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Abstract

The attention mechanism is considered the
backbone of the widely-used Transformer ar-
chitecture. It contextualizes the input by com-
puting input-specific attention matrices. We
find that this mechanism, while powerful and
elegant, is not as important as typically thought
for pretrained language models. We introduce
PAPA,1 a new probing method that replaces
the input-dependent attention matrices with
constant ones—the average attention weights
over multiple inputs. We use PAPA to ana-
lyze several established pretrained Transform-
ers on six downstream tasks. We find that
without any input-dependent attention, all mod-
els achieve competitive performance—an av-
erage relative drop of only 8% from the prob-
ing baseline. Further, little or no performance
drop is observed when replacing half of the
input-dependent attention matrices with con-
stant (input-independent) ones. Interestingly,
we show that better-performing models lose
more from applying our method than weaker
models, suggesting that the utilization of the
input-dependent attention mechanism might
be a factor in their success. Our results mo-
tivate research on simpler alternatives to input-
dependent attention, as well as on methods
for better utilization of this mechanism in the
Transformer architecture.

1 Introduction

Pretrained Transformer (Vaswani et al., 2017) mod-
els have enabled great progress in NLP in recent
years (Devlin et al., 2019; Liu et al., 2019b; Raffel
et al., 2020; Brown et al., 2020; Chowdhery et al.,
2022). A common belief is that the backbone of the
Transformer model—and pretrained language mod-
els (PLMs) in particular—is the attention mech-
anism, which applies multiple attention heads in

∗This work was done while Hao Peng and Ivan Montero
were at the University of Washington.

1PAPA stands for Probing Analysis for PLMs’ Attention.

“ This is a sentence ” “ This is a sentence ”

Figure 1: Illustration of the PAPA method, which mea-
sures how much PLMs use the attention mechanism.
PAPA replaces the input-dependent attention matrices
(left) with constant ones (right). We then measure the
performance gap between the two. Moderate drop
indicates minor reliance on the attention mechanism.

parallel, each generating an input-dependent atten-
tion weight matrix.

Interestingly, recent work found that atten-
tion patterns tend to focus on constant (input-
independent) positions (Clark et al., 2019; Voita
et al., 2019), while other works showed that it is
possible to pretrain language models where the
attention matrices are replaced with constant matri-
ces without major loss in performance (Liu et al.,
2021; Lee-Thorp et al., 2021; Hua et al., 2022). A
natural question that follows is how much standard
PLMs, pretrained with the attention mechanism, ac-
tually rely on this input-dependent property. This
paper shows that they are less dependent on it than
previously thought.

We present a new analysis method for PLMs:
Probing Analysis for PLMs’ Attention (PAPA). For
each attention head h, PAPA replaces the attention
matrix with a constant one: a simple average of the
attention matrices for h computed on some unla-
beled corpus. Replacing all attention matrices with
such constant matrices results in an attention-free
variant of the original PLM (See Fig. 1). We then
compute, for some downstream tasks, the probing
performance gap between an original model and
its attention-free variant. This provides a tool to
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quantify the models’ reliance on attention. Intu-
itively, a larger performance drop indicates that the
model relies more on the input-dependent attention
mechanism.

We use PAPA to study three established pre-
trained Transformers: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), and DeBERTa (He
et al., 2021), each with BASE- and LARGE-sized
versions. We evaluate these models on six diverse
benchmarks, spanning text classification and struc-
tured prediction tasks.

Our results suggest that attention is not as im-
portant to pretrained Transformers as previously
thought. First, the performance of the attention-
free variants is comparable to original models: an
average relative drop of only 8%. Second, replac-
ing half of the attention matrices with constant ones
has little effect on performance, and in some cases
may even lead to performance improvements. In-
terestingly, our results hint that better models use
their attention capability more than weaker ones;
when comparing the effect of PAPA on different
models, we find that the better the model’s original
performance is, the more it suffers from replacing
the attention matrices with constant ones. This sug-
gests a potential explanation for the source of the
empirical superiority of some models over others—
they make better use of the attention mechanism.

This work grants a better understanding of the
attention mechanism in pretrained Transformers. It
also motivates further research on simpler or more
efficient Transformer models, either for pretraining
(Lee-Thorp et al., 2021; Liu et al., 2021; Hua et al.,
2022) or potentially as an adaptation of existing
pretrained models (Peng et al., 2020a, 2022; Kasai
et al., 2021). It also provides a potential path to im-
prove the Transformer architecture—by designing
inductive bias mechanisms for better utilization of
attention (Peng et al., 2020b; Wang et al., 2022).

Finally, our work may contribute to the “at-
tention as explanation” debate (Jain and Wallace,
2019; Serrano and Smith, 2019; Wiegreffe and Pin-
ter, 2019; Bibal et al., 2022). By showing that
some PLMs can perform reasonably well with con-
stant matrices, we suggest that explanations arising
from the attention matrices might not be crucial for
models’ success.

We summarize our main contributions. (1) We
present a novel probing method—PAPA—which
quantifies the reliance of a given PLM on its at-
tention mechanism by “disabling” that mechanism

for this PLM. (2) We apply PAPA to six leading
PLMs, and find that our manipulation leads to mod-
est performance drops on average, which hints that
attention might not be as important as thought. (3)
We show that better-performing PLMs tend to suf-
fer more from our manipulation, which suggests
that the input-dependent attention is a factor in
their success. (4) Finally, we release our code and
experimental results.2

2 Background: Attention in Transformers

Transformers consist of interleaving attention and
feed-forward layers. In this work, we focus on
Transformer encoder models, such as BERT, which
are commonly used in many NLP applications.

The (multi headed) self-attention module takes
as input a matrix X ∈ Rn×d and produces a matrix
Xout ∈ Rn×d, where n denotes the number of
input tokens, each represented as a d-dimensional
vector. Each attention layer consists of H heads,
and each head h ∈ {1, . . . ,H} has three learnable
matrices: W h

Q,W
h
K ,W h

V ∈ Rd×d′ .3 Multiplying
them with the input X results in: Qh,Kh, V h ∈
Rn×d′ (the queries, keys and values, respectively).

The queries and the keys compute a n× n atten-
tion weight matrix Ah between all pairs of tokens
as softmax-normalized dot products:4

Ah = softmax
(︂(︁

X ·W h
Q

)︁
⏞ ⏟⏟ ⏞

Qh

·
(︁
X ·W h

K⏞ ⏟⏟ ⏞
Kh

)︁⊤)︂ ∈ Rn×n

(1)
where the softmax operation is taken row-wise. The
value matrix V h is then left-multiplied by the at-
tention matrix Ah to generate the attention head
output.

Importantly, the attention matrix Ah is input-
dependent, i.e., defined by the input X . This
property is considered to be the backbone of the
attention mechanism (Vaswani et al., 2017).

An intriguing question is the extent to which
PLMs actually rely on the attention mechanism. In
the following, we study this question by replacing
the attention matrices of PLMs with constant ma-
trices. We hypothesize that if models make heavy
use of attention, we will see a large drop in perfor-
mance when preventing the model from using it.
As shown below, such performance drop is often
not observed.

2https://github.com/schwartz-lab-NLP/papa
3d′ is the head-dimension, and usually defined as d′ = d

H
.

4Some attention variants (e.g., He et al., 2021) incorporate
positional information as part of the calculation of Ah.
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3 The PAPA Method

We present PAPA, a probing method for quanti-
fying the extent to which pretrained Transformer
models use the attention mechanism. PAPA works
by replacing the Transformer attention weights
with constant matrices, computed by averaging the
values of the attention matrices over unlabeled in-
puts (Sec. 3.1). PAPA also allows for replacing any
subset (not just all) of the attention matrices. We
propose a method for selecting which heads to re-
place (Sec. 3.2). The resulting model is then probed
against different downstream tasks (Sec. 3.3). The
performance difference between the original and
the new models can be seen as an indication of how
much the model uses its attention mechanism.

3.1 Generating Constant Matrices

To estimate how much a pretrained Transformer m
uses the attention mechanism, we replace its atten-
tion matrices with a set of constant ones, one for
each head. To do so, PAPA constructs, for a given
head h,5 a constant matrix Ch by averaging the at-
tention matrix Ah over a corpus of raw text. More
specifically, given a corpus D = {e1, . . . , e|D|},
Ch is defined as:

Ch =
1

|D|

|D|∑︂

i=1

Ah
i , (2)

where Ah
i is the input-dependent attention matrix

that h constructs while processing ei. We note
that the average is taken entry-wise, and only over
non-padded entries (padding tokens are ingored).

We emphasize that the construction process of
Ch matrices requires no labels. In Sec. 5.2 we com-
pare our method of constructing constant matrices
from unlabeled data to other alternatives that either
use no data at all, or use labeled data.

3.2 Replacing a Subset of the Heads

Different attention heads may have different levels
of dependence on attention. We therefore study
the effect of replacing a subset of the heads, and
keeping the rest intact. To do so, we would like
to estimate the reliance of each head on the input-
dependent attention, which would allow replacing
only the heads that are least input-dependent for
the model.

5We do so for all layers in parallel. Layer indices omitted
for simplicity.

To estimate this dependence, we introduce a new
weighting parameter λh ∈ (0, 1), initialized as
λh = 0.5, for each attention head h.6 λh is a
learned weighting of the two matrices: the attention
matrix Ah and the constant matrix Ch from (1) and
(2) respectively. For each input ei, a new matrix
Bh is constructed as:

Bh
i = λh ·Ah

i + (1− λh) · Ch (3)

We interpret a smaller λh as an indication of h less
depending on the attention mechanism.

We then train the probing classifier (Sec. 3.3)
along with the additional λh parameters. We use
the learned λhs to decide which heads should be
replaced with constant matrices, by only replacing
the k% attention heads with the smallest λh values
for some hyperparameter k.7 Importantly, this pro-
cedure is only used as a pre-processing step; our
experiments are trained and evaluated without it,
where k% of each model’s heads are replaced, and
(1− k%) remain unchanged.

3.3 Probing
Our goal is to evaluate how much attention a given
PLM uses. Therefore, we want to avoid finetuning
it for a specific downstream task, as this would lead
to changing all of its weights, and arguably answer
a different question (e.g., how much attention does
a task-finetuned PLM use). Instead, we use a prob-
ing approach (Liu et al., 2019a; Belinkov, 2022) by
freezing the model and adding a classifier on top.

Our classifier calculates for each layer a
weighted (learned, non-attentive) representation of
the different token representations. It then concate-
nates the different layer weighted representations,
and applies a 2-layer MLP. For structured predic-
tion tasks (e.g., NER and POS), where a represen-
tation for each token is needed, we concatenate for
each token the representations across layers, and
apply a 2-layer MLP.

When PAPA is applied to some input, we replace
the attention matrices Ah with the corresponding
constant matrices Ch.8 We then compare the down-
stream performance of the original model m with
the new model m′. The larger the performance gap
between m and m′, the higher m’s dependence on
the attention mechanism.

6λh is the output of a sigmoid over a learned parameter.
7In Sec. 5.4 we show that this head selection method out-

performs other alternatives.
8To minimize model changes, we also mask the Ch entries

corresponding to padded tokens, and normalize the matrix
(row-wise), as in a regular Transformer.
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3.4 Method Discussion

Contextualization with PAPA PAPA replaces
the attention matrices with constant ones, which
results in an attention-free model. Importantly, un-
like a feed-forward network, the representations
computed via the resulting model are still contextu-
alized, i.e., the representation of each word depends
on the representations of all other words. The key
difference between the standard Transformer model
and our attention-free model is that in the former
the contextualization varies by the input, and for
the latter it remains fixed for all inputs.

Potential Computational Gains The replace-
ment of the attention matrix with a constant one
motivates the search for efficient attention alterna-
tives. Using constant matrices is indeed more effi-
cient, reducing the attention head time complexity
from 2n2d′ + 3nd′2 to n2d′ + nd′2,9 which shows
potential for efficiency improvement.

Several works used various approaches for re-
placing the attention mechanism with constant ones
during the pretraining phase (Lee-Thorp et al.,
2021; Liu et al., 2021; Hua et al., 2022), and indeed
some of them showed high computational gains.
Our work tackles a different question—how much
do PLMs, which trained with the attention mecha-
nism, actually use it. Thus, unlike the approaches
above, we choose to make minimal changes to the
original models. Nonetheless, our results further
motivate the search for efficient attention variants.

4 Experiments

We now turn to use PAPA to study the attention
usage of various PLMs.

4.1 Experimental Setup

Our experiments are conducted over both text
classification and structured prediction tasks, all
in English. For the former we use four diverse
benchmarks from the GLUE benchmark (Wang
et al., 2019): MNLI (Williams et al., 2018), SST-2
(Socher et al., 2013), MRPC (Dolan and Brock-
ett, 2005), and CoLA (Warstadt et al., 2019). For
the latter we use named entity recognition (NER)
and part of speech tagging (POS) from the CoNLL-
2003 shared task (Tjong Kim Sang and De Meulder,
2003).10 We use the standard train/validation splits,

9n is the sequence length and d′ is head-dimension.
10We report accuracy for SST2 and MNLI, F1 score for

MRPC, NER and POS, and MCC for CoLA.

and report validation results in all cases.11

We use three widely-used pretrained Trans-
former encoder models: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019b), and DeBERTa
(He et al., 2021). We use both BASE (12 layers,
12 heads in each layer) and LARGE (24 layers,
16 heads per layer) versions. For each model and
each task, we generate the constant matrices with
the given (unlabeled) training set of that task. In
Sec. 5.3 we show that PAPA is not very sensitive
to the specific training set being used.

All experiments are done with three different
random seeds, average result is reported (95% con-
fidence intervals are shown). Pre-processing and
additional experimental details are described in
App. A and B, respectively.

4.2 Probing Results
The results of the BASE and LARGE models are
presented in Fig. 2a and 2b, respectively. We mea-
sure the performance of each model on each task us-
ing {1, 12 , 18 , 1

16 , 0} of the model’s input-dependent
attention matrices and replacing the rest with con-
stant ones.

We first consider the original, fully-attentive,
models, and find that performance decreases in the
order of DeBERTa, RoBERTa, and BERT. This
order is roughly maintained across tasks and model
sizes, which conforms with previous results of fine-
tuning these PLMs (He et al., 2021). This suggests
that the model ranking of our probing method is
consistent with the standard fine-tuning setup.

We note that the trends across tasks and models
are similar; hence we discuss them all together in
the following (up to specific exceptions).

Replacing all attention matrices with constant
ones incurs a moderate performance drop As
shown in Fig. 2, applying PAPA on all attention
heads leads to an 8% relative performance drop on
average and not greater than 20% from the origi-
nal model.12 This result suggests that pretrained
models only moderately rely on the attention mech-
anism.

Half of the attention matrices can be replaced
without loss in performance We note that in
almost all cases replacing half of the models’ atten-
tion matrices leads to no major drop in performance.
In fact, in some cases, performance even improves

11For MNLI, we report the mismatched validation split.
12For the MRPC task, some of the attention-free models do

get close to the majority baseline, though still above it.
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Figure 2: Probing results (y-axis) with decreasing number of attention heads (x-axis). BASE models are shown in
Fig. 2a, and LARGE models are shown in Fig. 2b. Higher is better in all cases.
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Figure 3: Stronger-performing PLMs use their atten-
tion capability more. y-axis: original model average
performance; x-axis: relative reduced score when all
attention matrices are replaced with constant ones.

compared to the original model (e.g., BERTBASE
and DeBERTaLARGE), suggesting that some of the
models’ heads have a slight preference towards
constant matrices. This result is consistent with
some of the findings of recent hybrid models that
use both constant and regular attention (Liu et al.,
2021; Lee-Thorp et al., 2021) to build efficient
models.

Performant models rely more on attention
Fig. 3 shows for each model the relation between
the original performance (averaged across tasks)
and the averaged (relative) reduced score when re-
placing all attention heads. We observe a clear
trend between the models’ performance and their
relative reduced score, which suggests that better
performing models use their attention mechanism
more.

5 Further Analysis

We present an analysis of PAPA, to better under-
stand its properties. We first discuss the patterns of
the constant matrices produced by PAPA (Sec. 5.1).
Next, we consider other alternatives to generat-
ing constant matrices (Sec. 5.2); we then examine
whether the constant matrices are data-dependent
(Sec. 5.3); we continue by exploring alternative
methods for selecting which attention heads to
replace (Sec. 5.4). Finally, we present MLM re-
sults, and discuss the challenges in interpreting
them (Sec. 5.5). In all experiments below, we
use RoBERTaBASE. RoBERTaLARGE experiments
show very similar trends, see App. C.

5.1 Patterns of the Constant Matrices

We first explore the attention patterns captured by
different heads by observing the constant matrices

(Ch). We first notice a diagonal pattern, in which
each token mostly attends to itself or to its neigh-
boring words. This pattern is observed in about
90% of the constant matrices produced by PAPA.
Second, about 40% of the heads put most of their
weight mass on the [CLS] and/or [SEP] tokens
(perhaps in combination with the diagonal pattern
described above). Lastly, while for some of the
heads the weight mass is concentrated only in spe-
cific entry per row (which corresponding only to a
specific token), in most of cases the weight mass is
distributed over several entries (corresponding to
several different tokens). These patterns are sim-
ilar to those identified by Clark et al. (2019), and
explain in part our findings—many of the attention
heads mostly focus on fixed patterns that can also
be captured by a constant matrix. Fig. 4 shows
three representative attention heads that illustrate
the patterns above.

5.2 Alternative Constant Matrices

PAPA replaces the attention matrices with constant
ones. As described in Sec. 3.1, this procedure re-
quires only an unlabeled corpus. In this section, we
compare this choice with constant matrices that are
constructed without any data (data-free matrices),
and those that require labeled data for construction
(labeled matrices).

For the former we consider three types of ma-
trices: (1) Identity matrix—in which each token
‘attends’ only to itself, and essentially makes self-
attention a regular feed-forward (each token is pro-
cessed separately); (2) Toeplitz matrix—we use a
simple Toeplitz matrix (as suggested in Liu et al.,
2021), where the weight mass is on the current
token, and it decreases as the attended token is
further from the current one (the entries of the ma-
trix are based on the harmonic series);13 (3) Zeros
matrix—essentially pruning the heads.

We also consider two types of labeled-matrices:
(4) initialized as the Toeplitz matrices from (2);
and (5) initialized as our average matrices. These
matrices are updated during the training procedure
of the probing classifier.14

Tab. 1 shows the performance of each attention-
free resulting model for all downstream tasks. We
observe that for all tasks, our average-based model

13Similar to the Gaussian matrices suggested by You et al.
(2020).

14To make minimal changes to the frozen model, all con-
stant matrices are masked and normalized (row-wise), the
same as the output of the original softmax operation.
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(0, 11) (4, 4) (6, 3)

Figure 4: Generated constant matrices Ch by the PAPA method for representative heads (layer, head). These
matrices used for the attention-free variant of RoBERTaBASE for the SST-2 task.

Matrix Construction Matrix Type CoLA MRPC SST2 MNLI-mm NER POS
Attention based Original 0.47 0.85 0.91 0.78 0.92 0.93

Data-Free
Identity 0.04 0.80 0.80 0.63 0.55 0.87
Toeplitz 0.08 0.81 0.79 0.65 0.77 0.90
Zeros 0.09 0.80 0.80 0.66 0.57 0.87

Labeled Data
Toeplitz init. 0.08 0.81 0.79 0.68 0.78 0.91
Average init. 0.34 0.81 0.87 0.72 0.89 0.93

Unlabeled Data Average (Ours) 0.31 0.82 0.87 0.69 0.89 0.93

Table 1: Probe task of performance of RoBERTaBASE with different constant matrix types as a replacement to the
input-dependent attention matrix. Bold numbers indicate the best constant model for the task. Our approach based
on an average of multiple attention matrices outperforms all other data-free matrix types across all tasks, and gets
similar results to the best labeled-data based model. In all tasks higher is better.

outperforms all other data-free models by a no-
table margin. As for the labeled-matrices models,
our model also outperforms the one initialized with
Toeplitz matrices (4), and in most cases gets similar
results to the model initialized with average matri-
ces (5). It should be noted that the original models
(with regular attention) do not update their inner
parameters in the probing training phase, which
makes the comparison to the labeled-matrices mod-
els somewhat unfair. The above suggests that our
choice of constant matrix replacement better esti-
mates the performance of the attention-free PLMs.

5.3 Are the Constant Matrices
Data-Dependent?

PAPA constructs the constant matrix for a given
head Ch as the average of the model’s attention
matrices over a given corpus D, which in our ex-
periments is set to be the training set of the task
at hand (labels are not used). Here we examine
the importance of this experimental choice by gen-
erating Ch using a different dataset—the MNLI
training set, which is out of distribution for the
other tasks.

Task CoLA MRPC SST2 NER POS
Per-Task 0.31 0.82 0.87 0.89 0.93
MNLI 0.32 0.81 0.87 0.89 0.93

Table 2: Comparison of probe task performance of
RoBERTaBASE between two setups of constructing the
averaged constant matrices Ch: Per-Task uses the task
training set, while MNLI uses the constant matrices gen-
erated with the MNLI dataset. The results are similar
between the two setups, which indicates a low depen-
dence of the constant matrices on the dataset used for
constructing them.

Results are presented in Tab. 2. The performance
across all tasks is remarkably similar between gen-
erating the matrices using the specific task training
set and MNLI, which suggests that the constant
matrices might be somewhat data-independent.

5.4 Alternative Head Selection Methods

We compare our method for selecting which heads
to replace (Sec. 3.2) with a few alternatives. The
first two replace the heads by layer order: (1) we
sort the heads from the model’s first layer to the
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Figure 5: Comparison between different heads selection
methods over MNLI. Our method outperforms all other
alternatives. The x-axis represents the fraction of input-
dependent attention heads.

last and (2) from the model’s last layer to the first.
In both cases we use the internal head ordering
per layer for ordering within the layer. We then
replace the first k% of the heads. We also add (3)
a random baseline that randomly replaces k% of
the heads, and a (4) ‘Reversed’ one which replaces
the heads with the highest (rather than lowest) λh

values (Sec. 3.2).
Fig. 5 shows the MNLI performance of each

method as a function of the fraction of heads re-
placed. We observe that our method, which is based
on learned estimation of attention importance, out-
performs all other methods for every fraction of
heads replaced. Moreover, the ‘Reversed’ method
is the worst among the examined methods, which
suggests that our method not only replaces the least
attention dependent heads first, but also replaces
the most dependent ones last. Although our head
replacement order outperforms the above methods,
we note that our order is an overestimation of the
model attention dependency, and better methods
might show that even less attention is needed.

5.5 Effects on MLM Perplexity

So far we have shown that applying PAPA on down-
stream tasks only incurs a moderate accuracy drop.
This section aims to explore its impact on masked
language modeling (MLM). We find that while our
models suffer a larger performance drop on this
task compared to the other tasks, this can be ex-
plained by their pretraining procedure.

Fig. 6a plots the negative log perplexity (higher
is better) of all BASE models on the WikiText-103
(Merity et al., 2017) validation set. When replac-
ing attention matrices using PAPA, MLM suffers
a larger performance drop compared to the down-
stream tasks (Sec. 4.2). We hypothesize that this
is because these pretrained Transformers are more

specialized in MLM, the task they are pretrained
on. As a result, they are less able to adapt to archi-
tectural changes in MLM than in downstream tasks.
To test our hypothesis, we probe ELECTRABASE
(Clark et al., 2020) using PAPA. ELECTRA is an
established pretrained Transformer trained with
the replaced token detection objective, instead of
MLM. It has proven successful on a variety of
downstream tasks.

ELECTRABASE’s probing performance on
MLM supports our hypothesis: We first note that
its original performance is much worse compared
to the other models (–3.51 compared to around –2
for the MLM-based models), despite showing sim-
ilar performance on downstream tasks (Fig. 6b),
which hints that this model is much less adapted to
MLM. Moreover, the drop when gradually remov-
ing heads is more modest (a 0.44 drop compared
to 1–1.5 for the other models), and looks more
similar to ELECTRABASE’s probing performance
on MNLI (Fig. 6b). Our results suggest a poten-
tial explanation for the fact that some pretrained
Transformers suffer a larger performance drop on
MLM than on downstream tasks; rather than MLM
demanding higher attention use, this is likely be-
cause these models are pretrained with the MLM
objective.

6 Related Work

Attention alternatives Various efforts have been
made in search of a simple or efficient alternative
for the attention mechanism. Some works focused
on building a Transformer variant based on an ef-
ficient approximation of the attention mechanism
(Kitaev et al., 2020; Wang et al., 2020; Peng et al.,
2020a; Choromanski et al., 2021; Schlag et al.,
2021; Qin et al., 2022). Another line of research,
which is more related to our work, replaced the
attention mechanism in Transformers with a con-
stant (and efficient) one. For instance, FNet (Lee-
Thorp et al., 2021) replaced the attention matrix
with the Vandermonde matrix, while gMLP (Liu
et al., 2021) and FLASH (Hua et al., 2022) replaced
it with a learned matrix.15 These works showed
that pretraining attention-free LMs can lead to com-
petitive performance. Our work shows that PLMs
trained with attention can get competitive perfor-
mance even if they are denied access to this mecha-
nism during transfer learning.

15These models also added a gating mechanism, which does
not change the input-independent nature of their component.
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Figure 6: ELECTRABASE model compared with other BASE models on MLM and MNLI. In Fig. 6a ELECTRABASE
behaves similarly to its behavior on MNLI, but not to the other models, which are MLM-based. In Fig. 6b
ELECTRABASE behaves similar to other models. In both graphs the x-axis represents the fraction of input-
dependent attention heads, and the y-axis is the score of the specific task (higher is better).

Analysis of attention patterns Some investiga-
tions of how attention patterns in Transformers
work use probing techniques. Clark et al. (2019),
Ravishankar et al. (2021) and Htut et al. (2019)
studied the attention behavior in BERT. Unlike the
above, which only focuses on the attention patterns
of the PLM, our work sheds light on the depen-
dence of PLMs on their attention mechanism.

Pruning methods In this work we replaced the
attention matrix with a constant one in order to mea-
sure the importance of the input-dependent ability.
Works like Michel et al. (2019) and Li et al. (2021)
pruned attention heads in order to measure their
importance for the task examined. These works
find that for some tasks, only a small number of
unpruned attention heads is sufficient, and thus re-
late to the question of how much attention does
a PLM use. In this work we argue that replacing
attention matrices with constant ones provides a
more accurate answer for this question compared
to pruning these matrices, and propose PAPA, a
method for constructing such constant matrices.

7 Conclusion

In this work, we found that PLMs are not as de-
pendent on their attention mechanism as previously
thought. To do so, we presented PAPA—a method
for analyzing the attention usage in PLMs. We ap-
plied PAPA to several widely-used PLMs and six
downstream tasks. Our results show that replac-
ing all of the attention matrices with constant ones
achieves competitive performance to the original
model, and that half of the attention matrices can be
replaced without any loss in performance. We also
show a clear relation between a PLM’s aggregate

performance across tasks and its degradation when
replacing all attention matrices with constant ones,
which hints that performant models make better
use of their attention.

Our results motivate further work on novel Trans-
former architectures with more efficient attention
mechanisms, both for pretraining and for knowl-
edge distillation of existing PLMs. They also moti-
vate the development of Transformer variants that
improve performance by making better use of the
attention mechanism.

8 Limitations

This work provides an analysis of the attention
mechanism in PLMs. Our PAPA method is based
on probing rather than finetuning, which is more
common use to PLMs. We recognize that the at-
tention mechanism in finetuned PLMs might act
differently than the original model, but our main
focus is investigating the PLM itself, rather than its
finetuned version.

Our analysis method is built on replacing the
attention matrices with constant ones (Sec. 3.1).
We build these constant matrices by averaging the
attention matrices over a given dataset. Because of
this choice, our results reflect a lower bound on the
results of the optimal attention-free model, and we
acknowledge that there might be methods for con-
structing the constant matrices that would lead to
even smaller gaps from the original model. A simi-
lar argument can be applied for our heads selection
method (Sec. 3.2). Importantly, better methods for
these sub-tasks might further reduce the gap be-
tween the original models and the attention-free
ones, which will only strengthen our argument.

Finally, we note that we used the PAPA method
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with six English tasks, and recognize that results
might be different for other tasks and other lan-
guages.
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A Pre-Processing

To make the replacement of the attention matrix
with a constant one reasonable, we fix the position
of the [SEP] token to always be the last token of
the model’s input, rather than separating the last
input token from the padding tokens (i.e., it comes
after the padding tokens rather than before them).
For tasks with two sequences per example (e.g.,
MNLI), which are typically separated by an ad-
ditional [SEP] token, we fix this token to always
be the middle token of the sequence, followed by
the second sentence. We recognize that this might
lead to suboptimal usage of the input’s sequence
length, e.g., if one of the sentences is substantially
longer than the other and particularly if it is longer
than half of the sequence length, it would thus be
trimmed. In our experiments this only happened in
less than 0.2% of input samples for a single task
(MNLI), but we recognize that this might happen
more frequently in other datasets.

B Hyperparameters

All of our code was implemented with the Trans-
formers library (Wolf et al., 2020). Hyperparame-
ters for the probing classifier on downstream tasks
are shown in Tab. 3.

Learning Rate Batch Epochs Seq. Len.
CoLA 2.00E-05 16 15 64
SST-2 1.00E-04 32 4 64
MNLI 2.00E-04 8 4 256
MRPC 2.00E-05 16 15 128
NER 1.00E-04 8 4 128
POS 5.00E-04 8 4 128

MLM 5.00E-04 8 2 128

Table 3: Probing classifier hyperparameters for down-
stream tasks.

C Further Analsys results for
RoBERTaLARGE

Tab. 4 and 5 show RoBERTaLARGE’s analysis re-
sults for the experiments described in Sec. 5.2 and
5.3, respectively.
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Matrix Construction Matrix Type CoLA MRPC SST2 MNLI-mm NER POS
Attention based Original 0.53 0.87 0.93 0.81 0.93 0.93

Data-Free
Identity 0.09 0.72 0.80 0.65 0.56 0.87
Toeplitz 0.11 0.79 0.80 0.65 0.74 0.89
Zeros 0.09 0.80 0.81 0.66 0.57 0.87

Labeled Data
Toeplitz init. 0.11 0.78 0.80 0.68 0.75 0.89
Average init. 0.35 0.81 0.88 0.73 0.91 0.93

Unlabeled Data Average (Ours) 0.34 0.81 0.85 0.68 0.89 0.92

Table 4: Probe task of performance of RoBERTaLARGE with different constant matrix types as a replacement to the
input-dependent attention matrix. Tab. 1 shows the results for RoBERTaBASE.

Task CoLA MRPC SST2 NER POS
Per-Task 0.34 0.80 0.85 0.89 0.92
MNLI 0.35 0.81 0.85 0.88 0.92

Table 5: Comparison of probe task performance of
RoBERTaLARGE between two setups of constructing the
averaged constant matrices Ch: Per-Task uses the task
training set, while MNLI uses the constant matrices
generated with the MNLI dataset. Tab. 2 shows the
results for RoBERTaBASE.
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