, we propose a synthetic benchmark con-
sists of made-up entities and relations. Refer to Ap-
pendix C.4 and Appendix C.5 for examples.

and each sentence is associated with a set of facts,
F (sj). For each fact f ∈ F (sj), TREx annotates
the exact positions where the subject and object
respectively appear in the sentence sj .

We wish to convert these sentences into train-
ing examples that can teach a language model
about the facts stated within them. To do so, we
construct cloze-style language modeling examples
as in masked language modeling (Devlin et al.,
2019) or span corruption (Raffel et al., 2020). In
particular, for each fact f in a sentence s, we
mask out either the subject or the object, and train
the model to predict it. The two resulting exam-
ples masksub(s, f) and maskobj(s, f) are marked
as “proponents” of the fact, as shown in Figure 2.

The LAMA dataset is anchored to the same fact
tuples used by TREx. For each fact tuple, LAMA
provides a template-generated sentence expressing
the fact. Similar to TREx, we convert this sentence
into a cloze-style example by either masking out
the subject or object. Hence, we now have two sets
of examples (TREx and LAMA) that express the
same facts. We treat the TREx examples as our
attribution set and the LAMA examples as our test
set. Since we wish to trace influence from LAMA
back to TREx, we sometimes refer to LAMA exam-
ples as “queries” and TREx examples as “retrieval
candidates.” For any LAMA example, we define
the ground-truth proponents as simply the TREx
examples that express the same fact.

One ambiguity remains regarding ground truth
in TREx sentences that express multiple facts. Sup-
pose a TREx sentence expresses facts f1 and f2,
and we generate cloze examples for both f1 and
f2. The example masksub(s, f1) is clearly a pro-

ponent of f1, but it is perhaps also a proponent
of f2, since the text supporting f2 is still present
after masking. Ultimately, we care about whether
attribution methods can retrieve the right sentence
from the attribution set, not a particular masking of
that sentence. In our evaluations (described next),
we evaluate a method’s ability to retrieve at the sen-
tence level, with the score of a sentence defined as
the max score over all maskings of that sentence.

In total (Table 1), we match approximately 448k
TREx sentences with 31k LAMA queries. On aver-
age, each TREx example expresses three facts, and
each LAMA example has 83 proponents (including
different maskings of the same sentence).

3.2 FTRACE-Synth

In a dataset with real facts, two factors can nega-
tively impact TDA methods for LMs compared to
baselines such as BM25: First, many of the facts
in FTRACE-TREX may already be known by a
pre-trained LM.3 In such cases, the LM will not
learn the fact from TREx, and TDA methods should
not be expected to identify examples in TREx as
proponents. We refer to this as the “saturation”
problem, since the model’s performance already
saturated on the fact before fine-tuning, leaving no
signal for TDA methods to detect. Second, real
corpora like TREx and LAMA have lexical overlap
between query and attribution examples (overlap-
ping surface forms; see Section 3.1) which can
favor counting-based methods like BM25.

To better evaluate TDA methods in isolation, we
create a synthetic dataset, FTRACE-SYNTH, to
evaluate TDA methods on facts that are guaranteed
to be novel. First, we create random entities with
a total number comparable to TREX. Then, we
randomly relate those entities with each other using
the same set of relations from the TREx dataset.

Entities Our entity list consists of 5,000 synthetic
entities each uniquely identified by a number. To
reduce the lexical overlap between examples in the
dataset, we use 4 surface forms per entity – 2 forms
with Arabic numerals, 2 forms with Roman numer-
als. For example, the fourth entity appears with
the following surface forms: ["4-entity", "entity-4",
"IV-entity", "entity-IV"].

3Even if the answer is not ranked first among model out-
puts, the correct prediction may be “close to the surface” on
these examples, and the contribution of fine-tuning may be
small, even if the predictions flip.
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Relations The dataset includes a set of 37 rela-
tions (Appendix B) borrowed directly from TREx.
Additionally, we paraphrase each relation to create
diversity and to reduce the lexical overlap between
attribution and query examples.

Attribution Set Each example in the attribution
corpus expresses two facts to parallel the multi-fact
nature of TREx examples.

Input: entity-MMCLXXIV is the official lan-
guage of 1 , CMXCVII-entity is the writ-
ing place of 2

Output: 1:3082-entity, 2:entity-MMMCCC

The attribution corpus includes 50,000 individual
facts. By masking different entities as well as com-
bining different facts, we can generate 3,190,000
masked examples for the attribution corpus.

Query Set Similar to LAMA, each example in
the query corpus queries a single fact expressed as
a masked example, for example:

Input: entity-3300 was written in .
Output: entity-CMXCVII

We generate 5,000 such facts by assigning random
relations between different entities, with two sur-
face forms for each, resulting in 10,000 examples.
As a result, each fact in this query set has 62 pro-
ponents in the attribution corpus, and every entity
appears in 10 relations on average.

4 Experimental Setup

Our experiments aim to answer the questions of (1)
whether TDA methods can be used as effective fact
tracing tools (compared to simple IR baselines),
(2) which configurations make them most effective
(exploring many variations), and (3) analyzing the
weaknesses of TRACIN, in particular its sensitivity
to when the knowledge is learned (the aforemen-
tioned “saturation” hypothesis).

4.1 Reranking Evaluation
Ideally, an attribution method would score a given
test query against every training example, and we
can sort all examples by their influence score. This
would enable evaluation with standard IR methods
like recall@10 and mean reciprocal rank (MRR)
1
|Q|

∑
q∈Q

1
rankq

, where rankq is the rank of the
first true proponent for the query, and Q denotes
the candidate set. However, most attribution meth-
ods are computationally intractable for scoring all
training sentences in large datasets. Although we

can reduce the complexity of some of these meth-
ods through the use of random projections (Pruthi
et al., 2020), such lossy approximations would ren-
der our results less conclusive, as it would be un-
clear whether an outcome is due to the intrinsic
quality of a method or the quality of the projection.

Therefore, to achieve computational tractabil-
ity while avoiding such confounds, we propose a
simple reranking setup: instead of scoring all ex-
amples, we can score a carefully selected subset
that still enables meaningful comparisons. We call
this the “candidate set”. It is the union of four sets:

1. all true proponents for a query: P(zquery),

2. the top-100 retrievals from BM25:
BM25(zquery),

3. 100 random examples that share the same tar-
get y as the query: Dy = {(x, y) s.t. y =
yquery}, and

4. 100 randomly sampled examples: Drandom,

with random samples fixed across all evaluations.
Note that MRR on this particular candidate set is
an upper-bound on the MRR over the full attri-
bution set. Because it includes all proponents but
fewer distractors, rank is guaranteed to be closer to
1 in the MRR definition. Also, including P(zquery)
is necessary to ensure that the model has the op-
portunity to retrieve all proponents. BM25(zquery)
ensures that we have “distractors” with high lexical
overlap, and Dy is included because we observed
that TDA methods have a tendency to retrieve ex-
amples with the same output as the query.

Our candidate set includes all top retrievals from
BM25, so the results for BM25 are exact. When
combined with the fact that reranking MRRs al-
ways upper-bound full retrieval MRRs, our setup
guarantees that any method that underperforms
BM25 on reranking will also underperform for full
retrieval.

Slicing examples The gradient-based methods
require careful treatment when considering models
that go through two separate stages: pre-training
and fine-tuning. For example, if a model has al-
ready obtained zero loss on an example at the start
of fine-tuning, then the gradient will be near-zero
throughout fine-tuning, and computing influence
using only fine-tuning checkpoints will yield an un-
informative influence score for any query. We refer
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to this problem as “saturation.” To mitiagate sat-
uration, we evaluate TDA methods on a subset of
queries we label Finetune-learned (FL), where the
model failed before fine-tuning (the answer is not
in top-3 beam-search predictions), but succeeded
afterward (the answer is top-1 in beam-search). We
referred to this set as “novel facts” in Section 1.4

4.2 Model
We use MT5-base, a commonly used encoder-
decoder language model (Xue et al., 2021) to evalu-
ate the aforementioned neural TDA methods. MT5
was pre-trained on the MC4 corpus, which includes
all of Wikipedia, and therefore was exposed to the
knowledge expressed in FTRACE-TREX. The
pre-trained MT5 model achieves 24.3% top-3 accu-
racy when predicting answers to the TREX queries.
Fine-tuning MT5 on our FTRACE-TREX train-
ing set increases accuracy to 47.42%, suggesting
that there are still many facts MT5 did not know
after pre-training. For FTRACE-SYNTH, the pre-
trained model gets 0 accuracy as expected, and the
fine-tuned model obtains 81%5.

To evaluate TRACIN, we approximate Equa-
tion (3) by choosing three checkpoints that are uni-
formly spaced out in terms of their training loss
(specifically, inverse perplexity), to ensure that we
cover significant parts of training while favoring re-
gions with greater loss reduction. Note that we use
pre-training checkpoints when evaluating the pre-
trained model, and fine-tuning checkpoints when
evaluating the fine-tuned model; see Appendix A
for details. We calculate the gradient w.r.t the aver-
age negative likelihood of the true output token se-
quence. To evaluate embedding-based fact tracing,
we use representations from the final checkpoint of
the model.

For both gradient and embedding-based meth-
ods, we present the best layer combination among
the different concatenations of layers studied in
(Section 5.2).

5 Results

5.1 Top-level comparisons
In Table 2, we present a top-level comparison of
the three main methods discussed (gradient-based,
embedding-based, and BM25). Hyperparameters

4In Appendix C.2, we present additional results for
Pretrain-learned (PL) examples, which went from failing to
successful during pre-training rather than fine-tuning.

5We accept an answer if any of the surface forms of the
correct entity is the output.

Methods MRR Recall@10

Random-Target 14.50 ±0.95 10.32 ±1.54

BM25 77.55 ±1.50 60.89 ±2.31

Finetuned Pretrained Finetuned Pretrained

TRACIN 48.56 ±4.40 62.38 ±1.99 56.02 ±0.67 57.54 ±1.25

EMBED 64.29 ±1.32 60.59 ±1.13 57.89 ±1.38 54.91 ±0.32

TRACIN + EMBED 58.52 ±3.83 67.66 ±0.22 61.72 ±0.08 61.59 ±1.35

Table 2: Top Level Results: Best scores for each method
and model on the Finetune-learned slice of FTRACE-
TREx. We present average sentence-level retrieval re-
sults over 3 random selections of 200 queries. We found
that BM25 performs best in MRR outperforming neural
methods. Table 6 shows detailed MRRs on predicate,
subject, and object level of candidate examples.

for all methods have been optimized. As we discuss
in subsequent sections, TDA hyperparameters have
a significant effect on performance.

We optimized TRACIN by rescaling gradients
with Adafactor accumulators (Shazeer and Stern,
2018), applying unit-normalization to the gradients
(see Table 3) and selecting the best layer configura-
tion (Section 5.2). To sanity check that TDAs are
doing more than matching the query’s output la-
bel, we compare to a RANDOM-TARGET baseline
that outputs a score of 1 for all training examples
with the same output label. This baseline is indeed
substantially worse than either method.

Despite extensive optimization for TRACIN and
EMBED, however, we found that BM25 with no
tuning still outperforms neural TDAs in MRR and
Recall@10. TRACIN slightly outperforms EMBED

for pretrained model but significantly underforms
EMBED for the finetuned model. When we ensem-
ble TRACIN and EMBED (by summing their influ-
ence scores) there is an improvement on recall of
candidate examples, demonstrating that their suc-
cess is somewhat orthogonal. We provide example
retrievals from all three models in Appendix C.

Surprisingly, pre-trained TRACIN outperforms
fine-tuned TRACIN in this dataset, as we discuss
more in Section 5.3.

We do not seek to measure all benefits of attri-
bution methods, but rather to assess one expected
function (fact-tracing), as promised by their stated
goal (tracing a model’s prediction back to data).
The fact that even the best TDA method obtains
MRR of 67.66 and Recall@10 of 61.59 showcases
the significant absolute headroom that remains for
attribution methods . BM25 results are only a little
better, and are provided mainly as a reference point.
Next, we analyze what choices contributed to the
current status of TDA methods with a detailed ex-

2435



MRR Recall@10

Change Finetuned Pretrained Finetuned Pretrained

Adafactor −→ no-Adafactor –3.83 ±4.81 –7.20 ±2.25 –11.29 ±2.05 –2.36 ±1.63

unit-norm −→ no-norm –3.36 ±4.89 –32.90 ±2.13 –10.82 ±2.24 –28.06 ±1.46

multi-ckpt −→ single-ckpt +0.51 ±6.42 +0.60 ±2.23 –6.95 ±4.72 +5.44 ±1.61

no [eos] −→ [eos] +5.50 ±4.63 –24.77 ±3.82 +12.96 ±1.59 –19.93 ±3.49

Table 3: Our experiment with various configurations for
best layer of the TRACIN evaluted in Finetune-Learned
set of FTRACE-TREX: For each change from the best
configuration (the first row), we report the best result by
optimizing free hyper-parameters. The normalization
and the usage of the accumulator smoothing was effec-
tive in our top level TRACIN results. We compare max-
imum scored checkpoint scores to our original multi-
checkpoint results, we found that the best checkpoint
performs slightly better than multi-heckpoint results in
MRR. The including the the end of sentence token in
the target side hurts pretrained MT5 model since it is
originally trained to predict multiple answer.

ploration of hyperparameters.

5.2 Which Transformer layers provide the
most reliable attribution signal?

Some layers of a language model may be special-
ized for operations that have no relation to factual
information. For example, previous probing work
(Tenney et al., 2019) shows the existence of layers
that focus on syntax rather than on knowledge. The
contribution of such layers to TRACIN may intro-
duce noise. In Figure 3, we conduct an experiment
where we sweep over various subsets of layers.

For TRACIN, the best-performing layer is the
embedding layer of the model — this result, also
observed in Yeh et al. (2022), is surprising, as most
prior work used only the last layer. In EMBED,
the best performing layer is again the output of the
embedding layer. These results suggest that much
of the effectiveness of embedding-based methods
derives from their models of lexical similarity. Con-
versely, for TRACIN, the embedding layer also in-
cludes contextual information since the gradient
signal propagates back through the entire model.

Additional Model Variants Section 5.1 men-
tioned several design choices for TRACIN. We
performed a systematic evaluation of those choices.
In Table 3, given the set of configurable options in
the table, we set a given option to a particular value
and then optimize remaining parameters.

Unit-normalized gradients drastically outper-
form the dot product. Next, we considered the
role of Adafactor during training. The TRACIN

equation arises from considering parameter up-

MRR Precision @10 Recall@10

Random-Target 36.47 ±2.84 30.43 ±4.00 2.45 ±0.32

BM25 87.69 ±1.71 52.02 ±2.65 4.20 ±0.21

TRACIN 100.00 ±0.00 99.50 ±0.14 8.02 ±0.01

EMBED 99.58 ±0.24 97.12 ±0.53 7.83 ±0.04

TRACIN + EMBED 100.00 ±0.00 98.07 ±0.18 7.91 ±0.01

Table 4: Synthetic Dataset Results: Best scores for
fine-tuned model on the Finetune-learned slice of
FTRACE-SYNTH. On completely novel facts, the
TracIn upperbound is higher than the other methods.
Since we control the lexical overlap, BM25 underper-
forms neural methods. We present average sentence-
level retrieval results over 2 random selections of 200
queries. The upper-bound scores on neural methods are
higher in the synthetic data than BM25 as we reduce the
lexical overlap. The TRACIN upperbound performs best
in all the metrics.

dates at a specific step. The true parameter up-
dates were not raw gradients, but gradients that had
been rescaled by Adafactor accumulators. Using
these rescaled gradient for TRACIN performs much
better. Also, surprisingly, using the single best-
performing checkpoint is sometimes better than
using multiple checkpoints. We provide the indi-
vidual checkpoint results in Table 5.

5.3 FTRACE-SYNTH and Saturation

As mentioned earlier, TRACIN monitors the change
in a model’s performance on a test query over
the course of training — and therefore is likely
to fail if a test query’s loss is already zero (satu-
rated) at the start of the training period monitored
by TRACIN. In addition, because the pre-trained
model sees very similar sentences and information
in the pre-training corpora, the influence could be
distributed over multiple examples, such that the
signal from each candidate is weak. These con-
founding factors may apply to FTRACE-TREX.
Therefore, we also evaluate TDA methods on our
synthetic dataset, FTRACE-SYNTH, which con-
trols for all these issues. We fine-tune the same
model on FTRACE-SYNTH and perform the same
evaluation in Table 4. The results suggest that
when the aforementioned factors are controlled,
the reranking upper-bound for gradient-based TDA
methods is better than BM25 and slightly better
than embedding-based TDA methods. This result
verifies that TDA methods might have advantages
over standard IR methods, despite falling short in a
more realistic, applied scenario.
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Figure 3: Mean reciprocal rank for TRACIN with different layers and and EMBED from different intermediate layers:
In G.0, gradient of embedding layer is used. In G. and A., respectively, gradients and embeddings of all layers
are used. A.E.0 and A.D.0 corresponds to embedding layer’s output in the encoder and decoder part of the model
respectively. Comma-separated labels denote ensembling by summing the scores of the corresponding layers. We
report results for 3 random seeds (error bars with standard deviation) of 200 queries where queries learned between
pretraining checkpoints. In neural methods, using only the embedding layer or its output performs the best, while
underperforming the baseline method BM25.

6 Related work

Information Retrieval To define our fact tracing
task, we employ standard concepts from the infor-
mation retrieval (IR) literature: a retrieval + rerank-
ing setup, and standard retrieval metrics. However,
while IR focuses on retrieving any document that
satisfies a user’s query, our benchmark specifically
aims to identify examples that caused a particular
model to make a particular prediction. This focus
on model-specific causality distinguishes us from
prior IR work (Thakur et al., 2021; Nguyen et al.,
2016). Our evaluation setup should be easier than
generic IR benchmarks because we are only evalu-
ating on predictions we know the LM gets right.

Language Models as Retrievers Language mod-
els have been successfully used in numerous IR
applications. Karpukhin et al. (2020) use language
model embeddings to warm-start neural retrievers
for knowledge-intensive tasks. Guu et al. (2020)
and Lewis et al. (2020) show that language model-
ing and information retrieval can be jointly learned
in a manner that benefits both tasks. Our work
uses TDA-based retrieval methods to help users
understand the behavior of the LMs themselves.

Attribution Methods Recent work has tried to
explain neural model behavior in many different
ways: (1) attributing a prediction back to specific
features in the input (Simonyan et al., 2014; Sun-
dararajan et al., 2017; Han et al., 2020), (2) attribut-
ing to specific model parameters (Dai et al., 2022;

Mitchell et al., 2022), (3) probing for competence
at linguistic sub-tasks (Tenney et al., 2019), and
finally (4) attributing back to training examples
(Pruthi et al., 2020; Koh and Liang, 2017).

However, work in the last category (Han et al.,
2020; Guo et al., 2021) has been limited, mainly
focusing on classification and regression tasks that
do not involve questions about factuality or world
knowledge. Consequently, these methods have pri-
marily been used as a data cleaning technique, leav-
ing the question of fact tracing unexplored (Han
et al., 2020; Hara et al., 2019).

7 Conclusion

We introduced a new dataset and benchmark for
fact tracing: the task of tracing language models’
assertions back to the training examples that pro-
vided evidence for those predictions. We evalu-
ated gradient-based and embedding-based TDA
methods and found that they perform worse than a
standard IR baseline (BM25) even in settings that
favor TDA methods. We investigated the effects of
layer selection, model checkpoints and fine-tuning.
Our ablative analysis suggests that saturation is an
important factor affecting the performance of cur-
rent methods. Much is needed to improve these
methods before they can be reliably used for fact
tracing. We hope that this benchmark will enable
future research on fact tracing, by mitigating com-
putational challenges and establishing a principled
ground truth.
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TREX extracted from TREx where the fact anno-
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The FTRACE dataset includes content from
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factual accuracy. It is possible that by redistribut-
ing this content we will propagate misinformation.
We plan to mitigate this harm with a datasheet that
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Appendix

In this appendix, we will provide implementation details and additional results for the experiments.

A Implementation Details

BM25 We use the following BM25 formula:

I(z, zquery) =
∑

t∈zquery

log

(
N + 1

Nt

)
×


 (k1 + 1) · f(z, t)
k1 ·

(
(1− b) + b ·

(
L(z)
Lavg

))
+ f(z, t)

+ 1




where, f(z, t) is the overlap count, N is the number of training examples, L(z) is the length of the
example, and Lavg is the average example length. k1 and b are hyperparameters tha reweights the
importance of the other terms in the formula. Robertson et al. (1995) provides the intuition behind this
definition of relatedness.

We use a publicly available BM25+(Lv and Zhai, 2011) implementation written in python and released
under https://pypi.org/project/rank-bm25/. We tokenize queries and retrieval examples by space
and we remove masked tokens. We did not optimize any of the default hyper parameters.

MT5 Model We use intermediate checkpoints of MT5 model 6 (12 layers transformer with 580M
parameters). We convert these checkpoints to Pytorch by using HugginFace’s T5 converter. We use the
tokenizer provided. In our datasetSection 3.1, we use extra_id_0 for the mask token compatible with
pretraining corpus of MT5..

TRACIN We calculate gradients by using Pytorch without batching examples and by using average
negative likelihood over output sequence. We store each individual parameter’s gradient (blocks of
transformer) in a dictionary structure. Given a query and a retrieval example, we calculate scores
Equation (4) for each parameter seperately that means we locally normalize each parameters’ gradient in
Equation (4). Then, to calculate a layer’s or full model’s score, we score individual scores corresponding
to parameters in that layer. This enable us to sweep over different combination of layers as in Figure 3
without rerunning the model.

Pretrained MT5 model is trained until 80k gradient steps. We use checkpoints at 5100, 10200, 15300
steps. We fine-tune MT5 model on additional 60k gradient steps on TREx dataset. Then, we use
checkpoints at 5000, 10000, 30000 steps.

We paralelize over checkpoints when calculating Equation (4). For each query, we spend approximately
15 minutes by using VOLTA V100 32 GB GPUs to get scores for all the retrieval examples in the ranking
set (Section 4.1))

EMBED Transformer model’s forward pass can be expressed as following pseudo code:

enc0 = Embedding(x)

enci = Encoderi(enci−1)i = 1..N

dec0 = Embedding(y)

deci = Decoderi(y, encN )i = 1..N

L = NLL(WprojdecN , yquery)

(6)

We use enci and deci, and reduce (average) them over time-steps in input and outputs side respectively.

6https://github.com/google-research/multilingual-t5
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B Synthetic Data Relation Templates

Below are the relation templates we use in the dataset. “0 and “1" are the slots for the entities. Paraphrases
are delimited by “|" sign. Left paraphrase is the original surface for in the FTRACE-TREX dataset, right
one is the additional paraphrase paraphrase.

{0} was born in {1} | {0}’s birth place is {1}
{0} died in {1} | {0} passed away in {1}
{0} is a subclass of {1} | {1} is superclass of {0}
The official language of {0} is {1} | {1} is the official language of {0}
{0} plays in {1} position | {1} is the play position of {0}
{0} was awarded the {1} | {1} given to {0}
{0} was originally aired on {1} | {1} is the first streamer of {0}
{0} was educated at the University of {1} | {0} studied in University of {1}
{0} shares border with {1} | {0} and {1} are neighbours
{0} is named after {1} | {1} was inspirational for the naming of {0}
The original language of {0} is {1} | {1} is the original language of {0}
{0} plays with {1} | {0} plays along with {1}
{0} is a member of {1} | {1} accepted {0} as a member
{0} works in the field of {1} | {1} is the work field of {0}
{1} participated in the {0} | {1} was a participant of {0}
{0} is a {1} by profession | {0}’s profession is {1}
{0} consists of {1} | {0} includes {1}
{0} is a member of the {1} political party | {0}’s political party was {1}
{0} maintains diplomatic relations with {1} | {0}’s diplomacy with {1}
{0} is produced by {1} | {1} produced {0}
{0} is a citizen of {1} | {0}’s home country is {1}
{0} was written in {1} | {1} is the writing place of {0}
{0} is located in {1} | {0} placed in {1}
{0} is developed by {1} | {1} developed {0}
{0} is the capital of {1} | the capital of {1} is {0}
{0} works for {1} | {0} works at {1}
{0} plays {1} music | {0} perform {1} music
{0} has the position of {1} | {0}’s position is {1}
{0} is represented by music label {1} | music label {1} represents {0}
{0} used to work in {1} | {1} is ex-workplace of {0}
{0} is affiliated with the {1} religion | {0} believes in {1} religion
{0} is owned by {1} | {1} owned {0}v
The native language of {0} is {1} | {1} is the native language of {0}
{0} and {1} are twin cities | {0} is twin city of {1}
{0} is a legal term in {1} | {0} is a legal definition in {1}
The headquarter of {0} is in {1} | {0}’s headquarter in {1}
{0} was founded in {1} | {0} was established in {1}

C Additional Results and Samples

C.1 Individual Checkpoints

MRR Recall@10

FT PT FT PT

Multi 48.56±4.40 62.38±1.99 56.02±0.67 57.54±1.25

Ckpt1 49.07±4.67 54.77±1.26 49.07±4.67 54.77±1.26

Ckpt2 47.30±2.88 62.98±1.01 47.30±2.88 62.98±1.01

Ckpt3 48.69±5.19 60.29±3.34 48.69±5.19 60.29±3.34

Table 5: TRACIN results for individual checkpoints on Finetune-Learned set.

C.2 MRR Results with Submetrics

MRR on Finetune-Learned Subsets of FTRACE-TREx We provide submetrics for (Finetuned-
learned (FL) ) set.
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Table 6: MRR Results with submetrics in fine-tuned learned set. (see Table 2)

Sentence (Table 2) Predicate Subject Object

FT PT FT PT FT PT FT PT

Random-Target 14.50±0.95 14.50±0.95 14.71±0.89 14.71±0.89 98.14±0.72 98.14±0.72 63.56±2.53 63.56±2.53

BM25 77.55±1.50 77.55±1.50 79.26±2.82 79.26±2.82 88.25±1.80 88.25±1.80 85.71±1.22 85.71±1.22

TRACIN 48.56±4.40 62.38±1.99 49.16±4.76 63.98±0.98 99.53±0.43 86.49±1.22 88.74±1.59 74.99±3.61

EMBED 64.29±1.32 60.59±1.13 66.25±1.82 63.00±1.73 94.09±0.77 81.79±1.33 80.45±0.99 74.03±2.27

TRACIN + EMBED 58.52±3.83 67.66±0.22 59.24±3.88 69.49±0.92 97.92±0.50 82.03±1.61 71.94±2.44 79.15±1.55

MRR on Pretrained-Learned Subsets of FTRACE-TREx We present additional results for (Pretrain-
learned (PL) ) examples where the model failed before the a checkpoint of pre-training, but changed
during pre-training. We found that the average number of proponents in the PL set is 2.5x that of the
FL set (since we expect that frequently mentioned facts will be learned first). These results suggest that
it’s difficult to control for when facts were learned without affecting the other statistics, and that direct
comparisons between model performance on the PL and FL datasets may not be informative.

Table 7: MRR Results with submetrics in pretrained- learned set. (see Table 2)

Sentence (Table 2) Predicate Subject Object

FT PT FT PT FT PT FT PT

Random-Target 15.83±1.42 15.83±1.42 15.62±1.29 15.62±1.29 98.36±0.79 98.36±0.79 61.88±1.99 61.88±1.99

BM25 77.62±3.24 77.62±3.24 77.20±3.56 77.20±3.56 91.24±0.83 91.24±0.83 88.07±1.39 88.07±1.39

TRACIN 64.18±2.62 54.45±1.96 63.94±1.80 56.01±1.95 99.17±0.72 89.82±2.21 88.07±2.00 81.44±1.71

EMBED 51.21±2.43 50.42±2.43 51.02±2.55 50.30±2.64 96.52±1.75 84.21±3.03 79.18±1.05 79.00±0.82

TRACIN + EMBED 65.91±2.88 55.40±1.98 66.04±2.60 57.09±2.24 97.95±0.25 86.21±2.16 84.09±2.00 82.01±1.78

C.3 Precision-Recall plots for FTRACE-TREx
We present accompanying precision and recall results for Figure 3.
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C.4 Samples for FTRACE-TREx
Here, we provide example top-3 retrievals from TDAs for the FTRACE-TREX dataset. Long examples
are truncated for display purposes. We provide label (whether the retrieved example includes the fact)
next to the output of the retrieved example.

Embed TracIn BM25

Q: In late 2005, the 1

broadcast a full series of Star
Spell, again presented by Ea-
monn Holmes but Mishal Hu-
sain took over from Nina as
word pronou...
A: BBC True

Q: In late 2005, the 1

broadcast a full series of Star
Spell, again presented by Ea-
monn Holmes but Mishal Hu-
sain took over from Nina as
word pronou...
A: BBC True

Q: In late 2005, the 1

broadcast a full series of Star
Spell, again presented by Ea-
monn Holmes but Mishal Hu-
sain took over from Nina as
word pronou...
A: BBC True

Q: The Vicar of Dibley is a
1 television sitcom cre-

ated by Richard Curtis and writ-
ten for actress Dawn French by
Curtis and Paul Mayhew-Archer,
wit...
A: BBC False

Q: Tasneem Zehra Husain (also
spelled as Tasneem Zehra Hus-
sain), is a Pakistani 1

and an Assistant Professor of
Physics at the Lahore University
of...
A: theoretical physicist False

Q: In late 2005, the BBC
broadcast a full series of Star
Spell, again presented by Ea-
monn Holmes but 1 took
over from Nina as word pro-
nouncer.
A: Mishal Husain True

Q: Honigberg also recorded
Homage to Rostropovich
(1927–2007), a CD of solo
cello works written for the
legendary cellist; Frédéric
Chopin’s complete wor...
A: piano False

Q: Abdul Aziz Bin Dato Haji
Husain was born 18 July 1950
in Kuching, Sarawak, 1.
A: Malaysia False

Q: He now works for the BBC,
presenting on the BBC News
channel and 1.
A: BBC One False

Table 8: Mishal Husain works for 1. (A: BBC)

C.5 Samples for FTRACE-Synth
Now, we provide the retrieved examples for FTRACE-SYNTH version of our dataset.
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Embed TracIn BM25

Q: Clara Ellaline Hope
Leighton (sometimes Clare
Veronica Hope Leighton) (12
April 1898 - 4 November 1989)
was an 1/American artist,
writer and ill...
A: English False

Q: He was educated in 1

and at the Quaker Leighton Park
School.
A: London False

Q: The 1 Kenneth
Leighton (1929–1988) also
wrote a Fantasia Contrappuntis-
tica ("Homage to Bach", Op.24)
for piano, which won the first
prize at the...
A: composer True

Q: Lillianne Brown Leighton
(May 17, 1874 – March 19,
1956), known professionally as
Lillian Leighton, was an 1

silent film actress.
A: American False

Q: Kenneth 1 Bray (May
26, 1895 – January 9, 1953)
was an Episcopal priest, teacher,
sportsman and coach.
A: Augustine False

Q: The composer 1

(1929–1988) also wrote a
Fantasia Contrappuntistica
("Homage to Bach", Op.24) for
piano, which won the first prize
at the Bolzano...
A: Kenneth Leighton True

Q: The composer Kenneth
Leighton (1929–1988) also
wrote a Fantasia Contrappuntis-
tica ("Homage to Bach", Op.24)
for 1, which won the first
prize at ...
A: piano True

Q: Leighton Road Evangelical
Church is a nonconformist in-
dependent evangelical church
located on the Gainsborough
estate, 1 in the English
county o...
A: Ipswich False

Q: The composer Kenneth
Leighton (1929–1988) also
wrote a Fantasia Contrappuntis-
tica ("Homage to Bach", Op.24)
for 1, which won the first
prize at ...
A: piano True

Table 9: Query: Kenneth Leighton plays 1. (A: piano)

Embed TracIn BM25

Q: 1 given to 3692-
entity,entity-2686 was awarded
the 2

A: 1:entity-1138, 2:entity-
MMMMDCLIII True

Q: 1 given to entity-
MMDCLXXXVI, 2 used
to work in CXVI-entity
A: 1:entity-MMMMDCLIII,
2:entity-1650 True

Q: 1 given to 3692-
entity, 2 was awarded the
entity-MMMMDCLIII
A: 1:entity-1138, 2:entity-2686
True

Q: entity-1138 given to
1,entity-2686 was

awarded the 2

A: 1:3692-entity, 2:entity-
MMMMDCLIII True

Q: entity-CCCII given to
1,MMMDLVI-entity

given to 2

A: 1:entity-MMMMDCLIII,
2:entity-MDCCCLXXXVII
False

Q: entity-CCCII given to
1, 2 given to entity-

MDCCCLXXXVII
A: 1:entity-MMMMDCLIII,
2:MMMDLVI-entity False

Q: 1 given to 2686-
entity, 2 plays in entity-
2658 position
A: 1:MMMMDCLIII-entity,
2:MMMMCCLXIX-entity True

Q: 1 shares border with
entity-DCCXXVII,entity-302
given to 2

A: 1:entity-MMMMCMXCVIII,
2:entity-MMMMDCLIII False

Q: entity-CCCII given to
1,MMMDLVI-entity

given to 2

A: 1:entity-MMMMDCLIII,
2:entity-MDCCCLXXXVII
False

Table 10: 1 given to entity-2686. (A: entity-MMMMDCLIII)
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Embed TracIn BM25

Q: entity-MMMDLXXVI’s
diplomacy with 1,entity-
3193’s birth place is 2

A: 1:MMCDLX-entity, 2:entity-
5 True

Q: 3132-entity maintains
diplomatic relations with

1, 2 was awarded
the entity-3701
A: 1:entity-3468, 2:entity-4097
False

Q: MMMDLXXVI-entity’s
profession is 1,entity-
CCLXI’s diplomacy with

2

A: 1:MXXX-entity, 2: 506-
entity False

Q: MMMDLXXVI-entity’s
diplomacy with 1, 2

given to 2897-entity
A: 1:entity-MMCDLX,
2:MCMLIII-entity True

Q: The original language
of MMCCLXXIX-entity is

1,3552-entity shares
border with 2

A: 1:MMCDLX-entity,
2:MMMMDLXV-entity False

Q: MMMDLXXVI-
entity’s diplomacy with

1,MCMLIII-entity given
to 2

A: 1:entity-MMCDLX, 2:
2897-entity True

Q: MMMDLXXVI-
entity’s diplomacy with

1,MCMLIII-entity given
to 2

A: 1:entity-MMCDLX, 2:
2897-entity True

Q: The official language
of CMXCVII-entity is

1, 2 died in
MMCDLX-entity
A: 1:3215-entity, 2: 710-entity
False

Q: MMMDLXXVI-entity’s
diplomacy with 1, 2

given to 2897-entity
A: 1:entity-MMCDLX,
2:MCMLIII-entity True

Table 11: MMMDLXXVI-entity’s diplomacy with 1. (A: MMCDLX-entity)
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