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Message from the General Chair

Welcome to ACL 2022, the 60th Annual Meeting of the Association for Computational Linguistics! The
conference will be held in Dublin, the capital of Ireland, on May 22-27, 2022.

ACL 2022 will be a hybrid conference. After two fully virtual editions, ACL 2020 and ACL 2021, due to
the covid-19 pandemic, this year we are gradually coming back to normality, estimating, at the moment
of writing this message, that about 50% of the registered participants will be able to attend the conference
in-person, enjoying the atmosphere of the CCD congress center, the social events of the conference, and
the many opportunities in Dublin. On the other side, virtual attendees will have the possibility to interact
almost like they were in Dublin, thanks to a sophisticated virtual conference platform.

There are few important innovations this year. The most relevant is that ACL 2022 adopted a new
reviewing process, based on “rolling review” (ARR), with the goal of coordinating and making more
efficient the paper reviews of the ACL conferences. This initiative was shared with NAACL 2022, resul-
ting in a coordinated effort. As a side effect of moving to ARR, we have been working on a new version
of the software, called ACLPUB2, used to produce both the conference proceedings and the conference
schedule. I would like to thank all the people who contributed to those achievements. Finally, this year
we celebrate the 60th anniversary of the ACL conference. Thanks to the enthusiastic contributions of
many organizations, coordinated by the Diversity and Inclusion co-chairs, we are preparing a very spe-
cial initiative for our community, which, at the time of writing this message, is still secret and that will
be disclosed during the opening of the conference.

I was very lucky to work together with three fantastic Program Chairs: Preslav Nakov, Smaranda Mure-
san and Aline Villaviciencio. I could not thank you more for the dedication and the capacity with which
you have organized a very exciting scientific program and for the help in all the phases of the conference
organization.

Thanks to the local organizers in Dublin, Andy Way and John Kelleher, and to the PCO, who managed the
local organization in a period in which we have had very few certainties, and many more uncertainties.

We are extremely grateful to all sponsors for their continuing and generous support to help our conferen-
ces be very successful. Thank you to Chris Callison-Burch, the ACL Sponsorship Director, for managing
the relations between the sponsors and ACL 2022.

I am also very grateful to the chairs of the previous years’ conferences, who were always ready to help
and to provide advice, contributing to the transmission, from year to year, of all the know-how and
collective memory. Thanks to all the members of The ACL Executive Committee, they were always
supportive, particularly when feedback on delicate issues was needed.

Many thanks to the senior area chairs, the area chairs, the reviewers, our workshop organizers, our tutorial
instructors, the authors and presenters of papers, and the invited speakers.

ACL requires a long process, involving a large team of committed people. It is an honor for me to have
coordinated such a team of talented people, who kindly volunteered their time to make this conference
possible. I would like to thank the members of the organizing committee for their dedication and hard
work, often under a tight schedule:

e Workshop Co-Chairs: Elena Cabrio, Sujian Li, Mausam;
e Tutorial Co-Chairs: Naoaki Okazaki, Yves Scherrer, Marcos Zampieri;
e Demo Co-Chairs: Valerio Basile, Zornitsa Kozareva, Sanja étajner;

e Student Research Workshop Co-Chairs: Samuel Louvan, Brielen Madureira, Andrea Madotto;



e SRW Faculty Advisors: Cecile Paris, Siva Reddy, German Rigau;

e Publication Co-Chairs (also publication co-chairs for NAACL 2022): Danilo Croce, Ryan Cotte-
rell, Jordan Zhang;

e Conference Handbook Chair: Marco Polignano;

e Diversity & Inclusion Co-chairs: Mona Diab, Martha Yifiru Tachbelie;
e Ethic advisor committee: Su Lin Blodgett, Christiane Fellbaum:;

e Technical OpenReview Chair: Rodrigo Wilkens;

e Publicity and Social Media Co-chairs: Isabelle Augenstein, Emmanuele Chersoni, Diana May-
nard, Soujanya Poria, Joel Tetreault;

e Local Arrangement Committee: Fiona McGillivray, Greg Carew, Laird Smith;

e Student Volunteer Coordinators: Filip Klubicka, Vasudevan Nedumpozhimana, Guodong Xie,
Pintu Lohar;

e Internal Communications Chair: Marcely Boito Zanon.

Let me deserve a special thanks to Priscilla Rasmussen. She has been the pillar not only of this year’s
ACL, but of the ACL conferences for many years. She has offered her invaluable experience to the
organizing committee, and her presence has always given us a pleasant sense of security.

Finally, I would like to thank all the participants, both in-person and virtual, who will be the main
actors from May 22 to May 27, 2022. I am convinced that we will experience a fantastic conference,
scientifically exciting and full of fond memories.

Welcome and hope you all enjoy the conference!

Bernardo Magnini (FBK, Italy)
ACL 2022 General Chair
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Message from the Program Chairs

Welcome to the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022).
ACL 2022 has a special historical significance, as this is the 60th Anniversary edition. It is also the first
hybrid ACL conference after two years of a fully virtual format for ACL in 2020 and 2021 due to the
COVID-19 pandemic. Finally, it is the first *ACL conference to fully embrace the ACL Rolling Review
(ARR) as a reviewing process. Below, we discuss some of these changes and we highlight the exciting
program that we have put together with the help from our community.

Using ARR for Reviewing

In coordination with the NAACL 2022 team and the ACL executive committee, we decided to fully
adopt the ACL Rolling Review (ARR) as the only reviewing platform for ACL 2022. ARR is a new
review system for * ACL conferences, where reviewing and acceptance of papers to publication venues is
done in a two-step process: (i) centralized rolling review via ARR, and (ii) commitment to a publication
venue, e.g., ACL 2022. The purpose of the ACL Rolling Review is to improve the efficiency and the
turnaround of reviewing in *ACL conferences while keeping diversity (geographic and otherwise) and
editorial freedom.

As ACL 2022 is the first conference to fully adopt the ARR review process, we worked very closely
with ARR and we coordinated our efforts with the NAACL 2022 PC chairs. In particular, given the short
distance between ACL 2022 and NAACL 2022, we allowed authors to commit their papers to ACL 2022
and simultaneously to submit a revision to ARR in January, which were eligible for NAACL 2022. We
also joined ARR as Guest Editors-in-Chief (EiCs) to help with the September—November submissions
to ARR, which primarily targeted ACL 2022. We worked together to integrate ARR and some of the
conference workflows to ensure scaling up, and to maintain the quality and the timely processing of the
submissions for November, and thus to guarantee that all papers submitted by the November 15, 2021
ARR deadline could be considered for ACL 2022 if the authors decided to commit them. This required
making sure we had all reviews and meta-reviews ready in time, which we managed to achieve thanks
to the combined efforts of the ARR and the ACL 2022 teams. We would also like to note that this is a
community effort, and we are grateful for the support of the authors, the reviewers, the Action Editors
(AEs), and the Senior Area Chairs (SACs), who have been constructively engaging and helping with
ARR and ACL 2022.

Committing to ACL 2022

The commitment form for ACL 2022 asked the authors to provide a link to their paper in ARR: we
asked for a link to the latest version of the paper that had reviews and a meta-review. The authors also
needed to select an area (including the Special Theme area) they were submitting their paper to (this
was needed as ACL 2022 had areas, while ARR did not). Finally, the authors were allowed to submit
optional comments to the ACL 2022 Senior Area Chairs (SACs). Note that these comments were only
visible to the SACs, and they were not sent to the reviewers or to the Action Editors: the rationale was
that responding to reviewers and Action Editors should be handled in a response letter if the authors
decided to do a resubmission in ARR, which is a completely different process than committing a paper
to ACL 2022. These comments to the SACs were designed mainly to raise concerns about objective
misunderstandings by the reviewers and/or by the Action Editor about the technical aspect of the paper
that the authors believed might help the SACs in their decision-making process.

Areas While ARR did not have areas, ACL 2022 did: it had 23 areas, including the 22 areas from ACL
2021 plus our Special Theme. Our special theme was on “Language Diversity: from Low-Resource to
Endangered Languages,” to commemorate the 60th anniversary of ACL with the goal of reflecting and
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stimulating a discussion about how advances in computational linguistics and natural language proces-
sing can be used to promote language diversity from low-resource to endangered languages. We invited
papers that discuss and reflect on the “role of the speech and language technologies in sustaining langua-
ge use” (Bird, 2020) for the large variety of world languages with focus on under-resourced, indigenous,
and/or endangered languages. We were interested in the challenges for developing and scaling up the
current NLP technologies for the rich diversity of human languages and in the ethical, cultural, and po-
licy implications of such technologies for local communities. We also have a best Theme paper award
category.

Acceptance to ACL 2022

As ACL 2022 submissions in ARR, we count all papers from September, October, and November, which
we advertised as ACL 2022 months, after removing all re-submissions and also nine papers that selected
NAACL 2022 as a preferred venue (a total of 3,360 papers) + the papers from the May—August period
that were actually committed to ACL 2022 and that were not resubmissions (a total of 18 papers), for a
total of 3,378 papers.

This number is on par with the number of submissions to ACL 2021, which received 3,350 submissions.
Subsequently, 1,918 papers were committed to ACL 2022 (i.e., 57%). After the review process, 701
papers (604 long and 97 short) were accepted into the main conference.

Acceptance Rates for the Main Conference

The quality of a conference is often perceived based on the acceptance rate of the papers submitted there,
and thus it is important to have an acceptance rate that adequately represents the difficulty of publishing
a paper in the conference. Given the adoption of ARR, it is also important to allow for consistency
across various conferences. Thus, ACL 2022 (and NAACL 2022) adopted the following two ways of
calculating the acceptance rates:

(a) (Number of accepted papers at ACL 2022) / (Number of papers that selected ACL 2022 as the
preferred venue in ARR or were committed to ACL 2022). For ACL 2022, for the denominator we
consider the 3,378 papers as explained above. Thus, the acceptance rate is 701 / 3,378 = 20.75%
for the Main conference.

(b) (Number of accepted papers at ACL 2022) / (Number of papers committed to ACL 2022). For the
denominator, we had 1,918 papers committed to ACL 2022, and thus, the acceptance rate is 701 /
1,918 = 36.54% for the Main conference.

Note that option (a) is closer to the way the acceptance rate was computed at previous *ACL conferences,
where submitting and committing a paper was done in one step and papers were rarely withdrawn after
the reviews, the meta-reviews, and the corresponding scores were released. However, one issue with this
option for ACL 2022 was that indicating a preferred venue was only enabled starting with the October
ARR submissions, and it was not available for earlier months. As mentioned above, we removed a small
number of papers from our denominator that selected NAACL 2022 as a preferred venue in October
and November (a total of 9 papers) and we considered the ARR submissions only for the months of
September, October, and November, as these months were advertised in our CFP, plus any papers that
were committed to ACL 2022 from earlier months (May-July) and which were also not resubmissions.
Option (b) yields a higher “acceptance rate”, as many authors with low reviewing scores chose not to
commit their paper to ACL 2022.

Best Paper Awards

From the committed ACL 2022 papers, we selected 32 papers as candidates for the following Best Paper
awards, based on nominations by the Senior Area Chairs: Best Research Paper, Best Special Theme
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Paper, Best Resource Paper, and Best Linguistic Insight Paper. These papers were assessed by the Best
Paper Award Committee. The selected best papers will be presented in a dedicated plenary session for
Best Paper Awards on May 24, 2022.

Findings of ACL 2022

Given the success of the Findings at EMNLP 2020 and 2021 and ACL-IJCNLP 2021, we also have Fin-
dings of ACL 2022 papers, which are papers that were not accepted for publication in the main confe-
rence, but nonetheless were assessed by the Program Committee as solid work with sufficient substance,
quality, and novelty. A total of 361 papers were offered to be included in the Findings of ACL 2022.
Given the two ways of computing acceptance rates described above, this results in a 10.68% acceptance
rate in option (a), and 19.82% in option (b). Out of the 361 papers, 30 papers declined the offer, leading
to 331 papers to be published in the Findings of ACL 2022. In order to increase the visibility of the
Finding of ACL 2022 papers, we offered the authors of these 331 papers the possibility to present their
work as a poster at ACL 2022, in addition to making a 6-minute or a 3-minute video to be included in
the virtual conference site (for long and for short papers, respectively). The authors of 305 of the 331
papers accepted our invitation to present their work as a poster at ACL 2022.

TACL and Computational Linguistics

Continuing the tradition from previous years, ACL 2022 also features 43 articles that were published
at the Transactions of the Association for Computational Linguistics (TACL) and 8 papers from the
Computational Linguistics journal.

Keynote and Invited Speakers
Another highlight of our program are the keynotes, which we run in three different formats:

¢ a keynote talk by Angela Friederici (Max Planck Institute for Human Cognitive and Brain Scien-
ces) on “Language in the Human Brain’;

o a Kkeynote fire-side chat on “The Trajectory of ACL and the Next 60 years” with Barbara Grosz
(Harvard University) and Yejin Choi (University of Washington and Allen Institute for Artificial
Intelligence), moderated by Rada Mihalcea (University of Michigan);

e a keynote panel on “How can we support linguistic diversity?” led by Steven Bird (Charles
Darwin University), with panelists representing a variety of world languages, including (currently
confirmed) Teresa Lynn (Irish), Robbie Jimerson (Seneca), Heather Long (Creole languages), and
Manuel Mager (Wixaritari).

‘We further had two additional invited talk initiatives:

¢ Spotlight Talks by Young Research Stars (STIRS) by Eunsol Choi (University of Texas at Au-
stin), Ryan Cotterell (ETH Zurich), Sebastian Ruder (Google, London), Swabha Swayamdipta
(Allen Institute for Al), and Diyi Yang (Georgia Tech);

e Next Big Ideas Talks by Marco Baroni (Pompeu Fabra University), Eduard Hovy (The Univer-
sity of Melbourne and Carnegie Mellon University), Heng Ji (UIUC), Mirella Lapata (Universi-
ty of Edinburgh), Hang Li (Bytedance Technology), Dan Roth (University of Pennsylvania and
Amazon), and Thamar Solorio (University of Houston).
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Thank You

ACL 2022 is the result of a collaborative effort and a supportive community, and we want to acknowledge
the efforts of so many people who have made significant efforts into the organization of ACL 2022! First
of all, we would like to thank our Program Committee (the full list of names is quite long and it is
included in the Program Committee pages of the Proceedings):

Our awesome 82 Senior Area Chairs who were instrumental in every aspect of the review process,
from liaising with ARR, to supporting the implementation of a two-stage reviewing system, re-
commending Action Editors and reviewers, working on paper acceptance, and nomination of best
papers and outstanding reviewers. For all of them, this involved familiarizing themselves with a
new protocol to accommodate the integration of ARR reviews and a new system, and for many of
them, the scope of their responsibilities was equivalent to chairing a small conference.

The 363 ARR Action Editors (from the June—November ARR cycles), who had the role of ACL
2022 Area Chairs interacting with reviewers, leading paper review discussions, and writing meta-
reviews.

The 2,323 ARR reviewers (from the June—-November ARR cycles), who contributed for the ACL
2022 reviewing cycles, providing valuable feedback to the authors.

The emergency ARR Action Editors and reviewers, who provided their support at the last minute
to ensure a timely reviewing process.

The amazing ARR team, who collaborated in the challenge of managing and implementing the
ARR reviewing needed for the scale of ACL 2022. In particular, we acknowledge Amanda Stent
and Goran Glava$ as Guest ARR Editors-in-Chief for ACL 2022, Graham Neubig as Guest ARR
Chief Technical Officer for ACL 2022, and Sara Goggi as Guest ARR Editorial Manager for ACL
2022.

ACL 2022 counted on the contributions of many wonderful committees, including:

Our Best Paper Selection Committee, who selected the best papers and the outstanding papers:
Tim Baldwin, Kathleen McKeown, David Chiang, Min-Yen Kan, and Taro Watanabe.

Our Ethics Advisory Committee, chaired by Christiane Fellbaum and Su Lin Blodgett, for their
hard work to ensure that all the accepted papers addressed the ethical issues appropriately, under a
very tight schedule and on a new platform.

Our amazing Publication Chair Danilo Croce, our Handbook Chair Marco Polignano, the Techni-
cal OpenReview Chair Rodrigo Wilkens, and the Scheduler Chair Jordan Zhang, who jointly with
the NAACL 2022 Publication Chair, Ryan Cotterell, made an enormous contribution to the com-
munity by implementing the integration scripts for generating the proceedings, the handbook and
the schedule from the OpenReview platform.

Our Publicity Chairs Isabelle Augenstein, Emmanuele Chersoni, Diana Maynard, Soujanya Poria,
and Joel Tetreault, for their work on managing the communications on social media platforms.

The Internal Communications Chair Marcely Boito Zanon for streamlining the processes.

The wonderful Technical OpenReview Chair Rodrigo Wilkens, who went above and beyond to
ensure that the typical ACL conference functionalities were translated to a new environment.

We would also like to thank many people who helped us with various software used for the conference:

The ARR Tech team, in particular Sebastin Santy and Yoshitomo Matsubara, who served as Guest
ARR Tech Team for ACL 2022.



The OpenReview team, in particular Nadia .’Bahy, Celeste Martinez Gomez, and Melisa Bok,
who helped to implement the integration of ARR as a reviewing platform for ACL 2022.

The whole Underline team, in particular Sol Rosenberg, Jernej Masnec, Damira Mrsi¢, and Mateo
Antonic, who created a virtual site for the conference.

As Program chairs, we had to deal with many tasks, including handling new protocols and situations and
a new conference management environment. We would not be able to complete these tasks without the
advice from our colleagues, including

Our fantastic General Chair Bernardo Magnini, who provided invaluable support and feedback
throughout the whole process, including collaborating on the efforts to take on the challenge of
reengineering the conference reviewing processes and pipeline.

The Program Co-Chairs of NAACL 2022 Marine Carpuat, Marie-Catherine de Marneffe, and Ivan
Vladimir Meza Ruiz, and the NAACL 2022 General Chair, Dan Roth, for collaborating in the
challenge of coordinated adoption of ARR reviewing in a full scale for ACL 2022 and NAACL
2022.

The Program Co-Chairs of previous editions of *ACL conferences, in particular the ACL-IJCNLP
2021 PC chairs Roberto Navigli, Fei Xia, and Wenjie Li, as well as the EMNLP 2021 PC chairs Lu-
cia Specia, Scott Wen-tau Yih, and Xuanjing Huang for providing amazing guidance and support,
and sharing their experience and answering our many questions, often on short notice.

The ACL Executive Committee, especially Tim Baldwin (the ACL President), Rada Mihalcea (the
ACL Past President), Shiqi Zhao (Secretary), Priscilla Rasmussen (Business Manager), and the
members of the ACL executive committee for providing invaluable feedback and for helping us
sort through various issues.

The Computational Linguistics Editor-in-Chief Hwee Tou Ng, the TACL Editors-in-Chief Ani
Nenkova and Brian Roark, and the TACL Editorial Assistant Cindy Robinson, for coordinating the
Computational Linguistics and the TACL presentations at ACL 2022.

We would also like to thank all the authors who submitted/committed their work to ACL 2022. Although
we were only able to accept a small percentage of the submissions, your hard work makes this conference
exciting and our community strong. Our huge thanks goes to the *ACL communities for the kind and
patient support during a year of major changes in our submission and reviewing processes.

Last, but not least, we thank our students, interns, postdocs, colleagues, and families for being so under-
standing and supportive during this intense year, and especially when we were swamped by countless
conference deadlines and meetings. Our deepest gratitude is to all of you. We hope you will enjoy this
60th Anniversary edition of ACL.

Smaranda Muresan (Columbia University and Amazon AWS Al Labs, USA)
Preslav Nakov (Qatar Computing Research Institute, HBKU)
Aline Villavicencio (University of Sheffield, UK)

ACL 2022 Program Committee Co-Chairs
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Message from the Local Chairs

Back in March 2020, just after the first COVID-19 lockdown, we submitted our bid for Dublin to host
ACL 2022, conference that you are currently attending. In November 2020, we learned that our bid had
been successful, which we were of course delighted to hear. Of course, at that stage — and at many points
in between — we have wondered whether we would be able to meet face-to-face at all, and it is great
that we are able to host you in the wonderful city of Dublin where we are privileged to live, as well as
accommodating many of you online.

ACL is an opportunity to welcome not just our European friends and colleagues, but also those from
farther afield. Ireland punches above its weight in the areas of NLP and Machine Learning, principally
through the SFI-funded €100 million ADAPT Centre for Digital Content Technology, which comprises
experts from 4 local Dublin universities as well as 4 further universities from across the country in a
range of disciplines in Al. We have internationally renowned groups in machine translation, information
retrieval, speech technology, parsing and grammar Induction, among others, so we believe it is appro-
priate that ACL is being held in our country for the first time. We are of course grateful to everyone
who submitted a paper; whether your work was selected for presentation or not, if no-one had submitted,
we wouldn’t have had a conference. For those of you whose work was selected for presentation, many
thanks for coming to Dublin, or for presenting online.

Along the way, we have been helped greatly by the General Chair Bernardo Magnini, and by Priscilla
Rasmussen and others from the ACL executive team, to whom we are extremely thankful. However, by
far the biggest thanks are due to Greg Carew and his team in Abbey Conference and Events for their
professional support of the conference. You will have met them at registration, and they are available
throughout the event to ensure your needs are met. We have been engaging with them for 2 years now on
ACL, and for longer as they helped Andy host the MT Summit in 2019. We could not have made a better
choice of PCO to assist us with all the requirements involved in hosting the best-regarded conference in
our area. This has been a true partnership that has made this journey an enjoyable one.

We are also extremely grateful to Fdilte Ireland for their extremely generous support of this conference,
and to our PostDocs Guodong Xie & Pintu Lohar (with Andy at DCU), and Vasudevan Nedumpozhimana
& Filip Klubic¢ka (with John at TUD) for their huge efforts to recruit and manage the small army of
student volunteers. Finally, we really hope that you all enjoy the conference, that you benefit from
the excellent programme that has been assembled, and that you go away from here having made new
friends. We are fortunate indeed that many of our very best friends are in the computational linguistics
community, and we will try our very best to meet as many of you as possible during the event.

Andy Way (Dublin City University, Ireland)
John Kelleher (TU Dublin, Ireland)

Local Chairs, ACL 2022
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Abstract

Whole word masking (WWM), which masks
all subwords corresponding to a word at once,
makes a better English BERT model (Sennrich
et al., 2016). For the Chinese language, how-
ever, there is no subword because each token
is an atomic character. The meaning of a word
in Chinese is different in that a word is a com-
positional unit consisting of multiple charac-
ters. Such difference motivates us to investigate
whether WWM leads to better context under-
standing ability for Chinese BERT. To achieve
this, we introduce two probing tasks related to
grammatical error correction and ask pretrained
models to revise or insert tokens in a masked
language modeling manner. We construct a
dataset including labels for 19,075 tokens in
10,448 sentences. We train three Chinese BERT
models with standard character-level masking
(CLM), WWM, and a combination of CLM and
WWM, respectively. Our major findings are as
follows: First, when one character needs to be
inserted or replaced, the model trained with
CLM performs the best. Second, when more
than one character needs to be handled, WWM
is the key to better performance. Finally, when
being fine-tuned on sentence-level downstream
tasks, models trained with different masking
strategies perform comparably.

1 Introduction

BERT (Devlin et al., 2018) is a Transformer-based
pretrained model, whose prosperity starts from En-
glish language and gradually spreads to many other
languages. The original BERT model is trained
with character-level masking (CLM). ! A certain
percentage (e.g. 15%) of tokens in the input se-

* Work done during internship at Tencent AI Lab. *
indicates equal contributions.
T Corresponding author.

"Next sentence prediction is the other pretraining task
adopted in the original BERT paper. However, it is removed
in some following works like ROBERTa (Liu et al., 2019). We
do not consider the next sentence prediction in this work.
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quence is masked and the model is learned to pre-
dict the masked tokens.

It is helpful to note that a word in the in-
put sequence of BERT can be broken into
multiple wordpiece tokens (Wu et al., 2016).2
For example, the input sentence “She is
undeniably brilliant” is converted to
a wordpiece sequence “She is un ##deni
##ably brilliant”, where “##” is a spe-
cial prefix added to indicate that the token should
be attached to the previous one. In this case
the word “undeniably” is broken into three
wordpieces {“un”, “##deni”, “##ably”’}. In
standard masked language modeling, CLM may
mask any one of them. In this case, if the token
“##ably” is masked, it is easier for the model
to complete the prediction task because “un’ and
“##deni” are informative prompts. To address
this, Whole word masking (WWM) masks all three
subtokens (i.e., {“un”, “##deni”, “##ably”})
within a word at once. For Chinese, however, each
token is an atomic character that cannot be bro-
ken into smaller pieces. Many Chinese words are
compounds that consisting of multiple characters
(Wood and Connelly, 2009). 3 For example, “FH1.”
(cellphone) is a word consisting of two char-
acters “F” (hand) and “Fl” (machine). Here,
learning with WWM would lose the association
among characters corresponding to a word.

In this work, we introduce two probing tasks to
study Chinese BERT model’s ability on character-
level understanding. The first probing task is char-
acter replacement. Given a sentence and a position
where the corresponding character is erroneous, the
task is to replace the erroneous character with the
correct one. The second probing task is character
insertion. Given a sentence and the positions where

*In this work, wordpiece and subword are interchangeable.

*When we describe Chinese tokens, “character” means 5
that is the atomic unit and “word” means 17 that may consist
of multiple characters.
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a given number of characters should be inserted,
the task is to insert the correct characters. We lever-
age the benchmark dataset on grammatical error
correction (Rao et al., 2020a) and create a dataset
including labels for 19,075 tokens in 10,448 sen-
tences.

We train three baseline models based on the
same text corpus of 80B characters using CLM,
WWM, and both CLM and WWM, separately. We
have the following major findings. (1) When one
character needs to be inserted or replaced, the
model trained with CLM performs the best. More-
over, the model initialized from RoBERTa (Cui
et al., 2019) and trained with WWM gets worse
gradually with more training steps. (2) When more
than one character needs to be handled, WWM is
the key to better performance. (3) When evaluat-
ing sentence-level downstream tasks, the impact of
these masking strategies is minimal and the model
trained with them performs comparably.

2 Our Probing Tasks

In this work, we present two probing tasks with
the goal of diagnosing the language understanding
ability of Chinese BERT models. We present the
tasks and dataset in this section.

The first probing task is character replacement,
which is a subtask of grammatical error correction.
Given a sentence s = {x1,22,..., i, ..., T} Of
n characters and an erroneous span es = [i,7 +
1,...,7 + k] of k characters, the task is to replace
es with a new span of k characters.

The second probing task is character insertion,
which is also a subtask of grammatical error correc-
tion. Given a sentence s = {z1, T2, ..., Ti, ..., Tn }
of n characters, a position ¢, and a fixed number k,
the task is to insert a span of k characters between
the index ¢ and ¢ + 1.

We provide two examples of these two probing
tasks with £ = 1 in Figure 1. For the character
replacement task, the original meaning of the sen-
tence is “these are all my ideas”. Due to the mis-
use of a character at the 7th position, its meaning
changed significantly to “these are all my atten-
tion”. Our character replacement task is to replace
the misused character “F” with “y¥”. For the
character insertion task, what the writer wants to
express is “Human is the most important factor.
However, due to the lack of one character between
the 5th and 6th position, its meaning changed to
“Human is the heaviest factor”. The task is to

Character Replacement

outpu: X EFHEFZMNWEEME

(En: These are all my ideas.)

s
nput: X EFFHMERHE
Index: 1 2 3 456 7 8 910

(En: These are all my attention.)

Character Insertion
oupu: NEXEBREZHNEE
1

fBE®
678

(En: Human is the most important factor.)

mput: A K 2 B E
Index: 1 2 3 4 5

(En: Human is the heaviest factor.)

Figure 1: Illustrative examples of two probing tasks.
For character replacement (upper box), the highlighted
character at 7th position should be replaced with another
one. For character insertion (bottom box), one character
should be inserted after the Sth position. Translations in
English are given in parentheses.

insert “#2” after the 5th position. Both tasks are
also extended to multiple characters (i.e., k > 2).
Examples can be found at Section 3.2.

We build a dataset based on the benchmark of
Chinese Grammatical Error Diagnosis (CGED) in
years of 2016, 2017, 2018 and 2020 (Lee et al.,
2016; Rao et al., 2017, 2018, 2020b). The task of
CGED seeks to identify grammatical errors from
sentences written by non-native learners of Chi-
nese (Yu et al., 2014). It includes four kinds of
errors, including insertion, replacement, redundant,
and ordering. The dataset of CGED composes
of sentence pairs, of which each sentence pair in-
cludes an erroneous sentence and an error-free sen-
tence corrected by annotators. However, these sen-
tence pairs do not provide information about erro-
neous positions, which are indispensable for the
character replacement and character insertion. To
obtain such position information, we implement a
modified character alignment algorithm (Bryant
et al., 2017) tailored for the Chinese language.
Through this algorithm, we obtain a dataset for
the insertion and replacement, both of which are
suitable to examine the language learning ability
of the pretrained model. We leave redundant and
ordering types to future work. The statistic of our
dataset is detailed in Appendix A.

3 Experiments

In this section, we first describe the BERT-style
models that we examined, and then report numbers.
3.1 Chinese BERT Models

We describe the publicly available BERT models
as well as the models we trained.



| Length=1 | Length=2 | Length>3 |  Average

Insertion | p@l p@I0 | p@1 p@10 | p@1 p@l10 | p@1 p@10
BERT-base 76.0 97.0 37.2 76.0 144 50.1 425 74.4
Ours-clm 77.2 97.3 36.7 74.4 13.3 49.3 424 73.7
Ours-wwm 56.6 80.1 429 79.1 19.3 54.0 39.6 71.1
Ours-clm-wwm | 71.3 95.1 42.6 80.9 20.6 53.0 44.8 76.3

Replacememt | p@1 p@10 | p@1 p@10 | p@1 p@10 | p@1 p@10
BERT-base 66.0 95.1 21.0 58.2 10.1 46.1 324 66.5
Ours-clm 674 96.6 20.4 58.3 7.4 36.9 31.7 63.9
Ours-wwm 34.8 68.2 25.7 65.3 7.4 35.2 22.6 56.2
Ours-clm-wwm | 59.2 93.7 26.5 66.4 124 41.6 32.7 67.2

Table 1: Probing results on character replacement and insertion.

Character Replacement

Input: FCEHRFIEERIAREE Label: iR Prediction: 3£ (99.97%)
(En: | have no right to destroy other people’s lives.)

Input: X34 ja) % SE AR Z Label: =& Prediction: /™ (79.94%) & (91.85%)
(En: The problem of generation gap is getting worse.)

Character Insertion

Input: IRBAENBECHBRE . MESERBETKAGFHZME, Label: K Prediction:  f (99.98Y%)
(En: Smoking is not only bad for your health, but also bad to non-smokers.)

Input: Label: {R3E Prediction: 35 (40.66%) & (33.55%)

B TREICRMAE, —EECIETEL, FHIELRZILHN
EHERIEEINEN .

(En: Next time | go to Beijing, | can not miss the Peking Duck. What we have
eaten in Beijing are Vietnamese cuisine and other foreign dishes.)

Figure 2: Top predictions of Ours-clm-wwm for replacement and insertion types. For each position, probability of
the top prediction is given in parenthesis. The model makes the correct prediction for top three examples. For the
bottom example, the prediction also makes sense, although it is different from the ground truth.

As mentioned earlier, BERT-base (Devlin et al.,
2018)* is trained with the standard MLM objec-
tive.> To make a fair comparison of CLM and
WWM, we train three simple Chinese BERT base-
lines from scratch®: (1) Ours-clm: we train this
model using CLM. (2) Ours-wwm: this model only
differs in that it is trained with WWM. (3) Ours-
clm-wwm: this model is trained with both CLM
and WWM objectives. We train these three models
on a text corpus of 80B characters consisting of
news, wiki, and novel texts. For the WWM task,
we use a public word segmentation tool Texsmart
(Zhang et al., 2020) to tokenize the raw data first.
The mask rate is 15% which is commonly used
in existing works. We use a max sequence length
of 512, use the ADAM optimizer (Kingma and
Ba, 2014) with a batch size of 8,192. We set the
learning rate to le-4 with a linear optimizer with

*nttps://github.com/google-research/
bert/blob/master/README.md

>We do not compare with RoOBERTa-wwm-ext because the
released version lacks of the language modeling head.

SWe also further train these models initialized from
RoBERTa and BERT and results are given in Appendix B.

5k warmup steps and 100k training steps in total.
Models are trained on 64 Tesla V100 GPUs for
about 7 days.

3.2 Probing Results

We present the results on two probing tasks here.
Models are evaluated by Prediction @k, denoting
whether the ground truth for each position is cov-
ered in the top-k predictions. From Table 1, we
can make the following conclusions. First, Ours-
clm consistently performs better than Ours-wwm
on probing tasks that one character needs to be
replaced or inserted. We suppose this is because
WWM would lose the association between charac-
ters corresponding to a word. Second, WWM is
crucial for better performance when there is more
than one character that needs to be corrected. This
phenomenon can be observed from the results of
Ours-wwm and Ours-clm-wwm, which both adopt
WWM and perform better than Ours-clm. Third,
pretrained with a mixture of CLM and WWM,
Ours-clm-wwm performs better than Ours-wwm
in the one-character setting and does better than



Length=1

y
8

Insertion_accurac
@ N
& 3 @

@
1<}

wwm
-%- clm
- cdm+wwm

v
@

%
S

1000 5000 10000 15000 20000 25000
Steps

Length = 2

Insertion_accuracy

w W B oA w W @

g 8 & & 8 & 2
[ ]

N
G

N
S

1000 5000 10000 15000 20000 25000
Steps

Figure 3: Model performance at different training steps
on the probing task of character insertion. The top and
bottom figures give the results evaluated on spans with
one and two characters, respectively.

Ours-clm when more than one characters need to
be handled. For each probing task, two examples
with predictions produced by Ours-clm-wwm are
given in Figure 2.

3.3 Analysis

To further analyze how CLM and WWM affect the
performance on probing tasks, we initialized our
model from RoBERTa (Cui et al., 2019) and further
trained baseline models. We show the performance
of these models with different training steps on the
insertion task. From Figure 3 (top), we can observe
that as the number of training steps increases, the
performance of Ours-wwm decreases.

In addition, we also evaluate the performance of
trained BERT models on downstream tasks with
model parameters fine-tuned. The performance
of Ours-clm-wwm is comparable with Ours-wwm
and Ours-clm. More information can be found in
Appendix C.

4 Related Work

We describe related studies on Chinese BERT
model and probing of BERT, respectively.

The authors of BERT (Devlin et al., 2018) pro-
vided the first Chinese BERT model which was
trained on Chinese Wikipedia data. On top of that,
Cui et al. (2019) trained RoBERTa-wwm-ext with
WWM on extended data. Cui et al. (2020) further
trained a Chinese ELECTRA model and MacBERT,
both of which did not have [MASK] tokens. ELEC-
TRA was trained with a token-level binary classi-
fication task, which determined whether a token
was the original one or artificially replaced. In
MacBERT, [MASK] tokens were replaced with
synonyms and the model was trained with WWM
and ngram masking. ERNIE (Sun et al., 2019) was
trained with entity masking, similar to WWM yet
tokens corresponding to an entity were masked at
once. Language features are considered in more
recent works. For example, AMBERT (Zhang and
Li, 2020) and Lattice-BERT (Lai et al., 2021) both
take word information into consideration. Chinese-
BERT (Sun et al., 2021) utilizes pinyin and glyph
of characters.

Probing aims to examine the language under-
standing ability of pretrained models like BERT
when model parameters are clamped, i.e., with-
out being fine-tuned on downstream tasks. Petroni
et al. (2019) study how well pretrained models
learn factual knowledge. The idea is to design
a natural language template with a [MASK] to-
ken, such as “the wife of Barack Obama
is [MASK] .”. If the model predicts the correct
answer “Micheal Obama”, it shows that pre-
trained models learn factual knowledge to some
extent. Similarly, Davison et al. (2019) study how
pretrained models learn commonsense knowledge
and Talmor et al. (2020) examine on tasks that
require symbolic understanding. Wang and Hu
(2020) propose to probe Chinese BERT models in
terms of linguistic and world knowledge.

5 Conclusion

In this work, we present two Chinese probing tasks,
including character insertion and replacement. We
provide three simple pretrained models dubbed
Ours-clm, Ours-wwm, and Ours-clm-wwm, which
are pretrained with CLM, WWM, and a combina-
tion of CLM and WWM, respectively. Ours-wwm
is prone to lose the association between words
and result in poor performance on probing tasks
when one character needs to be inserted or replaced.
Moreover, WWM plays a key role when two or
more characters need to be corrected.



References

Christopher Bryant, Mariano Felice, and Edward
Briscoe. 2017. Automatic annotation and evalua-
tion of error types for grammatical error correction.
Association for Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 657-668, Online. Association for Computa-
tional Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing
Yang, Shijin Wang, and Guoping Hu. 2019. Pre-
training with whole word masking for chinese bert.
arXiv preprint arXiv:1906.08101.

Joe Davison, Joshua Feldman, and Alexander M Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1IJCNLP),
pages 1173-1178.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yuxuan Lai, Yijia Liu, Yansong Feng, Songfang
Huang, and Dongyan Zhao. 2021. Lattice-bert:
Leveraging multi-granularity representations in chi-
nese pre-trained language models. arXiv preprint
arXiv:2104.07204.

Lung-Hao Lee, Gaoqi Rao, Liang-Chih Yu, Endong
Xun, Baolin Zhang, and Li-Ping Chang. 2016.
Overview of NLP-TEA 2016 shared task for Chinese
grammatical error diagnosis. In Proceedings of the
3rd Workshop on Natural Language Processing Tech-
niques for Educational Applications (NLPTEA2016),
pages 4048, Osaka, Japan. The COLING 2016 Or-
ganizing Committee.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Fabio Petroni, Tim Rocktidschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Gaoqi Rao, Qi Gong, Baolin Zhang, and Endong Xun.
2018. Overview of NLPTEA-2018 share task Chi-
nese grammatical error diagnosis. In Proceedings

of the 5th Workshop on Natural Language Process-
ing Techniques for Educational Applications, pages
42-51, Melbourne, Australia. Association for Com-
putational Linguistics.

Gaoqi Rao, Erhong Yang, and Baolin Zhang. 2020a.
Overview of nlptea-2020 shared task for chinese
grammatical error diagnosis. In Proceedings of the
6th Workshop on Natural Language Processing Tech-
niques for Educational Applications, pages 25-35.

Gaoqi Rao, Erhong Yang, and Baolin Zhang. 2020b.
Overview of NLPTEA-2020 shared task for Chinese
grammatical error diagnosis. In Proceedings of the
6th Workshop on Natural Language Processing Tech-
niques for Educational Applications, pages 25-35,
Suzhou, China. Association for Computational Lin-
guistics.

Gaogqi Rao, Baolin Zhang, Endong Xun, and Lung-Hao
Lee. 2017. IICNLP-2017 task 1: Chinese grammat-
ical error diagnosis. In Proceedings of the IJCNLP
2017, Shared Tasks, pages 1-8, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng,
Xiang Ao, Qing He, Fei Wu, and Jiwei Li. 2021.
Chinesebert: Chinese pretraining enhanced by
glyph and pinyin information. arXiv preprint
arXiv:2106.16038.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743-758.

Zhiruo Wang and Renfen Hu. 2020. Intrinsic knowl-
edge evaluation on chinese language models. arXiv
preprint arXiv:2011.14277.

C. Wood and V. Connelly. 2009. Contemporary perspec-
tives on reading and spelling.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.



Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qiangian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020a.
CLUE: A Chinese language understanding evalua-
tion benchmark. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4762—-4772, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020b. Clue: A chinese language
understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986.

Liang-Chih Yu, Lung-Hao Lee, and Liping Chang. 2014.
Overview of grammatical error diagnosis for learning
chinese as a foreign language. In Proceedings of the
1stWorkshop on Natural Language Processing Tech-
niques for Educational Applications (NLP-TEA’14),
pages 42-47.

Haisong Zhang, Lemao Liu, Haiyun Jiang, Yangming
Li, Enbo Zhao, Kun Xu, Linfeng Song, Suncong
Zheng, Botong Zhou, Jianchen Zhu, Xiao Feng, Tao
Chen, Tao Yang, Dong Yu, Feng Zhang, Zhanhui
Kang, and Shuming Shi. 2020. Texsmart: A text un-
derstanding system for fine-grained ner and enhanced
semantic analysis. arXiv preprint arXiv:2012.15639.

Xinsong Zhang and Hang Li. 2020. Ambert: A pre-
trained language model with multi-grained tokeniza-
tion. arXiv preprint arXiv:2008.11869.



A The statistic of dataset

‘ Replacement Insertion  Total

Length =1 5,522 4,555 10,077
Length =2 2,004 1,337 3,341
Length> 3 305 383 688

No. sentences 5,727 4,721 10,448
No. spans 7,831 6,275 14,106
No. chars 10,542 8,533 19,075

Table 2: The statistic of our dataset.

B Probing results from models with
different initialization

We also verify the performance of models ini-
tialized from BERT (Devlin et al., 2018) and
RoBERTza (Cui et al., 2019) on probing tasks. The
results are detailed in Table 3, from which we can
obtain consistent conclusions with the previous sec-
tion.

C The evaluation on downstream tasks

We test the performance of BERT-style models on
tasks including text classification (TNEWS, IFLY-
TEK), sentence-pair semantic similarity (AFQMC),
coreference resolution (WSC), key word recogni-
tion (CSL), and natural language inference (OC-
NLI) (Xu et al., 2020a). We follow the standard
fine-tuning hyper-parameters used in Devlin et al.
(2018); Xu et al. (2020b); Lai et al. (2021) and re-
port results on the development sets. The detailed
results is shown in Table 4.



‘ Initialization ‘ Length =1 ‘ Length =2 ‘ Length >3 ‘ Average

Insertion | p@l p@10 | p@l1 p@10|p@1 p@l10|p@1 p@10

BERT-base | | 760 970 | 372 760 | 144 50.1 | 425 744
Ours-clm 772 973 | 367 744 | 133 493 | 424 737
Ours-wwm from scratch | 366 80.1 | 429 79.1 | 193 540 | 39.6 7I.1
Ours-clm-wwm 713 95.1 | 426 809 | 206 53.0 | 448 76.3
Ours-clm 792 977 | 400 776 | 162 535 | 451 763
Ours-wwm from BERT | 61.2 877 | 434 794 | 20.1 564 | 41.6 745
Ours-clm-wwm 73.1  96.1 | 41.8 80.6 | 206 56.7 | 452 77.8
Ours-clm 794 979 | 420 804 | 206 523 | 473 769
Ours-wwm from RoBERTa | 61.4 879 | 443 799 | 20.1 593 | 419 757
Ours-clm-wwm 773 975 | 468 833 | 225 587 | 489 79.8
Replacememt | p@l p@10 | p@l1 p@l10|p@1 p@l10|p@1 p@10
BERT-base | 660 951 |21.0 582 | 10.1 461 | 324 665
Ours-clm 674 966 | 204 583 | 74 369 | 31.7 639
Ours-wwm from scratch | 348 682 | 257 653 | 74 352 | 22,6 562
Ours-clm-wwm 592 937 | 265 664 | 124 41.6 | 327 672
Ours-clm 69.0 969 | 245 647 | 84 473 | 340 696
Ours-wwm from BERT | 40.6 816 | 272 679 | 84 394 | 254 63.0
Ours-clm-wwm 61.6 949 |276 678 | 104 470 | 332 69.9
Ours-clm 69.7 968 | 267 68 | 12.1 517 | 362 722
Ours-wwm from RoBERTa | 41.7 809 | 282 682 | 124 472 | 274 654
Ours-clm-wwm 67.3 967 | 284 69.7 | 157 542 | 371 735

Table 3: Probing results from models with different initialization.

Model | TNEWS IFLYTEK | AFQMC OCNLI | WSC CSL | Average
BERT-base | 571 614 | 742 752 | 786 81.8| 714
Ours-clm 573 60.3 728 739 | 793 687 687
Ours-wwm from scratch | 57-6 60.9 73.8 754 | 819 754| 70.8
Ours-clm-wwm 573 60.3 723 756 | 790 795 70.7
Ours-clm 57.6 60.6 728 755 [ 793 80.1| 71.0
Ours-wwm from BERT 58.3 60.8 71.73 76.1 | 799 80.7| 713
Ours-clm-wwm 58.1 60.8 723 758 | 803 799 712
Ours-clm 57.9 60.8 747 757 | 831 821 724
Ours-wwm from RoBERTa | 58.1 61.1 739 760 | 826 81.7| 722
Ours-clm-wwm 58.1 61.0 740 759 | 840 818 | 725

Table 4: Evaluation results on the dev set of each downstream task. Model parameters are fine-tuned.
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Abstract

Automatically generating compilable programs
with (or without) natural language descrip-
tions has always been a touchstone problem
for computational linguistics and automated
software engineering. Existing deep-learning
approaches model code generation as text gen-
eration, either constrained by grammar struc-
tures in decoder, or driven by pre-trained lan-
guage models on large-scale code corpus (e.g.,
CodeGPT, PLBART, and CodeT5). However,
few of them account for compilability of the
generated programs. To improve compilability
of the generated programs, this paper proposes
COMPCODER, a three-stage pipeline utilizing
compiler feedback for compilable code gener-
ation, including language model fine-tuning,
compilability reinforcement, and compilability
discrimination. Comprehensive experiments on
two code generation tasks demonstrate the ef-
fectiveness of our proposed approach, improv-
ing the success rate of compilation from 44.18
to 89.18 in code completion on average and
from 70.3 to 96.2 in text-to-code generation,
respectively, when comparing with the state-of-
the-art CodeGPT.

1 Introduction

Automated code generation (or program synthe-
sis) has attracted much attention over the past few
years (Lu et al., 2021), because of its potential to
improve the productivity of developers, as well
as to speed up the software development (Parvez
et al., 2021; Wang et al., 2021). In the life cycle
of software development, different types of code
generation tasks are desired, including code com-
pletion (Liu et al., 2020b,a), text-to-code gener-
ation (Hashimoto et al., 2018), program transla-
tion (Chen et al., 2018), and program repair (Ya-
sunaga and Liang, 2021).

* Equal contribution.

& Work done while this author was an intern at Huawei

Noah’s Ark Lab.
DX Correspondence author.
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Figure 1: An illustration of Python code completion
by COMPCODER, utilizing the compiler feedback with
three stages.

Recently, much effort has been made to ad-
vance the development of code generation (Li et al.,
2018), using different logical forms of code, such
as the abstract syntax tree (AST) (Kim et al., 2021;
Yin and Neubig, 2017; Rabinovich et al., 2017),
sketch (Nye et al., 2019) and graph (Yasunaga and
Liang, 2020). Benefiting from the strong power
of pre-training techniques (Devlin et al., 2019;
Wang et al., 2021a) in natural language process-
ing, several attempts have been made towards pre-
training a language model on large-scale code cor-
pus for code generation, such as CodeGPT (Lu
et al., 2021), PLBART (Ahmad et al., 2021), and
CodeT5 (Wang et al., 2021b).

However, to the best of our knowledge, most
deep-learning approaches for code generation are
still difficult to guarantee the compilability of the
generated code, resulting in non-compilable code.
For example, Chen et al. (2021) found that up
to 67%-97% of patches generated by the most
advanced deep-learning-based models are non-
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compilable. We think this is because they generally
do not directly optimize the compilability for code
generation. The generation of non-compilable code
will waste the time of programmers, as well as seri-
ously reduce the trust and satisfaction of developers
with the model. To improve the compilability of the
generated code, some works attempt to repair the
synthesized program which fails to compile (Ku-
lal et al., 2019; Yasunaga and Liang, 2020, 2021).
Recently, Korbak et al. (2021) attempt to directly
generate compilable code using an energy model
with compilability constraints.

This paper focuses on the task of compilable
neural code generation. Different from previous
works, we use compilability signals in two ways
and design a novel method to jointly train the dis-
criminator and generator for compilable code gen-
eration. Concretely, we propose COMPCODER, a
novel three-stage pipeline utilizing compiler feed-
back for compilable code generation, including lan-
guage model fine-tuning, compilability reinforce-
ment, and compilability discrimination. Figure 1
shows an example of Python code completion by
COMPCODER, which utilizes the compiler feed-
back in two ways. In Figure 1(b), we use the com-
piler feedback to optimize the generator. In Fig-
ure 1(c), we use the discriminator to check if the
results generated by the generator can be success-
fully compiled. The joint training of the generator
and discriminator significantly improves the com-
pilability of the generated code.

Overall, the key contributions of this paper are

as follows:
* We use compilability signals in two ways and de-
sign a novel method to jointly train the generator
and discriminator for compilable code generation,
called COMPCODER. We refine a pre-trained
code generator using reinforcement learning and
jointly learn a discriminator to enforce the gener-
ator to correct its own mistakes.

Comprehensive experiments on two code gen-
eration tasks demonstrate the effectiveness of
COMPCODER. It boosts the average compila-
tion rate of CodeGPT from 44.18 to 89.18 in the
code completion task and from 70.3 to 96.2 in
the text-to-code generation task.

2 Preliminary

In this section, we set out notations for task formu-
lation, as well as some preliminaries of compiler
feedback. Let s € S denote a given input, which
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can be a piece of partial code, natural-language
description, or buggy program. Let ¢ € T denote
the generated source code. Formally, the problem
of code generation can be formulated as learning a
mapping f between the input space and target code
space, i.e. f : & — T. In this paper, we investigate
two specific code generation tasks, code comple-
tion and text-to-code generation, conditioned on
different inputs.

Code Completion Letc = {ci,c2,...,¢} de-
note a sequence of code tokens for program c,
where |c| denotes the length of the code. We
use notation c¢j.,, € &S to refer to the previ-
ous code snippet {ci,c2,...,cn} and notation
Cm41: | € T to represent the subsequent code
snippet {Cm+1,---,¢|}. The code completion
task can be defined as generating the subsequent (%)
code token sequence ¢, 1. |¢|. given the previous
(8) code sequence c; . -

Text-to-Code Generation Different from code
completion, text-to-code generation aims to gen-
erate a whole program based on natural language
description. Let d = {d1,d>,...,dy} refer to a
sequence of natural-language tokens. The text-to-
code generation task can be defined as generating
source code ¢ =t € T, given the corresponding
natural language descriptiond = s € S.

Compiler Feedback As the whole program c is
generated, no matter from partial code snippets
or natural-language descriptions, we feed it into a
compiler to test whether it can be compiled suc-
cessfully. Formally, we define the the compiler
feedback as:

feedback = 1 Compiler (C> s (1)

where the compiler feedback is a binary value (com-
pilable or non-compilable), and ¢ denotes the code
snippet fed into the compiler. As for the task of
text-to-code generation, we simply feed the gener-
ated code ¢ into the compiler, i.e., ¢ = t. As for the
task of code completion, we concatenate the partial
code with generated code as a whole program, i.e.,
¢ = [s; t], where ; is the concatenation operation.

3 CoOMPCODER

Figure 2 shows the overall architecture of COMP-
CODER on the code completion task, which covers
three stages, i.e., language model fine-tuning (Stage
1), compilability reinforcement (Stage 2) and com-
pilability discrimination (Stage 3). In the following
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Figure 2: An illustration of our proposed three-stage pipeline for Python code completion. (a) We first fine-tune the
generator based on pre-trained language models. (b) We take the compiler feedback into account as a reward via
reinforcement learning. (c) We design a compilability discriminator which is jointly trained with the generator, to
enforce the generator to correct its own mistakes. Stages 2 and 3 are performed alternately.

subsections, we will elaborate on each stage one
by one. We alternately perform Stages 2 and 3, as
described in Section 3.4.

3.1 Stage 1: Language Model Fine-Tuning

As shown in Figure 2(a), we adopt CodeGPT as the
generator, which uses GPT-2 (Radford et al., 2019)
as the starting point and is continually pre-trained
on the large-scale code corpus. Our generator is
then fine-tuned on the target task to minimize the
cross-entropy loss:

;MY
aez—mzzyﬁbgﬂj, )
v g

where M denotes the set of the generated code
tokens, V represents the vocabulary, Y;; denotes
the label of the code token i in class j, and F;; is
the predicted probability of token ¢ in class j.

During training, the generator takes x
{<B0OS>, ¢, <E0S>} as the input in the code com-
pletion task, and x = {d, <BOS>, ¢, <EOS>} as in-
put in the text-to-code generation task, correspond-
ingly. Special tokens <BOS> and <EOS> indicate
the start and end symbols of code sequences. Af-
ter several epochs of supervised fine-tuning on the
target task dataset, we save the trained generator,
which will be used in the next stage.

3.2 Stage 2: Compilability Reinforcement

Reinforcement Learning (RL) is a method of learn-
ing the optimal policy by obtaining reward signals
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from the real environment (Sutton and Barto, 1998;
Wan et al., 2018). As shown in Figure 2(b), we
use the fine-tuned generator p (after Stage 1) as
the reference model. Then we initialize a policy
7 = p. Given an input sequence s € S, our goal
is to find a policy 7 that generates an output se-
quence t € T with the objective of maximizing the
compilability-based reward. We use RL (specifi-
cally PPO2 version of Proximal Policy Optimiza-
tion (Schulman et al., 2017)) to directly optimize
the expected reward as:

Er [7"} = Est,tww(.|s) [7"(8, t)] ’ (3)

where the policy 7 is rewarded by the compiler
(Eq. 1), r is the reward function. We define
r(s,t) = 1.0 iff the code can be compiled by the
program compiler and (s, t) = —1.0 otherwise.
It is worth mentioning that code compilability
constraints can be strong or weak. Strong con-
straint is defined that a long piece of code snippet
may not be correctly compiled if a certain token
is changed. And weak constraint means a blank
string consisting of whitespace characters can be
correctly compiled by the compiler. Concretely, in
the text-to-code generation task, if the generator
generates a string composed of whitespace charac-
ters, the compiler will consider it as a good case.
In the code completion task, if the previous code
snippet is compilable, the generator can fool the
compiler easily. The RL is good at making use of
this, resulting in the generated code can be com-
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Figure 3:

An example of code completion. We mask the last five tokens of the code and let the generator complete

them. Some minor mistakes prevent four candidates from being correctly compiled by the program compiler.

piled, but seriously deviating from the generation
likelihood objective.

To avoid active model T being too far away from
reference model p, we add a Kullback-Leibler (KL)
penalty with expectation, e.g., SKL(, p) (Ziegler
et al., 2019). Therefore, the modified reward will
be reformulated as follows:

m(t|s)
p(tls)’

where [ is a constant, which plays the role of an
entropy bonus, preventing the policy from moving
too far from the range where r is valid.

To alleviate the imbalance between the reward
term and the KL penalty term and improve the sta-
bility of training, we use autoregressive fine-tuning
(Causal Language Modeling) (Radford et al., 2019)
to make the KL penalty term fluctuate within a
small range after RL training. This fine-tuning pro-
cess incorporates a compilability-aware discrimi-
nator that will be introduced in the next stage.

r(s,t) =r(s,t) — B log 4

3.3 Stage 3: Compilability Discrimination

Figure 3 shows an example of code completion. We
mask the last five tokens of a Python function and
ask the generator to complete them. The generator
generates five candidates with high probabilities.
Some minor mistakes prevent four of them from
being successfully compiled. We hope the gener-
ator can have more perception power to explicitly
distinguish compilable and non-compilable code
generated by itself. Therefore, at this stage, we
design a compilability-aware discriminator to deal
with this issue.

Concretely, we add a discriminator (a two-layer
MLP equipped with the tanh activation function
between layers) after the final hidden layer of the
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generator. As shown in Figure 2(c), given the input
sequence (s), we perform beam search on the gen-
erator to generate top-k candidates (¢). Each entire
code ¢ € Q (¢ = [s; ] in the code completion task)
is labeled by the program compiler as positive (1)
or negative (0), depending on whether it can be
successfully compiled (see Eq. 1).

We use the hidden representation of the last to-
ken (<EOS>) as the final representation of the en-
tire code c. Finally, the hidden representation of
the last token (<EOS>) is fed into the discriminator
for prediction:

h<zoss = CodeGPT(s,t), %)
h.zos. = Discriminator(hezoss), (6)
P(|t,s) = softmax(h.zos.), (7)

where h.gos> denotes the representation of the last
token <EOS>. The training loss of the discrimina-
tion process can be defined as:

1

£ =
A

> log P(1lt, )
ceQt

@®)
+ ) log P(Olt.s) | .

ceQ~

where Q" and Q™ represent positive and negative
sets respectively. The parameters of the generator
and discriminator will be jointly updated.

At this stage, we jointly train the generator and
discriminator, including a generating objective (to
learn the generator only) and a discriminating ob-
jective (to learn the generator and discriminator
together), as shown in Figure 2(c). The joint train-
ing loss is defined as follows:

L=Lc+Lp. (©)]



3.4 Opverall Pipeline

Training Procedure We perform an interactive
training procedure. Concretely, except that the first
epoch contains Stages 1, 2, and 3, each subsequent
epoch only consists of Stages 2 and 3. We update
the reference model (at Stage 2), and candidates in
Stage 3 is generated on the training dataset, which
is time consuming, so we update the candidates in
a preset frequency.

For better understanding, Stage 2 improves the
compilability of generated code, Stage 3 distin-
guishes the compilable and non-compilable code
generated by itself. Stage 2 and 3 refine each other
and improve the performance iteratively, which is
a basic idea of this training procedure. We think
that the generator with high compilability (after
Stage 2) facilitates the learning of the discriminator
(discriminating objective at Stage 3). The autore-
gressive fine-tuning (generating objective at Stage
3) helps the KL penalty term (at Stage 2) fluctu-
ate in a small range, improving the stability of RL
training. At Stage 3, the discriminating objective
is optimized by learning the generator and discrim-
inator together, which makes the generator have
more perception power to distinguish compilable
and non-compilable code.

Inference Procedure The model inference con-
sists of two stages. Given an input sequence (s),
we perform the beam search on the generator to
generate top-k candidates. The code (c in Eq. 1)
with the highest compilability probability evalu-
ated by the discriminator will be selected. Then the
output (¢) can be obtained as the final result.

4 Experiment Setup

4.1 Evaluation Tasks and Datasets

We conduct experiments on two tasks: code com-
pletion and text-to-code generation. To investigate
the compilability of the generated code, we need
to preserve the indentation and newline operations
in code. We also need to make sure that the code
and its version belong to the scope of the compiler.
Existing datasets on both of the two tasks usually
do not serve these considerations. For convenience,
we choose Python for experiments, as it is very
popular and used in many projects. We conduct all
experiments based on Python 3 environment and
adopt the codeop! module to simulate the pro-

"https://docs.python.org/3.6/library/
codeop.html
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gram compiler. We remove code that could not be
compiled correctly by the compiler.

Code Completion For the code completion task,
we use the Python corpus in CodeSearchNet (Hu-
sain et al., 2019). We want to study the compilabil-
ity of long enough code, while longer code means
higher computational overhead. Therefore, we ex-
tract 50k compilable Python methods (Python 3
version) with eclectic token lengths ranging from
64 to 96. We randomly select 45k samples for train-
ing and the remaining 5k samples for testing. We
mask a different number of tokens at the tail of the
source code and let the model complete.

Text-to-Code Generation For the text-to-code
generation task, we adopt the AdvTest dataset (Lu
et al., 2021), which contains 251,820 text and
Python code pairs. We only need code in Python
3 version. We expect code token lengths to range
from 128 to 170, a moderate length, and text to-
ken lengths to be at least more than 5, containing
sufficient semantics. Finally, we extract about 41k
text-code pairs. We randomly select 40k text-code
pairs for training, and the remaining 1k text-code
pairs for testing.

4.2 Evaluation Metrics

To evaluate the quality of the generated code, we
adopt two widely-used evaluation metrics: Leven-
shtein Edit Similarity (ES) (Svyatkovskiy et al.,
2020; Lu et al., 2021) and Compilation Rate
(CR) (Kulal et al., 2019). Levenshtein Edit Similar-
ity measures the number of single-character edits
required to transform one string into another. It is
a critical evaluation metric for the code generation
scenario, as it measures the effort required for the
developer to correct the code. Compilation Rate
measures how many code can be correctly com-
piled by the program compiler. For both of these
metrics, bigger values indicate better performance.

4.3 Baseline Methods

We compare our approach with various state-of-

the-art models in the code completion task and the

text-to-code generation task:

* BiLSTM is a Seq2Seq model based on Bidirec-
tional LSTM with an attention mechanism (Lu-
ong et al., 2015).

¢ Transformer (Vaswani et al., 2017) is the base
architecture of CodeGPT. We use 6-layer Trans-
former decoder to conduct experiments.
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Figure 4: : Results in the code completion task (completing 30, 35, 40, 45 tokens respectively) evaluating with Edit
Similarity (ES) and Compilation Rate (CR) metrics, using the CodeSearchNet-Python dataset.

GPT-2 (Radford et al.,, 2019) is an auto-
regressive pre-trained model trained on large-
scale text corpus.

* CodeGPT (Lu et al., 2021) is pre-trained with
source code corpus on the basis of GPT-2 vis
causal language modeling objective (Radford
et al., 2019).

PLBART (Ahmad et al., 2021) is based on the
BART (Lewis et al., 2020) architecture, which is
pre-trained on large-scale Java and Python cor-
pora via denoising autoencoding.

CodeT5 (Wang et al., 2021b) is based on the
T5 (Raffel et al., 2020) architecture, which
employs denoising sequence-to-sequence pre-
training on multiple programming languages.

4.4 Implementation Details

In the code completion task, we set the learning
rate as 1.5e-5, the batch size as 32, the maximum
fine-tuning epoch as 20, the maximum code se-
quence length as 96. We mask different numbers
of code tokens (25, 30, 35, 40, and 45) and ask
the model to complete them. We set the minimum
generation length as 25, 30, 35, 40, and 45 accord-
ingly. In the text-to-code generation task, we set
the learning rate as 1.5e-5, the batch size as 16, the
maximum fine-tuning epoch as 20, the maximum
text and code sequence length as 32 and 170. We
set the minimum generation length as 96 (the gen-
erated code is slightly shorter than the ground-truth
is allowed). In these two tasks, the generated se-
quence consisting of whitespace characters will be
considered as a bad case.

We use the Adam optimizer to update model
parameters. We train our model on the basis of
CodeGPT checkpoint®. Our model is trained on 2

https://huggingface.co/microsoft/
CodeGPT-small-py—adaptedGPT2
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NVIDIA Tesla V100 with 32GB memory. We em-
ploy the same tokenizer as CodeGPT. To train the
policy 7, we use the PPO2 version of Proximal Pol-
icy Optimization (Schulman et al., 2017). In each
epoch, we only randomly select 5% training data
for the stability of RL training (Stage 2). In other
stages (Stages 1 and 3), we use the full training
data. To generate candidates (at Stage 3), we set
the beam size as 5 in beam search. For efficiency,
we update the candidates every 5 epochs.

Models ES CR

BiLSTM 55.32 36.34
Transformer 61.47 40.22
GPT-2 63.02 43.26
CodeGPT 64.47 46.84
CoMPCODER 64.53 94.48

Table 1: Results in the code completion task (com-
pleting 25 tokens) evaluating with Edit Similarity
(ES) and Compilation Rate (CR) metrics, using the
CodeSearchNet-Python dataset.

5 Results and Analysis
5.1 Code Completion

Table 1 shows the results of the code completion
task. We mask 25 tokens at the tail of code func-
tions and ask the generation model to complete.
We can observe that: (1) The code generated by
existing autoregressive models has a low Compi-
lation Rate. CodeGPT and GPT-2 only achieve
46.84 and 43.26 scores respectively on the Compi-
lation Rate, which means that more than half of the
code generated by them cannot be correctly com-
piled by the program compiler. (2) COMPCODER
significantly improves the Compilation Rate. It ob-
tains 94.48 scores on the Compilation Rate, which
is 47.64 points higher than the closest competitor



(CodeGPT). (3) When our approach significantly
improves the Compilation Rate, it does not sacrifice
the fluency of the generated code. COMPCODER
obtains a comparable and even slightly better Edit
Similarity score than other baselines, indicating
that it effectively preserves the code fluency.

Figure 4 presents more results of the code com-
pletion task in the setting of completing 30, 35,
40, and 45 tokens. COMPCODER still effectively
improves the Compilation Rate when generating
longer code. As the completion length increases,
our approach outperforms CodeGPT by 49.66,
47.68, 46.64, and 33.36 points in the setting of
completing 30, 35, 40, and 45 tokens, respectively.
On average, our approach outperforms CodeGPT
by 45 points across a different number of tokens
for the task of code completion.

Models ES CR
BiLSTM 54.86 48.7
Transformer 57.47 55.6
GPT-2 60.54 63.3
CodeGPT 61.82 70.3
PLBART 62.43 71.9
CodeT5 62.58 73.1
COoMPCODER 62.74 96.2

Table 2: Results in the text-to-code generation task eval-
uating with Edit Similarity (ES) and Compilation Rate
(CR), using the AdvTest dataset.

5.2 Text-to-Code Generation

Table 2 presents the results of the text-to-code gen-
eration task. We could see that: (1) COMPCODER
significantly outperforms all other models w.r.t. the
Compilation Rate. E.g., COMPCODER achieves
23.1 points and 24.3 points improvements when
compared with PLBART and CodeTS5 respectively.
(2) Compared to code completion task (Table 1),
all models in the text-to-code generation task have
relatively higher Compilation Rate. One of the
main reasons we think may be: code completion re-
quires the generated code to be constrained by the
existing (previous) code, which is a much stronger
restriction than the text-to-code generation.

5.3 Ablation Study

We compare several simplified versions of our
model to understand contributions of different com-
ponents, including the Reinforcement Learning
(RL) component and the discriminator’s effect for
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Models ES CR
(1) CodeGPT 64.47 46.84
(2) W/ Dyain 65.46 64.88
(3) w/RL 64.71 76.48
(4) w/ RL+Dypain 64.43 83.14
(5) W/ Dyain+Drest 65.24 81.96
(6) W/ RL4+Dyain+Diest (Ours)  64.53  94.48

Table 3: Ablation study in the code completion task in
the setting of completing 25 code tokens.

both model training (Dy,in) and model inference
(Deest)- As a case study, we take the code comple-
tion task as an example in the setting of completing
25 tokens and present the results in Table 3.

Several meaningful observations can be drawn:
First, both RL (Row 2) and Dy, (Row 3) effec-
tively increase the code Compilation Rate of the
generation model (CodeGPT in Row 1), which con-
firms that the two components we designed can
indeed improve the ability of the generator for com-
pilable code generation. Second, applying RL and
Dirain together (Row 4) further improves the Com-
pilation Rate over their individual contributions.
Third, using the discriminator to select the output
during model inference stage (D) is beneficial.
It further boosts the Compilation Rate of vanilla
“Dyain”” by 17.08% (Row 5 v.s. Row 2) and boosts
“RLADyin” by 11.34% (Row 6 v.s. Row 4). Forth,
these three components (RL, Dyyain, Diest) that effec-
tively improve the Compilation Rate do not com-
promise the generation capability measured by the
Edit Similarity.

5.4 Case Study

To better understand the effectiveness of our pro-
posed approach, we present two cases for code com-
pletion and text-to-code generation tasks respec-
tively. For both CodeGPT and COMPCODER, we
present top-1 result in Figure 5. For code comple-
tion, we observe that CodeGPT can not complete
code with high quality (non-compilable), while
COMPCODER can complete the code well, and it
is exactly the same for the reference solution. For
text-to-code generation, we observe that although
both models can not generate exactly the same code
as the reference solution, COMPCODER generates a
compilable code at the function level. These results
reveal the effectiveness of our proposed approach
for compilable code generation.
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Text-to-Code Generation

Figure 5: Case study for code completion and text-to-
code generation tasks.

6 Related Work

Neural Code Generation With the rapid devel-
opment of Deep Learning (DL), some researchers
attempt to use DL for code generation tasks. Liu
et al. (2020a) proposed a neural architecture for
code completion task with multi-task learning
based on the architecture of Transformer-XL Dai
et al. (2019) and BiLSTM (Schuster and Paliwal,
1997). Kim et al. (2021) presented several ways of
feeding the code structure to Transformer (Vaswani
et al., 2017) and further improved the accuracy of
the code prediction (next token prediction) task.
Wei et al. (2019) adopted an encoder-decoder ar-
chitecture and utilized the relations between code
generation and code summarization to improve the
performance of both tasks. Yasunaga and Liang
(2021) proposed a new training approach for pro-
gram repair. They used the critic to check a fixer’s
output on real bad inputs and add good outputs to
the training data, and trains a breaker to generate
realistic bad code from good code. Yasunaga and
Liang (2020) used compiler error messages to re-
pair programs. They designed a program-feedback
graph and then applied a graph neural network on
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top to model the reasoning process. Many unla-
beled programs are used for program repair with
self-supervised learning.

Benefiting from the strong power of pre-training
techniques (Devlin et al., 2019; Wang et al., 2021a)
in natural language processing, such as GPT (Rad-
ford and Narasimhan, 2018), BART (Lewis et al.,
2020), and T5 (Raffel et al., 2020), some recent
works attempt to pre-train language models on the
corpus of source code for code generation. Lu et al.
(2021) proposed CodeGPT follows the architec-
ture of GPT-2 (Radford et al., 2019), which is pre-
trained with a causal language modeling (CLM)
objective on large-scale source code. Ahmad et al.
(2021) proposed PLBART follows the architecture
of BART (Lewis et al., 2020), which is pre-trained
on Java and Python functions paired with code
comments via denoising autoencoding. Wang et al.
(2021b) proposed CodeT5 based on the TS (Raffel
et al., 2020) architecture, which employs denois-
ing sequence-to-sequence pre-training on multiple
programming languages.

Reinforced Text Generation Reinforcement
learning (Sutton and Barto, 1998) has shown great
success in various tasks. It focuses on how agents
ought to take actions in an environment to max-
imize the cumulative reward, is well suited for
decision-making tasks. Ranzato et al. (2016)
were among the first to apply REINFORCE algo-
rithm (Williams, 1992) to train recurrent neural
networks on sequence generation tasks, suggesting
that directly optimizing the metric used at the test
phase can lead to better results. Chen and Bansal
(2018) proposed a hybrid extractive-abstractive ar-
chitecture with policy-based reinforcement learn-
ing. They used an extractor agent to select salient
sentences and then employed an abstractor network
to rewrite these extracted sentences. Wan et al.
(2018); Wang et al. (2022) incorporated the tree
structure and sequential content of code snippets
and designed a deep reinforcement learning frame-
work optimized by the metric of BLEU to improve
the performance of the code summarization task.
Yao et al. (2019) proposed a reinforcement learning
framework, which encourages the code annotation
model to generate annotations that can be used for
code retrieval tasks. Korbak et al. (2021) proposed
an energy-based model with an imposed constraint
of generating only compilable sequences to im-
prove compilation rates of generated code.



7 Conclusion and Future Work

In this paper, we use the compilability signals in
two ways and design a novel method to jointly
train the generator and discriminator for compilable
code generation, called COMPCODER. Compre-
hensive experiments on two code generation tasks
demonstrate the effectiveness of COMPCODER, im-
proving the average compilation rate of state-of-
the-art CodeGPT from 44.18 to 89.18 in the code
completion task and from 70.3 to 96.2 in the text-
to-code generation task.

This work presents our preliminary attempt to
generate compilable code. Yet, considering the
compilation rate is not the whole story as it still
cannot guarantee the correctness of generated code.
As a future work, we would like to utilize unit tests
to evaluate the code correctness towards building
more useful code generation models.
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Abstract

The aspect-based sentiment analysis (ABSA)
is a fine-grained task that aims to determine
the sentiment polarity towards targeted aspect
terms occurring in the sentence. The develop-
ment of the ABSA task is very much hindered
by the lack of annotated data. To tackle this,
the prior works have studied the possibility of
utilizing the sentiment analysis (SA) datasets
to assist in training the ABSA model, primarily
via pretraining or multi-task learning. In this ar-
ticle, we follow this line, and for the first time,
we manage to apply the Pseudo-Label (PL)
method to merge the two homogeneous tasks.
While it seems straightforward to use generated
pseudo labels to handle this case of label gran-
ularity unification for two highly related tasks,
we identify its major challenge in this paper and
propose a novel framework, dubbed as Dual-
granularity Pseudo Labeling (DPL). Further,
similar to PL, we regard the DPL as a general
framework capable of combining other prior
methods in the literature (Rietzler et al., 2019;
Bai et al., 2020). Through extensive experi-
ments, DPL has achieved state-of-the-art per-
formance on standard benchmarks surpassing
the prior work significantly (Liu et al., 2021).

1 Introduction

1.1 Aspect-based Sentiment Analysis

The aspect-based sentiment analysis (ABSA) task
aims to recognize the sentiment polarities cen-
tered on the considered aspect terms occurring
in the sentence. The establishment of the ABSA
task echoes the long-standing literature of conven-
tional sentence-level sentiment analysis (SA). For
instance, as shown in Figure 1, a normal ABSA
data annotation tags sentiment score on specific
aspect terms in the sentence, like “surroundings”
as positive and “food” as negative. Meanwhile, in
the conventional sentence-based sentiment analy-
sis, the whole sentence is labeled as negative at a
coarser granularity.
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Thewere nice, but thewas too terrible.

‘The surroundings were nice, but the food was too terrible.‘

Figure 1: Sentiment Analysis (SA) and Aspect-based
Sentiment Analysis (ABSA). The sample on the above
is the ABSA task, while the sample on the bottom is
the SA task. Both tasks aim at analyzing the sentiments
carried by the objects in the box.

Due to its much finer granularity, the annotation
cost is significantly higher than its conventional
counterpart. Essentially, many of the existing SA
datasets (He et al., 2018) can be crawled and cu-
rated straightforwardly from the review websites
such as Amazon' or Yelp?. The five-star rating
system comes in handy to accomplish the annota-
tion. Thus, the SA datasets are often presented at
a large scale. By contrast, the ABSA annotation
has no such “free lunch”. It has to require human
annotators to participate. Coupling with its higher
complexity on labeling, the ABSA datasets are
ubiquitously at considerably smaller scales (Pon-
tiki et al.; He et al., 2018; Yu et al., 2021b). To
this date, the available datasets for conventional
sentiment analysis are generally larger to several
orders of magnitude than the ABSA.

For instance, the commonly used ABSA bench-
mark SemEval 2014 task 4 has less than 5000 sam-
ples (Pontiki et al.), while there are 4,000,000 sen-
tences in the Amazon Review dataset® for SA. Due
to the similarity between the SA task and the ABSA
task, it is natural to use SA datasets as auxiliary
datasets for the ABSA task (He etal., 2018). Most,
if not all, previous work has focused on pretraining
and multi-task learning methods (He et al., 2018,

"https://www.amazon.com/

https://www.yelp.com/

‘https://www.kaggle.com/bittlingmayer/
amazonreviews
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Figure 2: Dataset Generation in the Pseudo-Label (PL) Method. This figure shows a pipeline of the traditional
Pseudo-Label method. x is the input data, a sentence in the SA dataset, while y is the sentiment carried by a
sentence. t; indicates the position of an aspect term in a sentence, and y; is the label for that aspect term. t} and y;
are pseudo labels generated by the ABSA model. As we can see, in the PL method, the sentence sentiment labels
are dropped, and the SA dataset is regarded as an unlabeled dataset.

2019b). In this paper, we first take the Pseudo-
Label method to utilize the SA datasets to solve the
challenge faced by the ABSA task.

1.2 Pseudo-Label

The family of Pseudo-Label methods has had wide
success in multiple fields (Pham et al., 2020; Ge
et al., 2020; Mallis et al., 2020; Zoph et al., 2020;
Heetal., 2019a). The core of this family is to “trust”
the generated fake labels by running the unlabeled
samples through a teacher network that is trained
by using the limited number of labeled samples.
The generated labeled samples are then combined
with the original set of supervised datasets and fed
to the final model training.

In this article, our core mission is to incorporate
the large-scale datasets into the sentiment analysis
with the targeted ABSA task. While there have
been works on this line, such as He et al. (2018)
and He et al. (2019b), exploring the Pseudo-Label
methods has been very much untapped. Indeed,
a very straightforward technological solution is
depicted in Figure 2. One can apply the tradi-
tional Pseudo-Label method to generate a bunch
of pseudo-aspect-based sentiment labels from the
SA or even the unlabeled datasets. However, a
consequence of this is the total abandonment and
waste of the provided coarse-grained labels. While
seemingly acceptable, we argue that due to the
homogeneous root for the ABSA and SA tasks,
the under-exploiting of the sentence-level coarse-
grained sentiment labels is sub-optimal. It will be
unnecessary if the traditional framework throws
away the coarser-grained labels containing finer-
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grained task-relevant information. We argue that
the Pseudo-Label family of approaches is limited
to fit a uniform granularity situation. They ought
to evolve and further adapt to the discrepancy of
granularity in the label space.

1.3 Dual-granularity Pseudo Labels

To solve the aforementioned problem, we propose
the Dual-granularity Pseudo Labeling framework
(DPL). In essence, the DPL augments the original
PL framework and is capable of leveraging the la-
bels drawn from both granularities. Briefly, the
DPL relies on two teacher models obtained from
datasets from both granularities, respectively, then
generates pseudo labels for both sides. As a re-
sult, datasets from both granularity levels can be
merged into a whole, with every sentence sample
being tagged by both finer- and coarser-set of la-
bels. To facilitate the employment of both sets of
labels, we set a few standard conditions as the de-
sign principle of DPL. Slightly more concretely,
DPL establishes two separate pathways leading to
prediction for both granularities. Together, the two
pathways interact in the representation space and
ideally may possess controlled information flow
that respectively corresponds and only correspond
to the considered granularity. We incorporate an
adversarial module to accomplish this functional-
ity.

On the widely used benchmarks, SemEval 2014
task 4 subtask 2 (Pontiki et al.), the DPL method
significantly surpasses the current state-of-the-art
method. We deem our simple but effective frame-
work DPL pioneering a bi-granularity level dataset



merging. In what follows, we empirically validate
that DPL is a framework that can be seamlessly
combined with the previous pre-training or multi-
task learning methods in terms of ABSA and SA
dataset merging.

To sum up, we make the following contributions
in this paper:

1. Among those works to solve the lack of la-
beled data in the ABSA task, we pioneer to
adopt and enhance a pseudo-label framework
to leverage the coarser-grained SA labels.

We propose a novel general framework called
Dual-granularity Pseudo Labels (DPL). Just
like the vanilla PL. method, the DPL is estab-
lished as a general framework. We validate
that DPL is also compatible with previous
work on this line, such as pre-training or multi-
task learning (MTL). DPL has achieved excel-
lent performances on the standardized ABSA
benchmarks such as SemEval 2014, which
significantly outperforms the prior works.

2 Related Works

2.1 Aspect-based Sentiment Analysis (ABSA)

ABSA is a finer-grained task of Sentiment Analysis
(SA). It is a pipeline task, including aspect term
extraction and aspect term sentiment classification.
Aspect term sentiment classification is the true tar-
get task in this paper. For convenience, we use
ABSA to refer to this task in the remaining parts.
Like other application tracks in NLP, the family
of neural network models has wide successes in this
task (Jiangetal., 2011; Vo and Zhang, 2015; Zhang
etal., 2016; Ma et al., 2017; Li et al., 2018; Wang
et al., 2018; Huang et al., 2018; Song et al., 2019).
Wang et al. (2016) introduce attention mechanism
into an LSTM to model the inter-dependence be-
tween sentence and aspect term. Tang et al. (2016)
apply Memory Networks in this task.
Syntax-based models have also been explored
widely in this domain (Dong et al., 2014; Tai et al.,
2015; Nguyen and Shirai, 2015; Liu et al., 2020;
Lietal., 2021; Pang et al., 2021). Sun et al. (2019)
and Zhang et al. (2019) introduced graph convo-
lution networks (GCN) to leverage the structured
information from the dependency tree. Huang and
Carley (2019) used graph attention networks (GAT)
to improve the performance. Bai et al. (2020) and
Wang et al. (2020) took the syntax relations as edge
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features and introduced them into the Relational
Graph Attention Network (RGAT).

In addition, pretrained language models like
BERT (Devlin et al., 2018) have greatly promoted
the development of ABSA (Li et al., 2018; Gao
et al., 2019; Song et al., 2019; Rietzler et al., 2019;
Yang et al., 2019).

2.2 Using Extra Dataset for ABSA

Due to the dataset scale challenge of the ABSA
task, there have been some methods exploring how
to utilize the auxiliary dataset.

Some of them (Xu et al., 2019; Rietzler et al.,
2019; Yu et al., 2021b) achieve decent ABSA per-
formance by post-processing or fine-tuning BERT
(Devlin et al., 2018) with an additional unlabeled
dataset. For these methods, we argue that the cost
of computation is too high. Moreover, DPL does
not conflict with it and can accommodate the re-
sults of these works. We take Rietzler et al. (2019)’s
work as an example for comparison in experiments.

The others (He et al., 2018, 2019b; Chen and
Qian, 2019; Liang et al., 2020; Yang et al., 2019;
Oh et al., 2021; Yu et al., 2021a; Yan et al., 2021)
utilize some labeled datasets and propose (later
extend) a framework applying multitask learning
methods. These auxiliary labeled datasets mainly
include the sentiment analysis (SA) task and other
subtasks of ABSA, such as Aspect Term Extrac-
tion, Opinion Term Extraction, and so on (Yan
etal., 2021). DPL is more similar to these methods,
using labeled datasets. However, we argue that the
datasets of other subtasks can’t solve the problem
of the high annotation cost. Thus, DPL utilizes
the SA task as auxiliary datasets and is the first to
apply the PL method to this problem.

2.3 Pseudo-Label

Pseudo-label (PL), often associated with self-
training, is a semi-supervised learning method. PL
has been utilized and further developed by many
studies (Ge et al., 2020; Mallis et al., 2020; Zoph
et al., 2020; He et al., 2019a). It has been suc-
cessfully applied in many tasks, such as image
classification (Pham et al., 2020; Xie et al., 2020),
object detection (Ge et al., 2020), text classifica-
tion (Mukherjee and Awadallah, 2020), Etc.
However, these PL methods are inapplicable un-
der a non-uniform granularity situation; that is,
there are massive available coarse-grained datasets
for fine-grained tasks. These existing methods can
only discard the coarse-grained labels and treat



them as unlabeled datasets. Thus, we argue that
these PL methods cause loss of information and are
definitely unreasonable.

3 Preliminary

3.1 Pseudo-Labels

The traditional PL method generally involves a
labeled set denoted by D and an unlabeled set D,,.
A teacher model is trained on D by cross-entropy
loss:

LOr)= Y [-logPo,(ylx)]
(z,y)eD

(D

where ©7 denotes the parameters of the teacher
model. The cross-entropy loss function is adopted
for general classification problems, including im-
age classification, detection, and semantic segmen-
tation (Ge et al., 2020; Pham et al., 2020; Xie et al.,
2020; Zoph et al., 2020).

In what follows, on the unlabeled dataset D,,,
one can obtain the corresponding labels via running
the unlabeled input through an inference procedure
of the teacher model. The yielded label set for
D,, forms a pseudo-labeled dataset that can later
be combined with the original dataset with gold
annotations. A student model Mg is trained by the
newly merged dataset:

L(Og)= > [~logPog(ylz)+
(z,y)eD

>

(a?u’y/)eD&

/ ©)
[—log Pog (y'|7y)]

where 3 indicates the pseudo label corresponding
to the sample z,, generated by the teacher model.
D), are the pseudo-label augmented version of D,,.
A is a weighing term.

4 Dual-granularity Pseudo Labeling

In short, our work focuses on expanding the tradi-
tional PL. method to utilize coarse-grained datasets.
To achieve this goal, we draw inspiration from the
multi-task learning community and augment the PL
method with a different modeling pathway. Conse-
quently, we obtain a framework where two separate
pathways are trained synergistically targeted at la-
bels of both granularities.

4.1 Setup

Our work is based on two datasets, the fine-grained
and the coarse-grained datasets in the same domain.
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Let us use Dspe and Dggarse to denote two datasets
respectively. For the coarse-grained dataset Dgoarse,
the task is to learn a mapping:

3)

fcoarse(x) — Y,

For the fine-grained dataset Dgyer, the target map-
ping is:

fﬁne<X,tZ‘) — Y, € {1,...,'m} @)
where (X,y) € Deoarse and (X, t;, y;) € Dfipe. X is
the input data, and y is the corresponding label for
x. t; C x. m means that x has m sub-parts totally,
and y; is the corresponding label for t;.

The traditional PLL method is limited to fit a
uniform granularity situation. The first step to re-
solve this limitation is to merge the coarse-grained
dataset with the fine-grained dataset. Like the tra-
ditional PL method, we train a teacher model on
one dataset and generate pseudo labels for the other
dataset. We repeat this process at two granularities.
Here, we suppose that x; for each x in the Dcoarse
have been extracted. After pseudo labels genera-
tion, two new datasets are generated, donates as
Df. . and D! and a new dataset D’ are merged

fine coarse’

by these two datasets. Specifically,

uD

coarse?

D' = Dg,. 5)

€ Da/:oarse and (Xatiaylvyi) €

" and y; are the generated pseudo labels.

where (x,t;,y,y))
Dgine‘

Up to now, we get a new dataset with a much
larger scale. Our goal translates into obtaining a
model trained by the new dataset D’ with high per-
formance on the fine-grained task. In other words,
compared with the traditional PL. method, the key
problem is: how to utilize the coarse-grained la-
bels to improve the model’s performance on the
fine-grained task.

4.2 DPL Skeleton

As we mentioned, the core challenge for adapting
the vanilla PL method is to utilize coarse-grained
labels. As displayed in Figure 3, we set dual
pathways corresponding to each granularity. Both
pathways are finished by setting a proper softmax-
based classifier. Using z and h to denote the inter-
nal representation vectors for both pathways, we
decompose the design philosophy of DPL by the
following three conditions:
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Figure 3: The Model for the DPL Framework. (x, t;) is the input data. t; indicates the aspect terms, which are
painted by the dark green. We first generate (x, t;) and (x,1 — t;) as the input of the upper and lower pathways,
respectively. In this case, t; = (0,1,1,0,0,0) and 1 —t; = (1,0,0,1,1,1). “Oep” is an encoder that outputs z and
h. “@; ” is a predictor for the fine-grained task, and “©;” is a predictor for the coarse-grained task. Correspondingly,
y; 1s the prediction for the fine-grained task, and y is the prediction for the coarse-grained task. “mutual-exclusive”
means the information carried by z and h has little overlap.

* z carries adequate information to determine
the label at the fine-grained level. More for-
mally, there exists a function fe;,r in the over-
all functional space that is able to map the z
to ;.

The union set of h and z is capable of de-
termining the label at the coarse level. There
exists another function f@; in the overall func-
tional space that is sufficient to map the [zoh)]
toy.

h and z are mutually exclusive in terms of the
carried information. That means we cannot
train a function f@; to map h to y;, due to the
lack of information contributed from z.

The main rationale behind these three conditions
may include but is not limited to: (i)-the informa-
tion passing through the pathway with z is only
required in the fine-grained task; (ii)-the other in-
formation needed by the coarse-grained task passes
through the pathway with h; (iii)-the prediction at
coarse-grained level is based on the concatenation
of h and z, while either of them is insufficient to
accomplish the prediction of coarse-grained labels.

In order to satisfy the model to these three con-
ditions, our loss function consists of three terms.
Among them, the two terms are the classification
loss terms for the fine- and coarse-grained tasks, re-
spectively, fulfilling conditions 1&2. For condition
3, we draw inspiration from adversarial training
(Lample et al., 2017) to reduce the fine-grained
task-relevant information carried by h.
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4.2.1 Fine- and Coarse-grained Tasks

As shown in Figure 3, the model consists of an
encoder, Ogpc, together with two predictors, G);
and @; . In particular, Oy, encodes each input
data (x, t;) into two intermediate results, z and h.
In the figure, the top line with z is the pathway
for the fine-grained task-relevant information flow,
while the bottom line with h is the pathway for the
fine-grained task-irrelevant information flow.

The fine-grained predictor @;“ spits out predic-
tion based on z, with a cross-entropy loss:

ﬁﬁne(@enu @;_)
(x,t:,y,y:)€D’

Another crucial design in the DPL is that the
concatenation of h and z, [h o z], is fed to decide
the prediction of the sequence-level prediction:

(6)

[—log Pot (vil2)],

Ecoarse (Genc y @; )

> [~log Po(ylhoz).
(xvti7y1yi)€D,

(N

The gradient of this loss will update the model
parameters on both pathways. To prevent the de-
generated case where the two pathways act com-
pletely separately, we introduce another crucial part
to DPL in the next subsection.

4.2.2 Adversarial Training

The current version of DPL could still work as two
separate systems, which is deemed a degenerated
case. Therefore, to guarantee the mutual exclu-
siveness between the h and the z, we introduce an



adversarial training loss term to maximally reduce
the fine-grained task-relevant information carried
by h:

Lenc(genc) = Z [_ log P@S’(l - yz|h)]a
(x,ti,y,y:)€D’

3)

Las(©F)= Y [~logPgs(uilh)], )

(x,t:,y,y:)€D’

ﬁadv(@enm @;r) = ﬁdis(@;r) + /\'Cenc(@enc)a
(10)
where A weighs the trade-off between Og,. and
@; . The adversarial training was first introduced
in Lample et al. (2017) and has been widely used
(Zhao et al., 2018; Fu et al., 2018; Shen et al., 2017;
Melnyk et al., 2017). The loss term trains Ogpc to
fool @; by removing fine-grained task relevant
information from h. Considering that z is only re-
quired by the fine-grained task, the less fine-grained
task-relevant information the h has, the less over-
lap there is between the h and z. As a result, the
adversarial training makes h and z more mutually
exclusive in terms of the carried information.

4.2.3 Loss Function

The overall loss function to optimzie DPL com-
bines as below:

E(@enca 6;7 @;_) :£ﬁne(®enca @;_)
+a£c0arse(@en07 @;)
+5£adv(@en07 63_)

1D

where « and 3 are weighing terms. With this de-
sign of the loss functions, we posit that all three
philosophies should be satisfied. The ideal result
for it is that (i)-z only carries information dedicated
at the fine-level; (ii)-h carries the information of
the entire coarse level (i.e., the whole sequence) ex-
cluding the information of z; (iii)-neither h nor z is
sufficient on deciding the whole-sequence coarse-
level prediction, but with the concatenation of them,
h o z, the information is just adequate.

4.3 Grounding DPL to ABSA

4.3.1 Document-level Sentiment Analysis.

The task aims to analyze the sentiments
reflected by sentences. Given an or-
dinary labeled  document-level dataset
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Dataset positives neutral negative
Train Test Train Test Train Test
Rest 2164 727 637 196 807 196
Laptop 976 337 455 128 851 167

Table 1: Statistics of SemEval 2014 task 4 subtask 2.

D = {(x%¢%), (x',y")... (xN,yM)}, where x°
donates a sentence and y° donates the sentiment
polarity of the sentence. The goal of the task is to
learn a mapping function: fyen(x*) — 7/°.

4.3.2 Aspect-based Sentiment Analysis.

The ABSA task is to derive the sentiment polar-
ity attached to specific aspect terms in the given
sentence. Formally, one can draw a data point
(x!,y?) from the dataset D. We assign a sepa-
rate variable indicating the aspect terms annotation,
{t¥1, ... t"Ni}, where N; denotes the number of
total aspect terms in 7. In addition, the label y is
a combination of polarities corresponding to aspect
terms, y' = {y>!,...,y""i}. The goal for the
ABSA is to learn the mapping faspect (X%, t4F) —
yb*, where k € {1,...,N;}.

4.3.3 Implementation

Before implementing a specific DPL model, we
first map the task objectives of the SA and ABSA
tasks to the coarse- and fine-grained tasks in
the DPL framework. The coarse-grained task
is the SA task, while the fine-grained task is
the ABSA task. In another word, the mapping
fsent(x*) — ', is considered as the coarse-
grained mapping fcoarse(X) — v, and the map-
ping faspect(xi, tF) — ¢ is considered as
fﬁne(xa tz) — Y;-

Then we choose the model for O, @;{ and
O5. @; and Oy are simple multilayer perceptron
(MLP). It is worth noting that O, can be a prior
ABSA model. Thus, we argue that the DPL frame-
work can be applied to most ABSA methods. Typi-
cally, we choose Bai et al. (2020)’s and Rietzler
et al. (2019)’s works and a multi-task learning base-
line as examples to verify. The results are shown
in Table 3.

S Experiments

5.1 Experimental Setup
5.1.1 Dataset

The experiments of the DPL framework require at
least two datasets at different granularities. For the



ABSA task, we select the SemEval dataset (Pon-
tiki et al.) as the fine-grained sentiment task dataset
and the Amazon reviews dataset from Kaggle* as
the coarse-grained sentiment task dataset. The Se-
mEval datasets are used as our core task dataset,
and the Amazon reviews dataset is used as an aux-
iliary dataset.

Dataset SemEval. This dataset is SemEval 2014
task 4 subtask?2 (Pontiki et al.). It has two sub-
datasets, the reviews in the restaurant and laptop
domains. We show more details in Table 1.

Dataset Amazon Reviews. The dataset contains
3.6 million sentences in the training set and 0.4
million sentences in the test set. Considering the
huge data volume gap, we only chose the test set
as the auxiliary dataset for this experiment.

5.1.2 Generation of Pseudo Labels

Here we provide some details of the pseudo labels
generation process.

As a result of the PL generation, the ABSA
dataset has true aspect-level sentimental labels and
pseudo-sentence-level sentimental labels, while the
SA dataset has true sentence-level sentimental la-
bels and pseudo-aspect-level sentimental labels.

To get aspect terms from the sentence in the
SA dataset, we first performed aspect extraction
using the model proposed by Li et al. (2019) and
discarded sentences without aspect terms.

We train the model proposed by (Bai et al.,
2020) as the teacher models on the aspect-level
dataset with the accuracy scores of 86.05% and
79.53% respectively on the domain of Restaurant
and Laptop.

We train a BERT+Linear as the teacher model
on the document-level dataset, with a 94.45% accu-
racy score in the restaurant Domain and a 93.35%
accuracy score in the laptop domain.

5.1.3 Implementation Details

In addition to the above introduction, some more
important details of our experiments need to be
clarified for ease of understanding.

Evaluate Matrix

The model for ABSA is tested on SemEval’s
test set. Like those who have performed this work
before, we use the model classification accuracy
(ACC) and macro-F1 (F1) scores as the evaluation
criterion.

Batch Loader

‘www.kaggle.com/bittlingmayer/
amazonreviews
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Model Restaurant Laptop
Acc F1 Acc F1
He et al. (2018) 78.73  68.63 7191 68.79
Auxiliar Chen and Qian (2019) | 79.55 7141 73.87 70.10
¥ He et al. (2019b) 83.89 75.66 7536  72.02
Liang et al. (2020) 8493 76.66 77.51 7342
Bai et al. (2020)* 86.04 80.27 79.53 7454
BERT Pang et al. (2021) 87.66 8297 8022 77.28
Li et al. (2021) 87.13 81.16 81.80 78.10
Rietzler et al. (2019) | 87.89 81.05 8023 75.77
Ours DPL | 89.54 8486 81.96 7858

Table 2: Results of different methods. “BERT” repre-
sents the works that are also based on the BERT (Devlin
et al., 2018), “Auxiliary” represents the methods that
also utilize auxiliary datasets to help the ABSA task. “*”
means our replication results. The results show that our
method achieves state-of-the-art in this benchmark.

Since the size of the current auxiliary dataset
is much larger than the existing dataset. To avoid
the large auxiliary dataset changing the original
dataset distribution, we adopt two asynchronous
loaders and define the step ratio k, i.e., whenever
the model is trained on the original dataset by 1
step, it is trained on the auxiliary dataset by & steps.
In general, we set k = 1.

Model Implementation

The encoder has three main structures for the
ABSA task: BERT (Devlin et al., 2018), Relational
Graph Attention Networks (RGAT) (Wang et al.,
2020), and masking embedding module. The BERT
and RGAT have been proved to have a good effect
on this task. The mask embedding module is used
to generate z and h. It is similar to the implemen-
tation of “segment_id” in the code of BERT.

5.2 Main Results

Table 2 shows that the DPL has achieved a state-of-
the-art (SOTA) performance in terms of the aver-
age accuracy and F1-scores on the SemEval 2014
task 4 subtask 2 dataset. The group denoted as
“Auxiliary Dataset is multi-task learning methods
based on labeled datasets. Compared with them,
our work shows the advantage of the PL. method.
“BERT-based” are some recently published works
with good results. Obviously, our method achieves
significant improvements over them.

It should be noted that our design is based on
the BERT. Thus the comparison is not made with
the methods based on a more powerful pre-trained
model, such as Roberta (Liu et al., 2019), De-
BERTa (Silva and Marcacini), and GPT-3 (Floridi
and Chiriatti, 2020).



Model ‘ Restaurant Laptop Model ‘ Restaurant+Pre Restaurant
| Acc  Fl  Acc  FI | Acc  FI Acc  FI
RGAT (Bai et al., 2020) 86.04 8027 79.53 74.54 DPL | 89.54 8486 8668 8044
RGAT-+DPL 8722 8147 8101 7752 —
Tmprovement 4118 +1.20 +1.48 +2.98 Traditional Pseudo-Label ‘ -1.43 -2.09 -1.60  -2.73
Adapter(Rietzler et al., 2019) | 87.89 8105 8023 75.77 - adver?‘“:ia' "a'('i““lgb | ':'zg ;;}1 '1‘22 '?gg
Adapter+DPL 89.54 84.86 8196 7858 '°‘;ia“e'gr?‘“e pseudo fabels ) -1 - - o
Tmprovement +1.65 4371 +173 +2.81 - fine-grained pseudo labels -1.96  -2.84 -0.79  -1.79
MultiBERT 84.54 7852 7832 7387 . - « »
MuliBERT4DPL 8552 7961 7975 7580 Tat?le 4: Results of a}bllatlon study.. Restaurant” takes
Improvement +0.98 +1.09 +1.43 +1.93 plain BERT as the initial model while “Restaurant+Pre”

Table 3: Results of Combining DPL with Other Meth-
ods. Restaurant and Laptop are two benchmarks same
as those in Table 2. RGAT (Bai et al., 2020), Adapter
(Rietzler et al., 2019) are typical ABSA methods. Multi-
BERT is a multi-task baseline implemented by us. It
predicts the SA label based on the “[cls]” and predicts
the ABSA task based on the specific word vector. We
add the DPL framework to them, denoted as “+DPL”,
and achieve significant improvements.

5.3 DPL as a General Framework

As we mentioned, we promote DPL as a general
framework capable of combining other methods on
the ABSA task. Table 3 shows the performances
of some typical methods before and after they com-
bine the DPL framework. On the one hand, RGAT
(Bai et al., 2020) is a model architecture based on
GAT and BERT. Thus the improvement shows that
the DPL framework fits other architectural designs,
even without auxiliary datasets. On the other hand,
for those methods involving auxiliary datasets, we
take Adapter (Rietzler et al., 2019) and MultiB-
ERT for demonstration. Previous works are mainly
divided into two categories, pretraining and multi-
task learning. Adapter (Rietzler et al.,2019) can be
categorized into the pretraining class while Multi-
BERT is a multi-task learning baseline inspired
by He et al. (2018). Since the previous works us-
ing the multi-task method to combine the SA and
the ABSA datasets were LSTM based, we imple-
mented a better model based on the BERT. All the
improvements verify that the DPL framework does
not conflict with these methods and exhibits full
compatibility for further performance gains.

5.4 Ablation Study

We set up several sets of ablation experiments and
present the results in Table 4 to explore the role of
adversarial training and pseudo labels in the DPL
framework.

The above experiments contain two types of
BERT on the SemEval Restaurant dataset. To en-
sure the fairness of the ablation experiments, we
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takes Rietzler et al. (2019)’s BERT as the initial model.
“DPL” denotes our method. “Traditional Pseudo-Label”
represents we take the PL method for fine-grained tasks
dropped out the coarse-grained labels. The last three
cases named in the form of “- X’ means that we deleted
the “X” from the original DPL to evaluate the effect of

use the same parameters when training the same
group, and the parameter configurations are shown
in Appendix.

The comparison with “Traditional Pseudo-Label”
shows the advantages of our method. From the item
“- adversarial training”, the significant decline on F1
reflects that adversarial training plays an important
role in the DPL framework. The items, “- coarse-
grained pseudo labels” and ““- fine-grained pseudo
labels”, show that only adding adversarial training
at one granularity has less effect than adding it both
ways.

Furthermore, we also take Chamfer Distance
(CD) between the set of h and the set of z to pro-
vide an insight into the effect of the mutual ex-
clusiveness. And the CD of the model with the
adversarial training process is 30% larger than that
of the model without this process. That means the
adversarial training process increases the distance
between the variable h and z.

6 Conclusion

In this paper, we propose Dual-granularity Pseudo
Labeling (DPL). DPL extends from the vanilla
Pseudo-Label method and augments it to a dual-
pathway system. It additionally enforces strong
control of information flow directing to the data
at different granularities of annotation. The re-
sults demonstrate the state-of-the-art performance
of DPL on the data-scarce ABSA task. As a pio-
neering framework design, we also show that the
DPL is compatible with pre-training and multi-task
learning methods as published before. In the future,
we hope to explore the possibility of DPL in other
domains, such as computer vision problems where



the discrepancy of granularities possesses.
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Abstract

Self-attention heads are characteristic of Trans-
former models and have been well studied for
interpretability and pruning. In this work, we
demonstrate an altogether different utility of
attention heads, namely for adversarial detec-
tion. Specifically, we propose a method to
construct input-specific attention subnetworks
(IAS) from which we extract three features to
discriminate between authentic and adversar-
ial inputs. The resultant detector significantly
improves (by over 7.5%) the state-of-the-art
adversarial detection accuracy for the BERT
encoder on 10 NLU datasets with 11 different
adversarial attack types. We also demonstrate
that our method (a) is more accurate for larger
models which are likely to have more spurious
correlations and thus vulnerable to adversarial
attack, and (b) performs well even with modest
training sets of adversarial examples.

1 Introduction

Self-attention heads are characteristic of Trans-
former models. Individual attention heads are inter-
pretable in different ways. One, for a token in an
input sentence, we can visualize the attention paid
by a head to all other tokens. Such attention pat-
terns are attractive linguistically and have come to
define roles for attention heads (Pande et al., 2021).
Two, the output of attention heads from various
layers can be probed for their ability to encode in-
formation related to the “NLP pipeline” (Jawahar
et al., 2019; Tenney et al., 2019; van Aken et al.,
2019). Three, attention patterns of heads can repre-
sent knowledge learnt by a teacher model when dis-
tilling to a smaller student model (Jiao et al., 2020).
While individual attention heads are interpretable
in the above ways, it is found that attention heads
in models such as BERT are over-provisioned and
can be pruned. For instance, Michel et al. (2019)
showed that a model with 16 attention heads per
layer can be pruned to just one. Voita et al. (2019)
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and Budhraja et al. (2020) have shown similar re-
sults with different pruning techniques across tasks.

In the above methods, while interpretation of
attention heads is input-specific, pruning of heads
is input-agnostic. Can these two be combined, i.e.,
can we prune attention heads in an input-specific
manner creating opportunities for interpretation?
We explore this idea to identify an altogether differ-
ent utility of attention heads - namely adversarial
detection which is the task of differentiating be-
tween authentic and adversarial inputs. Specifically,
we propose a method to obtain an input-specific at-
tention subnetwork (I1AS), which is a subnetwork
where a subset of attention heads is masked with-
out affecting the output of the model for that input.
Such subnetworks could vary across inputs repre-
senting how the model works for each input. This is
particularly important for adversarial detection, as
adversarial inputs do not reveal themselves in what
the model outputs but may leave tell-tale signs in
how the model computes this output.

In this work, we present a technique to efficiently
compute IAS and demonstrate its utility in adversar-
ial detection with significantly improved accuracy
over all current methods. To this end, we propose
three sets of features from IAS. The first feature,
Fhask, 18 simply the attention mask that identifies if
an attention head is retained or pruned in IAS. The
second feature, Fp;p, characterizes the output of a
“mutated” IAS obtained by toggling the mask used
for attention heads in the middle layers of IAS. The
third feature, Fiy, characterizes the outputs of IAS
as obtained layer-wise with a separately trained
classification head for each layer. We train a classi-
fier, called AdvNet, with these features as inputs to
predict if an input is adversarial.

We report results on 10 NLU tasks from the
GLUE benchmark (SST2, MRPC, RTE, SNLI,
MNLI, QQP, QNLI) and elsewhere (Yelp, AG
News, IMDDb). For each of these tasks, we first
create a benchmark of adversarial examples com-
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bining 11 attack methodologies like Word order
swap (Pruthi et al., 2019), embedding swap (Mrksic¢
et al., 2016), word deletion (Feng et al., 2018), etc.
In total, the benchmark contains 5,686 adversarial
examples across tasks and attack types. To the best
of our knowledge, this dataset is the most exten-
sive benchmark available on the considered tasks.
Across all these tasks and attack types, we compare
our adversarial detection technique against state-of-
the-art methods such as DISP (Zhou et al., 2019),
NWS (Mozes et al., 2021), and FGWS (Mozes
et al., 2021). Our method establishes the best re-
sults in all tasks and attack types, with an average
improvement of 7.45% over the best method for
each task. Our detector achieves an accuracy of
80-90% across tasks suggesting effective defense
against adversarial attacks.

Having established the utility of attention heads
for adversarial detection, we perform several ab-
lation studies. First, we compare different combi-
nations of the features demonstrating that they are
mutually informative and thus combining them all
works best. Second, we show that CutMix data
augmentation (Yun et al., 2019) improves accu-
racy, demonstrating the first use of this method
in adversarial detection in NLP tasks. Third, we
show that the detector is more accurate as the size
of the language model scales. This is encourag-
ing because larger language models are expected
to have increased spurious correlations and thus
are more vulnerable to adversarial attacks. Fourth,
we show that the detector performs well even for
modest training sizes of adversarial examples, sug-
gesting effective generalization. In summary, we
propose a novel relation between attention heads
and adversarial detection. The effectiveness of the
resultant detector establishes that the mask of atten-
tion heads captures critical information about how
a Transformer model works for a given input.

The rest of the paper is organized as follows. We
detail our core method of computing IAS in the
next section. In Section 3 we discuss the features
from IAS for adversarial detection. We detail the
experimental setup along with the dataset creation
process in Section 4. We present our results in
Section 5 and conclude in Section 6.

2 Input-Specific Attention Subnetworks

In this section, we describe Input-specific Atten-
tion Subnetworks (IAS) and the computational ap-
proach to identify IAS for a given input.
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2.1 Notation

We consider a BERT-style encoder model where
each layer consists of multi-headed self-attention
and position-wise FFN. Let an input z consist of
T tokens each represented by d,,-dimensional vec-
tors. Let X; € RT*dv be the representation at the

W2, WK WY be the
projection matrices of the i self-attention head
in the j'" layer. We define Q;; = X; Wj?, Kj; =
X; Wff Vie=X; Wj‘f as the query, key, and value
corresponding to the head respectively. Each self-
attention head performs a scaled dot-product atten-
tion on the query, key, and value to generate the
head’s output. The output of all the heads in a layer
are concatenated and passed through the FFN.

Qikji\
va, ) O
()

Layer;(X;) = concat;[Head;; (X j)]WjO

input of the j* layer. Let

Head;;(X;) = softmax (

where d;, is the dimensionality of each key vector
and W]-O is a learnable parameter.

A pre-trained model is fine-tuned on a specific
task, such as sentiment classification. Let 6 be
the set of trainable network parameters which are
optimized to minimize a task-specific training loss
for each input z:

L0(z) = Lop(f(x,0),y), 3)

where f(-) is the function computed by the model
with parameters 6 for input z, Log is the stan-
dard cross-entropy loss function and y is the ex-
pected model output for input z. The overall
training loss is averaged across all |z| inputs, i.e.,
Ll = ﬁ >, L%x). Let f(-) represent the out-
put class generated from f(-) and 6* be the set of
optimal network parameters obtained after training.

2.2 Representing IAS

In an IAS, a subset of attention heads are pruned.
We represent a continuous relaxation of pruning by
modifying Eqn. 1 to weigh the output of each head
by a scalar gating value g;; € [0, 1]. The j** layer
of the modified network is given by

Layer"(X;) = concat; [gji-Headji(Xj)]W]O 4)

During inference, we constrain the gating values
to be binary to characterize either exclusion or in-
clusion of a head: g;; is replaced by g?i e {0,1}
which defines the attention mask for the input z:
() = {g?i} € {0,1}"™™, where n is the number



the acting, costumes, music, the acting, costumes, music,
cinematography and sound are all astounding cinematography and sound are all astuonding
given the production's austere locales. given the production's austere Icoales.

P(negative) = 0.015
P(positive) = 0.985

P(negative) = 0.981
P(positive) = 0.019

Figure 1: The IAS (with active heads in green) com-
puted for two inputs on the SST-2 task, left is authentic
while right is adversarial. Notice how a small adversar-
ial perturbation in the input leads to very distinct sub-
networks being computed. The class predicted by each
IAS agrees with the prediction of the full network.

of layers and m is the number of heads per layer.
We represent the output class predicted by the IAS
for an input = by f4(x, 6%, g?). We call the subset
of attention heads that are assigned a gating value
of 1 as active heads and note that the active heads
jointly define a subnetwork, called IAS. We illus-
trate IAS with an example. Figure 1 shows the
BERT-Base model with 12 layers and 12 heads per
layer. For two specific inputs, the corresponding at-
tention masks are shown with their active heads in
green. Thus, IAS is input-specific and characterizes
how the model processes the input in a relatively
low-dimensional space of [0, 1]144.

2.3 Computing IAS

We compute IAS by treating the gating values
as free variables to optimize the task-specific
loss (Eqn. 3) for a given input x. In this op-
timization, the network parameters 6 are frozen.
Each gating value, g;; is defined as gj;
frc(pji), where pj; is the free variable that is
optimized and fr¢ is a version of the hard con-
crete distribution (Louizos et al., 2017) given as
1+ea~(zog<1—;ji)—zog(pﬂ>) , where, a=6 gave the best
results for our work. Let g be the gating vector
as optimized by minimizing the loss for a specific
input. We need to enforce that g is binary. Unlike
approaches by Voita et al. (2019) and Wang et al.
(2020), we do not include a regularization term in
the training objective. Instead, we retain only those
heads for which the gating values ascend the fastest
towards 1, as measured after a certain n number
of epochs. Specifically, each binary value g?i is
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derived from gj; after 1) epochs as:
1, if gji(x) > B - max(g(z))
0, otherwise

g5:(x) (5)
where, (< 1) is a thresholding parameter and
max(g(z)) is the largest among nm gating values.
For our work, we set = 10 and 8 = 0.8.

Two exceptional cases may arise. First, if the bi-
nary gating values of all heads in a layer are thresh-
olded to 0, then the largest gating value in that layer
is forced to 1 to ensure information flows through
the network. Second, if the IAS predicts the wrong
class for that input, then 5 is reduced successively
in steps of 0.2 until the output of the IAS is correct.
For 98% of the inputs, the subnetwork predicted
the target class within 5 = 0.6.

3 Model for Adversarial Detection

In this section, we explain how we extract features
from the IAS and the design of the classifier for
adversarial detection. We use the term target class
to refer to the class predicted by the complete fine-
tuned network for an input. For authentic inputs,
this translates to the true class while for adversarial
inputs, this refers to the adversarial class that the
model is fooled into predicting.

3.1 Attention mask Fy;qk

The IAS identifies a subnetwork through which
important information flows for a particular input.
We hypothesize that this flow could be different
for authentic and adversarial inputs. Thus, the first
feature we extract, Finask, 1S just the pre-activation
value p for the gating values of each head in the
IAS. Thus, for a BERT-base model with 12 layers
and 12 heads per layer, Finsk is a 144 dimensional
vector. We also define Fypasx Which uses the binary
gated values g° instead of the real-values.

3.2 Features from flipping heads in IAS Fg;,

Adversarial inputs rely heavily on the network ar-
chitecture and specific parameter combinations to
fool the model (Wang et al., 2019). Hence, slight
changes to network parameters can render an ad-
versarial perturbation non-adversarial. We thus
hypothesize (and later illustrate in Section 5.2) that
if we flip some of the heads in the TAS, it could sig-
nificantly change the output for adversarial inputs
but not by as much for authentic inputs. Which
heads should we flip? We take motivation from
studies that show that middle layers of BERT cap-
ture syntactic relations (Hewitt and Manning, 2019;



Goldberg, 2019) and are multi-skilled (Pande et al.,
2021), making them crucial for prediction. In con-
trast, the initial layers are responsible for phrase-
level understanding while the last few layers are
highly task-specific (Jawahar et al., 2019). Hence,
we choose to flip the gating values g° of heads in
the middle layers of IAS, specifically, the middle
[ 5] layers, i.e., we drop heads that were earlier ac-
tive and include earlier inactive heads. We denote
the modified gating vector after flipping as g7.

{

We run each input z through this mutated sub-
network and obtain a 4-dimensional feature vector,
Fiip consisting of the predicted class given by

9 ifj < 3lorj >2[3]
Lg%, if[5] <j<2[5]

f_

95 = (6)

f":q(z:, 6*, g/), the target class 7, the confidence of
prediction, and a flag asserting equality between
predicted and target classes.

3.3 Layer-wise auxiliary features Fiy

Studies (Wang et al., 2020; Xie et al., 2019) have
shown that intermediate representations of adver-
sarial inputs diverge from those of authentic inputs
as we progress into deeper layers. This indicates
that layer-wise information may be discriminative
of adversarial inputs. Hence, instead of having a
single classifier head processing the output of the
final layer, we propose to train a classifier head at
the output of each layer and use the classes pre-
dicted by them as features in adversarial detection.
Specifically, on the fine-tuned complete model, we
freeze the standard model parameters to 6* and
train n — 1 classifiers separately with a classifier
head attached to each of the first n — 1 layers to
predict the target class. Following the convention
in Eqn. 3, the training loss for the [*" classifier
head with parameters Q' on input z is given by:

‘CQZ (l’) = ECE(fé(xa 6" U Qla {1}nm)7y)7 (7)

where f;(-) gives the output class computed by
the I*" classification head of a network with gat-
ing vector g. The overall training loss is given by
LY = m Y £ (). Let Q be the set
of optimal parameters obtained after training.
Then for a given input, we construct the IAS
after flipping heads as given by the gating vector
¢! and compute the outputs of the n — 1 layer-wise
classifiers, i.e., the output of the Ith classifier head
is given by J/”;(x, 0* U, g/). We then create an
n + 1 dimensional feature, Fj,,, which consists of
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Figure 2: Demonstration of CutMix used to mix
patches from two input feature vectors of length L each.

the n — 1 output labels with two other scalars: (a)
the number of these outputs that match the target
class, and (b) the number of times these outputs
change when traversed in the order of layers.

In summary, we compute the features as follows.
First, the model is fine-tuned on the task. Then,
layer-wise classification heads are trained while
keeping the model parameters frozen. Thus, given
an input, we first optimize and compute IAS from
which we extract Fi,sk. Then, the gating values of
the middle layers are flipped and we extract Fi;p.
Finally, on the IAS with flipped heads, layer-wise
classifier outputs are used to extract Fiy.

3.4 Classifier for adversarial detection

We refer to our classifier as AdvNet, which takes as
input, an (nm + n + 5)-dimensional vector F'(x)
which is the concatenation of Fiyask, Fiip, Fiw and
generates a binary output classifying if a given in-
put is authentic or adversarial. AdvNet consists
of two 1-D convolutional layers with ReLLU acti-
vation, two fully connected layers with sigmoid
activation, and a final classification layer with soft-
max activation. Since adversarial inputs are slow
and computationally expensive to generate, we
employ the CutMix algorithm (Yun et al., 2019)
for data augmentation. In CutMix, we slice out
patches from feature vectors of multiple inputs in
the training set, each of which could be authen-
tic or adversarial, and combine them to generate
new feature vectors. Their respective ground truth
labels are mixed in proportion to the length con-
tributed by each patch (see Figure 2). Formally,
if {x;}2 is a random subset of training set sam-
ples, an augmented feature vector from CutMix
is defined by F'(z) = concat;[F(z;)[p; : pi+1]],
where 0 = p; < p2 < ... <ppy1=nmm+n-+5
and the mixed ground truth label is given by y =
> i Yi(Piv1 — pi). Using soft labels by mixing
ground truth labels also offers better generalization
and learning speed (Miiller et al., 2019).



4 Experimental Setup

4.1 NLU tasks for evaluation

We choose the following 10 standard NLU tasks
for performing our experimental studies: SST-2
(Socher et al., 2013), Yelp polarity (Zhang et al.,
2015a), IMDb (Maas et al., 2011), AG News
(Zhang et al., 2015b), MRPC (Dolan and Brockett,
2005), RTE (Wang et al., 2018), MNLI (Williams
et al., 2018), SNLI (Bowman et al., 2015), QQP!
and QNLI (Wang et al., 2018; Rajpurkar et al.,
2016). We refer the reader to Appendix A for fur-
ther details on these datasets.

4.2 Dataset creation

To perform adversarial detection, we require a
combined set of authentic and adversarial samples
for each task. First, we fine-tune a BERT-based
model for each task using its publicly available
training set. Then, samples from its test set for
which the fine-tuned model makes correct predic-
tions constitute the set of authentic samples for
that task. Second, we generate adversarial samples
by attacking the fine-tuned model using a broad
set of 11 hard attack types to comprehensively
test AdvNet’s performance and its generalizabil-
ity to diverse perturbations. The attacks include
word-level attacks: deletion (Feng et al., 2018),
antonyms, synonyms, embeddings (MrkSic et al.,
2016), order swap (Pruthi et al., 2019), PWWS
(Ren et al., 2019), TextFooler (Jin et al., 2020) and
character-level attacks: substitution, deletion, in-
sertion, order swap (Gao et al., 2018). We use the
popular TextAttack framework (Morris et al., 2020)
for implementations of these attacks. Resulting per-
turbed samples that successfully fool our complete
fine-tuned model constitute the set of adversarial
samples for that task. On the combined authentic
and adversarial set, we make a 70-10-20 split for
creating training, validation and test sets for adver-
sarial detection using AdvNet. Our dataset contains
a total of 5,686 adversarial inputs across tasks and
attack types and is publicly available at https:
//github.com/emilbiju/Bert-Paths.

4.3 Implementation details

Our adversarial detection model, AdvNet, contains
two 1D convolutional layers followed by two fully
connected layers. The two convolutional layers

lquoradata .quora.com/First-Quora-Data
set—Release—-Question—-Pairs
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have a kernel size of 3 and generate 32 and 16 out-
put feature maps. The two fully connected layers
have output dimensions of 32 and 16 with dropout
rates of 0.1. We use the binary cross-entropy loss
function and the Adam optimizer with a learning
rate of 0.001. We train the model for 100 epochs
with early stopping on an NVIDIA K80 GPU.

Progression of gating values over 10 epochs
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Figure 3: The trajectory of gating values of individual
heads during the optimization to compute IAS. Only
a few heads (in green) reach the threshold and remain
active in IAS.
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Figure 4: Fraction of inputs with a given number of ac-
tive heads from BERT-Base. Notice that in most cases,
only 20-40 heads out of 144 remain active.

5 Results & Discussion

In this section, we first analyse the IAS (Section
5.1) and the constituent features of AdvNet (Sec-
tion 5.2). We then perform a comparative study
with state-of-the-art adversarial detection methods
(Section 5.3). Lastly, we perform ablation studies
to understand the effect of task, model size, fea-
ture combinations and training set attacks on the
performance of AdvNet (Section 5.4). Unless oth-
erwise stated, the plots pertain to experiments on
the SST-2 dataset with the BERT-Base model.
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Figure 5: Projections with t-SNE on the attention mask for (a) SST-2, (b) AG News, and (c) authentic and adver-
sarial inputs. Projection of attention masks are strongly discriminative of class and weakly of adversarial inputs.

5.1 Active heads in IAS

We first check the number of active heads in IAS
for a given input. To do so, we plot the progression
of gating values with epochs when optimizing them
for a given input (see Figure 3). We observe that
only a small fraction of heads (shown in green) are
active at the end of the optimization process, thus
resulting in a sparse vector. The green curves that
are below the blue (threshold) line correspond to
the two exceptional cases discussed at the end of
Section 2.3. While the above plot was for a single
randomly selected input, in Figure 4 we show the
fraction of inputs with a given number of active
heads for all the datasets used in this work. The
relatively small modes and the right skew distribu-
tions imply that the extracted IAS are often sparse.

5.2 Feature-specific analysis

We now analyze the individual effectiveness of the
three features proposed in Section 3.
Attention mask (Fpask). We first show that the
attention mask is strongly correlated with the in-
put’s target class. To do so, we project the binary
vector g(x) for each authentic input x onto a 2D-
plane using the t-SNE method (van der Maaten and
Hinton, 2008) as shown in Figure 5(a), (b). We
observe that inputs from different classes separate
into distinctly separate clusters. Thus, the attention
mask is discriminative of an input’s target class as
the choice of active heads depends on it. Interest-
ingly, even if the attention computed for the same
word location in two distinct inputs are the same,
the heads attending to each word and responsible
for generating different output classes are different.
We present a similar plot with both authentic
and adversarial inputs in Figure 5(c). We note that
adversarial inputs group together with the authentic
inputs whose true class is the same as their adversar-
ial/target class. Within clusters of the same target
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Figure 6: CDF over the target class output logit of the
mutated IAS. The large area below the green curve with
logit value<0.5 corresponds to a large number of adver-
sarial inputs whose mutated IAS predict a non-target
class.

class, there is a only a moderate distinction between
adversarial and authentic inputs. But we show in
further experiments that a better separation is pos-
sible when the complete nm-dimensional vector is
used as opposed to a 2D projection.

Features from flipping heads in IAS (Fg;,). For
each of the datasets, we compute the percentage of
authentic and adversarial inputs which generated
non-target class predictions. We find that the mu-
tated IAS after flipping heads in the middle layers
is more likely to predict the correct target class out-
put for an authentic input than an adversarial one.
We also study the confidence of the mutated IAS in
making these predictions using a CDF plot (Figure
6) over the output logit corresponding to the target
class.

We observe that Fg;, predicts the target class
with higher confidence in case of authentic inputs
than adversarial ones. Specifically, only 9% of
authentic inputs had prediction confidence lower
than 0.85 as compared to 20% of adversarial in-
puts. Further, it predicts a non-target class with
high confidence for some adversarial inputs. For
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Figure 7: Fractions of authentic and adversarial inputs
that generate a non-target class prediction at each layer-
wise classification head.

example, 30% of adversarial inputs with prediction
confidence higher than 0.85 gave the wrong pre-
diction. In contrast, flipping the initial/final layers
of the IAS instead of the middle layers did not sig-
nificantly change the model prediction for either
authentic or adversarial samples, making it difficult
it to distinguish them.

Layer-wise auxiliary features (Fjy,). In Figure 7,
we plot the distribution of auxiliary output mis-
matches (non-target class predictions) across net-
work layers. We observe that for most layers, the
fraction of authentic inputs having target class pre-
dictions is higher than adversarial inputs. The dif-
ferences are particularly large for the last few lay-
ers. On average across datasets, we observed that
52.5% of adversarial inputs generate more than 2
auxiliary output predictions that do not match the
target class while only 23.1% of authentic inputs do
the same. Additionally, when traversing the layer-
wise outputs in order, we observed that the output
predictions of adversarial inputs switch among pos-
sible classes more often than for authentic inputs
(see Appendix D). These observations justify the
features that we include in Fjy,.

Based on the above analyses, we have demon-
strated that all 3 features of IAS are informative
for adversarial detection. Our results in the next
section corroborate these findings.

5.3 Performance on Adversarial Detection

Following the observations in the previous sec-
tion, we use AdvNet with the identified features
for adversarial detection. We compare the per-
formance of AdvNet with the current state-of-the-
art approaches for detecting adversarial inputs for
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BERT-based models, viz., FGWS (Mozes et al.,
2021), NWS (Mozes et al., 2021), DISP (Zhou
et al., 2019) and FreeLB (Zhu et al., 2019). We
briefly describe these methods in Appendix C.

As seen in Table 1, AdvNet significantly outper-
forms existing approaches across all 10 datasets
with an average improvement of 7.45%. We re-
port an improvement of 6.53% for the 3 sentiment
analysis datasets (SST-2, Yelp, IMDb), 8.05% for
the 4 NLI datasets (RTE, SNLI, MNLI, QNLI)
and 6.98% for the 2 paraphrase detection datasets
(MRPC, QQP) over the respective best methods.

Another baseline that we compare with is Certi-
fied Robustness Training (Jia et al., 2019). While
this work is not aimed at adversarial detection, it
provides bounds on model robustness for word sub-
stitution perturbations. For making a comparison
with our work, we note that the fraction of adver-
sarial samples that are correctly detected as adver-
sarial translates to robustness for binary classifica-
tion tasks. We report robustness of 87% for word
substitution-based attacks and 81% across all 11
attacks for IMDb, while the best upper bound ob-
tained through certified robustness training is 75%.

When comparing across datasets, we observe
that AdvNet performs better on simpler sentence
labelling datasets like SST-2 and AG News when
compared to more complex tasks like RTE and
MRPC which require comparison between sen-
tences. Existing work (Pande et al., 2021) shows
that for simpler tasks, the BERT heads perform
discrete non-overlapping roles, while for complex
tasks, there is greater overlap in head roles and a
few heads perform more than one role. We hypothe-
size that this nature implies that the attention masks
for different inputs even belonging to the same type
(authentic or adversarial) can vary widely. This re-
duces the consistency of features across input types
making the detection harder. Nevertheless, AdvNet
establishes state-of-the-art results across datasets.
A detailed analysis of the performance of AdvNet
across tasks and attack types is provided in Ap-
pendix E.

5.4 Ablation studies

We now evaluate how variations in model size,
training set size, and the choice of feature com-
binations effect performance of AdvNet.

Effect of model size. IAS can be computed for
Transformer networks of any size. We compare
BERT-Small and BERT-Base models in terms of



Model SST-2 Yelp AG News MRPC IMDb SNLI RTE MNLI QQP QNLI
FGWS 7193 78.36 7041 69.85 7598 7541 7123 60.23 73.52 78.14
NWS 70.31 7472  65.62 68.02 65.72 71.82 6427 56.94 70.20 74.58
DISP 68.73 70.15  66.38 6222 7523 7292 6640 59.34 69.86 76.92
FreeLB 77.60 82.54  75.55 7241 79.85 79.80 64.29 58.10 65.69 76.40
AdvNet

w/ BERT-Small 78.57 76.72  78.63 75.05 74.09 72.07 73.64 6426 68.71 74.47

w/ BERT-Base 90.74 87.68 91.78 84.61 81.18 82.50 80.43 72.61 75.27 86.07

Table 1: Comparison of the adversarial detection accuracy of AdvNet using features extracted from fine-tuned
BERT-Small and BERT-Base models with other state-of-the-art approaches for adversarial detection.
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Figure 8: Effect of training set size on accuracy of ad-
versarial detection with AdvNet.

performance of AdvNet as shown in Table 1. We
observe that, across datasets, AdvNet performs bet-
ter in detecting adversarial inputs fed to the larger
BERT-Base model (108M parameters) as opposed
to the smaller BERT-Small model (25M parame-
ters). The increase in accuracy averaged across
tasks is a significant 10.76%. We hypothesize that
this is because models with more layers encode
more information and allow for a better build-up of
semantic information which means that individual
heads play more discrete roles. This better perfor-
mance for the larger model is encouraging as the
more accurate and larger language models are ex-
pected to be more vulnerable to adversarial attacks.
Effect of training set size. In Figure 8, we show
how the performance of AdvNet changes as the
amount of training data changes. We observe that
AdvNet performs well even when it uses only a
fraction of the training set. Specifically, even at
40% of the training examples used, AdvNet out-
performs the results obtained with existing state-of-
the-art models on most tasks. This suggests that the
CutMix data augmentation is effective and the Ad-
vNet model is sample-efficient. This is particularly
important because designing adversarial examples
for each dataset remains a challenging task.
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Datasets Fyasc Frip Fiw  Bin w/o CM
SST-2 82.87 74.07 64.79 85.59 82.23
Yelp  80.23 62.08 66.01 84.30 83.57

AG News 83.11 76.41 57.14 90.47 83.11
MRPC 76.35 68.82 59.40 80.27 77.35
IMDb  74.54 60.00 55.45 73.78 74.23
SNLI  80.83 57.91 58.83 75.64 70.41
RTE 74.44 60.88 56.67 77.21 74.06
MNLI 66.95 51.30 60.00 66.85 69.95
QQP 66.41 61.63 62.64 71.88 64.50
QNLI 79.65 55.69 59.36 81.42 73.11

Table 2: Results on feature combinations.

Using different feature combinations. We had
shown that each of the three features are infor-
mative in Section 5.2. In Table 2, we report the
performance of AdvNet by ablating various model
components. The first 3 columns report accuracies
when only one of the three features is passed at a
time to the model. We observe that Fi, sk performs
better than Fg;, and Fjy. This suggests that the
attention mask is the most important feature input
to the model. We analyze the roles of individual
gating values using GradCAM (see Appendix F).
Next, we test the performance when the boolean
attention mask Fpmask 1S used instead of the real-
valued vector Fiyask along with Fy;, and Fiy. The
lower accuracy indicates that the real values are
more informative. Finally, we test the model perfor-
mance when CutMix is not used and conclude that
augmenting the training set using CutMix provides
higher accuracy as seen in the last row of Table 1
which uses all 3 features along with CutMix.

Defense Transferability Analysis. Next, we per-
form a study to understand how well the model
can perform on unseen attack types. For this pur-
pose, we train AdvNet with samples from only 2%
of the 11 attack types and report results both on



test samples from the remaining attack types and
the complete test set for € {25, 50, 75} in Table
3. We observe that even when AdvNet is trained
with only 75% of the attack types, the test results
on new attacks outperform existing approaches for
most datasets, thus showing that our model can
generalize to unseen attack methods. Besides, at
all three values of x, the results on the complete
test set closely agree with the results on the new
attack types. This indicates that the reduction in
accuracy at lower x values can largely be attributed
to a smaller training set than to a lack of defense
transferability.

Dataset 25% 50% 75 %
SST-2 (57.8,58.9) (69.9, 68.4) (82.7, 80.7)
Yelp (63.1,61.8) (70.3,69.9) (77.8, 78.4)
AG News (63.7,62.1) (71.4,69.9) (83.6,78.4)
MRPC (63.2,60.1) (73.2,74.5) (81.5, 82.3)
IMDb (66.8, 64.8) (71.6,73.1) (77.4,79.1)
SNLI (57.9,57.6) (67.2,66.6) (73.4,72.3)
RTE  (63.8,62.4) (70.8,69.7) (76.4,75.5)
MNLI (57.4,58.8) (62.3,61.3) (67.0,68.9)
QQP  (59.7,60.2) (64.0,64.2) (69.0, 69.6)
QNLI (61.8,60.6) (69.3,67.2) (75.7,71.5)

Table 3: Defense transferability study of AdvNet with
varying percentages of attack types included in the train
set. Each tuple contains the test accuracy on new attack
types and on all attack types respectively.

In summary, our results show that (a) the 3 TAS
features are individually informative, (b) AdvNet
significantly improves on baseline methods across
datasets, (c) AdvNet performance improves with
model size and does not drop much on reducing
training sets, (d) AdvNet achieves the best per-
formance when all 3 features are used along with
CutMix augmentation, and (e) AdvNet generalizes
well to new attack types.

6 Conclusion and future work

In this work, we present an altogether new utility of
attention heads in Transformer networks - to detect
adversarial attacks. We defined input-specific atten-
tion subnetworks (IAS) and proposed a method to
compute them efficiently. We extracted 3 features
from IAS and showed their utility in distinguish-
ing adversarial samples from authentic ones. We
demonstrated that our approach significantly im-
proves the state-of-the-art accuracy across datasets
and attack types. Our work suggests that input-
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specific model perturbations provide strong sig-
nals to interpret Transformer-based models such
as large language models. Further, the sparse na-
ture of the identified IAS indicate opportunities for
input-specific model optimization. In future work,
we would like to extend this study to tasks beyond
NLU, including vision and speech-related tasks.

Discussion on Ethics and broader impact

One of the main challenges with deep neural mod-
els is their lack of explainability. These models
typically have inherent biases resulting from the
training data, parameter combinations and other
factors that lead to unexpected responses to certain
inputs. This is further complicated when adversar-
ial agents target to manipulate the output of deep
neural models. We see our work on creating and us-
ing attention subnetworks for adversarial detection
as a part of the broader effort towards Responsi-
ble Al Such a solution is particularly important
in situations where deep neural models make deci-
sions that affect physical safety, digital security and
equal opportunity. However, we acknowledge that
this additional visibility into the model comes at an
added cost - inference under uncertainty of adver-
sarial detection is more expensive. We encourage
system designers to trade-off computational and
runtime considerations for security when deploy-
ing such solutions.
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A Datasets used for authentic examples

The 10 datasets used in this work were listed in Sec-
tion 4.1. Here, we provide additional details about
these datasets. SST-2 (Socher et al., 2013), Yelp po-
larity (Zhang et al., 2015a) and IMDb (Maas et al.,
2011) are binary sentiment classification datasets.
AG News (Zhang et al., 2015b) consists of news
headlines classified into one of 4 categories (world,
sports, business, sci/tech) and MRPC (Dolan and
Brockett, 2005) is a paraphrase dataset which con-
tains sentence pairs with binary labels indicating
whether they are semantically equivalent or not.
RTE (Wang et al., 2018), MNLI (Williams et al.,
2018), SNLI (Bowman et al., 2015) contain sen-
tence pairs with labels indicating whether one sen-
tences entails, contradicts or is neutral with respect
to the other sentence. QQP is again a paraphrase
dataset but unlike MRPC which contains sentences,
it contains question pairs taken from Quora with
binary labels indicating whether they are semanti-
cally equivalent or not. QNLI contains question-
context pairs with a binary label indicating whether
the context sentence contains the answer to the
question or not.

B Examples of adversarial attacks

In Table 4, we provide examples for each of the
11 attack types that we use to generate adversarial
inputs for this work.

C Other methods for Adversarial
Detection

We briefly describe the four methods that we com-
pare with in Table 1.

* FGWS (Mozes et al., 2021): Here, a word
frequency-guided approach is used to identify in-
frequent words in an input sentence and replace
them with more frequent, semantically similar
words. Then, the difference in prediction confi-
dence of the Transformer-based model between
the original and substituted sentences is consid-
ered. If this value is above a threshold, the sen-
tence is predicted to be adversarial.

NWS: This is the naive word substitution base-
line used in Mozes et al. (2021). Here, each
out-of-vocabulary word in an input sentence is
replaced with a random word from a set of se-
mantically related words, following which the
same process as above is used to predict input
authenticity.
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* DISP (Zhou et al., 2019): In this approach, a
BERT-based perturbation discriminator predicts
whether each token in the input sentence is au-
thentic or perturbed. If none of the tokens are
predicted to be perturbed, the input sentence is
considered authentic.

FreelLB (Zhu et al., 2019): This is an adversar-
ial training approach where adversarial pertur-
bations are added to word embeddings and the
resulting adversarial loss is minimized to pro-
mote higher invariance in the embedding space.
Certified Robustness Training (Jia et al.,
2019): This approach uses Interval Bound Prop-
agation (IBP) to obtain an upper bound on
the worst-case loss resulting from any word
substitution-based perturbation. This has been
applied to CNN and LSTM-based language mod-
els.

D Analysing Fgip and Fyy,

In the second column of Table 5, for each of the
datasets, we show the percentage of authentic and
adversarial inputs which generated non-target class
predictions. Further, in the third column of Table 5
we show the percentage of (authentic, adversarial)
inputs whose layer-wise outputs showed more than
one switch. These results show that the Fg;, and
Fiy are individually informative.

E Adversarial detection accuracy for
different attack types

In Table 6, we present the breakup of model ac-
curacy across individual attack types. We observe
that for text classification tasks like SST-2, Yelp
and AG News the accuracy for Embedding and Syn-
onym swap attack types are much higher compared
to other datasets. We also note that in case of both
word and character-level attacks, Deletion and Sub-
stitution operations are the ones with least detection
accuracy across almost all datasets. Finally, we ob-
serve that the performance for detecting adversarial
inputs generated by PWWS and TextFooler attacks
remain fairly consistent across datasets.

F Refereeing heads in adversarial
detection

In this section, we explore the influence of each gat-
ing value in generating the prediction for our adver-
sarial detection model. We make use of the Grad-
CAM (Selvaraju et al., 2017) approach to identify
critical neurons in the input layer of AdvNet that



Attack Type Perturbed Text
Original Text it ’s a charming and often affecting journey.
Word-level attacks
Deletion it’s a _ and often affecting journey.
Antonyms it’s a repulsive and often affecting journey.
Synonyms it’s a charming and often affecting passage.
Embeddings it’s a charming and quite affecting journey.
Order Swap it’s charming and affecting a often journey.
PWWS it’s a entrance and often strike journey.
TextFooler it’s a charming and _ affecting journey.
Original Text a sometimes tedious film.
Character-level attacks
Substitution a sometimes tidious fylm.
Deletion a som_times tedio_s film.
Insertion a sometimeDs tvedious film.
Order Swap a smoetimes tedoius film.

Table 4: Examples of 11 attack types used for adversarial data creation.

3

_’ represents a deleted character and there

is no character present at that position in the adversarial sample.

Non-target o/p Switches>1

Dataset (Mutated) (Layer-wise)
SST-2 (12.3,34.2)  (37.9,54.8)
IMDb (0.33,2.18)  (0.16, 1.45)
Yelp (3.8,5.3) (0.83, 1.08)

AG News (6.6, 22.8) (3.2, 17.0)
MRPC (21.3,24.3)  (10.3,8.77)
RTE (24.5,22.2)  (44.2,50.9)
SNLI (2.83,96.0) (11.6,41.0)
MNLI (11.0,24.8) (24.3,42.5)
QQP (3.2,1.3) (6.2, 6.8)
QNLI (5.7, 1.0) (13.8, 11.1)

Table 5: Percentages of (authentic, adversarial) inputs
whose (a) mutated subnetworks generated non-target
class predictions; (b) layer-wise outputs showed more
than one switch.
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have large gradients from the target class (authentic
or adversarial) flowing through them. Among these,
we consider neurons that correspond to the gating
values, i.e, Finask and call the heads corresponding
to them as refereeing heads. From Figure 9, we
observe that word swap attacks like antonyms, syn-
onyms, and embeddings require a greater number
of refereeing heads, while character-level attacks
need fewer. This is because character-level changes
make the token invalid, i.e, the model treats it as a
unknown token absent in the vocabulary. Since this
changes the input embedding sequence more dra-
matically (Biju et al., 2020), small deviations from
standard gating patterns are sufficient to mislead
the model leading to fewer refereeing heads. Since
introducing synonym and embedding based pertur-
bations change the embeddings input to the model
by a smaller extent, larger deviations from the gat-
ing pattern are required to block or pass selective
chunks of information to mislead the model.



Dataset | #Adv Word-level attacks Character-level attacks
samples | DEL ANT SYN EMBED SWAP PWWS TF |SUB DEL INS SWAP
SST-2 739 10.84 096 095 0.96 0.75 0.81 0.76/0.92 0.80 0.87 0.89
Yelp 589 1075 092 092 0.96 0.88 0.80 0.95(0.93 0.77 0.88 0.88
AG News| 829 |0.88 096 092 0.96 0.82 0.83 0.84/0.89 0.84 0.85 0.88
MRPC 712 [ 0.75 0.75 09 0.72 0.94 0.84 0.82|0.86 0.79 0.76 0.92
IMDb 321 0.80 0.76 0.85 0.89 0.80 0.82 0.81/094 0.75 096 0.79
SNLI 1262 | 0.61 0.80 0.78  0.88 0.78 0.76 0.79/0.85 0.88 0.65 0.83
RTE 541 0.75 0.84 0.86 0.87 0.79 0.77 0.7310.82 0.76 0.82 0.82
MNLI 548 [0.67 0.80 0.72 0.85 0.78 0.80 0.76/0.78 0.80 0.86 0.76
QQP 307 |0.70 0.82 0.74 0.80 0.75 0.76 0.74|0.78 0.81 0.86 0.77
QNLI 395 |10.80 090 092 092 0.90 0.82 0.86/0.82 0.86 0.82 0.82

Table 6: Accuracies across datasets for each attack type. Legend: SUB-substitution, DEL-deletion, SYN-synonym,
EMBED-embedding, INS-insertion, SWAP-order swap, TF-TextFooler. Refer Section 4.1 for descriptions of at-
tack types. The second column provides the number of adversarial samples generated by us for each task across
all 11 attack types.

Refereeing heads across attack types
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Figure 9: Fraction of refereeing heads used by the ad-
versarial detection model across various adversarial at-
tack types. The split of these across 4 layer subsets is
also shown.
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Abstract

Despite the importance of relation extraction
in building and representing knowledge, less
research is focused on generalizing to unseen
relations types. We introduce the task setting
of Zero-Shot Relation Triplet Extraction (Ze-
roRTE) to encourage further research in low-
resource relation extraction methods. Given
an input sentence, each extracted triplet con-
sists of the head entity, relation label, and tail
entity where the relation label is not seen at the
training stage. To solve ZeroRTE, we propose
to synthesize relation examples by prompting
language models to generate structured texts.
Concretely, we unify language model prompts
and structured text approaches to design a
structured prompt template for generating syn-
thetic relation samples when conditioning on
relation label prompts (RelationPrompt). To
overcome the limitation for extracting multi-
ple relation triplets in a sentence, we design
a novel Triplet Search Decoding method. Ex-
periments on FewRel and Wiki-ZSL datasets
show the efficacy of RelationPrompt for the
ZeroRTE task and zero-shot relation classifi-
cation. Our code and data are available at
github.com/declare-lab/RelationPrompt.

1 Introduction

Relation extraction aims to predict relationships
between entities in unstructured text, which has
applications such as knowledge graph construc-
tion (Lin et al., 2015) and question answering (Xu
et al., 2016). However, existing approaches often
require large datasets of annotated samples which
are costly to annotate and have a fixed set of re-
lations. Currently, less research is focused on the
zero-shot setting (Wang et al., 2019) where models
need to generalize to unseen relation sets without
available annotated samples (Wang et al., 2019).

*Yew Ken is a student under the Joint PhD Program be-
tween Alibaba and SUTD.

t Corresponding author.
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y: Military Rank

S: Their grandson was

Task Setting Input Output Supervision
Relation Classification S, €heads tail y Full
Zero-Shot Relation Classification S, €heads €tail Y Zero-Shot

Zero-Shot Relation Slot-Filling
Relation Triplet Extraction
Zero-Shot Relation Triplet Extraction

Zero-Shot
Full
Zero-Shot

Ctail
Chead; Etails Y
Chead; Ctails Y

S, €head: Y

S

Table 1: Comparison of task settings with our proposed
Zero-Shot Relation Triplet Extraction (ZeroRTE). To
our knowledge, ZeroRTE is the first task to extract full
relation triplets in the zero-shot setting.

Although there are existing zero-shot relation task
settings, they do not require extracting the full re-
lation triplets. The task setting of Zero-Shot Re-
lation Classification! (ZeroRC) was previously in-
troduced by Chen and Li (2021) to classify the
relation between a given head and tail entity pair
for unseen labels. However, it is not always prac-
tical or realistic to assume that the ground-truth
entities are readily available. Zero-Shot Relation
Slot-Filling (Levy et al., 2017) aims to predict the
tail entity based on the provided head entity and
relation, but also relies on other methods for entity
detection. Thus, it also faces the challenge of error
propagation in practice (Zhong and Chen, 2021).
Hence, we propose a new and challenging task
setting called Zero-Shot Relation Triplet Extrac-
tion (ZeroRTE). The goal of ZeroRTE is to extract
triplets of the form (head entity, tail entity, relation
label) from each sentence despite not having any
annotated training samples that contain the test re-
lation labels. For a clear comparison between task
settings, we provide a summary in Table 1. To our
knowledge, this is the first work to extend the task
of Relation Triplet Extraction to the zero-shot set-
ting. For example in Figure 1, the training samples
may belong to the seen relation set {Sibling, Man-

' As relation classification and relation extraction are some-
times interchangeable, we refer to relation classification.
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ufacturer, Architect}, while the test samples may
belong to the unseen relation set {Military Rank,
Position Played, Record Label}. Given the anno-
tated training samples in Figure 1a, ZeroRTE aims
to extract triplets such as (Nicolas Tindal, Military
Rank, Captain) in Figure 1b.

To solve the challenges of data scarcity, there are
several existing approaches. Although distant su-
pervision (Ji et al., 2017) can be used to construct a
relation corpus with a many relation types, this ap-
proach generally results in lower annotation quality
than human annotation. Furthermore, distant su-
pervision remains limited to a fixed set of relation
types in the existing knowledge base (Smirnova
and Cudré-Mauroux, 2018). Another approach is
to formulate the task objective such that the label
space is unconstrained. For instance, zero-shot sen-
tence classification can be reframed as entailment
(Puri and Catanzaro, 2019) or embedding similarity
(Pushp and Srivastava, 2017) objectives. However,
the existing formulations are designed for sequence
classification tasks, which cannot be directly ap-
plied to structured prediction tasks such as relation
triplet extraction. A third direction is to leverage
pre-trained language models using task-specific
prompt templates (Liu et al., 2021) which enables
the models to generalize to new tasks with little to
no training samples, such as zero-text classification
(Zhong et al., 2021). This zero-shot potential is
possible by leveraging the semantic information in
prompts to query the language comprehension ca-
pabilities of pre-trained language models (Radford
etal., 2019).

Hence, we propose RelationPrompt which re-
frames the zero-shot problem as synthetic data gen-
eration. The core concept is to leverage the seman-
tics of relation labels, prompting language models
to generate synthetic training samples which can
express the desired relations. The synthetic data
can then be used to train another model to perform
the zero-shot task. This capability is supported by
the finding that language models can be prompted
to control task-specific aspects of the generated
text, such as domain and content (Keskar et al.,
2019). For instance, given the relation label “Mili-
tary Rank” in Figure 1c, it is reasonable to condi-
tion the language model and compose a sentence
demonstrating the relationship that a person has
been bestowed with a certain position in the armed
forces. Hence, a possible sentence could be “She is
the wife of Lieutenant Colonel George Hocham.”,
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[ Relation Sentence

Sibling She was the mother of Michael and
Manufacturer In late 2012, announced its NX300 camera.
\ Architect His house was designed b, )
N gned by /
(a) Annotation samples of seen relations for training.
) ™\
Relation Sentence |
Military Rank Their grandson was Nicolas Tindal.

Position Played Made Chad Brown the highest paid in NFL.

‘~\ReC°rd Label ~ Deadsy signed onto to release "Phantasmagore”/,:

(b) Annotation samples of unseen relations for evaluation.

~
[ Relation Sentence |
Military Rank She is the wife of George Hocham.
Position Played However, it was Dario Argentino who defended the
“\Record Label “The Sun” was first recorded by in 1982. 7/:

(c) Generated synthetic samples of unseen relations.

Figure 1: Example relation triplet data for ZeroRTE
and our formulation as synthetic sentence generation.
The head and tail entities are shown in blue and orange,
respectively. The ZeroRTE train samples (a) and test
samples (b) contain triplets that belong to disjoint rela-
tion label sets. We formulate ZeroRTE as generating
synthetic samples (c) for the unseen test relation labels.
The synthetic data can then be used to train another
model to extract relation triplets from the test sentences.
We also present more data samples in Appendix A.1.

where the head entity is “George Hocham” and the
tail entity is “Lieutenant Colonel”. Given gener-
ated samples of sufficient quality and diversity, the
synthetic dataset can effectively supervise another
model to perform ZeroRTE.

To encode the relation triplet information as text
sequences which can be generated by language
models, we unify prompt templates with structured
text formats (Paolini et al., 2020). Structured texts
use special markers to encode the structured in-
formation which can be easily decoded as triplets.
However, it is challenging to generate sentences
which contain multiple different relation triplets.
Designing a complex structured prompt template
to encode multiple triplets may compromise the
generation quality as the language model needs to
manipulate multiple relations at once. Hence, we
focus on generating single-triplet samples and ex-
plore how this limitation can be overcome by the
downstream relation extractor model. Concretely,
we propose a method named Triplet Search Decod-
ing which allows the extraction of multiple triplets
at prediction time despite training on synthetic sam-
ples which contain a single triplet each.

Contributions. In summary, our main contri-
butions include: (1) We introduce the ZeroRTE



task setting which overcomes limitations in prior
task settings by extending the Relation Triplet Ex-
traction task to the zero-shot setting. ZeroRTE is
released as a publicly available benchmark based
on the reorganized FewRel (Han et al., 2018) and
Wiki-ZSL (Chen and Li, 2021) datasets. (2) In
order to make ZeroRTE solvable in a supervised
manner, we propose RelationPrompt to generate
synthetic relation examples by prompting language
models to generate structured texts. (3) We propose
Triplet Search Decoding to overcome the limitation
for extracting multiple relation triplets in a sen-
tence. (4) RelationPrompt surpasses prior ZeroRC
methods and baselines on ZeroRTE, setting the bar
for future work. Our analysis shows that the gen-
erated samples are reasonable and diverse, hence
serving as effective synthetic training data.

2 RelationPrompt: Methodology

To extract triplets for unseen relation labels in Ze-
roRTE, we propose a framework called Relation-
Prompt which uses relation labels as prompts to
generate synthetic relation examples of target un-
seen labels. The synthetic data can then be used
to supervise any downstream relation extraction
model. Hence, our framework requires two models:
a Relation Generator for synthetic relation samples,
and a Relation Extractor that will be trained on the
synthetic data and used to predict triplets for unseen
relations. In order to represent the relation triplet in-
formation to be processed by language models, we
design structured prompt templates. The relation
extractor is designed to support both ZeroRTE and
ZeroRC tasks. We further propose Triplet Search
Decoding to overcome the challenge of generating
relation samples with multiple triplets.

2.1 Task Formulation

In ZeroRTE, the goal is to learn from the seen
dataset Ds and generalize to the unseen dataset D,,.
The datasets Dy and D,, are used for training and
testing respectively, and are originally split from
the full dataset which is defined as D = (S,7,Y")
where S denotes the input sentences, 1" denotes
the output triplets and Y denotes the set of relation
labels present in D. The seen and unseen label sets
are predefined and denoted as Y = {y!,...,y"}
and Y, = {yl,...,y"} respectively, where n =
|Ys| and m = |Y,,| are the size of seen and unseen
label sets respectively. Hence, the label sets of Dy
and D, are disjoint, i.e., Y; N'Y, = (. Each data
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Template | Relation: <Label>.

Input
Example | Relation: Military Rank.

Template | Context: <Sentence>. Head Entity: <Subject>, Tail Entity: < >,

Output Example | Context: Their grandson was Captain Nicolas Tindal. Head Entity: Nicolas
N Tindal, Tail Entity:

(a) Structured template for relation generator.

Template | Context: <Sentence>.

Input

Example | Context: Their grandson was Captain Nicolas Tindal.

Template | Head Entity: <Subject>, Tail Entity: < >, Relation: <Label>.

Output

Example | Head Entity: Nicolas Tindal, Tail Entity: , Relation: Military Rank.

(b) Structured template for relation extractor.

Figure 2: RelationPrompt structured templates. The
head entities, tail entities and relation labels are shown
in blue, orange and dark red respectively. The relation
generator (a) takes the relation label as input and out-
puts the context and entity pair. The relation extractor
(b) takes the sentence as input and outputs the relation
triplet which consists of entity pair and relation label.

sample contains the input sentence s € S which
corresponds to a list ¢ € 1" which can contain one
or more output triplets. A relation triplet is defined
as (€head; €tail, ¥) Which denotes the head entity,
tail entity and relation label respectively. To solve
ZeroRTE, we formulate the following algorithm:

Algorithm 1 RelationPrompt: Prompting language
models to generate synthetic data for ZeroRTE.
Define:

Dataset D = (Sentences S, Triplets 7', Labels Y')

Require: Train Dataset D, Test Dataset D,,, Re-
lation Generator M, Relation Extractor M.
Ensure: Y;NY, =
12 My finetune < Train(Mg, Dy)
Me,finetune — T""ain(Mea Ds)
Dsynthetic <~ Generat@(Mg,finetunea Yu)
Me,final <~ Train<Me,finetunea Dsynthetic)

Ty < Predict(Me, final, Su)
return Extracted Triplets T,

A A e

2.2 Relation Generator

Language models are implicitly capable of zero-
shot generalization based on their general and large-
scale pre-training (Radford et al., 2019). Further-
more, text generation has been shown to be effec-
tively controllable (Keskar et al., 2019). Hence,
we prompt the language model to generate syn-
thetic samples by conditioning on the target unseen
relation labels. As shown in Algorithm 1, rela-
tion generator M, is first fine-tuned on samples for
the seen dataset D (line 1) and then prompted by
relation labels Y, to generate the synthetic sam-



Sibling. Context: She was mother  of Michael and Joel. Head Entity: Michael, Tail Entity: .
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Relation: Sibling. Context:  She was mother  of Michael and Joel. Head Entity: Michael, Tail Entity:

(a) Training process for relation generator.

Entity: Nicolas, Tail Entity: ,Relation: Military Rank.
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[ Encoder }—{ Decoder }
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Context: Their grandson was Captain Nicolas. Head Entity: Nicolas, Tail Entity: , Relation: Military

<

[—

(b) Training process for relation extractor.

Figure 3: Model training process. Each head entity, tail entity and relation label is shown in blue, orange and
dark red respectively. To conserve space, the sentences shown are shortened and punctuation is not separated. The
relation generator (a) is trained with the standard language modeling objective to condition on the relation label and
generate the sentence and entity pair. The relation extractor (b) is trained with the standard sequence-to-sequence
objective to condition on the input sentence and output the relation triplet of entity pair and relation label.

ples Dgyntnetic (line 3).  As shown in Figure 2a, 2.3 Relation Extractor
the relation generator takes as input a structured
prompt in the form of “Relation: y” and outputs a
structured output in the form of “Context: s. Head
Entity: epeqq, Tail Entity: ey, We employ a
causal language model as our relation generator to
sample the structured sequence in an autoregressive
manner. As shown in 3a, the model M, is trained
using the standard language modeling objective of
next-word prediction (Bengio et al., 2001). Given
each sequence x = [x1, X9, ..., T,], the goal is to
learn the conditional generation probability:

Given the generated samples of unseen relations,
we can train a relation extractor model M, to pre-
dict the relation triplets in a zero-shot setting. As
shown in Algorithm 1, relation extractor M, is
first fine-tuned on samples for the seen dataset D,
(line 2) and finally tuned on the synthetic samples
Dgyntnetic (line 4). Lastly, M, is used to predict
and extract relation triplets T,, from the test sen-
tences .5, (lines 5 and 6). We adopt a sequence-to-
sequence learning approach which is flexible and
effective for structured prediction tasks (Cui et al.,
2021; Paolini et al., 2020). As shown in Figure
2b, the relation extractor takes as input a structured
prompt containing the sentence s in the form of
To generate diverse output sequences for each input  «Coptext: 7. It then generates a structured output
relation prompt, we use sampling with temperature sequence containing a single pair of entities ejeqq
t (Hinton et al., 2015) over the output logits o and ;14 ¢ 1aq1 satisfying the relation y, in the form of

n

p(x) = [ [ plwilz<i) (D

i=1

vocabulary size V' with temperature {p: “Head Entity: epeqq, Tail Entity: €44, Relation: y”.
exp(o;/tp) As shown in Figure 3b, we use a standard sequence-
p(zilr<i) = V] (2)  to-sequence objective (Lewis et al., 2020) for train-

v

Zj =1 czp(o;/1p) ing and greedy decoding for generation. To predict
The output sequences are decoded into relation  a single relation triplet in a given sentence s, we
triplets by splitting on the special terms “Context:”,  can generate the model outputs without any initial
“Head Entity:” and “Tail Entity:”. In case of decod-  decoder input, as seen in Figure 4a. In case of in-
ing errors where an entity is not found in the gener-  valid entity or relation, we treat it as null prediction
ated context, we discard that sample and continue  for that sample. On the other hand, prediction for
generating until a fixed amount of valid samples is ~ ZeroRC is easily supported by providing the entity
reached. information as the initial decoder input. As shown
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[Head Entity: Nicolas, Tail Entity: , Relation: Military Rank. }

(a)

Unconditional decoding for single-triplet extraction.

, Relation: | Military Rank.

Entity-conditioned decoding for relation classification.

Head Entity: Nicolas, Tail Entity:
(b)

[Head Entity , Tail Entity , Relation:
Nicolas Military Rank
P(heaq1) P41 | €na) P(Y1 | i+ hosa)
grandson Position Played
C) P(Cui; | Cheads) VA Cailj * €adi)
Captain Record Label
P(€heaas) Pt | €noad) P(Ys | i » heaa,)
-

(¢)  Triplet search decoding for multi-triplet extraction.

Figure 4: Comparison of generation decoding methods
with our proposed Triplet Search Decoding. The head
entities, tail entities and relation labels are shown in
blue, orange and dark red respectively. Unconditional
decoding (a) can be used to predict one relation triplet
in each sentence for ZeroRTE. Entity-conditioned de-
coding (b) can be used to predict only the relation la-
bel between the given entity pair for ZeroRC. Our pro-
posed triplet search decoding (c) can be used to predict
multiple triplets in each sentence for ZeroRTE.

in Figure 4b, the model takes “Context: s, Head
Entity: epeqq, Tail Entity: e;q;;, Relation:” as de-
coder input to generate “y” as output. Hence, our
method naturally encompasses both ZeroRTE and
ZeroRC as this change affects model prediction

and not training.

2.4 Extracting Multiple triplets using Triplet
Search Decoding

We further propose a generation decoding method
in order to improve the zero-shot extraction perfor-
mance on sentences which contain multiple triplets.
For the RelationPrompt generation of synthetic
data, each sample is limited to contain a single
relation triplet. Hence, conventional models for
triplet extraction most likely cannot perform well
with our framework for multi-triplet ZeroRTE as
they normally assume that the training samples
may contain multiple triplets per sentence. The
inference method of multi-turn question answer-
ing (Li et al., 2019) may mitigate this issue, but
cannot scale easily to unseen relations as it relies
on hand-crafted question templates which are spe-
cific to certain relation and entity types. Hence, we
propose Triplet Search Decoding which improves
multi-triplet ZeroRTE for the relation extractor.
Given the relation extractor which takes a sen-
tence as input and generates output sequences in
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an autoregressive fashion, greedy decoding as in
Figure 4a can output a single sequence. However,
Triplet Search Decoding as shown in Figure 4c can
output multiple sequences that each correspond to
a different candidate relation triplet. We then apply
a likelihood threshold to filter the final output se-
quences. The core concept is enumerating multiple
output sequences during generation by considering
multiple candidates for the head entity, tail entity
and relation label respectively. Starting from the
special sub-sequence “Head Entity:”, it follows
from our template in Figure 3b that the next gen-
erated token should be the first token of the head
entity, such as “Nicolas”. For the i*" possible first
token of the head entity, we denote the softmax
probability as p(epeqq,;). We only consider the
probability of the first token as it can mostly deter-
mine the following generated tokens of the entity
(Zhao et al., 2021). Instead of greedily decoding
the entire sequence, we branch the generation into
b sequences based on the tokens with the top b high-
est p(enead,i). Thereafter, the sequence is greedily
decoded until the special sub-sequence “Tail En-
tity:” is generated. The following token will then
be the first token of the tail entity, such as “Cap-
tain”. The j*" tail entity first token probability is
denoted as p(etqi,j|€head,i)- Hence, the generation
is branched such that for each head entity, there
will be another b sequences based on the tokens
with the top b highest p(etqii,j|€head,i). Thereafter,
the sequence is greedily decoded until the special
sub-sequence “Relation:” is generated. The next
generated token will be the first token of the rela-
tion label, such as “Military” in “Military Rank”.
The k" relation first token probability is denoted
as P(Yk|€head.i» €tail,j)- We branch the generation
such that for each pair of head entity and tail en-
tity, there will be another b sequences based on the
tokens with the top b highest p(yx|€ncad,i, €tail,j)-
For each sequence, the generation proceeds greed-
ily until the end token is reached, and the overall
inference probability is aggregated as:

p(triplet; jx) = p(€head,is Ctail ;> Y
= p(Yk|€head,is €tail,j) 3)

: p(etail,j |€head,i)
’ p(ehead,i)

We note that the conditional assumption does not
directly consider the other context tokens as they
consist of the special sub-sequences which are fixed
as part of our generation template. The input sen-



tence s is also not included in the formulation as
it is the same when considering multiple output
triplets for one sample. At this point, there will
be b3 sequences, each corresponding to a different
candidate relation triplet. To filter the final out-
put sequences, we use a probability threshold over
that is tuned on the validation F; metric, with hy-
perparameter details in Section A.2. Compared
to previous generative extraction methods (Paolini
et al., 2020; Nayak and Ng, 2020), Triplet Search
Decoding allows the probability p(triplet; ;) of
each output triplet to be directly calculated and
hence control the number of output triplets using
the threshold. Compared to other decoding meth-
ods such as beam search, Triplet Search Decoding
leverages the specific relation triplet structure in
our structured text templates. Hence, it can ensure
that each output sequence corresponds to a differ-
ent relation triplet. Furthermore, Triplet Search
Decoding is more interpretable than existing gener-
ative methods for triplet extraction as it can directly
provide the prediction probability for each triplet.
More importantly for ZeroRTE, this decoding pro-
cess allows the relation extractor to naturally pre-
dict multiple triplets at test time despite training on
synthetic samples which have a single triplet each.

3 Experiments

3.1 Datasets

We use the following two datasets for our exper-
iments. FewRel (Han et al., 2018) was hand-
annotated for few-shot relation extraction, but we
made it suitable for the zero-shot setting after data
splitting into disjoint relation label sets for training,
validation and testing. Wiki-ZSL (Chen and Li,
2021) is constructed through distant supervision
over Wikipedia articles and the Wikidata knowl-
edge base. The dataset statistics are shown in Table
2. To partition the data into seen and unseen label
sets, we follow the same process as Chen and Li
(2021) to be consistent. For each dataset, a fixed
number of labels are randomly selected as unseen
labels while the remaining labels are treated as seen
labels during training. To study the performance
of methods under different settings of unseen label
set size m, we use m € {5,10,15} in our experi-
ments. In order to reduce the effect of experimental
noise, the label selection process is repeated for
five different random seeds to produce different
data folds. For each data fold, the test set consists
of the sentences containing unseen labels. Five
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Samples Entities Relations Sentence Length
Wiki-ZSL 94,383 77,623 113 24.85
FewRel 56,000 72,954 80 24.95

Table 2: Dataset statistics. “Sentence Length” refers to
the average number of words in each sentence.

validation labels from the seen labels are used to
select sentences for early stopping and hyperparam-
eter tuning. The remaining sentences are treated as
the train set. Hence, the zero-shot setting ensures
that train, validation and test sentences belong to
disjoint label sets.

3.2 Experimental Settings

For the relation generator, we fine-tune the pre-
trained GPT-2 (Radford et al., 2019) which has
124M parameters. For the relation extractor, we
fine-tune the pre-trained BART (Lewis et al., 2020)
which has 140M parameters. In both cases, the fine-
tuning is performed on the training set for up to five
epochs and early stopping is based on the validation
loss. The learning rate is 3e-5 with linear warm up
for the first 20% of training steps and batch size is
set to 128. During the training process, we use the
AdamW optimizer (Loshchilov and Hutter, 2019).
The relation generator is used to generate synthetic
samples based on the validation and test set label
names. A fixed amount of sentences will be gen-
erated for each relation. The relation extractor is
fine-tuned again on the synthetic relation sentences
and then used for evaluation on the test set.’

To perform evaluation for ZeroRTE, we eval-
uate the triplet extraction results separately for
sentences containing single triplets and multiple
triplets. To evaluate multiple triplet extraction, we
use the Micro F; metric which is standard in struc-
tured prediction tasks (Paolini et al., 2020) and
report the precision (P.) and recall (R.). Evaluating
single triplet extraction involves only one possible
triplet for each sentence, hence the metric used is
Accuracy (Acc.). We evaluate on ZeroRC using the
Macro F} metric to be consistent with Chen and
Li (2021). Table 3 and 4 report the average results
across five data folds as detailed in Section 3.1.

3.3 Baseline Methods

ZeroRTE As ZeroRTE is a new task setting, we
provide two baseline methods for comparison with
our RelationPrompt method. Firstly, our relation

2See Appendix A.2 for more implementation details.



Single Triplet Multi Triplet
Unseen Labels - Model Wiki-ZSL FewRel Wiki-ZSL FewRel
Acc. Acec. P. R. F P. R. Fi
TableSequence (Wang and Lu, 2020) 14.47 11.82 43.68 3.51 6.29 1523 191 3.40
m=5 NoGen 9.05 11.49 1558 4323 2226 945 36.74 14.57
RelationPrompt 16.64 2227  29.11 31.00 30.01 20.80 2432 22.34
TableSequence (Wang and Lu, 2020) 9.61 12.54 4531 3.57 64 2893 360 6.37
m=10 NoGen 7.10 12.40 9.63 45.01 1570 640 41.70 11.02
RelationPrompt 16.48 23.18 30.20 32.31 31.19 21.59 28.68 24.61
TableSequence (Wang and Lu, 2020) 9.20 11.65 4443 353 639 19.03 199 348
m=15 NoGen 6.61 10.93 725 44.68 1234 461 3639 8.15
RelationPrompt 16.16 18.97 26.19 32.12 28.85 17.73 23.20 20.08
Table 3: Results for Zero-Shot Relation Triplet Extraction (ZeroRTE).
extractor can be made to perform ZeroRTE with- Unseen 0ol Wiki-ZSL FewRel
out fine-tuning on synthetic samples as it is trained Labels r &R KB P~ R A
. 1 h f h R-BERT 39.22 4327 41.15 42.19 48.61 45.17
to extract triplets on the sentences of the seen re- Py 1963 4881 4922 5805 6192 59.92
lation set. At prediction time, we constrain the m=5  ZS-BERT 7154 72.39 7196 76.96 78.86 77.90
NoGen 51.78 46.76 4893 7236 58.61 64.57
generated labels to be selected from the target label RelationPrompt  70.66 83.75 76.63 90.15 8850 8930
names by masking the generated token probabili- R-BERT 26.18 29.69 27.82 2552 3302 2820
. . « Yy . . CIM 46.54 4790 4557 47.39 49.11 48.23
ties. We denote this model as “NoGen” to indicate m=10  ZS-BERT 6051 6098 6074 5692 57.59 57.25
; : NoGen 5487 3652 4380 6647 4828 5561
that lt.d.OeS not use generated Synthetlc sam.ples RelationPrompt 68.51 74.76 71.50 80.33 79.62 79.96
for training. Secondly, we use an existing triplet R-BERT 1731 1882 1803 1695 1937 18.08
extraction model known as TableSequence (Wang CIM 29.17 3058 2986 3183 33.06 3243
.. m=15 ZS-BERT 34.12 3438 3425 3554 38.19 36.82
and Lu, 2020). As it is normally unable to perform NoGen 5445 2943 3745 6649 40.05 4938
RelationPrompt  63.69 67.93 6574 7433 7251 73.40

ZeroRTE, we provide supervision using synthetic
samples from our relation generator.

ZeroRC There are three main categories of com-
peting methods for ZeroRC. Firstly, R-BERT (Wu
and He, 2019) is a relation classification model
but can be adapted to the zero-shot setting by us-
ing the sentence representations to perform near-
est neighbor search over label embeddings. Next,
CIM (Rocktischel et al., 2016) is an entailment-
based method which takes the sentence and each
possible relation as input to perform binary classi-
fication whether the label matches the sentence se-
mantically. Lastly, ZS-BERT (Chen and Li, 2021)
generates sentence representations that are condi-
tioned on the provided entity pair information, and
performs nearest neighbor search over embeddings
of the candidate relation descriptions.

3.4 Experimental Results

Triplet Extraction We compare RelationPrompt
with the baselines on ZeroRTE for Wiki-ZSL and
FewRel datasets in Table 3. In both single-triplet
and multi-triplet evaluation, our method consis-
tently outperforms the baseline methods in terms
of Accuracy and F metrics respectively. Although
we do not observe a consistent advantage in preci-
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Table 4: Zero-Shot Relation Classification (ZeroRC).

sion and recall scores for multi-triplet extraction,
the baseline methods cannot achieve a balanced
precision-recall ratio, leading to poor overall F
results. The results difference between NoGen and
RelationPrompt also indicate that using the syn-
thetic samples from the relation generator is criti-
cal, as the I} score can be improved by more than
two times in some cases. This also suggests that the
relation generator can produce reasonable-quality
synthetic sentences as training data for the down-
stream relation extractor. We also observe that the
choice of relation extractor for ZeroRTE is not triv-
ial, as the third-party TableSequence (Wang and Lu,
2020) has significantly worse performance when
compared to RelationPrompt, especially for multi-
triplet extraction. Although the TableSequence
model is able to perform multi-triplet extraction
by design, it assumes that the training data may
contain multi-triplet sentences, whereas our syn-
thetic data is limited to single triplet samples. On
the other hand, our proposed relation extractor and
decoding method effectively overcomes this chal-



Model F 1 AF; 1
Full Method 28.41
— Triplet Search Decoding 14.53 -13.88
— Extractor Fine-Tuning (Seen Relations) 13.57 -14.84

Table 5: Ablation results for multi-triplet ZeroRTE.

lenge by naturally enumerating and ranking multi-
ple triplets at inference time.

Relation Classification RelationPrompt natu-
rally supports the ZeroRC task without additional
training by providing the entity pair information in
the prompt. In Table 4, we observe consistent im-
provements compared to the prior state-of-the-art
method ZS-BERT (Chen and Li, 2021). Notably,
our method is able to maintain a relatively high
classification F; performance when the unseen la-
bel set size m increases, whereas ZS-BERT shows
a sharper drop in performance. The trend suggests
that RelationPrompt is able to scale better to larger
unseen label sets, which is more important for open-
domain applications. This advantage may further
indicate that our method can leverage the seman-
tic information of relation labels more effectively
through the token-level conditional generation and
extraction stages. On the other hand, ZS-BERT
relies on sequence-level representations which can
only preserve the high-level label semantics.

4 Analysis
4.1 Ablation Study

We conduct an ablation study to examine the per-
formance of our decoding method and task-specific
fine-tuning on the seen relation set for multi-triplet
ZeroRTE, and the results are shown in Table 5. The
comparison is conducted on the Wiki-ZSL valida-
tion set with 10 unseen labels. The large perfor-
mance gap shows that Triplet Search Decoding is
critical for multi-triplet ZeroRTE, and suggests that
the enumeration and ranking of relation triplet can-
didates are of sufficiently high quality. Secondly,
we observe a significant drop in performance when
the relation extractor is not fine-tuned on seen re-
lation samples from the train set before the final
tuning on generated synthetic samples for unseen
labels. This case suggests that the initial fine-tuning
on sentences for seen relations is useful for learn-
ing the general task of relation triplet extraction.
The learned representations can then be further fine-
tuned on the synthetic samples to adapt specifically
for the unseen relations to achieve optimal results.
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4.2 Effect of Generated Data Size

We further study how the number of generated syn-
thetic samples effects the multi-triplet ZeroRTE
performance. The evaluation is based on Wiki-ZSL
validation set with 10 unseen labels, and the re-
sults are shown in Figure 6. Increasing the amount
from 125 to 250 samples per label improves F}
score. However, further increasing the generated
size up to 2000 does not improve the final perfor-
mance. This indicates that although the synthetic
data is beneficial for ZeroRTE, excessive amounts
can lead to over-fitting due to noise. We further
analyze the generation diversity in Appendix A.3.

4.3 Qualitative Analysis

To assess how the relation data generator gener-
alizes to relations in the wild, we present several
samples of real and generated samples in Figure
5. The relation labels and real sentences were col-
lected from factual articles. Given the relations
“Investor”, “Defeated By” and “Currency Of”, the
generator is able to determine the correct semantic
meaning of the relations and compose reasonable
sentences. In most cases, the generated head and
tail entity pairings can match the given relations
and have a similar context to the real sentences.
However, in the last case for relation “Political
Partner”, the generated entity pair does not match
the relation meaning despite being grounded in a
political context. Instead, the generated sentence
expresses a relationship that is closer to “Political
Party”. This suggests that a future area of improve-
ment could be to match the generated head and tail
entity more closely to the given relation.

5 Related Work

Zero-Shot Relation Extraction Zero-shot rela-
tion extraction was previously framed as a slot-
filling task and solved by reading comprehension
methods (Levy et al., 2017). However, their ap-
proach requires manual template design for each
relation label, which cannot scale well to new rela-
tion types. Another approach to zero-shot relation
extraction is the formulation into an entailment task
(Obamuyide and Vlachos, 2018), which is not con-
strained to a fixed relation label space. Instead, the
entailment approach determines if arbitrary pairs of
sentences and relation labels are compatible. How-
ever, it is designed for sentence classification and
cannot be applied to ZeroRTE.



Real Sentence

Generated Sentence

@ation

Investor

investment from and

Defeated By National shuttler

, on the other hand, has accepted
Bitcoin (BTC) as a legal currency.

Currency Of

Political Partner Beijing and the reached a provisional

In October 1999, Alibaba received a US $25 million

recorded a 24-22,
21-14 win over All-England champion Lee Zii Jia.

agreement in 2018 on the appointment of Chinese

bishops.

~

In 2001, announced that it is investing in a record 65 plants
in South Africa and plans to invest $2 billion in hydropower,
hydrological services and agriculture.

The team lost three consecutive draws to the
including a 9-2 win against the Lakers

In 2001, as the euro strengthened, Italy introduced an extension
of the Eurobill (Eurobills), the currency of the

His son, Thomas, was a leading , elected to the

Massachusetts State Senate in 1881.

Figure 5: Case study between real and generated samples for relations in the wild. The head and tail entities are

shown in blue and orange respectively.
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Figure 6: Effect of generated data size on ZeroRTE.

Data Augmentation A popular method for im-
proving model performance in supervised low-
resource tasks is data augmentation. Simple heuris-
tics such as token manipulation (Kobayashi, 2018)
were initially developed, new methods in language
modeling improved the quality of augmented sam-
ples (Xie et al., 2020; Wei and Zou, 2019). Al-
though there are data augmentation methods that
can be applied to structured tasks such as named
entity recognition (Ding et al., 2020) and relation
extraction (Papanikolaou and Pierleoni, 2020; Lee
et al., 2021), they require existing training samples
and cannot be easily adapted to zero-shot tasks.

Knowledge Retrieval RelationPrompt also
leverages the knowledge stored in language models
(Roberts et al., 2020) to compose relation samples
that are grounded in realistic contexts. To ensure
that the generated samples are factually accurate,
the language model requires strong knowledge
retrieval capabilities (Petroni et al., 2019).

Language Model Prompts Prompting-based
methods have shown promise as a new paradigm
for zero-shot or few-shot inference in natural lan-
guage processing (Liu et al., 2021). Another advan-
tage is the potential to adapt very large language
models (Reynolds and McDonell, 2021) to new
tasks without relatively expensive fine-tuning. Con-
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current works (Meng et al., 2022; Ye et al., 2022)
also show that language models can generate syn-
thetic training data. However, such methods have
not yet proven effective for more complex tasks
such as triplet extraction.

Structured Prediction RelationPrompt gener-
ates synthetic data for relation triplet extraction,
which is a structured prediction task. Hence, it can
be widely applicable to other structured prediction
tasks such as named entity recognition (Aly et al.,
2021), event extraction (Huang et al., 2018) or as-
pect sentiment triplet extraction (Xu et al., 2021).

6 Conclusions and Future Work

In this work, we introduce the task setting of
Zero-Shot Relation Triplet Extraction (ZeroRTE)
to overcome fundamental limitations in previous
task settings and encourage further research in low-
resource relation extraction. To solve ZeroRTE, we
propose RelationPrompt and show that language
models can effectively generate synthetic training
data through relation label prompts to output struc-
tured texts. To overcome the limitation for extract-
ing multiple relation triplets in a sentence, we pro-
pose the Triplet Search Decoding method which is
effective and interpretable. Results show that our
method surpasses prior ZeroRC methods as well
as strong baselines on ZeroRTE, setting the bar for
future work. As mentioned in Section 4.3, a fu-
ture direction for improvement could be to ensure
that the generated entity spans are more compatible
with the semantics of the relation in the language
model prompt.
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/ ™~

///R/elalion Sentence \\\
“" Mouth of It drains into the via the Patia River. \
Watercourse
Position Played Made Chad Brown the highest paid in NFL history.
League The Diamondbacks compete in the division.

Military Branch The 47th Liaison Squadron is an inactive unit.

Head of Following the September 2014 general elections in Montserrat, Reuben Meade's
Government government was replaced by new government led by
Director The Locket is a 1946 film directed by
Military Rank Sir Bernard Paget died on 16 February 1961.
Residence Diederik van Dijk is married and lives in
{ Location He gave the Bampton Lectures at in 1824.

\\Ongina\ Language Her latest film was "Jaihind 2".

~

(a) Annotation Samples of Unseen Relations in FewRel Dataset

/ —~

/
///Rela(ion Sentence \\\
( Employer Martha Crago is Vice President of Research at \

Award Received  Private Bernard McQuirt won the at Rowa.

Sports Discipline  Andrii Toptun is a Ukrainian runner.

Spouse , Roman wife of Claudius.

Country of Jarmo Saari is a guitarist , composer and producer .
Citizenship

Part Of Line 2 of starts at Basauri and reaches Santurtzi.

Official Language ~ Mass media in Israel in a language other than

Drafted By Sihugo Green from Duquesne University was selected first overall by the

Aimée & Jaguar is a 1999 German drama film set in during World War Il. |

-/

| Narrative Location

\_Educated At Roger Morris earned his doctorate in government from

~

(b) Annotation Samples of Unseen Relations in Wiki-ZSL Dataset

Figure 7: Additional sentence samples from the
datasets. The head and tail entities are shown in blue
and orange, respectively.

A Appendix

A.1 Additional Data Samples

Dataset Samples To further illustrate the
datasets used, we show test samples in Figure 7.
The samples are taken from the FewRel (a) and
Wiki-ZSL (b) test sets respectively with 10 unseen
relation labels.

Synthetic Samples To further examine the out-
put of the relation generator, we show test samples
in Figure 8. The samples are generated from the
FewRel (a) and Wiki-ZSL (b) test set labels respec-
tively with 10 unseen relation labels.

A.2 Implementation Details

Generating Structured Texts We use the rela-
tion generator model to generate synthetic sen-
tences in an autoregressive fashion. To convert
the structured text outputs to relation triplet sam-
ples, we perform simple string processing on the
output templates shown in Figure 3a to separate the
structured content from the natural text. In case of
a small amount of conversion errors, we continue
to generate samples until the amount of sentences

56

,@Iation

Sentence

Mouth of The Cascades River is a freshwater estuary in
Watercourse

Position Played In 2009, Wojciech Szczerbinski was named

League The 2014 FIFA World Cup, played at stadium.
Military Branch At this time the Army continued to deploy to

Head of The Prime Minister is the Prime Minister of

Government

Director "Téléchargier" was directed by the director

Military Rank He was a former named Thomas J. Tarr.
Residence Toretto was born and raised in , Norway.
Location The district was originally assigned to the Northern Romanovs of

\_Original Language It was also written by the filmmaker Mikael Njoro.

N§ Pl

(a) Generated Samples of Unseen Relations in FewRel Dataset

Sentence

,@Iation

Employer

Bewley was signed into the at the age of 17.

Award Received  In 1962 he won Best Director for

Sports Discipline  Thomas Stuestor was a champion of in 1872.

Spouse It was created for 's wife Nancy in 1950.

Country of Peter Paul Rubens was a politician and businessman.
Citizenship

Part Of The main source of power in the was Saudi Arabia and Egypt.

Official Language  The first official translation is by Robert Knecht.

Drafted By In addition, the drafted quarterback Danny Franklin.

Narrative Location A story from the The Tudors.
Educated At Tchaikov attended the Krasnoyarsk Academy (1960s) in
\\\ //

(b) Generated Samples of Unseen Relations in Wiki-ZSL Dataset

Figure 8: Additional synthetic samples from the gener-
ated outputs. The head and tail entities are shown in
blue and orange, respectively.

generated per label is reached. For the relation
extractor model, we perform a similar processing
on the output templates in Figure 3b to extract the
predicted relation triplets. However, in case of pro-
cessing errors, we do not continue generation and
instead treat it as a prediction failure for that input
sample.

Hyperparameters We show more detailed hy-
perparameters used in Table 6. We run a grid search
on the Wiki-ZSL validation set with 10 unseen la-
bels for multi-triplet ZeroRTE F} metric. A grid
search is used to tune the hyperparameters. For
number of generated samples per label, we con-
sider the values {125,250, 500, 1000, 2000}. To
tune the Triplet Search Decoding threshold, we
consider fifty evenly-spaced values from the inter-
val over the minimum and maximum output scores
of all candidate triplets on the validation set. Due
to computational constraints, we consider the num-
ber of branches to consider at each stage a fixed
value, and do not tune it as a hyperparameter.

Computing Infrastructure The experiments
are conducted on NVIDIA V100 GPUs, and each
experiment is run on a single GPU with 32 GB of



Value
Generator Maximum Sequence Length 128
Generator Sampling Top-K 50
Generator Sampling Temperature 1.0
Extractor Maximum Input Length 128
Extractor Maximum Output Length 128
Training Dropout Probability 0.1
Generated Samples Per Label 250
Triplet Search Decoding Top-N Branches 4
Triplet Search Decoding Threshold -0.9906
Table 6: Additional hyperparameters.

Samples Unique Entities Unique Words
Real Data 3461 3090 14736
Generated Data 3461 4949 10558

Table 7: Data diversity comparison.

memory and mixed precision settings.

A.3 Further Analysis

Generated Sample Diversity Our method for
ZeroRTE heavily depends on the quality of the
generated data. Hence, we compare the diversity
of real and synthetic data samples. Concretely, we
measure the number of unique words and entities
present in the texts. We used the Wiki-ZSL val-
idation set sentences with five unique labels and
generate an equal amount of synthetic sentences
for comparison. Table 7 shows that the diversity of
unique entities is actually greater for the generated
sentences. However, the generated sentences have
lower diversity of overall unique words. This may
be explained by the fact that entity names tend to
be unique, and the generator language model has
seen a vast number of unique entity names during
the large-scale pre-training. On the other hand, the
total unique words are mostly determined by the
non-entity words. By using prompts to condition
the generation of sentences specifically for unseen
relation labels, this may constrain the diversity of
contextual information in the output sentences.

Performance Across Relations To study how
the performance varies across different relation la-
bels, we evaluate single-triplet ZeroRTE on the
Wiki-ZSL test set with 10 unseen labels. Figure 9
shows that the model is able to perform well for re-
lations such as “Drafted By” and “Sports Discipline
Competed In”. However, it performs more poorly
for relations such as “Official Language” and “Em-
ployer”. This suggests that RelationPrompt per-
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Figure 9: Separate evaluation on relation labels.

forms best for relations which are highly specific
to constrain the output context more effectively.
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Abstract

What can pre-trained multilingual sequence-
to-sequence models like mBART contribute
to translating low-resource languages? We
conduct a thorough empirical experiment in
10 languages to ascertain this, considering
five factors: (1) the amount of fine-tuning
data, (2) the noise in the fine-tuning data, (3)
the amount of pre-training data in the model,
(4) the impact of domain mismatch, and (5)
language typology. In addition to yielding
several heuristics, the experiments form a
framework for evaluating the data sensitivities
of machine translation systems. While mBART
is robust to domain differences, its translations
for unseen and typologically distant languages
remain below 3.0 BLEU. In answer to our
title’s question, mBART is not a low-resource
panacea; we therefore encourage shifting the
emphasis from new models to new data'.

1 Introduction

Pre-trained multilingual sequence-to-sequence
(PMSS) models, such as mBART (Tang et al.,
2021) and mT5 (Xue et al., 2021), are pre-trained
on large general data, then fine-tuned to deliver
impressive results for natural language inference,
question answering, and text simplification (Hu
et al., 2020). Their performance on machine trans-
lation shows promise for translating low-resource
languages (Liu et al., 2021b; Adelani et al., 2021;
Thillainathan et al., 2021), which remains an
open challenge (Lopez and Post, 2013; Koehn and
Knowles, 2017; Mager et al., 2021; Ranathunga
et al., 2021).

When can mBART and mT5 succeed in trans-
lating a low-resource language? Despite their
promise, the specific conditions for their practical
application are not yet clear. Understanding their
sensitivities is crucial to guide data acquisition ef-
forts and apply PMSS models to new languages.

ICode is available at https://github.com/LRLNMT/
LRLNMT
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We introduce a framework for assessing data-
dependency of performance of machine translation
systems. We then apply it in a large-scale study of
mBART’s viability for low-resource machine trans-
lation on 10 typologically and geographically var-
ied languages. Eight languages are low-resource,
and four are unseen by mBART during pre-training.
Through our results, we gauge the importance of
five dimensions of the training data:

Amount of fine-tuning data
Noise in fine-tuning data
Amount of pre-training data
Domain mismatch
Language typology

NS

5.

The closest work to ours (Liu et al., 2021b) consid-
ers only the first two.

For the seen languages, mBART reaches accept-
able performance with either 10k high-quality, in-
domain sentence pairs or 100k noisy ones. How-
ever, nBART’s BLEU score for unseen languages
is often below 3.0—far below usability. For
these unseen, low-resource languages, the fact that
even mBART—which has already seen billions of
sentences—cannot succeed in virtually any of our
conditions speaks to the need for appropriate in-
domain data. Therefore, the analytical framework
in our experimental design can help to target new
data acquisition efforts.

2 Models and Data

mBART and mT5 are PMSS models that rely
on the encoder—decoder Transformer architecture
(Vaswani et al., 2017) trained on Common Crawl—
derived data with variants of a monolingual autoen-
coding objective: they must recreate the input text
that they are provided. Neither is trained with an
explicit objective encouraging similar tokens or
sentences to have similar representations.

After model weights have been learned, the mod-
els can be fine-tuned on parallel text for translation.

Findings of the Association for Computational Linguistics: ACL 2022, pages 58 - 67
May 22-27, 2022 (©)2022 Association for Computational Linguistics



EN—XX XX—EN

Language Training data Size mBART mT5 mBART mT5

AF
XH

JW300
JW300

1,104k
860k

30.9
9.1

32.9
8.4

439
22.8

46.9
232

YO JW300 472k 39 2.6 79 8.1
GA EUBookShop 133k 15.1 7.6 15.7 16.7
FR DGT-TM 100k 18.8 19.8 19.3 20.3
SI Gov't 56k 5.4 23 9.6 8.4
TA Gov't 56k 35 2.4 10.7 10.1

PMlIndia
PMlIndia

50k
25k

14.1
4.1

10.5
29

19.5
42

16.4
10.7

Average 11.7 9.9 17.1 17.9

Table 1: Preliminary results for mBART and mT5 (base
version) in six languages. We test on FLORES in all
cases. The best score for each direction is in bold.

The ideal fine-tuning scenario would be vast, clean
data matching the language and domain of interest.
Because this scenario is unlikely for low-resource
languages, we test the relaxation of these assump-
tions for PMSS models.

In a preliminary experiment comparing mBART
and mT5, mBART performed better than mT5 on
11 of the 18 translation directions, especially the
EN—xx directions (Table 1), corroborating Liu
et al. (2021b). Because mBART performed bet-
ter both in number of translation directions and
average BLEU, we focus hereafter on it.

2.1 Languages

To assess mBART’s translation ability, we selected
a set of high- and low-resource languages with high
typological and geographical diversity (Table 2).
Five of the ten languages do not use the Latin script,
so that we can evaluate mBART’s generalization to
non-Latin scripts (see Pires et al., 2019). Eight are
considered low-resource languages by Joshi et al.
(2020), while two high-resource languages (FR and
HI) give a skyline of performance.’ Four are un-
seen during mBART’s pre-training. Together, these
languages let us probe the effects of pre-training
data size and language typology on translation.

2.2 Corpora

Selecting suitable parallel corpora enables us to
probe the remaining three factors: amount of fine-
tuning data, noise in the fine-tuning data, and do-
main mismatch.

For each of our 10 languages, we use three
training corpora: data from Common Crawl, the
Bible, and one other domain-specific dataset (Ta-
ble 3; complete details in Appendix A). Common

2Joshi et al. (2020)’s taxonomy is out-of-date. Because SI
is used to train mBART, it must be at least class 3. We believe

that, according to Joshi et al. (2020)’s definition, no language
in our study is below class 2.
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Language Family Script class tokens
FR  French Romance (IE) Latin 5 9780M
HI  Hindi Indo-Aryan (IE)  Devanagari 4 1715M
TA  Tamil Dravidian Tamil 3 595M
SI  Sinhala Indo-Aryan (IE)  Sinhala 1 243M
AF  Afrikaans  Germanic (IE) Latin 3 242M
XH Xhosa Niger—Congo Latin 2 13M
GA Irish Celtic (IE) Latin 2 -
YO Yoruba Niger—Congo Latin 2 -
AS Assamese Indo-Aryan (IE) Bengali—-Assamese 1 -
KN Kannada Dravidian Kannada 1 -
Table 2: The 10 languages in our study.
Dataset Domain Languages
FLORES-101 Open all except SI
FLORESV1 Open SI
CCAligned Open all except GA
CCMatrix Open GA
JHU Bibles Religious all
JW300 Religious+magazines AF, YO, XH
Government Administrative SI, TA
PMiIndia News AS, KN, HI
DGT-TM Legal FR, GA

Table 3: Parallel corpora used in our study.

Crawl is large and open-domain, while the others
are smaller curated translations. We use FLORES
(which is also open-domain) and the two domain-
specific corpora for testing. Comparing on these
lets us assess the impact of domain mismatch.

To evaluate consistently across differently sized
corpora, we sampled fixed-size training sets from
each corpus. For the Common Crawl data, we used
two sizes: 25k and 100k sentence pairs. For the
Bible, we used a 1k-sentence-pair sample. Finally,
for each language’s other domain-specific dataset,
depending on the amount of parallel text available,
we used up to four sizes (1k, 10k, 50k, 100k).

The Common Crawl datasets are large open-
domain parallel corpora, but their construction by
automatic alignment invites substantial noise. This
problem is especially severe for low-resource lan-
guages (Kreutzer et al., 2022). Noisy data often
harm translation models (Khayrallah and Koehn,
2018), but it is possible to use them effectively
(McCarthy et al., 2020a). This raises the question
of whether mBART can do so. Among our exper-
iments, we can see whether and when a smaller,
clean parallel corpus would be preferable.

3 Experimental Setting

We fine-tune mBART models on each of the train-
ing corpora and sizes listed above, and we evaluate
their performance using the development and test
sets from the domain-specific corpora and FLORES.



EN—XX XX—EN
AF XH YO AF XH YO
Training Size FLORES Bible JW300 FLORES Bible JW300 FLORES ~Bible JW300 FLORES Bible JW300 FLORES Bible JW300 FLORES Bible JW300
Transformer
Bible 1k 1.3 1.4 1.7 24
JTW300 100k 192 138 4.2 1.8 31.8 1.2 18.7 225 151 24 6.6 4.9 375 24 1.0 17.7
Common Crawl 100k 23.6 7.0 17.4 25 23 1.2 1.6 1.4 283 103 223 7.7 29 10.2 2.1 33 4.1
mBARTS50
Bible 1k 35 3.6 3.6 205 134 235 2.8 33 3.1
TW300 1k 189 111 324 1.6 11.0 1.0 6.7 288 12.6 32.5
10k 265 141 42.7 4.1 1.8 22.1 2.0 7.8 324 16.0 39.0 114 4.8 29.1 6.2 1.0 154
50k 30.1 158 48.0 6.0 4.0 30.8 3.8 20.1 409 175 417 16.2 9.2 413 7.8 1.3 19.8
100k 30.1  16.2 49.7 74 43 349 39 23.6 420 179 43.7 199 115 457 79 15 22.0
Common Crawl 25k 280 134 314 4.8 10.1 2.6 1.7 3.8 36.0 15.0 35.0 11.3 3.0 18.6 35 32 52
100k 339 155 344 79 2.1 16.8 2.8 45 59 4.8 169 40.2 19.7 9.0 27.8 50 75 6.7
EN—XX XX—EN
HI KN AS HI KN AS
Training Size FLORES Bible PMI FLORES  Bible PMI FLORES Bible PMI FLORES Bible PMI FLORES  Bible PMI FLORES Bible PMI
Transformer
Bible 1k
PMI 50k 7.7 1.3 229 49 1.3 7.7 24 26.2 6.6 9.7 34
Common Crawl 100k 8.7 23 7.3 6.6 3.0 4.7
mBART50
Bible 1k 3.7 7.0 43 7.1 93 7.2 1.4 4.6
PMI 1k 7.0 23 145 2.1 7.4 4.1 118 1.7
10k 11.5 2.5 242 1.8 10.7 16.8 7.1 30.6 52
50k 14.1 34 28.8 - - - 19.5 82 37.6 - - -
Common Crawl 25k 14.2 55 12.0 1.4 1.4 17.6  10.2 14.0 1.6 1.6
100k 20.9 6.2 17.0 12 - 224 112 17.1 - -
EN—XX XX—EN
S1 TA GA S1 TA GA
Training Size FLORES Bible Gov't FLORES Bible  Gov't FLORES Bible DGT FLORES Bible  Gov't FLORES Bible  Gov't FLORES Bible DGT
Transformer
Bible 1k 1.1 1.0
Gov't/DGT 50k/100k 1.3 20.6 13.7 33 32 2.7 239 2.7 23.9 32 3.0
Common Crawl 100k 2.1 5.6 1.8 1.8 4.7 1.9 79 52 34 4.9
mBARTS0
Bible 1k 3.6 1.2 1.1 1.1 1.3 4.8 9.0 4.5 53 7.8 4.4
Gov't/DGT 1k 1.4 11.2 1.1 6.6 L5 6.5 2.5 14.8 6.1 2.1 12.6
10k 42 26.4 23 17.4 4.7 4.1 8.4 33 30.7 7.7 2.6 23.8 58 4.7
50k 5.1 354 3.7 234 122 4.2 9.2 35 38.8 104 33 37.3 123 5.1
100k - - - - - 8.9 43 - - - - - - 9.5 49
Common Crawl 25k 44 9.6 4.7 4.6 9.6 52 135 72 6.5 5.6
100k 6.6 16.9 7.6 8.6 138 85 205 17.3 9.6 16.8

Table 4: Experimental results, reported in SacreBLEU (Post, 2018). Values <1.0 grey; values >10.0 bold.

EN—FR FR—EN
Training Size FLORES Bible DGT FLORES Bible DGT
Transformer
Bible 1k 2.4 1.6
DGT 100k 5.7 1.4 228 6.1 24 26.6
Common Crawl 100k 9.0 6.5 5.6 10.7 6.8 73
mBART50
Bible 1k 132 155 109
DGT 1k 15.1 57 202 199 119 278
10k 155 44 254 17.7 78 297
50k 17.8 51 312 18.3 85 353
100k 18.8 50 34.6 19.3 76  36.6
Common Crawl 25k 240 149 156 260 18.0 194
100k 294 163 19.6 291 189 226

Table 5: Experimental results for French, reported in
SacreBLEU. Values <1.0 grey; values >10.0 bold.

We additionally train a standard Transformer
baseline (Vaswani et al., 2017) to compare pre-
training versus training from scratch.

We score translations with SacreBLEU (Post,
2018). Details of training and evaluation are given
in Appendix B.

4 Results and Analysis

The results of our empirical study are given in Ta-
ble 4, with FR given in Table 5. By contrasting

specific groups of rows, we probe our five factors.

4.1 Amount of fine-tuning data

To assess this dimension, we compare the Trans-
former and mBART models trained on varying
sizes of the same corpus with their corresponding
open-domain and domain-specific evaluation sets.

In the open-domain case (training on Common
Crawl), for languages seen during pre-training,
mBART fine-tuned with 25k sentence pairs outper-
forms the Transformer trained with 100k parallel
sentences; this pattern holds for 18 of the 20 lan-
guage directions. This indicates that pre-trained
mBART is at least four times as data-efficient. Al-
though it also outperforms the Transformer on un-
seen languages in terms of BLEU, the scores are
often below 3.0—a far cry from even the BLEU
score needed for gisting.

On the other hand, we observe a similar
trend when training with domain-specific datasets
(JW300, Gov’t, and DGT). For the government-
domain dataset, mBART trained with 10k sen-
tences of ST or TA achieves a higher BLEU than the
Transformer trained with 50k sentences (+3.4 to
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Figure 1: Impact of fine-tuning dataset size on mBART
performance translating into English on JW300.

+6.8); this suggests at least a fivefold data efficiency.
The exception is SI—EN, where the difference in
scores is 0.1 BLEU. For JW300, mBART trained
with 10k parallel sentences outperforms the Trans-
former trained with 100k for some translation tasks
tenfold. Further, mBART trained with 50k sen-
tences outperforms the Transformer model for all
languages by a large margin’. Of note, YO begins
to perform well in-domain on JW300 with tens of
thousands of sentences.

When do we reach diminishing returns on fine-
tuning size? Figure 1 shows how fine-tuning size
affects translation of JW300 into EN from AF, XH,
and YO. Although training with more data im-
proves BLEU, the gain saturates as the dataset
size reaches approximately 50k sentence pairs. Liu
et al. attribute this to the limit of the model’s capac-
ity: that the pre-trained weights are “washed out”
(2020) when fine-tuning with more parallel data.

4.2 Noise in fine-tuning data

At what point is a small-but-clean corpus more use-
ful than an automatically mined one like from Com-
mon Crawl? Comparing mBART trained on Com-
mon Crawl versus domain-specific data, we see that
for several languages both in and not in mBART,
10k high-quality in-domain sentences leads to bet-
ter performance than 100k sentences from Com-
mon Crawl.

4.3 Amount of pre-training data

The improvement of mBART over the Transformer
is more prominent for languages with more pre-
training data. The correlation between BLEU and
number of pre-training sentences is R> = 0.31

3The only exceptions are AF-EN and EN-XH in-domain
testing, with less than or equal to 1.0 BLEU point difference.
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Figure 2: Effect of pre-training open-domain dataset
size, using 100k Common Crawl sentence pairs for fine-
tuning, translating from English

for open-domain (Figure 2), and the effect in the
domain-specific case is similar. This shows that
mBART effectively leverages the pre-training data.
Taken with the results of §4.1, the contrasting be-
havior between seen and unseen languages belies a
“rich-get-richer” phenomenon.

4.4 Domain mismatch

This section compares the performance of models
when trained and tested on matching versus mis-
matched domains.

Unsurprisingly, taking a training set from the
same domain as the test set consistently yields
higher BLEU than a mismatched training set. This
pattern repeats across domains and directions.

Of greater interest is that Common Crawl-
trained models often do better on domain-specific
test sets than open-domain test sets. For languages
with JW300 or Gov’t, testing BLEU on these was
higher than on the open-domain FLORES data.

Further, for s1 and TA, mBART trained on 10k
sentences achieved higher BLEU than the Trans-
former trained on 100k data, suggesting the pre-
training gain was able to compensate the lack of
in-domain data. This may indicate that mBART is
valuable for domain-specific translation with low
amounts of high-quality data.

Results for FR on DGT and the Bible and HI
on PMI show that mBART can excel with even 1k
parallel sentences for languages with sufficient pre-
training. If data from a different domain is available
in sufficient quantities, an acceptable translation
can be expected, as evident from the Gov’t 50k and
JW300 100k settings. Noticeably, issues related
to domain difference and fine-tuning dataset size
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Figure 3: Cosine similarities of syntactic features

are less pronounced for FR (see results for 1k Bible
data and 1k DGT). This reiterates the impact of
language coverage in the mBART model.

4.5 Language typology

This analysis relates properties of the languages to
their performance.

Foremost, AF regularly achieves the highest
BLEU among low-resource languages used to pre-
train mBART. This observation is consistent with
Zhou and Waibel (2021). We attribute this to AF’s
relationship with EN: both are Germanic and share
the Latin script, with large lexical overlap. Mul-
tilingual machine translation systems can learn
shared representations for linguistically similar lan-
guages (Dabre et al., 2017; Neubig and Hu, 2018;
Kudugunta et al., 2019; Hokamp et al., 2019); we
expect that mBART taps into this relationship. Fur-
ther, a smaller token set may help explain this im-
proved generalization (Arivazhagan et al., 2019).

For unseen languages that share the Latin script
with English, explaining mBART’s performance is
less trivial, so we turn to a computational analysis.
GA reaches lower BLEU than YO, despite being
Indo-European like most of mBART’s training data.
It could be a result of its rare VSO word order (Liu
et al., 2021a), its initial consonant mutations, or
other rare syntactic phenomena. To explain the
divergent behavior of AF and GA, we use syntac-
tic features estimated by the k& nearest neighbors
(Littell et al., 2017) of their WALS features (Dryer
and Haspelmath, 2013). Figure 3 shows the syn-
tactic similarities between AF, GA, and four high-
resource languages (EN, DE, FR, and NL). This
confirms that AF is more syntactically similar to
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these high-resource languages than GA is.

Finally, we consider the interplay of translation
direction and BLEU. Translating into EN regularly
outperforms translating from EN, which we may
attribute to mBART and the Transformer learning
a strong EN language model in the decoder (Voita
et al., 2021). But it may also come from BLEU’s
ignorance of subword phenomena. When trans-
lating into a morphologically rich language like
SI or TA, no partial credit is awarded for partially
correct sets of morphemes. We see this as bolster-
ing the movement toward character-aware metrics
(Popovié, 2015; Mager et al., 2021).

5 Conclusion

We have assessed the value of PMSS models like
mBART for low-resource machine translation. We
designed a reusable framework of experiments, cap-
turing mBART’s sensitivity to five facets of data.
Consistently, mBART fails in learning to translate
new under-resourced languages—those unseen in
the pre-trained model. For languages used in mono-
lingual pre-training, we find four- to tenfold data
efficiency over a from-scratch Transformer, plus
robustness to domain differences.

For domain-specific datasets, nBART might out-
perform standard Transformers by an efficiency of
five to ten times; future work can pinpoint the satu-
ration size. Fine-tuned mBART is robust to domain
differences, while the Transformer flounders for
out-domain datasets. However, the performance
on unseen languages is generally not indicative of
usable translation system.

Taken in tandem, these results point to the
paramountcy of monolingual pre-training for the
bilingual task of translation. The biggest open is-
sue, though, is not how to tune PMSS models on
limited data; instead, greater data acquisition is the
hope for truly low-resource machine translation.
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A Supplementary Material on Corpora

Here we give details of the corpora used in our
study.

Bible. The JHU Bible Corpus (McCarthy et al.,
2020b) is a recently released corpus of Bible trans-
lations in over 1600 languages. In several low-
resource languages, the Bible is the only available
text parallel with another language; moreover, its
verse structure makes it multi-parallel across thou-
sands of languages. It has been used to assess
multilingual translation at massive linguistic scale
(Mueller et al., 2020), develop new morphologi-
cal tools (Nicolai et al., 2020), and fine-tune pre-
trained language models to new low-resource lan-
guages (Ebrahimi and Kann, 2021).

Gov’t. The government document corpus of Fer-
nando et al. (2020) is a multilingual corpus for
Sinhala, Tamil, and English. It contains official
Sri Lankan government documents: annual reports,
crawled content from government institutional web-
sites, committee reports, procurement documents,
and acts.

PMI. PMlindia (Haddow and Kirefu, 2020) is a
parallel corpus of news updates for English and 13
other languages in India, extracted from the Prime
Minister of India’s website.

JW300. The JW300 corpus (Agi¢ and Vulid,
2019) is another parallel corpus, spanning 343
languages. It is obtained from jw.org and in-
cludes Jehovah’s Witness magazines like Awake
and Watchtower. The domain is highly religious,
but it includes other societal topics such as re-
ports about persecution of their disciples around the
world. While JW300 was automatically aligned,
Abbott and Martinus (2019) and Alabi et al. (2020)
have verified its quality for African languages. For
languages with non-Latin scripts in our study, the
alignment has been judged to be poor by native
speakers.

DGT. The European Commission’s Directorate-
General for Translation—Translation Memory
(Tiedemann, 2012) covers 25 languages and corre-
sponds to the ‘Summaries of EU legislation’. They
are short explanations of the main acts passed by
the European Union. The legislation included in
the dataset includes directives, regulations, deci-
sions, and international agreements.
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Common Crawl. CCAligned (El-Kishky et al.,
2020) and CCMatrix (Schwenk et al., 2021)
are web-scraped corpora that were automati-
cally aligned using LASER sentence embeddings
(Schwenk, 2018). CCAligned is newer, and it has
more text in low-resource languages. The dataset,
albeit noisy (Kreutzer et al., 2022), has been used
to develop highly multilingual machine transla-
tion models like M2M100 (Fan et al., 2021) and
mBART multilingual MT (Tang et al., 2021); a
modified version is used to train mT5 (Xue et al.,
2021).

Data splits For FLORES and the Bible, we al-
ways use 1000 sentence pairs for development (see
Kann et al., 2019) and 1000 sentence pairs for test.
For the second in-domain dataset, the size varies
between 1000 and 2000 sentence pairs based on
availability.

B Supplementary Material on
Experimental Setup

mBART and mT5. We compared mBART50
and mT5-base because they have comparable num-
bers of parameters. For both the mBARTS50 and
mT5-base models (Tang et al., 2021), we train up
to 3 epochs with a learning rate of 5x 1075, dropout
of 0.1, maximum lengths of 200 for the source and
target, and a batch size of 10. We decode using
beam searh with a beam size of 5. We use the im-
plementations in the HuggingFace Transformers
library, and we leverage hardware-level parallelism
by training on NVIDIA Tesla V100 GPUs.

We perform bilingual fine-tuning on the 10 se-
lected language pairs. For each language direction,
we initialize the encoder—decoder model’s param-
eters from the pre-trained mBART model’s corre-
sponding encoder and decoder. After initialization,
we continue training.

Because mBART requires a target language to
be specified during decoding from amongst those
that the model has seen, we follow past work in se-
lecting languages related to our target languages for
unseen languages (Madaan et al., 2020; Cahyawi-
jaya et al., 2021). Considering syntactic and phy-
logenic closeness of languages (Dryer and Haspel-
math, 2013; Littell et al., 2017), we chose BN for
AS, TE for KN, FR for GA, and SW for YO.

mTS. Considering memory bottlenecks, we use
the mT5-base model. It supports over 100 lan-
guages, including five of the six from our prelimi-



nary experiment. Because Irish (GA) is not among
these, we use the French language code for fine-
tuning the model.

Transformer. We train Transformer models im-
plemented in FAIRSEQ using the same datasets as
we used for fine-tuning mBART. We use two Trans-
former architectures, depending on the data size.
When there are fewer than 10k parallel sentences,
the model consists of 3 encoder layers and 3 de-
coder layers, with embedding dimension of 512
and 2 attention heads. When there are 10k or more
parallel sentences, we instead use a model that con-
sists of 6 encoder layers and 6 decoder layers, with
an embedding dimension of 256 and 2 attention
heads. In each case, we have an initial learning rate
of 1 x 1073, a weight decay of 1 x 10~4, dropout
of 0.4, and batch size of 32. We use early stopping
based on the validation loss. We train the models
from scratch with segmentation into subword to-
kens performed by SentencePiece. When decoding,
we use beam search with a beam size of 5.

Evaluation. To ease the comparison of future
work with ours, we report that the SacreBLEU
settings we use are represented by the signature
BLEU+c.mixed+#. 1+s.exp+tok.13a+v.1.5.0.
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Abstract

Generating explanations for recommender sys-
tems is essential for improving their trans-
parency, as users often wish to understand the
reason for receiving a specified recommenda-
tion. Previous methods mainly focus on im-
proving the generation quality, but often pro-
duce generic explanations that fail to incor-
porate specific details of user and item. To
resolve this problem, we present Multi-Scale
Distribution Deep Variational Autoencoders
(MVAE). A deep hierarchical VAE with a prior
network that eliminates noise while retaining
meaningful signals in the input, coupled with
a recognition network serving as the source
of information to guide the learning of the
prior network. Further, the Multi-scale dis-
tribution Learning Framework (MLF) along
with a Target Tracking Kullback-Leibler diver-
gence (TKL) mechanism are proposed to em-
ploy multiple KL divergences at different scales
for more effective learning. Extensive empiri-
cal experiments demonstrate that our methods
can generate explanations with concrete input-
specific contents.

1 Introduction

Due to the massive demand for convincing high-
quality recommendations, researchers from both
academic and industrial communities have paid in-
creasing attention to the topic of enhancing the ex-
plainability of recommender systems (Wang et al.,
2018b,a; Xian et al., 2019; Chen et al., 2019). Ex-
planations for recommendations in real-world sce-
narios are presented in a variety of different forms,
among them, the most popular and natural form
is that of free-text explanations given in natural
language (Zhang and Chen, 2020).

As shown in Fig. 1, this task requires a machine
to generate a textual explanation based on a given
user ID, item ID, and the rating score from a rec-
ommender system. Previous models attempt to

* Corresponding author. Email: llwang@cs.ecnu.edu.cn.

68

Item ID *****XcBZg8Q
User ID *****KITifNJg
Generated Explanation The environment is clear.

Rating 5

Reference The atmosphere is relaxing and enjoyable

and music made people feel at ease.

Figure 1: An example of explanation generation.

embed these IDs in a similar way as normal words.
However, since the IDs appear far less frequently
than the words, most approaches typically fail to
account for specific features of the users and item.
Hence, it is a very common phenomenon to obtain
explanations without concrete characteristics about
the given user and item as shown in Table 4. A
probable reason for this phenomenon is that these
models fail to utilize the input embeddings effec-
tively. Specifically, in most models, the user and
item information is merely provided as randomly
initialized input embeddings, which barely contain
meaningful information, but introduce noise that
may be indistinguishable from more meaningful
information. Here, we refer to noise from the simi-
larities of randomly initialized input embeddings
that are conflated with implicit patterns contained
in our data. For example, there may be two user
embedding similar to each other while in our data
they represent users very different from each other.
Importantly, as the recommendation data is sparse,
some of the noisy embeddings are not able to be
adequately trained, resulting in that the noise dom-
inates the representation of those embeddings, as
shown in Section 4.5. Since the presence of noise
disturbs the model’s ability to interpret the input
embeddings at the inception of training, the model
may tend to generate explanations in an uncondi-
tional manner. Moreover, such noisy inputs may
still exist even after training. A common phenom-
ena is that some users or items have very limited

Findings of the Association for Computational Linguistics: ACL 2022, pages 68 - 78
May 22-27, 2022 (©)2022 Association for Computational Linguistics



relevant training instances. Consequently, their
corresponding representation embeddings are in-
sufficiently trained and remain noisy. Therefore, it
is vital to overcome such noise, so as to ensure the
model can generate in a conditional manner.

To deal with this problem, we present Multi-
Scale Distribution Deep Variational Autoencoders
(MVAE). They consist of three modules, namely
a recognition network, prior network, and a re-
construction network. The prior network in our
model can filter out the noise contained in input
embeddings, while retaining meaningful informa-
tion for generation through information compres-
sion. Moreover, to help the prior network learn
to generate fine-grained information, the recogni-
tion network is leveraged to provide the prior net-
work with suitable guiding information. Thus, the
decoder tends to generate explanations in a condi-
tional manner with a substantially more informative
generation signal.

However, with strong guiding signals available
during training, generation becomes much sim-
pler, which may result in a degradation of perfor-
mance when such information is no longer avail-
able during testing. Thus, we propose a Multi-scale
distribution Learning Framework (MLF) along
with a target Tracking Kullback-Leibler divergence
(TKL) mechanism to reduce this performance gap
between training and testing. The optimization
effectiveness of the prior network can further be
boosted when this method is employed at multiple
different scales.

Overall, our contributions are as follows:

* We highlight the problem of noise in the in-
put embeddings that current approaches suffer
from. To the best of our knowledge, MVAE
is the first model that aims to overcome such
noisy input embeddings in explanation gener-
ation for recommender systems.

We propose MVAE, a novel VAE model for
explanation generation, which can utilize the
input embedding effectively for generating
high-quality explanations. The prior network
in our model filters the noise contained in the
input embeddings, while retaining meaningful
information for generation. Moreover, we pro-
pose multi-scale distribution learning frame-
work along with a target tracking Kullback—
Leibler divergence mechanism to improve the
optimization of the prior network, yielding
better generalization performance.
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» Extensive experiments show that our approach
yields state-of-the-art results on three real-
world datasets, demonstrating its effectiveness
in generating high-quality explanations. A se-
ries of in-depth analyses shed further light
on its ability to overcome noise contained in
input embeddings in the training process.

2 Related Work

For generation of textual explanations, main-
stream research can be divided into two categories:
template-based and natural language generation
approaches. Template-based approaches generate
explanations by filling the slots of predefined tem-
plates (Zhang et al., 2014), which are typically man-
ually specified in advance. Natural language gen-
eration approaches, in contrast, adopt an encoder—
decoder framework such as a recurrent seq-to-seq
model (Li et al., 2020) or a Transformer-based ar-
chitecture (Li et al., 2021) to learn to generate more
diverse explanations based on the respective input.

In recent years, the latter strategy has received
considerable attention, mainly owing to advances
in neural generation along with the massive avail-
ability of text from online review systems.

Still, existing natural language generation meth-
ods may generate overly generic sentences that fall
short at providing concrete information and are
thus less useful for users (Cao et al., 2018). Indeed,
explanation generation goes beyond mere genera-
tion, as it is expected to improve the transparency
of the recommendation engine (Tintarev and Mas-
thoff, 2015). Thus, technical ideas to encourage the
generation process to account for more conditional
signals are crucial to enable models to generate
more specific explanations that are custom-tailored
for particular user—item pairs.

Variational autoencoders (VAE) were proposed
by Kingma and Welling (2014) based on the idea
of autoencoding, which has been used for noise
reduction (Vincent et al., 2008, 2010). VAEs have
been studied extensively in a variety of language
generation tasks, including text summarization (Li
et al., 2017a) and dialogue generation (Serban et al.,
2017; Wen et al., 2017; Zhao et al., 2017). A
VAE maximizes the mutual information between
the input and latent variables (Barber and Agakov,
2003; Alemi et al., 2017), requiring the network
to retain the information content of the input data
to the extent possible (Shwartz-Ziv and Tishby,
2017). Hence, VAEs are qualified to overcome
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Figure 2: Overview of the Proposed Model.

the overly generic explanations caused by unin-
formative noisy input embeddings and prompt the
construction of more meaningful outputs.

3 Proposed Model

An overview of our model is given in Fig. 2. The
recognition network encodes the explanations and
generates fine-grained information for the recon-
struction network. The prior network encodes the
input embeddings and generates essential informa-
tion for the reconstruction network. The essential
information here refers to the general semantics of
a reason, which can be described in multiple ways,
while the fine-grained information here refers to
information that determines the details in the expla-
nations, thus narrowing down and customizing the
essential information to a specific form.

Finally, the reconstruction component decodes
the given information and generates explanations.
Additionally, the proposed MLF employs KL diver-
gence at multiple different scales, which improves
the optimization of the prior network. The TKL ap-
plied in every KL divergence can aid the learning of
the prior network even further. We will present the
details of each network in the following sections.

3.1 Input Encoding

To achieve a suitable transformation for compres-
sion and reconstruction of information, we design
a basic component called the representation trans-
formation module, which is used repeatedly in our
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model. Formally, it can be defined as follows:

fap.a,(@) =SN(Wg,xq, GELU(2) + ba,)

Td1,d27d3 (x) :fdz,ds o fdz,dz o fdl,dz o fd17d1
2’ =LayerNorm(Ty, 4,.4,(7) + )

y = faz.a,(2)

ey
Here, z € R% is the input and y € R% is the
output of this module. The subscripts d,, d, of f
and d, ds, d3 of any F’ are the dimensionalities of
the matrices or vectors used in the corresponding
function. 7" is a composite module consisting of
four different f, where o denotes composition, SN
is the spectral normalization introduced by Yoshida
& Miyato (2017). GELU (Hendrycks and Gim-
pel, 2016) is an activation function based on the
cumulative distribution function for a Gaussian Dis-
tribution.

For simplicity, we denote this module as
Block(+). Moreover, our notation assumes that its
output is split into equal-sized partitions if the out-
put is assigned to more than one variable.

Recognition Network The recognition network
serves to provide guidance to the prior network
to enable it better generate fine-grained informa-
tion, while supplying fine-grained information to
the reconstruction network in training, as shown
in Fig. 2(a). With the ground-truth explanations
as input, the recognition component can generate
valuable guiding information.

We first employ Transformer (Vaswani et al.,
2017) encoder layers to encode input tokens v; €
R% into compact hidden states. The two special
tokens C and C' represent the overall input. The



encoders are represented by B, and the encoding
process can be described as follows:

01, OQ, e ,On+2 = Bb(Cb 02,’1)1, e ,’Un)
2
Here, O; is the i-th output of Bj. We concatenate
01 and O3 as the initial sentence-level representa-
tion C{) = [O1,O2]. Then the input information
is compressed and the distributions of fine-grained

information can be obtained as follows:
C! = BlockZ(CL_))

(3)
firz;, Orz,;, Cf = Block i (C)_,)

Here,i € {1,2,...,n:q},J € {npg+1,...,npq+
Nys }, while n,.q and n,¢ are the number of Blockg
and BlockZ instances in the recognition network,
respectively. Further, pi,..; € R%;j is the mean and

Orz; € R%:; is the variance of the posterior distri-
bution gy, (2|x), where 6 denotes the parameters of
the recognition network. The reparameterization
trick (Kingma and Welling, 2014) is used to sample
arzj from gg; (2|x).

Prior Network As for the prior network, its key
aim is to filter out uninformative noise in the given
input embeddings while retaining the essential sig-
nals for later reconstruction. The given user ID,
item ID and rating are first mapped to their rep-
resentation embeddings F,, E;, E, and are then
concatenated. After that, we employ a compres-
sion block Block?' to filter out noise in the input
and an additional Blockf to generate fine-grained
information:

E(,) == [Eu7 E’ia E’I’]
E! = BlockL.(E!_,)
/
j—l)

Here,i € {1,2,...,npq},J € {npa+1,...,npa+
Nps }» While 1,4, 16 refer to the number of Blocde
and Block® instances in the recognition network,
respectively. Further, pi.; € R%i and Opz; € R%;
are the mean and variance of gy, (2|E’), where ¢
denotes the parameters of the prior network.

After suitable training, the prior network will be
able to replace the recognition network to supply
fine-grained signals to the reconstruction network
in the testing phrase, as illustrated in Fig. 2(b).

4

Hpzjs Opz; s E; = Blockfj(

3.2 Multi-Scale Learning

In our model, it is crucial to ensure that the prior
network can learn suitable fine-grained information
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at different scales from the recognition network
effectively. To this end, we further propose the
MLF and TKL techniques.

Target Tracking KL Regularizations (TKL)
Our TKL mechanism serves to improve the repre-
sentation of the output latent variable z with regard
to fine-grained information and thus ease the dif-
ficulty of learning a prior network for generation
of specific fine-grained information. For simpli-
ficity, the subscripts to represent the index of layers
are omitted here, but this mechanism is applied
to every pair of distributions of prior network and
recognition network with the same input variable
scale. The TKL consists of two KL divergences:
the first is KL(gy(2|x) || ¢4(2|E")) and the second
is KL(N(0, I4,)|lqe(2]x)). Here, I;, denotes a
diagonal matrix. Traditionally, VAE models di-
rectly apply KL divergence KL(p(z|z)|N(0,1))
on the final posterior distribution (g4(z|E") in our
model), which is not suitable for our case, as the
distribution g, (z|E’) is learnt with gp(z|z) dur-
ing the training phase. If we directly apply KL
regularization between N (0, I;,) and g4(z|E’),
the lagging problem (He et al., 2019) would
cause posterior collapse. To resolve this prob-
lem, we use KL(N(0,14,) || go(2]x)) to improve
the quality of representation of latent variables
z, as we find if both KL(gy(z|x) || ¢4(2|E")) and
KL(N(0, I4.) || go(z|z)) are small enough, we can
then obtain a small KL(N (0, I, ) || g4(2|E")). Fi-
nally, we can obtain:

KL(N(0,1a.) || go (2| ")) & KL(N (0, 1a. ) | qe(ZIw)zs)
Therefore, the first KL divergence term supports
the second KL divergence term to implicitly apply
disentangled regularization to improve the repre-
sentation of fine-grained cues (Shao et al., 2020).
Overall, the TKL mechanism applied to pairs of
distributions can be expressed as

TKL(./V(Mrz, Orz) ”N(,Upza UpZ)) =
5KL(N(M7~27 Grz) ”N(O>Idz))
+ KL(N(,UJrza UTZ) ||N(NPZ7JPZ))’

(6)

where [ is a hyperparameter originally from (-
VAE (Higgins et al., 2017) to balance between re-
construction and disentangled regularization.

Multi-Scale Learning Framework (MLF) The
multi-scale distributions are originally proposed by
Senderby et al. (2016) to improve the flexibility of
prior distribution and thus improve the generation
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quality of a VAE. We extend this architecture and
the overall structure is shown in Fig. 3. Our MLF
can also improve the flexibility of prior distribu-
tions and controls the fine-grained information to
aid the reconstruction network. During training,
rz; from the recognition network is provided to
the reconstruction network, delivering fine-grained
information to assist the latter in achieving the re-
construction. During testing, the y,, from the
prior network come into play. For simplicity and
consistency, we refer to both with the same symbol
zj in the following.

More importantly, MLF decides how the prior
block network is optimized according to the recog-
nition network. Since multi-scale information is
leveraged, the prior network can be better opti-
mized. The sampling process from the distribu-
tions of the recognition network add appropriate
noise into the supplementary information during
training, which improves the denoising ability of
the reconstruction network. Therefore, when the
[p. Without sampling noise but with noise from
the input signals are used in testing, the reconstruc-
tion network can better cope with the situation of
noisy supplementary information. This results in a
reduction of the performance gap between training
and testing. The overall regularization loss can be
represented as:

Nps

Laiwe = D TKLN (2, 002); | N (1pz, 052)5) (D)

npd+l
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3.3 Reconstruction Network

Reconstruction Network The reconstruction
network is responsible for explanation generation
according to received fine-grained information and
essential information. The mechanism of the re-
construction network can be described as follows:
o
H, 0 = Hnpgtnps
/ D /
/ D !
H; = Blocky”(H;_)
Ty, Ty = chunk(Hp,,, 4n,,)

(®)

where j € {1,...,nps}, % € {nps + 1, nps +1pa},
k = nps +npg + 1 — j. Block? are used to re-
construct the information. The sentence representa-
tions 7' € R% are fed into a GPT decoder (Floridi
and Chiriatti, 2020) as initial tokens. chunk(-) de-
notes splitting the input into two equal-sized parts.
The negative log-likelihood function is used as
the objective function, which can be expressed as

Lrec

©)

—> log(p(r})),
t=1

where 7} is the ground-truth review word at step
t and n is the total length of the output token se-
quence.

3.4 Overall Objective Function

Ultimately, the optimization of our model is
achieved using the following overall objective func-
tion:

L= Erec + EMLF (10)

4 Experiments

4.1 Dataset

For the evaluation, we use three large-scale
datasets, including Yelp! for restaurants, Amazon
5-core Movie & TV? for movies, and TripAdvisor
for hotels. In contrast to prior work, we only select
and use challenging samples where related users
or items have fewer than 15 reviews for Yelp and
TripAdvisor, 20 reviews for Amazon movies. Our
setting is suitable for advancing the research on this
task. The statistics of the resulting Yelp, Amazon,
and TripAdvisor datasets are given in Table 1.

"http://www.yelp.com/dataset
Zhttp://www.jmcauley.uscd.edu/data/amazon
3http://www.tripadvisor.com



Entries Amazon Yelp TripAdvisor
# of users 161,434 451,937 333,409
# of items 118,862 154,951 304,954
# of reviews 653,568 1,033,823 1,311,676
Avg. # of reviews/user 4.04 2.28 3.93
Avg. # of reviews/item 5.49 6.67 430
Avg. # of words/explanation 14.81 15.03 14.84

Table 1: Statistics of three processed datasets.

4.2 Evaluation Metrics

We employ five metrics to evaluate the quality of
generated explanations, including BLEU-1, BLEU-
4, ROUGE-1, ROUGE-L, and METEOR. BLEU-
1 and BLEU-4 are BLEU (Papineni et al., 2002)
scores with 1-grams and 4-grams, respectively.
ROUGE-1 refers to ROUGE (Lin, 2004) scores
with 1-grams, while ROUGE-L finds the longest
common subsequence and takes the sentence level
structure similarity into account. METEOR (Baner-
jee and Lavie, 2005; Sharma et al., 2017) is a metric
that correlates better at the sentence level with hu-
man evaluations. For all metrics, higher scores
indicate better results.

4.3 Baselines

Various recent approaches serve as strong base-
lines in our experiments“. In addition, we consider
several variants of our model to ascertain the effec-
tiveness of our proposed techniques.

NRT (Li et al., 2017b): In this model, a multi-
layer perceptron (MLP) is used to predict a rating
based on the given user ID and item ID. It formu-
lates the explanation generation task as a text sum-
marization task and trains in a multi-task learning
framework. In our case, the explanation sentence
is used as the tip.

Att2Seq (Dong et al., 2017): This model em-
ploys a MLP to encode three attributes and adopts
a two-layer LSTM to decode representations for
generating textual explanations.

NETE (Li et al., 2020): A neural template expla-
nation generation framework design with a gated
fusion recurrent unit (GFRU) to generate neural
templates and explanations in parallel. It combines
advantages of both templates and neural networks.

PETER (Li et al, 2021): PETER is a
Transformer-based model that reforms the atten-

“Note that our model can be adapted to arbitrary recom-
mender systems, while some explainable recommendation
baselines require access to specific internal information of the
recommender system and are thus omitted for a fair compari-
son.
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tion mask to combine different kinds of input em-
bedding and finally be able to generate natural lan-
guage explanations, which resulted in the previous
state-of-the-art.

MVAE-NoKL: The second KL divergence reg-
ularization in TKL is removed, in order to investi-
gate whether TKL can effective apply disentangled
regularization to latent variables for helping the re-
constructing network to decode latent variable and
easing the difficulty with which the prior network
learns from the recognition network.

MVAE-NoMLF: In this variant, distributions
of all scales of MLF are removed except for the
smallest one. This allows us to investigate whether
MLF can promote the learning of the prior net-
work and supply suitable amounts of fine-grained
information to the reconstruction network.

4.4 Implementation Details

Following common practice in recommender sys-
tems, we map a rating greater than or equal to 3 to
positive sentiment, and consider it a negative sen-
timent otherwise. The final results are the average
of 5 experiments with different random data splits.
In the training phase, if the decrease ratio of the
validation loss is larger than 0.98, we decrease the
learning rate by a factor of 0.8. We set the longest
generation length to 20, while the average length of
sentences is about 15. For all of the models, we set
a fixed vocabulary size of 20,000. For the hyper-
parameters of other models in the experiments, we
adopt the default settings in their published code to
ensure the proper performance.

For our model, we set the hidden sizes of the
Transformer encoder and decoder layers to 768
and each consist of two layers. For the prior and
recognition networks, we stack 6 Block units to
compress the input by a factor of 0.5 in each Block.
Another 6 layers of Block units are stacked for
reconstruction in the reconstruction network. We
use AdamW optimization (Kingma and Ba, 2015).

The 3 used in our TKL is set to 0.001 with the
following annealing schedule:

1
1 4 exp(—k (nstep — o))

g=p (11
To select suitable hyperparameters for the anneal-
ing function, we first disable the second KL regular-
ization and record how many steps our model needs
to reach convergence. Then half of this amount of
steps is chosen as ag. The weight £ = 0.0025



BLEU (%) ROUGE-1 (%) ROUGE-L(%) METEOR(%)
BLEU-1 BLEU-4 Precision Recall F1 Precision Recall F1 METEOR
Yelp
NRT 5.90 0.41 7.36 5.71 6.43 5.51 4.68 5.06 2.43
Att2Seq 11.95 0.83 14.90 11.56 13.02 11.17 9.48 10.25 4.92
NETE 14.76 1.02 18.40 14.27 16.07 13.79 11.70 12.66 6.08
PETER 16.58 1.15 20.67 16.03 18.06 15.49 13.15 14.22 6.83
MVAE 21.42 2.25 21.07 16.93 18.77 17.17 13.76 15.28 7.26
Improvement (%) 29.19 95.91 1.94 5.61 3.98 10.85 4.64 7.40 6.30
Amazon
NRT 5.61 0.39 6.99 5.42 6.11 5.24 4.45 4.81 2.31
Att2Seq 11.35 0.79 14.16 10.98 12.37 10.61 9.01 9.74 4.68
NETE 14.02 0.97 17.48 13.55 15.27 13.10 11.12 12.03 5.77
PETER 15.75 1.09 19.64 15.23 17.15 14.72 12.49 13.51 6.49
MVAE 19.35 2.10 20.12 1598 17.81 16.71 13.27 14.79 7.24
Improvement (%) 22.84 92.70 2.44 4.96 3.84 13.56 6.24 9.48 11.61
TripAdvisor

NRT 7.08 0.49 8.83 6.86 7.71 6.62 5.62 6.08 2.92
Att2Seq 14.34 0.99 17.88 13.87 15.62 13.40 11.38  12.31 5.91
NETE 17.71 1.23 22.08 17.12  19.28 16.54 14.04 15.19 7.29
PETER 19.90 1.38 24.90 19.24 21.67 18.59 15.78 17.07 8.20
MVAE 23.70 2.94 25.18 20.62 22.67 19.97 16.51 18.08 10.03
Improvement (%) 19.14 113.32 1.53 7.17 4.63 7.46 4.64 5.91 22.40

Table 2: Performance comparison of explanations generation of different methods on three datasets. Improvements
are computed as relative gains compared with the previous state-of-the-art method. Best results are highlighted in
boldface, and the statistical significance over the best baseline is p < 0.05 via a t-test.

is selected without any tuning. The learning rate
warm-up step count is set to 5,000 for all datasets.

In training phase, the teacher-force strategy is
employed for the decoder network to accelerate the
training. The dropout rate used in the encoder net-
work and decoder network is set to 0.3 and gradient
clipping is applied with 5.0. For the multi-scale
learning framework, n.4 is equal to ny, and 7,
is equal to ny. The n,q is set to 4 and n, is set
to 3. In both the prior network and recognition
network, the variable is compressed by the ratio
of 0.5. In our model, the dimensionality of the
input variable is 1,536 and the dimensionality of
resulting encoding is 12 after 7-fold compression.
Similarly, in the reconstruction network, the latent
variable is reconstructed from size 16 to size 1,536
after 7 reconstruction blocks. In addition, the word
embedding used in the encoder Transformer layers
and decoder Transformer layers are shared.

4.5 Existence of Initial Noise

To show the existence of initial noise, we first con-
duct an additional experiment on the Yelp dataset.
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Figure 4: Illustration of the existence of initial noise.

Specifically, we randomly sample half of all ex-
amples, then duplicate them and all involved in-
put embeddings to build a new dataset. In this
dataset, there are two different instances of each
user with their corresponding respective examples.
Subsequently, we train a naive VAE model on the
dataset. We sorted the user embeddings based on
the number of their relevant training examples and
calculate normalized cosine similarity between the
two instances of the same user. We cluster them



into 80 bins to enable a clearer presentation of the
extensive data. The results are shown in Fig. 4.
Intuitively, the difference of two instances of the
same user represents the noise contained in the em-
beddings, and we can see that as increasing the
number of relevant training samples, the noise be-
comes smaller and smaller. We believe that this is
because user embeddings with more training sam-
ples are updated more frequently, while we can see
there is still substantial noise remaining on the em-
beddings with few relevant training samples. This
motivates the necessity of employing our model to
eliminate such noise.

4.6 Explanation Generation Performance

As shown in Table 2, MVAE outperforms all previ-
ous methods across all three datasets, which demon-
strates the effectiveness of our proposed model. In-
specting the samples generated by previous meth-
ods, we discover that their poor BLEU scores stem
mainly from the occasional generation of descrip-
tions without concrete meaning or lack of details,
suggesting that their methods lack the ability to
capture more specific characteristics of users or
items, and corroborating our intuition that noisy
embeddings may cause a model to generate un-
conditional natural language expressions without
concrete meaning, since all the explanations are
generated by the same decoder but different input
embeddings. Moreover, we find that such low-
quality predicted explanations usually correspond
to users or items with fewer pertinent training sam-
ples, demonstrating our assumption that some user
or item embeddings remain insufficiently trained.
We further provide a detailed evaluation assess-
ing the quality of explanations for users with differ-
ent amounts of training samples in Fig. 5. As we
can see, our methods improve the quality of expla-
nations with a larger absolute improvement when
fewer relevant training samples are present (note
the different slope of means of different methods),
which suggests that our model can better handle
less well trained user and item embeddings. This
confirms that our VAE architecture is able to filter
out noise and retain meaningful information for the
decoder to generate more specific explanations.

4.7 Ablation Study

For an in-depth analysis of the effectiveness of our
proposed techniques, as shown in Table 3, we com-
pare our model with two variants introduced earlier.
As we can see, the performance of MVAE-NoMLF
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Training Samples Count Training Samples Count

Figure 5: The mean and 95% confidence interval of
BLUE-1 and ROUGE-L scores of explanantions gen-
erated by PETER and MVAE on the Yelp dataset. The
x-axes represent the count of relevant training samples.

drops substantially. We believe this is because MLF
decides how the prior network can be optimized by
learning from the recognition network. Also, it con-
trols the fine-grained information that is provided
to the reconstruction network. Removing the MLF
significantly harms the effectiveness of learning
the prior network for fine-grained information. For
MVAE-NoKL, with the optimization of represent-
ing fine-grained information removed, it is hard for
the prior network to model the fine-grained infor-
mation from the recognition network. Therefore,
the model may obtain poor results in testing. In
fact, we observe that MVAE-NoKL attains lower
training losses in training but has higher testing
losses, indicating a significant disparity of distribu-
tions between the prior and recognition networks,
which degrades the model performance in testing.

4.8 Analysis of MLF

We further examine in detail the necessity and ra-
tionality of our proposed MLF. In previous meth-
ods, the randomly initialized input embeddings are
leveraged by the model directly. However, noisy in-
puts in the initial training may impede the ability of
the model to leverage them and lead to convergence
to a sub-optimal solution. We suspect the alterna-
tive of simply supplying additional information
directly may facilitate the training of the model but
result in a large performance gap between training
and testing. To confirm our conjecture, we further
propose two variants of our model named MVAE-
NoRN and MVAE-NoKL. For MVAE-NoRN, we
train our model with the testing phase architec-
ture illustrated in Fig. 2(b), i.e., it is trained with-
out the help of ground-truth information directly.
For MVAE-NoKL, we replace the 7z; with (.., to
supply fine-grained information to the reconstruc-
tion network and replace the TKL with the mean
squared error between fi,.; and ;. Under this
setting, the additional noise injected into ground-
truth information is removed. We compare the re-



BLEU-1 BLEU-4 ROUGE-1 ROUGE-L METEOR
MVAE-NoKL  21.03 (}1.82%) 2.02(110.26%) 18.67 (J0.55%) 15.15(10.82%) 7.01 ({3.44%)
MVAE-NoMLF  19.12 ({10.74%) 1.56 ({30.70%) 17.95 ({4.38%) 14.57 ({4.66%) 6.73 ({7.30%)
MVAE 21.42 2.25 18.77 15.28 7.26

Table 3: Performance comparison of variants of our model on Yelp dataset. Deterioration of the performance is

calculated as the relative drop compared with MVAE.

Reference | The staffs are super knowledgeable
and obviously care very deeply about
the needs and preferences of their
customers.

NETE The service is great.

PETER | The staffs are very friendly and willing
to help.

MVAE The staffs are knowledgeable and the
customer service is impressive.

Reference | The atmosphere is relaxing and
enjoyable and music made people
feel at ease.

NETE The environment is clear.

PETER | The food is good and the staffs are
friendly.

MVAE The atmosphere and the music are
pleasant.

Table 4: Examples of generated explanation by various
methods. Fine-grained features are underlined.

sulting training and validation losses in Fig. 6. The
training losses of MVAE-NoRN decrease faster in
the early stage of optimization, but this soon stag-
nates and barely improves any further, suggesting
that external guided signals are necessary to over-
come this plateau, as the prior network without the
guidance of the recognition may be unable to dis-
tinguish meaningful information from noisy inputs.
The MVAE-NoKL model has much lower training
losses but higher validation losses, reflecting a large
performance gap between training and validation.
In contrast, MVAE has reasonable training losses
and the lowest validation losses, which implies that
the MLF in our model narrows the performance
gap between training and validation, proving the
effectiveness of our proposed MLF.

4.9 Qualitative Case Study

To further compare the generation quality of ex-
planations generated by previous work and our
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Figure 6: Loss plots: (a) is the training loss and (b) is
the validation loss of each model on the Yelp dataset.

model, we provide examples in Table4. We ob-
serve that our methods can capture more specific
characteristics, thus generating more concrete ex-
planations. For instance, the generated explanation
of our model describes fine-grained aspects such
as “staff” and “customer service”, which are possi-
ble reasons of a recommendation. In contrast, the
previous state-of-the-art model PETER only em-
phasizes the “staff” without a high-level summary
on “service”.

5 Conclusion

We present MVAE, a novel model for explanation
generation in recommender systems, which has a
prior network that eliminates noise while retaining
meaningful signals in the input and a recognition
network serving as the source of information to
guide the learning of the prior network. Further, we
propose a Multi-scale distribution Learning Frame-
work along with TKL to prompt this process. Ex-
tensive experiments demonstrate the effectiveness
of our method and confirm that it can generate
high-quality explanations.
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Abstract

Prompt-based paradigm has shown its competi-
tive performance in many NLP tasks. However,
its success heavily depends on prompt design,
and the effectiveness varies upon the model
and training data. In this paper, we propose a
novel dual context-guided continuous prompt
(DCCP) tuning method. To explore the rich
contextual information in language structure
and close the gap between discrete prompt tun-
ing and continuous prompt tuning, DCCP in-
troduces two auxiliary training objectives and
constructs input in a pair-wise fashion. Experi-
mental results demonstrate that our method is
applicable to many NLP tasks, and can often
outperform existing prompt tuning methods by
a large margin in the few-shot setting.

1 Introduction

With the rise of pretrained language models(PLMs),
natural language processing(NLP) shifted from the
fully-supervised paradigm to pretrain and fine-tune
paradigms (Radford et al., 2018; Devlin et al., 2019;
Liu et al., 2019). To further utilize the large capac-
ity of PLMs, a prompt-based paradigm is proposed
to reformulate downstream tasks into an LM-like
task upon the context and task-specific prompt.

There are some issues with the prompt-based
paradigm, especially prompt engineering. Discrete
prompts (a.k.a hard prompts) (Petroni et al., 2019;
Wang et al., 2021) need expert-level experience
to manually discover templates. To address this
problem, automatic prompt design is conducted on
gradient-based search (Shin et al., 2020), genera-
tion (Ben-David et al., 2021), ensembles (Schick
and Schiitze, 2021) and scoring (Davison et al.,
2019). ADAPET (Tam et al., 2021) provide a
denser supervision during fine-tuning based on the
label-conditioned language modeling task. How-
ever, these methods might get sub-optimal tem-
plates and require adequate validation data (Zhao
et al., 2021; Perez et al., 2021).
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What’s more, it is unnecessary to limit prompts
to hard-crafting text. Continuous prompts (a.k.a
soft prompts) (Liu et al., 2021b; Li and Liang,
2021) take templates as additional trainable param-
eters. Thus, prompt search can be simplified as
optimizing parameters based on downstream task.
Recent works add layer-wise adaptive prompt pa-
rameters (Qin and Eisner, 2021; Liu et al., 2021a),
data-dependent mixture (Qin and Eisner, 2021) and
hard-soft hybrid prompt (Han et al., 2021) based
on adequate training data. When it comes to the
few-shot learning scenario, it remains unclear how
to effectively learn continuous prompts. Previous
works mainly improve continuous prompts by addi-
tional prompt and target encoder (Gao et al., 2021;
Zhang et al., 2021; Liu et al., 2021a).

This paper presents a new model-agnostic per-
spective of further utilizing deep LM features. We
propose a novel Dual Context-guided Continuous
Prompt (DCCP) tuning approach that makes PLMs
better few-shot learners. Our main concern is how
to learn better continuous prompts with only a few
samples, averting dependency on hand-craft engi-
neering and large validation samples.

Considering that prompt-based models predict
based on both prompt and context, the vanilla mod-
els learn about P(Y | Xconteat, Hprompt ). Notably,
additional prompt embeddings Hy,;.omyp¢ are opti-
mized based on the given context X ontert With
LM decoding task on the downstream target Y in
previous works. We give an insight into better con-
tinuous prompt tuning throughout the dual view
of context-aware prompt and label-aware context
representations. Technically, we introduce a new
label-aware context-masked input aligning with
the vanilla context-aware prompt-masked input.
We add two auxiliary training objectives for cou-
pling layer-wise linguistic features. The dual view
makes the model learn P(Xconteat|Y, Hprompt)
and P(H ontext|Y, Hprompt) throughout LM inner
features, further optimizing the prompt embed-
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e(story) e([SEP]) h(t) ... e(great) ... h() ... h(t)

[e(you) e(live) e(the) ' e([MASK]) -e(rather) e(than) e([MASK]) e(the)]

you live the mood rather than savour the story.

Figure 1: The Architecture of Dual Context-Guided Continuous Prompt Tuning.

dings. In a nutshell, DCCP goes deep into PLMs
representations for better continuous prompt tun-
ing.

We conduct experiments on 10 NLP datasets
in the few-shot learning setting. DCCP signifi-
cantly outperforms conventional fine-tuning, dis-
crete prompts, and previous works on continuous
prompts. DCCP achieves 89.6% (on average) of the
full-supervised fine-tuning performance across all
datasets with only 16 training samples. It obtains
gain 11.8%, 2.5%, and 1.6% absolute improvement
on average compared to conventional fine-tuning,
vanilla continuous prompts (Gao et al., 2021), and
state-of-the-art continuous prompts (Zhang et al.,
2021). We empirically demonstrate that DCCP
makes LM a better few-shot learner.

2 Methodology

In this section, we first introduce the vanilla con-
tinuous prompt tuning model and then clarify our
dual context-guided prompt tuning method.

2.1 Vanilla Continuous Prompt Tuning

Given a pretrained language model, a context input
sequence X ontext = (Z0,- .., Ty) is tokenized as
[CLS| X context[SEP]. The conventional fine-tuning
model predicts based on [CLS] output. For prompt-
based methods, a task-specific prompt X pompt =
(to,-..,[MASK],...,t) is added into the input
as Xin, = [CLS| X conteat|SEP] X prompt[SEP]. t; is
represented by a trainable pseudo token embedding
h;. It takes downstream tasks as a masked language
modeling(MLM) task. Assume that verbalizer L :

Y — V maps the class set Y to vocabulary set V/,
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the probability of predicting y; € Y is:

P(y;1Xin) = p(IMASK] = V| Xprompts Xeontent) (1)
where X,.ompt 18 represented by the additional
trainable embedding parameters. Here we discard
the prompt and target encoders used in (Liu et al.,
2021b,a), retaining origin LM architectures. Based
on downstream tasks, the vanilla model is opti-
mized based on cross-entropy loss:

1
Lo=-=

N (@)

Y
EZNEL- lyi; log pij.

2.2 Dual Context-Guided Prompt Tuning

Continuous prompt tuning simply introduces a
trainable pseudo template for automatic prompt
searching. It faces optimization challenges of word
embedding discreteness and prompt embedding as-
sociation (Liu et al., 2021b), which makes it hard
tune continuous prompt with only a few samples.

Although continuous prompts are pseudo tokens
and not referred to any real word, we propose that
continuous prompt tuning should be consistent with
natural language modeling. It could take more
language modeling constraints into account, thus
further reducing the gap between pretraining and
fine-tuning. Vanilla continuous prompt tuning has
considered an MLM-like objective L. for matching
target verbalizer and masked token output, focusing
on prompt and downstream tasks. Furthermore, we
propose two auxiliary language modeling tasks for
both pluggable prompt and origin context.

We aim to further leverage context information
for better guiding prompt tuning. The auxiliary



SST-2 (acc) MR (acc) CR (acc) SUBJ (acc) TREC (acc)

Majority ' 50.9 50.0 50.0 50.0 18.8

Prompt-based zero-shot? 83.6 80.8 79.5 514 32
“GPT-3” in-context learning ~ 84.8 (1.3) 80.5 (1.7) 87.4 (0.8) 53.6 (1.0) 26.2 (2.4)
Fine-tuning 81.4 (3.8) 76.9 (5.9) 75.8 (3.2) 90.8 (1.8) 88.8 (2.1)
LMBEFF (Gao et al., 2021) 92.3(1.0) 85.5(2.8) 89.0 (1.4) 91.2 (1.1) 88.2 (2.0)
PTuning (Liu et al., 2021b) 92.4 (0.6) 86.4 (1.5) 91.1 (0.6) 91.8 (0.8) 90.5 (1.6)
DART (Zhang et al., 2021) 93.5(0.5) 88.2 (1.0) 91.8 (0.5) 90.7 (1.4) 87.1(3.8)
DCCP 94.1 (0.6) 89.2 (0.7) 92.6 (0.6) 92.8 (1.0) 92.1 (2.3)

Fine-tuning (full)f 95.0 90.8 89.4 97.0 97.4
MNLI (acc) SNLI (acc) QNLI(acc) MRPC (F1) QQP (F1)

Majority ' 32.7 33.8 49.5 81.2 0.0

Prompt-based zero-shot! 50.8 49.5 50.8 61.9 49.7
“GPT-3” in-context learning ~ 52.0 (0.7) 47.1 (0.6) 53.8(0.4) 45.7 (6.0) 36.1(5.2)
Fine-tuning 45.8 (6.4) 48.4 (4.8) 60.2 (6.5) 76.6 (2.5) 60.7 (4.3)
LMBFF (Gao et al., 2021) 68.3 (2.5) 77.1 (2.1) 68.3 (7.4) 76.2 (2.3) 67.0 (3.0)
PTuning (Liu et al., 2021b) 65.7 (4.0) 68.3(7.3) 67.6 (7.3) 78.6 (1.1) 65.8 (3.9)
DART (Zhang et al., 2021) 67.5 (2.6) 75.8 (1.6) 66.7 (3.7) 78.3 (4.5) 67.8 (3.2)
DCCP 68.6 (2.6) 74.1 (3.9) 71.3 (3.2) 80.3 (1.3) 67.9 (3.5)

Fine-tuning (full)f 89.8 92.6 93.3 91.4 81.7

Table 1: Main results using RoBERTa-large. 1 refers to using the full training set while I refers to using no training
samples. The others involve K = 16 (per class) for few-shot experiments. Note that the mean (and standard
deviation) performances are reported over 5 different splits. “GPT-3” in-context learning: using the in-context
learning proposed in (Brown et al., 2020) with RoBERTa-large (no parameter updates).

tasks are constructed for context language model-
ing. Technically, a label-aware context-masked in-
put X, is fed as another model input aligning with
origin context-aware prompt-masked X;,. Given
the ground-truth label y, we obtain a semantically
intact prompt Xp,ompt- A masked context input
X context 18 generated by randomly masking context
tokens at position of z; € Z in the same manner
as the pretrained MLM task. The new input is:

Xin = [CLS] X context[SEP] X prompt [SEP],
Xeontezt = (To, ..., [MASK],...,[MASK],...,z,), 3
JL(y), ..., t).

Xprompt = (t07 e

As depicted in Fig 1, we obtain a couple of
model inputs. The origin context-aware prompt-
masked input has intact context information but
lacks downstream label information. On the con-
trary, the label-aware context-masked input is
aware of the ground-truth label but misses partial
context features. Although these two dual inputs
separately lack partial semantic information, they
should be semantically paraphrased.

Specifically, the first auxiliary constraint L,
is for the masked language modeling task of label-
aware masked context tokens Z. It is calculated as:

81

03 = —log(p(@t? = 2 |yi, Xp, Xe,j € Z)),
Lon 1 Gz, “)
mezizz — g R
TN )T Tmim

where c and p refer to the context and prompt. The
origin text token x¢’ serves as the hard label of this
label-aware context cloze task.

In addition, paraphrased texts can be closely re-
lated to each other throughout the language struc-
ture. We further exploit different-level linguistic
features for aligning the dual context input as a
paraphrased couple. According to the large capac-
ity of PLMs, the LM encoder could be directly
utilized as a linguistic feature encoder. We add a
metric constraint on internal representations of the
pairwise masked context tokens Z. It aligns the
label-aware masked context X context With the ori-
gin context X ontext Upon linguistic features across
LM layers. The training objective is calculated
based on internal representations as a mean square
error 10ss Ly, se.

bonae (T, 2%) = GSEIREYS = i3
1
121
where h is the hidden state, S indicates the depth
of the LM model, j refers to the masked context

.. )
Lmse = sz



Dataset Verbalizer ‘ Prompt
SST-2
MR terrible/great
Cr [unused1] [unused2] [unused3] <mask>[unused4][unused5].
SUBJ subjective/objective
TREC | Description/Entity/Expression/Human/Location/Number
71\54NN]51 No/Yes/Maybe
QNLI [unused1] <mask>[unused2]
MRPC No/Yes
QQP

Table 2: Verbalizer and Pseudo prompt templates for continuous prompt tuning experiments.

tokens, and ¢ means the i-th sample. The over-
all training objective is L = L. + Ly + Linse-
These two auxiliary constraints are trained in a
self-supervised learning manner, which leverages
more information than the vanilla prompt tuning
within the same dataset size. In the other words,
this model-agnostic training method makes full use
of the current training data from the view of going
deep into the internal representations.

All in all, the vanilla model predicts downstream
task via filling the blank of prompts based on
the context information. Our proposed auxiliary
tasks reconstruct the masked context based on the
ground-truth label and prompt semantics. There-
fore, our dual context-guided continuous prompt
(DCCP) tuning method would advance few-shot
learning based on the dual implementation of
prompt and context features.

3 Experiments

We experiment our proposed architecture on 10
NLP tasks in the few-shot setting (k=16) according
to LMBEFF (Gao et al., 2021). The datasets involve
sentiment analysis (SST-2, MR, CR), subjective
analysis (SUBJ), question type (TREC), natural
language inference (MNLI, SNLI, QNLI), para-
phrase detection (MRPC, QQP).

3.1 Experimental Settings

The experiment is conducted in the same setting
as (Gao et al., 2021; Zhang et al., 2021), which
is based on RoBERTa-large (Liu et al., 2019). We
conduct a grid search on multiple hyper-parameters
for each set, and choose the best setting on the de-
velopment subset. We use AdamW (Loshchilov
and Hutter, 2019) as the optimizer. We average the
performance on the test set with five fixed random
few-shot training datasets for each task. The ver-
balizer and pseudo prompt template can be referred
to Tab 2.
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3.2 Results and Analysis

Main Result In Table 1, we compare the per-
formance of our DCCP to the state-of-the-art
prompt-based methods and conventional fine-
tuning method. Our model achieves great per-
formance gain compared to the conventional fine-
tuning and vanilla continuous prompt tuning model
over all 10 tasks. DCCP outperforms the SOTA
prompt-based methods (Gao et al., 2021; Zhang
et al., 2021) across 9 datasets, which indicates the
great advancement of our DCCP on few-shot learn-
ing. Especially, in the condition of only 16 training
and development samples, DCCP could obtain a
competitive result compared to the full training
set in SST-2, MR and CR dataset. Our results
obtain up to 5% and 4% absolutely improvement
when compared to DART (Zhang et al., 2021) and
LMBFF (Gao et al., 2021).

Ablation Study According to Table 3, both aux-
iliary tasks outperform the vanilla model and pre-
vious works. It denotes that the context-view lan-
guage modeling tasks are beneficial for the con-
tinuous prompt tuning approach in the few-shot
learning scenario. The results reveal that the metric
constraint on internal representation is complemen-
tary to the masked language modeling.

Our overall methodology achieves 2.5% perfor-

Method Avg. Performance
Fine-tuning 74.51
LMBFF (Gao et al., 2021) 80.31
PTuning (Liu et al., 2021b) 79.79
DART (Zhang et al., 2021) 80.74
DCCP 82.3
w/o MLM 81.02
w/o MSE 80.97

Table 3: Ablation Study of DCCP. The score refers to
the average performance across all datasets.
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Figure 2: Average Performance on QNLI of arious su-
pervised layers for dual context constraint. Note that
"w/o k-1" denotes "not supervise on k-th to i-th LM
layer". "w/o 9-11" additionally averts the masked lan-
guage modeling.

mance gain upon the vanilla model without mod-
ifying the model architecture or leveraging more
external data.

Will the layers of metric constraint affects per-
formances? Referring to Fig 2, it is necessary to
consider internal representations at different LM
layers as we couple the dual context linguistic fea-
tures. It could get more stable and better results by
comparing all linguistic features of the label-aware
masked context and origin context.

Performance on various training dataset size.
Fig 3 illustrates our stable improvement compared
to conventional fine-tuning and vanilla prompt tun-
ing as the number K of training samples increases.
Even though it converges with vanilla prompt tun-
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Figure 3: Conventional Fine-tuning vs Vanilla PTuning
vs our DCCP across various K -shot (i.e. # instances per
class) settings on QNLIL.

&3

ing around K = 256, it retains better stability and
performance.

4 Conclusion

In this paper, we present a model-agnostic approach
for advancing continuous prompt. Specifically, we
propose a novel dual context-guided continuous
prompt tuning method for few-shot learning. Our
approach constructs a couple of dual inputs, includ-
ing the origin context-aware prompt-masked input
and label-aware context-masked one. Then, we go
deep into the language model to leverage linguistic
features for two auxiliary constraints on the pair-
wise context inputs. The empirical results show
that continuous prompts can be further revised dur-
ing the procedure of reconstructing context.
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Abstract

Nested named entity recognition (Nested
NER) aims to identify named entities which
may overlap. Span-based approaches regard
nested NER as a two-stage task—span extrac-
tion and classification, thus having the innate
ability to handle this task. However, they
face the problems of error propagation, ig-
norance of span boundary, difficulty in long
entity recognition and requirement on large-
scale annotated data. In this paper, we propose
Extract-Select, a span selection framework for
nested NER, to tackle these problems. Firstly,
we introduce a span selection framework in
which nested entities with different entity cat-
egories would be separately extracted by the
extractor, thus naturally avoiding error propa-
gation in prior two-stage approaches. In the
inference phase, the trained extractor selects
final results specific to the given entity cate-
gory. Secondly, we propose a hybrid selection
strategy in the extractor, which not only makes
full use of both span boundary and span con-
tent, but also improves the ability of long en-
tity recognition. Thirdly, we design a discrimi-
nator to evaluate the extraction result, and train
both extractor and discriminator with gener-
ative adversarial training (GAT). The use of
GAT greatly alleviates the stress on the dataset
size. Experimental results on four benchmark
datasets demonstrate that Extract-Select out-
performs competitive nested NER models, ob-
taining state-of-the-art results. The proposed
model also performs well with less labeled
data, proving the effectiveness of GAT.

1 Introduction

Named entity recognition (NER) aims at detect-
ing the spans and semantic categories of entities
from the text. Previous studies usually treat NER
as a sequential labeling problem (Ma and Hovy,
2016; Chiu and Nichols, 2016). These studies re-
strict each token belonging to at most one entity
mention, and hence it is unable to handle nested
NER (Huang et al., 2015), where one token may

* Corresponding author
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The premier of the western Canadian province of British Columbia ...
—_—
GPE

GPE
PER

Alpha B2 proteins bound the PEBP2 site within the mouse GM-CSF promoter

Alpha, PEBP2, GM-CSF
PEBP2 site, mouse GM-CSF promoter

Figure 1: Examples for nested entities from ACE2005
and GENIA corpora.

belong to multiple mentions. For example in Fig-
ure 1, a LOC (i.e., Location) entity “western Cana-
dian” is nested in another GPE (i.e., Geo-Political
Entity) entity “the western Canadian province of
British Columbia”.

Some studies seek to reconcile sequential la-
beling with nested NER (Alex et al., 2007; Ju
et al., 2018). However, sequential labeling is
naturally unsuitable for assigning multiple labels
to a single token. Considering that, some stud-
ies turn to adopt the two-stage framework, in-
cluding transition-based approaches (Wang et al.,
2018a; Lin et al., 2019), hypergraph-based ap-
proaches (Wang and Lu, 2018; Katiyar and Cardie,
2018; Luo and Zhao, 2020) and span-based ap-
proaches (Sohrab and Miwa, 2018; Shen et al.,
2021; Zhong and Chen, 2021). Among them,
span-based approaches handle nested NER by ex-
tracting possible spans and classifying their cat-
egories. Although these approaches have the in-
nate ability to cope with this task, they have the
following problems: (1) Span-based approaches
follow the two-stage framework, which inevitably
has the problem of error propagation; (2) These
approaches usually rely on span content for clas-
sification. However, span boundary information is
not fully utilized, which is important for precise
entity span extraction; (3) It is difficult for span-
based approaches to recognize long entities be-
cause the span length in the span extraction phase
is limited; (4) These approaches usually rely heav-
ily on large size of training data for obtaining com-
petitive results.
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In this paper, we propose a novel nested NER
approach, named Extract-Select, which is able
to cope with the above shortcomings. Specifi-
cally, the proposed Extract-Select works as fol-
lows. Firstly, an extractor is proposed to extract all
possible entity spans specific to a particular typed
entity marker, with a novel hybrid selection strat-
egy. Then, a discriminator is introduced to evalu-
ate and score entity span candidates predicted by
the extractor. The extractor and the discriminator
are iteratively trained with generative adversarial
training (GAT). In the inference phase, the itera-
tively trained extractor selects final entity spans of
the given entity marker from the contexts.

Extract-Select solves the above shortcomings
from the following three aspects:

* To address Problem (1), we adopt a span selec-

tion framework in Extract-Select, which aims to
separately train the extractor for each entity cat-
egory. Motivated by Zhong and Chen (2021),
we design entity markers that encodes category
knowledge and use it to clarify the extractor what
to extract. For example in Figure 1, the nested
entities “PEBP2” (type PROTEIN) and “PEBP2
site” (type DNA) would be separately extracted.
As two nested entities with different categories are
separately selected by the extractor in one step,
the problems of error propagation in two-stage ap-
proaches can be naturally solved.

* To solve Problems (2) and (3), we design a hybrid
selection strategy in our extractor. This strategy
makes full use of boundary information by detect-
ing the start and end positions of entity span, fol-
lowed with span content matching. Then, the span
boundary as well as content information are fully
used in the training of the extractor. As this strat-
egy detects entity spans with boundary extraction,
it does not require the setting of maximum span
length, thus overcoming the difficulty in long en-
tity recognition.

* To solve Problem (4), we design a discrimina-
tor to evaluate the extractor and train the extractor
and discriminator with GAT. Through min-max
training, the extractor can additionally learn from
the discriminator to get higher scores, meanwhile
greatly reducing the demand on training data size.
What is more, the well designed entity markers
provide informative prior knowledge for the ex-
tractor, which also contributes to better perfor-
mance with less labeled data.

To evaluate our Extract-Select, we conduct ex-
periments on four standard nested NER bench-
marks, including ACE04, ACEO05, KBP17 and
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GENIA datasets. Experimental results show that
our model can effectively detect nested entities
and achieve state-of-the-art results on the above
four datasets. The ablation study on entity marker,
GAT and hybrid selection strategy reveals that
these components are indispensable and all of
them contribute to our model. Moreover, our
model only requires half amount of labeled data
to achieve the same performance as baselines, in-
dicting the effectiveness of our approach with less
training data.

2 Related Work

Sequential labeling-based approaches solve
the nested NER by designing suitable labeling
schema. Shibuya and Hovy (2020) provide a
second-best path decoding method to iteratively
find nested entities. Strakova et al. (2019) propose
a linearized encoding scheme to model multiple
named entity labels. Wang et al. (2020) design
a pyramid framework to identify nested entities.
Sequential labeling approaches is naturally unsuit-
able for nested NER.

Transition-based approaches model nested
structure through state transition and construct
nested entities through actions. Wang et al.
(2018a) introduce a scalable transition-based
model. Lin et al. (2019) propose an Anchor-
Region architecture which models the head-driven
phrase structures. However, these approaches rely
heavily on hand-crafted features.

Hypergraph-based approaches construct hy-
pergraphs by the structure of nested NER and de-
code results on hypergraphs. Muis and Lu (2017)
introduce a mention hypergraph for nested NER.
Wang and Lu (2018) propose a hypergraph rep-
resentation, which is free from structural ambigu-
ity. Luo and Zhao (2020) propose to capture bidi-
rectional information interactions between hyper-
graph layers. However, these hypergraphs should
be well designed to prevent ambiguous structure.

Span-based approaches extract entity spans
and then classify their categories. Luan et al.
(2019) select the most confident entity spans for
classification. Fisher and Vlachos (2019) propose
to merge entities and tokens into entities, and then
assign labels. Shen et al. (2021) regards this task
as an object detection task, locating and then la-
beling spans. Nevertheless, these two-stage ap-
proaches have the problem of ignorance of span
boundary, difficulty in long entity recognition and
error propagation.

Li et al. (2020b) formalizes NER as a machine
reading comprehension (MRC) task, which uses
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Figure 2: Overview of Extract-Select. It follows a span selection framework and contains an extractor which
adopts a hybrid selection strategy to extract entity span candidates and a discriminator which aims to score the
extractor. The extractor and discriminator are trained with multi-task learning including span boundary extraction

and generative adversarial training.

BERT as backbone and extracts spans of given
queries. However, this work relies heavily on
training data size. Besides, it extracts entity spans
based on boundary information but ignores con-
tent information. In contrast to their work, we use
GAT to iteratively train extractor to get better re-
sults, and adopt hybrid selection strategy to make
full use of both boundary and content information.

Generative adversarial training (GAT) gives
a way to learn deep representations without ex-
tensively labeled data. It is proposed by Goodfel-
low et al. (2014) and is characterized by training a
generator and a discriminator in competition with
each other. GAT has been applied in different NLP
subtasks, including dialogue generation (Li et al.,
2017) and relation extraction (Qin et al., 2018). In
these studies, GAT proves to be effective in reduc-
ing the usage of training data. Motivated by these
work, we propose to apply GAT in NER task to
reduce the demand on labeled data.

3 Problem Definition

The input of the span selection framework is a se-
quence X = {71, T2, ..., 7| x|}, Where | X | denotes
the length of the sequence. The possible entity
span zs e = {Ts, Ts1,...; Te—1,Te} IS @ continu-
ous sub-string of X satisfying s < e. Let Y denote
the predefined list of all entity categories and y*
be the entity marker specific to type y € Y (e.g.,
“LOC” has an entity marker “location”). The aim
of span selection framework is to find all entities
in X for each category y.
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4 Extract-Select: Nested NER with GAT

4.1 Overview

In this section, we introduce Extract-Select in de-
tail. As shown in Figure 2, Extract-Select consists
of two main components: an extractor and a dis-
criminator. In particular, given the input sequence
X and the entity marker y*, the extractor adopts a
hybrid selection strategy to extract the entity span
candidate set C' and calculates its representation
po, ie., (Ciro) = fe(y*, X). Afterwards, the
discriminator is fed with ro to evaluate the cor-
rectness of C, i.e., score = fp(y*, X,rc). After
iterative training of both extractor and discrimina-
tor, the extractor selects the final result (a set of
entity spans), i.e., final result = fg,, .. (y*, X).

4.2 Extractor

Given the entity type vy and the input sequence

= {z; } e 1, the extractor aims to extract the
entlty span candidate set C' = {C, Cy, ...C;} spe-
cific to y* from X. Then, the extractor needs to
compute a continuous latent variable pc to repre-
sent C.

1) Sequence representation: We first represent
all tokens {xl}gll
quence of embeddings {wz}‘z):('1 Each embedding
w; is the concatenation of character embedding,
word embedding, contextualized word embedding
and part-of-speech (POS) embedding. The char-
acter embedding is generated by a bi-directional

in the input sentence X as a se-



LSTM (BiLSTM) module with the same setting
as Ju et al. (2018). For the contextualized word
embedding, we obtain the context-dependent em-
bedding for a target token with one surrounding
sentence on one side. Then, the concatenation is
fed into another BiLSTM to obtain the final token
representation:

{hi}i5) = BILSTM({wi} 5,

3

), ey

where h; is the hidden state.

2) Entity marker representation: Entity cate-
gory is an important prior knowledge as it makes
the extractor know what to extract, and its effec-
tiveness has been demonstrated in prior work (Li
et al., 2020b). Besides, the usage of entity marker
can avoid the error propagation issue in two-stage
framework. Therefore, we propose to design an
entity marker for each category, where the entity
marker is its fine-grained explanation and would
be used as the input of the extractor. We ex-
periment on different types of entity marker and
finally choose the combination of Keywords and
Synonyms. Specifically, Keywords mean that en-
tity markers are keywords describing entity type,
e.g., the entity marker for type ORG is “organi-
zation”, and Synonyms mean that entity markers
are words or phrases which mean nearly the same
as terms extracted from the Oxford Dictionary,
e.g., the entity marker for type ORG is “institution
body group company firm business corporation”.

We concatenate word embeddings of Key-
words and Synonyms, and feed embeddings

{wz}lly:*l‘ into a BILSTM to obtain {uz}‘zy:ll
Bi—LSTM({wi}Ly;‘), where |y*| is the length of
entity marker. Then, we use self attention to in-
tegrate the entity marker information:

v — exp(Wau;)
v g eap(Wauy)’

_\W
m = Zi:l Uy,

2
3)

where «; is the attention weight of u; and W, €
R is a learned weight vector.

3) Hybrid selection: Prior span-based ap-
proaches extract spans by predicting whether each
token is within the entity span with n two-class
classifier, which only considers the span content.
These methods need to set maximum span length
parameter to avoid high computational costs. As
a result, it is hard for them to identify long enti-
ties. What is more, they ignore the span boundary
which is also important for entity recognition.

In view of this, we propose a hybrid selection
strategy, which makes full use of both boundary
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and content of span. It first predicts the probabil-
ity of tokens being the boundary of entity spans,
and produce the entity span candidate set. Later, it
uses the content of span candidates, i.e., calculates
content representation of candidates, to enable the
training of extractor and the golden entity spans
could be selected eventually.

Given the representations of sequence and en-
tity marker, the extractor first predicts the proba-
bilities of token 7 being the boundary (i.e., start
and end index) of entity spans:

‘ _ _exp(hiWsm)
Ps (Z|y7 X) - Zk exp(th.sm) ’

(ily, X) = cpWem) v
Pel?|Y, - Zk exp(them) ’

where Wy, W, € R%*? are learnable parameters.

In the input sequence X, there may be multiple
entities of a particular category. This means that
multiple start and end indexes could be predicted.
To match them, we first get the indexes that might
be the starting or ending positions:

I={i| arg max(p; (ily, X))= 1,i=1,..,n}, )
I.={j| arg max(pe(jly, X))= 1, j=1,..,n}.
For any given start index i5; € Iy and end index
Je € I (15 < je), we calculate the probability of
entity span candidate:
Ds,e(ts, Je|y, X)=sigmoid(Wcconcat(h; ,h;. )), (6)
where W € R'*2? is a learned parameter. The
entity span candidate C; is added into the candi-
date set C' if its span probability p; . is larger than

a pre-defined threshold.

Then the content of candidate set C is utilized.
We calculate pc(i|y, X) as the probability of the

ith token appearing in C, which can be considered
as the probability of the ith token within the span
candidates. Specifically, pc(i|y, X) can be calcu-
lated through ps and pe:

i | X|

pelily, X) = > po(sly, X)pe(ely, X),

s=1 e=1

@)

where pc(i|y, X) also means the frequency of the
tth token appearing in C'. In other words, the more
frequent the ith token appears in C, the higher
pc(iy, X) would be. In this way, the content in-
formation pc can be used in candidate set scoring
process to enable the training of extractor.

Finally, with both the boundary and content in-
formation, the extractor could be well trained to
select the final golden entity span. This strategy
does not set the maximum span length. As a re-
sult, long entity span can also be recognized.



4.3 Discriminator

After the extractor has obtained the entity span
candidate set C, the discriminator aims to evaluate
and score C, so as to train the extractor with GAT.

This process consists of two steps as follows.

1) Candidate set representation: To represent
the entity span candidate set C, we propose to
encode the information of both entity type y
and sequence X into po. Specifically, we build
entity-aware sequence representation with Match-
LSTM (Wang et al., 2018b), by matching the en-
tity marker up with the sequence:

{ri} Xl = Match-LSTM({: }' X!, {us V). 8)

1=

Then the representation of entity span candidate
set r¢ is calculated with r; and the probability
pc(ily, X) through weighted sum:

g = Polily, X)
s po(kly, X) ©)

X|
re = ZLzlﬂkrk.

2) Candidate set scoring: The score fp of entity
span candidate set C' can be calculated:

fp(C) = sigmoid(Wpre), (10)

where Wp € R%is a learned weight vector and the
score fp € [0, 1] would be used to iteratively train
the extractor to get higher span candidate set score
from the discriminator through min-max training
in the GAT process.

4.4 Multi-task Learning with GAT

In the training process, we train the extractor by
multi-task learning, and train the extractor and dis-
criminator together with GAT.

The first task is to train the extractor by min-
imizing the negative log probabilities of the true
start and end indexes of the golden entity span:

£perdery = —log py(sly, X) — log pe(ely, X), (1)

where s and e denote the start and end indexes of
the golden entity in the sequence X.

The second is to train the extractor by minimiz-
ing the start-end index matching loss:

Cg"" = —logps.e. (12)

The third is to train the extractor and discrimi-
nator together with GAT. We train the extractor to
obtain a higher score from the discriminator:

(547 =log(1 — fo(y, X, pc)). (13)

Meanwhile, we train the discriminator to max-
imize log fp(y, X,pc) and minimize log(l —
fD(ya vaC)):

(54T =zlog fp(C)+(1— 2 log(1—fp(C)),  (14)

where z € {1,0} denotes whether the golden en-
tity appears in the entity span candidate set or not.

The overall training objective ¢ of the extrac-
tor is defined as follows:

U = Nl Y 4l 4 (1= — )BT, (15)
where 71,72€[0,1] are learnable hyper-parameters
to control the contributions towards the overall
training objective.

In each training iteration, we use the extrac-
tor to select the new entity span candidate set
through Eq.(4)-(6). The new entity span candi-
date set would then be scored by the discriminator.
Such training procedure will be conducted itera-
tively so that the extractor can select spans hav-
ing high score from discriminator. In the infer-
ence phase, the trained extractor would first select
the start and end indexes and then match the start
indexes with end indexes, getting the final results.
The pseudo-code of the training procedure is given
in Appendix A.

Our model differs from BERT-MRC in the fol-
lowing ways: (1) Different from BERT-MRC
which uses bert-based machine reading compre-
hension model as the backbone, we design an
Extract-Select model which iteratively trains the
extractor to select the golden entity spans specific
to the entity marker. (2) We propose a hybrid
selection strategy for better entity span selection.
This strategy makes full use of both boundary and
content information of the span. However, BERT-
MRC only conducts entity decoding based on the
span boundary. (3) We propose to incorporate
GAT in our model to train the extractor to learn ad-
ditional information from the discriminator, mean-
while greatly reducing the demand on training data
size. (4) We use easily-obtained entity markers to
achieve competitive performance, avoiding com-
plex query designing.

S Experimental Setup

5.1 Benchmarks and Evaluations

We evaluate Extract-Select on four NER bench-
marks — ACE2004!, ACE2005%, GENIA?, and
KBP2017*. Please refer to Appendix B.1 for
the statistics and the detailed processing of the
datasets, and refer to Appendix B.2 for implemen-
tation details.

'https://catalog.ldc.upenn.edu/LDC2005T09
Zhttps://catalog.1dc.upenn.edu/LDC2006T06
3http://www.geniaproject.org/genia-corpus

*https://catalog.1dc.upenn.edu/LDC2017D55



ACE2004 ACEZ2005 GENIA KBP2017
Model P R Fl P R Fl P R Fl P R Fl
Transition’® 749 718 733 745 715 730 780 702 739 747 670 70.1
Seg-Graph 780 724 75.1 768 723 745 770 733 75.1 792 665 723
Merge-Label - - - 75.1 74.1 74.6 - - - - - -
ARN . . . 762 73.6 749 758 739 748 777 718 746
Second-Path 8373 8191 82.81 8298 8242 8270 7807 7645 7725 R R .
Seq2seq® . - 8433 8258 8429 83.42 7992 76.55 78.20 . . .
BiFlat-Graph - . . 750 752 75.1 774 746 760 771 743 756
Pyramid 86.08 8648 86.28 8395 8539 84.66 7945 7894 79.19 - - -
BERT-MRC 8505 8632 8598 87.16 86.59 86.88 85.18 81.12 83.75 8233 7761 80.97
Locate-Label ~ 87.44 8738 87.41 86.09 87.27 86.67 80.19 80.89 80.54 8546 82.67 84.05
Extract-Select  $8.26 88.53 88.39 87.15 8837 87.76 83.64 8441 84.02 8376 8587 84.80

Table 1: Results for nested NER tasks. Bold indicates the best scores

As for the evaluation metrics, we use strict eval-
uation that an entity is considered correct when
both span and category are correctly predicted. We
use span-level micro-averaged Precision (P), Re-
call (R) and F1 scores (F1) for evaluation.

5.2 Baselines

We choose the following models as baselines.
Sequential labeling-based models. Second-
Path (Shibuya and Hovy, 2020) regards the tag
sequence as a path and searches for results with
the second-best path decoding. Seg2seq (Strakova
et al., 2019) views the nested NER as a sequence-
to-sequence problem. Pyramid (Wang et al., 2020)
is based on BERT and decodes nested mentions by
its length in a bottom-up manner.
Transition-based models. Transition (Wang
et al., 2018a) constructs forests for nested men-
tions through an action sequence. ARN (Lin et al.,
2019) builds the Anchor-Region networks by us-
ing the head-driven structures of nested entities.
Hypergraph-based models. Seg-Graph (Wang
and Lu, 2018) utilizes a segmental hypergraph rep-
resentation for the modeling of nested mentions.
BiFlat-Graph (Luo and Zhao, 2020) constructs a
hypergraph module and uses the representation of
it to improve inner entity predictions.
Span-based models. Merge-Label (Fisher and
Vlachos, 2019) first merges tokens and entities
to form nested structures and then labels them.
Locate-Label (Shen et al., 2021) is based on BERT
and generates span proposals by filtering and do-
ing regression on seed spans. BERT-MRC Li et al.
(2020b) formulates NER as a MRC task.

6 Results and Discussions

6.1 Overall Evaluation

Table 1 presents the performance of Extract-Select
as well as the above baselines on four datasets.
From the table, we observe that: (1) Extract-Select
can effectively deal with nested NER, achiev-
ing the state-of-the-art performance. Specifically,

Extract-Select gains at least 0.98%, 0.88%, 0.27%,
0.75% F1 scores improvements on ACE2004,
ACE2005, GENIA and KBP2017, respectively.
This verifies the effectiveness of our span selec-
tion architecture. (2) Extract-Select brings much
higher recall value improvements than other meth-
ods, especially on KBP2017 and GENIA datasets.
We notice that KBP2017 and GENIA contain
much more entities than the other two datasets
and the number of entities on test set of KBP2017
is over four times more than that of ACE2005.
Extract-Select has significant advantages on such
dataset, proving the effectiveness of GAT. (3)
Compared with most of the baselines, Extract-
Select can well balance precision and recall, main-
taining precision value with high recall improve-
ment. The reason may be that entity markers high-
light the category information, clarifying which to
extract. (4) With conventional word embeddings,
Extract-Select method performs better that those
BERT-based models (e.g., Locate-Label and Pyra-
mid), which further proves the advantage of span
selection framework. We also evaluate our model
on two flat NER datasets, as shown in Appendix C.

6.2 Ablation Study

We then conduct ablation study to elucidate the
effectiveness of main components of our Extract-
Select method. Likewise, we only present the re-
sults on ACE2005. We compare Extract-Select
with the following three internal baselines:

w/o EntityMarker: To verify the effective-
ness of entity marker, this variation removes en-
tity marker representations and only uses the in-
dex (i.e., “one”, “two”, et al.) of entity category
for span selection.

‘w/o GAT: To evaluate the effectiveness of GAT,
this variation only retains the extractor. Extractor

STransition (Wang et al., 2018a) did not report precision
and recall scores. Instead, Wang and Lu (2018) reported these
scores for Transition.

8Seq2seq (Strakovi et al., 2019) did not report precision
and recall scores. We use the reported F1 scores in this article.
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ACE2005

Model P R Fi

w/o EntityMarker 85.82 86.03 85.92
w/o GAT 85.75 85.12 85.43
w/o HybridSelect 84.96 87.21 86.07
Extract-Select 87.15 88.37 87.76

Table 2: Results of internal baselines on the test set of
ACE2005.

is trained by Eq.(11) and Eq.(12):

Cp = MUY 4 (1 — NP, (16)

where A € [0, 1] is a hyper-parameter that controls
the weights of two tasks.

w/o HybridSelect: To verify the effectiveness
of hybrid selection strategy, this variation only
considers the boundary information and leaves out
the content. Specifically, we still calculate the
probabilities of tokens being start and end indexes
of entity spans, but use the boundaries of entity
candidates to represent the candidate set. Thus,
Eq.(9) can be rewritten as follows: r¢;, = rj +7j,,
where js and j. are the start and end indexes of
the j" entity span candidate C};, obtained through
Eq.(5). And Tee) is obtained through Eq.(8).

In the training process, the extractor is trained
with the policy gradient method. Thus, the train-
ing objective of the extractor in Eq.(13) can be
modified as follows:

k
VEET =Y "[fp(y.X, C;W(logps (js|y, X))

j=1
+ logpe (jely, X))],

Results are shown in Table 2. From the ta-
ble, we find that: (1) Extract-Select outperforms
three internal baselines on the test set of ACE2005.
Compared with w/o GAT, the F1 scores of full
model improve by up to 2.33%, which means it
is useful to introduce the discriminator to train the
extractor through min-max training. (2) w/o Hy-
bridSelect suffers from much more precision de-
crease than recall compared to full model. The
reason may be that the policy gradient adopted
in w/o HybridSelect produces noise when sam-
pling the span candidates, whereas ours can avoid
such noise by training the extractor using back-
propagation. Such intuition reveals the effective-
ness of our hybrid selection strategy in enabling
the extractor to be trained by back-propagation
from the discriminator. (3) Experimental results
also demonstrate that entity markers are effective.
This allows the model to take advantage of the
prior knowledge of categories, improving the F1
score by 1.84% on ACE2005. (4) w/o Entity-
Marker shows significant or comparable perfor-
mance improvements compared to the baselines

a7
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Setting ACE2005 (F1)
Keywords 87.12
Synonyms 87.34
Wikipedia 86.71
w/o EntityMarker 85.92
Extract-Select 87.76

Table 3: Results of the model with different entity
markers on ACE2005 dataset.

presented in Table 1. This validates the effective-
ness of our span selection framework.

6.3 Analysis of Entity Marker

To explore the influence of using different types
of entity marker in Extract-Select, we investigate
the performance of our model with different en-
tity marker settings. Three experimental settings
are considered: Keywords, Synonyms, Wikipedia.
Keywords means the entity marker is the keyword
describing the category, whereas Synonyms repre-
sents entity markers as synonymous words of key-
words that are extracted from the Oxford Dictio-
nary. Wikipedia means entity markers are con-
structed using the Wikipedia definition. For ex-
ample, the entity marker for type ORG is “an en-
tity comprising multiple people, such as an insti-
tution or an association”. Besides, we also include
w/o EntityMarker, for which entity markers are re-
placed with the position index of the category.

The results of our model with different in-
put entity markers on ACE2005 are presented
in Table 3. From the table, we find that our
Extract-Select (with Keywords+Synonyms as en-
tity marker) achieves the highest F1 scores. In
all settings, w/o EntityMarker that do not contain
any entity information underperforms the others,
indicting that meaningful prior knowledge con-
tributes to superior performance. We also observe
that Wikipedia underperforms Keywords and Syn-
onyms. The reason may be that descriptive words
from Wikipedia may not precisely describe entity
categories compared to other settings.

6.4 Analysis of Training Data

Since entity markers encode useful prior knowl-
edge and the min-max training also learns from
unlabeled data, we expect that the proposed model
works better with less training data. We test
our model, w/o EntityMarker and w/o GAT on
randomly sub-sampled labeled data of ACE2005
training set. As shown in Figure 3, the perfor-
mance of three models drops with the decline of
training sample size. However, our full model only
requires half amount of training data to achieve
comparable performance with two internal base-



Sentence 1

The US Supreme Court will hear arguments from both sides on Friday and Florida * s
Leon County Circuit Court will consider the arguments on disputed state ballots on Saturday .

Gold Label

ORG:{The US Supreme Court, both sides, Florida ’ s Leon County Circuit Court};
GPE:{Florida, Leon County, state}

Locate-Label

ORG:{The US Supreme Court, Florida * s Leon County Circuit Court}; GPE:{US, Florida,
Leon County, state };PER: {both sides}

Extract-Select

ORG:{The US Supreme Court, both sides, Florida ’ s Leon County Circuit Court};
GPE:{US, Florida, Leon County, state}

Sentence 2 Separatists have fought since 1975 for independence in Aceh , which is rich in oil and gas
and has a population of about 4 . 1 million people .
Gold Label PER:{Separatists, a population of about 4 . 1 million people}; GEP:{which,

Aceh , which is rich in oil and gas and has a population of about 4 . 1 million people}

Locate-Label

PER:{Separatists, about 4 . 1 million people, a population of about 4 . 1 million people} ; GEP:

{which, Aceh , which is rich in oil and gas and has a population of about 4 . 1 million peoople}

Extract-Select

PER:{Separatists, a population of about 4 . 1 million people}; GEP:{which,
Aceh , which is rich in oil and gas and has a population of about 4 . 1 million people}

Sentence 3 united nations secretary general kofi annan today discussed plans for the summit with the host ,
egyptian president hosni mubarak .
Gold Label ORG:{united nations }; PER:{united nations secretary general, united nations secretary general

kofi annan, the host, egyptian president, egyptian president hosni mubarak }; GPE:{egyptian}

Locate-Label

ORG:{united nations }; PER:{united nations secretary general, united nations secretary general
kofi annan, the host, egyptian president, egyptian president hosni mubarak }; GPE:{egyptian}

Extract-Select

ORG:{united nations }; PER:{united nations secretary general, united nations secretary general kofi

annan, secretary general kofi annan, the host, egyptian president, egyptian president hosni mubarak} ;

GPE:{egyptian}

Table 4: Examples of predicted results of our model and Locate-Label. Blue highlights indicate wrong predictions
by Locate-Label, red highlights indicate wrong predictions by our model, colored words indicate wrongly predicted

entity references.
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Figure 3: Effect of varying training sample size on
ACE2005.

lines (removing the entity marker and the GAT, re-
spectively). Besides, the observation from the ver-
tical line reviews that the degree of performance
decrease of the full model is much less than that
of other two internal baselines. In sum, the above
observations indicate that both the entity marker
and the GAT contributes to the better performance
when less training data is given.

6.5 Analysis of Long Entity Recognition

To illustrate the performance of model on enti-
ties of different lengths, we divide the entities
into three groups according to their lengths. We
compare Extract-Select with two-stage models:
Locate-Label (Shen et al., 2021) which adopts
boundary regressors to enable long entity recog-
nition and Locate-Label-reg which is a two-stage
baseline. The results are shown in Table 5. We

92

ACE2004 (F1)
Model 1<L<5 5<L<10 L>10 ALL
support 2719 219 97 3035
Locate-Label-reg 88.43 66.12 37.11  85.18
Locate-Label 88.55 82.78 61.72 87.41
Extract-Select 89.52 84.06 66.20  88.39

Table 5: A comparison of recognition F1 score on enti-
ties of different lengths, we divide the entities into three
groups: 1 < L < 5,5 < L <10, and L > 10,
where L denotes entity length. Support denotes the
number of entities in each length group on the test set
of ACE2004.

notice that the F1 score of Locate-Label-reg has
a sharp decrease for long entities (L > 10) by
29.09% compared to our model. This may be-
cause Locate-Label-reg set maximum span length
in span extraction, limiting the ability of recogniz-
ing long entities. Locate-Label faces a large F1
score decrease (5.77% and 21.06%) when the en-
tity length increases from 1 < L < 5to 5 < L <
10 and from 5 < L < 10 to L > 10, respec-
tively. Compared with them, Extract-Select main-
tains a good performance when the entity length
increases, with only 5.46% and 17.86% F1 score
decrease. This verifies that our model is more ef-
fective in recognizing long entities.

6.6 Case Study

Examples of predictions are shown in Table 4. The
first part illustrates that Extract-Select has the abil-
ity of resolving ambiguous entity references, as



span selection framework separately extracts en-
tities for each category rather than conducts multi-
classification for every entity. As shown in the
fourth line, Extract-Select accurately recognizes
the reference phrase “both sides” as ORG cate-
gory, whereas Locate-Label incorrectly classifies
it into PER category due to the ambiguity. The
second part reveals that Extract-Select can recog-
nize long entities well. As shown in the second
part, the long entities “Aceh , which is rich in oil
and gas and has a population of about 4 . 1 million
people” of GEP category can be extracted. How-
ever, this framework may also incorrectly recall
some entities, especially for entities with multi-
level nested structures. For example in the third
part, the multi-level nested entities “secretary gen-
eral kofi annan” is incorrectly recognized. The
reason may be that the extracted multi-level nested
entities confuses the discriminator.

7 Conclusion

This paper proposes Extract-Select, a span selec-
tion framework to solve nested NER. It contains an
extractor which aims to extract entities specific to
a particular entity category with a hybrid selection
strategy, and a discriminator scoring the extractor.
The extractor and discriminator are trained with
GAT to reduce the demand on labeled data. Com-
prehensive experiments performed on four widely
used nested NER datasets demonstrate the supe-
riority of Extract-Select. In future, we will (1)
attempt to overcome the deficiency issue and (2)
investigate in discontinuous and joint NER.
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A The Training Procedure of
Extract-Select

The full pseudo-code for the learning procedure of
Extract-Select is given in Algorithm 1.

Algorithm 1 The learning procedure of Extract-
Select.
Require: An extractor E; A discriminator G; the
input sequence .S; an entity type y € Y
Output: Trained extractor with multi-task lean-
ing
1: Initialize E, D parameters;
2: Generate entity span candidate set C' using E
for training D;

3: Pre-train D via min-max training by Eq.(14);

4: repeat

5. for E-step do

6: Extract a set and its representation
(C,rc) = fe(y,S) using Eq.(1)-(9);

7: Compute the score of C' using Eq.(10);

8: Compute joint objective {p using
Eq.(11)-(13);

9: Update Extractor parameters via policy
gradient;

10:  end for

11:  for D-step do

12: Use current E to generate entity span
candidate set C;

13: Represent C' and calculate its score
fp(y, S) using Eq.(10);

14: Train discriminator for k epochs by
Eq.(14);

15:  end for

16: until Extract-Select converges

B Experiments on Nested NER

B.1 Datasets Processing

Dataset statistics are listed in Table 6. For
ACE2004 (Doddington et al., 2004) and
ACE2005 (Walker et al.,, 2006), we follow

the same settings as Lin et al. (2019), and splitting
files into training, development and test sets



ACE2004 ACE2005 GENIA KBP2017
Model Train Dev Test Train Dev Test Train dev Test Train Dev Test
NO. sentences 6200 745 812 7194 969 1047 15022 1669 1855 10546 545 4267
NO. sent. nested entities 2712 294 388 2691 338 320 3222 328 448 2809 182 1223
NO. total entities 22204 2514 3035 24441 3200 2993 47006 4461 5596 31236 1879 12601
NO. nested entities 10149 1092 1417 9389 1112 1118 8382 818 1212 8773 605 3707
nested percentage (%) 4571  46.69 45.61 3841 3475 37.35 17.83 18.34  21.66 28.09 3220 2942

Table 6: Statistics of the datasets used in the experiments.

CoNLL2003
Model p R Fl
BiLSTM-CRF - - 91.03
ELMo-1agger - - 92.22
Bert-Tagger - - 92.8
Extract-Select  92.10 94.03 93.05
Weibo

Model P R Fl
SLK-NER 61.80 66.30 64.00
Glyce 67.60 67.68 67.71
FLAT - - 68.55
Extract-Select  69.20 70.08 69.64

Table 7: Results for flat NER tasks.

by 8:1:1. For GENIA (Ohta et al., 2002), we
use GENIA v3.0.2 corpus, and follow the split
of Wang et al. (2020), i.e., first collapse all
subtypes into five types, and then split files into
training, development, and test sets by 8.1:0.9:1.
For KBP2017, we follow Lin et al. (2019) and
evaluate the model on the 2017 English evalua-
tion dataset, using previous RichERE annotated
datasets as the training set except 20 randomly
sampled documents reserved as development set.
Finally, there are 866/20/167 files for training,
development and test set.

B.2 Implementation Details

We initialize word embeddings of the input se-
quence and entity marker with 100-dimensional
GLoVE vectors for extractor and discriminator.
The dimensions of contextualized word embed-
ding, POS embedding, and character embedding
are 1024, 50, and 50, respectively. The hidden
size is set to 1024. For GENIA dataset, we replace
GLoVE vectors with word vectors pre-trained on
biomedical corpus (Chiu et al., 2016), which are
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in 200 dimensions. During the training process,
we employ the Adam Optimizer with the initial
learning rate as 0.002 and the minibatch size as
64. We use a dropout rate of 0.35 in each training
process. We set the threshold in Line 325 through
grid search among (0.2,0.5,0.8), and it is set to
0.5 for having the best performance.

C Experiments on Flat NER

We also choose two flat NER datasets, i.e.,
CoNLL2003 and Weibo, to evaluate Extract-
Select. CoNLL2003 is an English dataset (Sang
and Meulder, 2003) with four types of flat enti-
ties. We follow the data processing in Lin et al.
(2019). Weibo is a Chinese dataset (Peng and
Dredze, 2015) sampled from Weibo web pages.
We use the same settings in Li et al. (2020a) to
evaluate our model.

For English flat NER, we use several taggers as
baselines: BiLSTM-CRF (Ma and Hovy, 2016),
ELMo-Tagger (Peters et al., 2018), and Bert-
Tagger (Devlin et al., 2019). For Chinese flat
NER, we use the following models as baselines:

SLK-NER (Hu and Wei, 2020) which incorporates
second-order lexicon knowledge, Glyce (Meng

et al., 2019) which combines glyph information,
and FLAT (Li et al., 2020a) which uses phrases.

Table 7 presents comparisons between Extract-
Select and the baselines on two flat NER datasets.
On Weibo dataset, our model outperforms the
baselines, improving the F1 score by 1.09%. On
CoNLL2003, our model also gains comparable re-
sults, with 0.25% performance improvement com-
pared to Bert-Tagger. In general, Extract-Select
achieves good performance on not only nested
NER but also flat NER.
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Abstract

While variational autoencoders (VAEs) have
been widely applied in text generation tasks,
they are troubled by two challenges: insuffi-
cient representation capacity and poor control-
lability. The former results from the posterior
collapse and restrictive assumption, which im-
pede better representation learning. The lat-
ter arises as continuous latent variables in tra-
ditional formulations hinder VAEs from inter-
pretability and controllability. In this paper,
we propose Dictionary Prior (DPrior), a new
data-driven prior that enjoys the merits of ex-
pressivity and controllability. To facilitate con-
trolled text generation with DPrior, we pro-
pose to employ contrastive learning to separate
the latent space into several parts. Extensive
experiments on both language modeling and
controlled text generation demonstrate the ef-
fectiveness of the proposed approach.

1 Introduction

As one of the representative deep generative mod-
els, variational autoencoders (VAEs) (Kingma and
Welling, 2014) have been widely applied in text
generation tasks, such as dialog generation (Wu
et al., 2020; Zhao et al., 2017), machine transla-
tion (Shah and Barber, 2018; McCarthy et al., 2020;
Sheng et al., 2020) and poetry generation (Li et al.,
2018b; Yi et al., 2020). Despite the success, VAEs
still suffer from two challenges: insufficient repre-
sentation capacity and poor controllability.

The challenge of insufficient representation ca-
pacity in variational models arises from two aspects.
One is the posterior collapse, a notorious issue that
generally exists in VAEs especially serious in auto-
regressive text generation (Bowman et al., 2016),
which leads to degenerate local optimums during
the training of VAEs (He et al., 2019). Another is
the restrictive assumption for priors and variational

* Corresponding author. This work was done when Xi-
anghong was an intern at Huawei Noah’s Ark Lab.
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Attributes | Samples

Positive this is followed by good movies, great food.
Negative | for me it looks crappy and understaffed.
Present this restaurant has an excellent view.

Past i was able to get the delicious sushi!

Table 1: Examples of controlled text generation in sec-
ond column where sentence attributes indicated by col-
ored words are consistent with user-specified attributes
in the first column.

posteriors (Ding and Gimpel, 2021), which gen-
erally follow Gaussian distribution and spherical
Gaussian distributions with diagonal co-variance
matrices, respectively (Higgins et al., 2017; He
et al., 2019; Li et al., 2019a). Such predefined
forms would hinder VAEs from larger optimization
space (Fang et al., 2019), thus restricting the ex-
pressivity of the model (Ding and Gimpel, 2021)
and further leading to the posterior collapse (Fang
etal., 2019). Therefore, a potential solution is to try
more expressive distribution forms for priors and
variational posteriors to improve the representation
capacity (Fang et al., 2019; Tomczak and Welling,
2018; Ding and Gimpel, 2021).

Another challenge of VAEs is poor controllabil-
ity. The challenge is rooted in the continuous latent
variables that hinder VAEs from interpreting the
discrete attributes like sentiments or topics (Zhao
et al., 2018; Shi et al., 2020). Thus it is difficult
to generate text with user-specified attributes, as
the examples in Table 1. To approach controlled
text generation in variational models, Hu et al. (Hu
et al., 2017) propose to disentangle the latent repre-
sentations by separately modeling discrete attribute
and continuous content representations. Neverthe-
less, it is hard to completely disentangle attribute
and attribute-independent content, resulting in poor
readability in text generation (Wang et al., 2019;
Higgins et al., 2017). A natural choice is to employ
discrete representations as each of them could well
correspond to one of the discrete attributes. Recent
studies also reveal learned discrete representations
by K-means and self-organization map (Kohonen,

Findings of the Association for Computational Linguistics: ACL 2022, pages 97 - 111
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1995) display great clustering performance and in-
terpretability (van den Oord et al., 2017; Fortuin
et al., 2019), showing the potential to be manipu-
lated and split latent space for controlled text gen-
eration.

In this paper, we follow the practice of learning
discrete representations and propose a new data-
driven prior that enjoys the merits of expressivity
and controllability. Specifically, we deploy a set
of learnable vectors and interpolate the learnable
vectors to form the prior, which we call Dictionary
Prior (DPrior). Each learnable vector is dubbed
an atom in the dictionary. To facilitate generative
models with DPrior, dual-form KL-divergence (Dai
et al., 2018) is employed to make the prior distri-
bution spanned by dictionary atoms approximate
the posterior distribution. Our DPrior is model-
agnostic and could be combined with pre-trained
models such as BERT/GPT to enrich posterior rep-
resentations (Li et al., 2020a). To enforce control-
lability to the DPrior, we separate the dictionary
atoms into several disjoint subsets according to
the natural language attributes. Then, we propose
to employ contrastive learning to incorporate the
attribute information, which can cluster different
subsets of dictionary atoms into different semantic
subspaces.

We demonstrate the superiority of DPrior against
recent VAE variants on the language modeling task.
We also validate our DPrior in controlled text gen-
eration where DPrior shows its effectiveness over
several advanced counterparts. The main contribu-
tions of this paper can be summarized as:

* We propose an expressive Dictionary Prior
(DPrior) within VAEs framework, which con-
sists of learnable dictionary atoms and inter-
polating the atoms as latent variables.

DPrior is model-agnostic and can be com-
bined with pre-trained language models. By
doing so, DPrior achieves SOTA language
modeling performance on four benchmarks.

We enforce controllability to DPrior by sep-
arating dictionary atoms into disjoint subsets
and applying contrastive learning to incorpo-
rate attribute information.

2 Related Work

Controlled Text Generation Controlled text
generation is a task aiming to generate realistic
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sentences with desired attributes, e.g., sentiments
or topics. Most efforts for controlled text gen-
eration are based on conditional pre-trained lan-
guage models (Keskar et al., 2019; Dathathri et al.,
2020). CTRL (Keskar et al., 2019) employs a GPT-
2 like pre-trained language model and trains it from
scratch on a large corpus containing various con-
trol codes. Subsequently, controlled generation is
accomplished by using the control codes as prompt-
ing words. PPLM (Dathathri et al., 2020) seeks to
avoid the further training process and combines the
GPT-2 model with several simple attribute classi-
fiers whose gradients can update the latent repre-
sentations.

Another line of work tries to explore limited la-
beled data via learning latent representations (Hu
et al., 2017). Hu et al. (Hu et al., 2017) propose
to approach controlled text generation by learn-
ing disentangled latent representations including
independent content and attribute parts. In this pa-
per, we learn entangled latent representations and
approach controlled text generation by separating
prior space into several parts.

Expressive Prior and Posterior In VAEs VAEs
usually employ simple Gaussian distribution as the
prior and spherical Gaussian distributions with di-
agonal co-variance matrices as the variational pos-
teriors (Higgins et al., 2017; He et al., 2019; Fu
et al., 2019). Such predefined forms in traditional
formulations hinder VAEs from the expressivity of
the model (Ding and Gimpel, 2021), thus further
inducing the posterior collapse (Fang et al., 2019).
To improve the representation capacity, some ef-
forts try more expressive priors. MoG-VAE (Ding
and Gimpel, 2021) considers a uniform mixture
of Gaussians as the prior, Vamp-VAE (Tomczak
and Welling, 2018) introduces ““Variational Mixture
of Posteriors” prior (VampPrior). APo-VAE (Dai
etal., 2021) adopts VampPrior to learn a hyperbolic
latent space. FlowPrior (Ding and Gimpel, 2021)
tries a new prior through normalizing flows. It is
noted that VQ-VAE (van den Oord et al., 2017)
introduces an auto-regressive prior via learning
discrete representations, which enjoys the merits
of learnability and expressivity. Nevertheless, the
auto-regressive prior has low generation efficiency
and no ability of latent manipulation (Fang et al.,
2021). In this paper, we propose a data-driven
prior via learning discrete representations but have
same generation efficiency and the ability of latent
variable manipulation to traditional VAEs.



Another line of work is to seek more expressive
posteriors. Fang et al. (Fang et al., 2019) adopts
implicit posterior representation. APo-VAE (Dai
et al., 2021) and our DPrior also employ the im-
plicit posterior representations to match the flexible
priors thus further improve representation capacity.

3 Methodology

In this section, we first review the basics of deep
generative models in Section 3.1, then introduce
Dictionary Prior (DPrior) in Section 3.2 which is
built on a set of learnable vectors. We further ap-
proach controlled text generation in Section 3.3.
The overall illustration of our proposed approach is
shown in Figure 1. More details will be explained
in the following sections.

3.1 Deep Generative Models

VAE:s are one of the most representative deep gen-
erative models for language modeling. Given a
text x z1.7 with length T', VAEs seek to in-
fer latent variable z that explains the observation.
Towards this end, VAEs maximize the marginal log-
likelihood log pp(x), which is usually intractable
due to the complex true posterior p(z|x). Con-
sequently an approximate posterior g, (z|x) (i.e.
the encoder) is introduced, and the evidence lower
bound (ELBO) of the marginal likelihood is maxi-
mized as follows:

log po(x) >Eyrq, (z/x)[log po(x(2)]

— Dir(ge(zx)llp(2)), (1)

where pg(x|z) represents likelihood function con-
ditioned on z, also known as the decoder.

VAESs usually adopt simple Gaussian distribution
as the prior and spherical Gaussian distributions
with diagonal co-variance matrices as the varia-
tional posterior. However, predefined distribution
forms in traditional formulations of VAEs restrict
representation capacity. As discussed before, we
turn to learning an expressive prior via discrete
representations instead of predefined prior.

3.2 Data-driven Dictionary Prior

We define the prior via a set of learnable vectors,
ie., ¥ = {ey,...,en}, and each vector is dubbed
as a dictionary atom. Intuitively, we could sam-
ple one dictionary atom and feed it to the decoder,
i.e., pp(x|e). However, the generation capacity is
always restricted by the dictionary size m. To facili-
tate larger generation capacity, we further introduce
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a continuous random variable 7T = (7q,...,T,) "
that follows the Dirichlet distribution parameter-

ized by an m-dimensional vector «:

IO W“)ka“”“_l.
T (yx) F

Then we interpolate all dictionary atoms with 7
to form the latent variable: z = ZZ ;- €. Al-
though atoms in ¢ are discrete and finite, the latent
variable z is continuous and has infinitely possible
realizations via sampling 7 according to the Dirich-
let distribution. We call the prior defined on these
dictionary atoms as Dictionary Prior (DPrior), or
Py (2|7y). Note that v is a hyper-parameter and we
set «v the same in each dimension. Dirichlet dis-
tribution would approximate one hot distribution
when 7, — 0, and approximate uniform categor-
ical distribution when v — co. In general, The
smaller ~y;, produces more diverse text from our
proposed DPrior.

As part of the network parameters, the dictio-
nary ¢ would be differentially updated according
to various training samples. Such a data-driven
prior would produce larger optimization space, en-
forcing to learn better representations.

7 ~ Dir(w|y) = ()

Dual Form of KL divergence It is intractable to
deploy vanilla KL divergence to train DPrior as
in Equation 1, since learnable discrete atoms in
1) make it difficult to explicitly estimate the den-
sity of py,(z|v). To address the issue, we propose
to employ its dual form based on Fenchel duality
theorem (Rockafellar et al., 1966), which can ef-
fectively narrow the distribution gap between the
prior py(z|7y) and posterior g4(z) when the den-
sity of the priors and/or variational posterior are
unknown (Fang et al., 2019; Dai et al., 2021).

Specifically, we follow (Fang et al., 2019) and
introduce an auxiliary dual function v(-), param-
eterized by a neural network with weights ¢, to
optimize the KL divergence as:

L% = Dicr(gp(2)||py (2]7)) 3)

= max Esngy(2)00(2) = Egnp, (zy)) €XP(v4(2)),

where g4(z) = [ q(x)qy(z|x)dx is the aggregated
posterior. To make the posterior match the ex-
pressive DPrior, we also employ implicit posterior
representations as (Fang et al., 2019). Specially, we
adopt white noise ¢; ~ N(0,I) and concatenate
it with hidden representations of x to obtain i-th
latent variable as z; = G(x, ;).
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Figure 1: The overall illustration of our proposed method, which consists of an encoder-decoder network, a learn-
able dictionary, and a deep dual function network. ® and & represent interpolation and sum operator respectively.
Different colors in the dictionary denote different attributes. Block 1 represents the training process of DPrior, con-
sisting of the reconstruction loss £ and the dual-form KL divergence £p. Block 2 denotes contrastive learning
applied to the dictionary with the contrastive loss L. Block 3 denotes the controlled text generation after training.

During training, we choose « near 0 as it con-
sistently performs better than other values in our
experiments. Together with the reconstruction loss,
ie., E%e = —E,q,(zlx) log po(x[2), the objective
function of DPrior for language modeling can be
summarized as:

1 ¢70 (107(2571»[)
min max Ly + 1 % L , 4
i max L+ PrxLp @

where (31 is a regularization parameter.

Combined with Pre-trained Models Our
DPrior is model-agnostic and could be com-
bined with various neural networks such as
LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017). To improve
representation capacity, we propose the combina-
tion of DPrior and a large-scale pre-trained deep
latent variable model, i.e., OPTIMUS (Li et al.,
2020a), which adopts the pre-trained BERT and
GPT-2 as the encoder and decoder, respectively.
Since extra large-scale text corpus was exploited,
more diverse and even out-of-domain sentences
that exploit more words are able to be generated.

3.3 DPrior for Controlled Text Generation

In this section, we enforce interpretability and con-
trollability to DPrior to approach controlled text
generation. Specifically, we separate the dictionary
1 into L disjoint subsets, i.e. 11, 19, ..., ¥, given
L different attributes in the dataset. For example,

we have two subsets to represent positive and nega-
tive sentiments as in Figure 1. The number of atoms
in each subset is set according to the attribute pro-
portion in the dataset. To accomplish controlled
text generation, we can then choose a certain dic-
tionary subset and interpolate atoms in this subset
as the latent variable z for decoder generation.

To effectively incorporate the attribute informa-
tion into dictionary atoms, we propose to employ
contrastive learning such that sentences generated
from a certain subset accurately correspond to the
desired attribute. During the training of DPrior,
The semantic space of the dictionary could be grad-
ually clustered into several parts according to the
natural language attributes.

Contrastive Learning for DPrior Given a la-
tent variable z from encoder ¢4(z|x) with its at-
tribute label ¢ € {1, ..., L}, we denote z as an an-
chor a. Therefore, atoms in the subset 1/, with the
same attribute constitute positive samples (denoted
as a™) of anchor a, and atoms in other subsets
() are negative samples (denoted as a™) of an-
chor a. A contrastive loss (van den Oord et al.,
2018; Hoffer and Ailon, 2015) is a distance metric
to enforce the anchor a to be similar to positive
samples a™ and dissimilar to negative samples a ™.
With the supervised attribute information contained
in anchor a, the positive samples would learn to
cluster into the same semantic subspace with the
anchor while negative samples into other seman-
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tic subspaces. The contrastive loss will gradually
enlarge the gap among different subspaces.

As shown in Block 2 of Figure 1, we employ
InfoNCE loss (van den Oord et al., 2018) where we
randomly sample one positive sample from 7). and
K negative samples from ¢¢_; for each anchor
a. Then the objective is to produce the log loss of
a (K+1)-way softmax-based classifier that tries to
classify a as a™:

‘r-a~a+

L% = ~Eglog (5)

)

eTraat +

K

E e’r-au;
i=1

where S = {a,a™,a"} and 7 is a temperature
hyper-parameter and we set 7 = 1 in all experi-
ments. Together with the loss function of DPrior
introduced in Equation 4, the overall objective for
controlled text generation can be summarized as:

min max L9048 % LYY 4+ By« L&Y, (6)
b b (p

where Lg denotes the reconstruction loss, £p de-
notes the dual-form KL-divergence, Lo denotes
the contrastive loss, 31 and (3; are the hyper-
parameters.

Controlled Text Generation from DPrior Af-
ter the training phase of DPrior, as Block 3 of Fig-
ure 1, given any attribute label ¢ € {1, ..., L}, we
select all atoms from the corresponding subset .,
sample 7 from the Dirichlet distribution, interpo-
late these atoms with 7r to produce a latent variable
z, and finally feed it to the decoder for text gener-
ation. In this way, controlled text generation with
the user-specified attributes can be achieved.

4 Experiments

In this section, we apply DPrior model to two tasks:
(1) language modeling, where DPrior shows its
advantage in expressive prior in comparison with
state-of-the-art VAE methods. (ii) controlled text
generation, where DPrior shows its superiority in
controllability with desired attributes. We also con-
duct a series of analyses and visualizations to shed
more light on the proposed approach.

4.1 Language Modeling

Following (Li et al., 2020a), we consider four
benchmark datasets of language modeling for
evaluation: Penn Tree (Marcus et al., 1993),
SNLI (Bowman et al., 2015), Yahoo Answers (Xu
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and Durrett, 2018) and Yelp corpora (Yang et al.,
2017). A summary of dataset statistics is shown in
Appendix A.

Baselines We compare the proposed DPrior
against following baselines: (i) auto-regressive
models such as LSTM-LM (Mikolov et al.,
2010) and GPT-2 (Radford et al., 2019). (ii)
VAE (Kingma and Welling, 2014) with simple
Gaussian prior, and its advanced variants for bet-
tering training and avoiding posterior collapse, in-
cluding Annealing VAE (Bowman et al., 2016),
Free Bits (FB)-VAE (Kingma et al., 2017), Lag-
VAE (He et al., 2019), and AE-FB (Li et al., 2019a).
(iii) VAEs with expressive prior choices, includ-
ing MoG-VAE (Ding and Gimpel, 2021), Vamp-
VAE (Tomczak and Welling, 2018), APo-VAE (Dai
et al., 2021), FlowPrior (Ding and Gimpel, 2021).
(iv) iVAE (Fang et al., 2019) considers implicit
posterior representation instead of explicit form.
(v) OPTIMUS (Li et al., 2020a), a large-scale pre-
trained VAE model.

Metrics We evaluate language modeling from
two perspectives: Generation capacity measured
by perplexity (PPL) and representation learning ca-
pacity measured by Active Units (AU) of z and its
Mutual Information (MI). Note that LSTM-LM and
GPT-2 has exactly PPL, while VAEs do not. Fol-
lowing (Fang et al., 2019), our calculation of PPL
is slightly different from exact PPL in two ways: (i)
we approximate log p(x) to report PPL; (ii) the KL
term in the bound is estimated via samples, rather
than a closed-form. We also report results with
ELBO, KL, and Reconstruction in Appendix B.

Main Results As the results shown in Table 2,
our proposed DPrior achieves state-of-the-art lan-
guage modeling performance in terms of PPL and
MI in all datasets. In comparison with vanilla VAE
and its variants in the middle block that employ
explicit posterior representations, iVAE, APo-VAE,
and DPrior that adopt implicit posterior represen-
tations achieve better performance, indicating the
importance of expressive posterior representations.
Moreover, our DPrior achieves further improve-
ments upon iVAE, which we attribute to the pro-
posed data-driven prior and improving the repre-
sentation capacity.

In comparison with VAEs implemented by
LSTM layers in the middle block of Table 2, VAEs
based on the OPTIMUS framework in the bottom
block achieve impressive results by large margins.



Dataset PTB Yelp Yahoo SNLI
Methods LM Repr. LM Repr. LM Repr. LM Repr.
PPL| | MIt AUt | PPL| | MIT AU?T | PPL] | MIT AU?T | PPL] | MIT AUt
LSTM-LMT 100.47 | - - 4260 | - - 60.75 | - - 2144 | - -
GPT-21 2423 | - - 2340 | - - 22.00 | - - 19.68 | - -
VAES 101.39 | 0.01 O 40.56 | 0.00 0 61.52 1 0.00 O 21.67 | 0.03 1
Annealing—VAEJr 101.40 | 0.00 0 40.39 | 0.13 61.21 | 0.00 2150 | 145 2
Lag—VAEJf 99.83 | 0.83 4 3984 | 2.16 12 59.77 | 290 19 21.16 | 1.38 5
FB-VAES(\ = 5.0) | 101.42 | 4.80 4 62.78 | 5.00 21.58 | 495 6
s AE—FB§(/\:5.0) 96.86 | 5.31 32 4797 | 7.89 32 59.28 | 8.08 32 21.64 | 771 32
; MoG-VAE® 97.50 | 0.68 32 64.60 | 0.00 O 28.05 | 041 1
~ Vamp-VAE® 97.83 | 0.72 32 74.81 | 0.00 0 2598 | 0.00 0
Flow-Prior® 93.58 | 2.83 31 68.29 | 0.61 25 26.19 | 3.16 32
APo-VAE* 53.02 | 450 32 3291 | 6.20 32 46.61 | 490 32
iVAE! 5344 | 1220 32 36.88 | 11.00 32 47.93 | 10.70 32 740 | 993 32
DPrior (Ours) 46.08 | 12.59 32 32.79 | 11.35 32 45.18 | 10.93 32 6.44 | 10.02 32
. AE-FBT(A = 1.0 3553 | 8.18 32 2459 | 9.13 32 2492 1 9.18 32 29.63 | 9.20 32
= AE—FBT()\:O.5) 26.69 | 7.64 32 2279 | 7.67 32 23.11 | 8.85 32 16.67 | 8.89 32
E AE-FBf(A =0.05) | 23.58 | 3.78 32 2199 | 2.54 32 2234 | 534 32 1347 | 349 32
% iVAE 1549 | 15.86 32 1544 | 15.07 32 15.04 | 12.52 32 5.65 | 14.28 32
DPrior (Ours) 14.74 | 15.96 32 14.52 | 17.05 32 14.67 | 12.99 32 5.54 | 1442 32

Table 2: Language modeling performance comparison on PTB, Yelp, Yahoo, and SNLI datasets. "LSTM" indicates
autoencoder architectures are built with two-layer LSTMs, while "OPTIMUS" employs pre-trained BERT and
GPT-2 as the encoder and decoder. t: results from (Li et al., 2020a). : results from (Fang et al., 2019). §: results
from (Li et al., 2019a). *: results from (Dai et al., 2021). : results from (Ding and Gimpel, 2021). "-" indicates
the models are improper to report these values. Empty cells indicate the results were not reported in the literature.

A potential explanation is that the latter could incor-
porate natural language understanding knowledge
into generation tasks, and then learn a more struc-
tured semantic latent space with the combination
of strengths of VAE, BERT, and GPT-2. Overall,
DPrior achieves the lowest PPL and highest MI
among all datasets based on the OPTIMUS frame-
work, which further verifies the superiority of the
data-driven prior via learnable dictionary atoms.

Analysis We conduct a set of analyses including
the influence of the dictionary size, atom analysis,
latent interpolation, and sentence transfer. We find
that the results on the PTB dataset are insensitive
to the size of the dictionary. To gain a comprehen-
sive understanding of the prior, we also conduct
atoms analysis. Specifically, we randomly choose
an atom from the dictionary and search top-9 near-
est atoms via euclidean distance to this atom. Then
we feed the sampled atom and top-9 nearest atoms
to the decoder for sentence generation. The re-
sults are illustrated by the red and blue sentences in
Table 3. We conduct latent interpolation to demon-
strate DPrior could learn a smooth latent space. We
also conduct sentence transfer to imply DPrior has
great ability of high-level sentence editing in latent
space. More details are illustrated in Appendix C.

~

a dog is running on the plant

a chicken is chasing off animals.

a girl flings a dog on water.

a dog is on athletic grounds.

a small white dog runs under the grass.
a dog goes alone from his village.

a dog plays with a play on a grassy field.
the brown dog is attacking other people.
three puppies are eating right inside.

a black pup on monkey jump.

O 001NN B WN—

Table 3: Atom analysis on SNLI dataset.

4.2 Controlled Text Generation

In this section, we conduct controlled text genera-
tion on the Yelp (Li et al., 2018a) and Arxiv (Sergio,
2019) datasets. Yelp dataset (Yelp-s) consists of
business reviews that are labeled as either positive
or negative according to their sentiment. To gain
the tense attributes (present or past) from Yelp, we
use the Stanford Parser to extract the main verb
from a sentence to constitute a new dataset (Yelp-t).
We also consider the combination of sentiment and
tense attributes (Yelp-st) for multi-set controlled
text generation. Arxiv dataset extracts the abstract
from arxiv articles regarding three topics: ar-
tificial intelligence, computer vision, and natural
language process. Appendix A shows the detailed
dataset statistics.

Baselines We compare the proposed DPrior with
constrastive loss (denoted as DPrior+c) against
several baselines:(i) CVAE, the conditional-VAE
model (Sohn et al., 2015) where each attribute is
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Yelp-s Yelp-t Yelp-st
Methods =0+ PPIi Dist} | Acct PPIi DistT | Acct PPE¢ Dist}
CVAE 852 | 5.87 | 0.384 | 869 | 5.66 | 0.350 | 75.6 | 5.75 | 0.270
S CVAE+c | 969 | 572 | 0354 | 983 | 573 | 0.368 | 96.6 | 5.69 | 0.263
S Semi-VAE | 968 | 582 | 0375 | 982 | 5.66 | 0351 | 942 | 577 | 0.282
§ Disentangle | 97.7 | 5.81 | 0.377 | 98.5 | 5.63 | 0.343 | 945 | 5.82 | 0.297
&  DPrior+c | 99.2 | 545 | 0313 | 99.9 | 5.63 | 0298 | 98.4 | 554 | 0.195
Reference | 98.4 | 6.01 | 0.552 | 99.5 | 5.94 | 0.560 | 98.0 | 5.93 | 0.481
£ GPT2 96.4 | 5.00 | 0.436 | 977 | 4.93 | 0.422 | 932 | 5.05 | 0.359
S CVAE+c | 951 | 6.02 | 0.629 | 960 | 595 | 0.633 | 88.8 | 5.94 | 0.556
& DPrior+c | 98.6 | 5.82 | 0.498 | 99.4 | 592 | 0.467 | 95.1 | 596 | 0.489

Table 4: Automatic evaluation results of controlled text generation on Yelp dataset. "Transformer" indicates au-
toencoder architectures are built with transformer layers, while "pre-train" employs pre-trained models such as
GPT-2 or OPTIMUS. Reference represents samples from the test dataset. 1/] means the larger/smaller the better.

Methods sentiment tense

Acct Agreel | Flut Agreet | Acct Agreet | Flul Agreet
Reference | 4.32 803% | 430 67.2% | 488 963% | 443 68.4%
GPT-2 415 785% | 4.12 642% | 474 923% | 419 65.1%
CVAE+c 430 79.8% | 4.08 643% | 476 92.8% | 3.89 655%
DPrior+c | 4.51 82.6% 4.23 66.6% 490 97.2% | 439 69.2%

Table 5: Human evaluation results of controlled text generation on Yelp dataset in terms of sentiment and tense
attributes. Reference represents samples from the test dataset. 1 means the larger the better.

Arxiv
Methods =0T BpL] | Dist]
Reference | 86.2 | 3.79 | 0.556
GPT-2 81.8 | 3.08 | 0.377
CVAE+c 95.8 | 4.39 | 0.555
DPrior+c | 98.7 | 4.28 | 0.575

Table 6: Automatic evaluation results of controlled text
generation on Arxiv dataset. Reference represents sam-
ples from the test dataset. 1/] means the larger/smaller
the better.

represented by a separated Gaussian distribution.
(il) CVAE+c, which applies constrastive loss as
DPrior+c to the conditional-VAE model. (iii) Dis-
entagle (Hu et al., 2017), which disentangles the
latent representations into content and attribute
parts for controlled text generation; (iv) Semi-
VAE (Kingma et al., 2014), semi-supervised VAE
model with independent discrete and continuous
latent variables; (v) a fine-tuned GPT-2 (Radford
et al., 2019) model using attribute labels as the the
prompt. We deploy the test dataset as Reference
for comparison. To demonstrate the influence of
constrative loss, we also consider an ablation where
no constrative loss is applied on DPrior. Implemen-
tation details are discussed in Appendix D.

Metrics We evaluate the performance of con-
trolled text generation from three aspects, i.e., con-
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trollability, fluency and diversity. For controllabil-
ity, we fine-tune a BERT classifier (Devlin et al.,
2019) on the training data as attribute predictor,
which measures the accuracy (Acc) of correctly
generated sentences with desired attributes. Note
that the BERT classifier achieves an accuracy of
98.4%, 99.5%, 98.0%, and 86.2% on Yelp-s, Yelp-
t, Yelp-st, and Arxiv respectively, being a good
automatic evaluator. For fluency, we adopt a pre-
trained GPT-2 model (Radford et al., 2019) as the
fluency evaluator, which takes the generated sen-
tences as input and returns the corresponding per-
plexity scores (PPL). For diversity, distinct met-
ric (Dist) is employed which calculates the number
of distinct bigrams in generated sentences (Li et al.,
2016). A better-controlled generation generally has
higher Acc, lower PPL, and higher Dist.

Main Result The results are listed in Table 4, 5,
and 6, including automatic evaluation and human
evaluation. From the results, we can conclude
that: (i) in terms of controllability, our proposed
DPrior+c consistently achieves the best generation
accuracies (Acc) on all four datasets via either auto-
matic evaluation or human evaluation. (ii) In terms
of fluency, there is no doubt that GPT-2 produces
the best PPL scores since it is pre-trained on lan-
guage modeling tasks. Though not the best, our
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Figure 2: Tllustration of subspace separations on the Arxiv dataset.

DPrior+c also achieves better PPL scores against
other methods. Note that fluency is a very subjec-
tive metric, and the use of the GPT-2 PPL score
may not be a reliable measurement. We also con-
duct human evaluation, reported in Table 5, and
our DPrior+c always achieves the best fluency ex-
cluding the reference. (iii) In terms of diversity,
our DPrior+c can also attain comparable distinct
metrics (Dist) against other methods. Note that
DPrior+c achieves the best distinct metrics (Dist)
in the Arxiv dataset, as shown in Table 6. With
the help of pre-trained OPTIMUS, DPrior+c could
generate more diverse long sentences with more
words exploited in the vocabulary.

In comparison with DPrior+c, DPrior always at-
tains the worst controllability as shown in the top
block of Table 4, which can be explained that dic-
tionary atoms cannot receive supervised informa-
tion without contrastive learning. We also find that
Transformer-based models always achieve a little
better controllability but worse diversity compared
with pretrain-based models, as shown in Table 4. A
possible explanation is that pretrain-based models
can always leverage extra large-scale text corpus
and generate out-of-domain sentences that exploit
more words, even their attributes cannot be distin-
guished by the BERT classifier.

Visualizations To gain a better understanding of
how contrastive learning benefits the prior subspace
separations, we visualize dictionary atoms with
different attributes. Specifically, we focus on the
Arxiv dataset and sample all atoms from DPrior
and DPrior+c models. We reduce the dimension-
ality from 32 to 2 using PCA and plot them in
Figure 2. As shown in Figure 2(a), the subspace
for Al, CV, and NLP parts are highly overlapped
without contrastive loss. This can also explain the
poor controllability of DPrior in Table 4. By con-
trast, DPrior+c model clearly separates the prior
space into the Al, CV, and NLP parts, as shown
in Figure 2(b), indicating that the contrastive loss
could effectively enlarge the gap among different

subspaces. Therefore, text generated from the in-
terpolation of the disjoint dictionary subsets will
be highly consistent with the desired attributes.

We further analyze the advantages of contrastive
learning from two perspectives: the accuracy of dic-
tionary atoms, where we directly feed all atoms to
the decoder and measure the accuracy of predicted
attributes by the BERT classifier; and the distance
between the mean of the three disjoint subsets. As
shown in Figure 2(c) and Figure 2(d), when no
contrastive loss is applied, the atom accuracy and
subset distance keep almost unchanged, i.e., 33%
and O respectively. By contrast, when contrastive
learning is deployed, the atom accuracy quickly
increases to 91.9%, and the distance gradually en-
larges during the model training.

Other Analysis We show some sampled sen-
tences from DPrior+c including short controlled
text generation trained on Yelp dataset in terms of
sentiment, tense, and the combination of them, and
long controlled text generation trained on Arxiv
dataset. All samples can be found in Appendix E.

We also analyze the influence of Dirichlet distri-
bution for text generation in terms of controllability,
fluency, and diversity. Details can be found in Ap-
pendix G.

5 Conclusion

In this paper, we propose the Dictionary
Prior (DPrior), a new data-driven prior that en-
joys the merits of expressivity and controllability.
The proposed prior deploys a set of learnable vec-
tors dubbed as dictionary atoms and interpolate the
atoms to form the prior. We apply dual-form KL-
divergence to make the prior distribution spanned
by dictionary atoms approximate the posterior dis-
tribution. Contrastive learning is further deployed
to the disjoint dictionary subsets to enable control-
lability and interpretability. Empirical results on
benchmark datasets demonstrate the superiority of
our approach in both language modeling and con-
trolled text generation.
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Nevertheless, the proposed approach has limita-
tions. While the Gaussian distribution employed in
standard VAESs has an infinite support region, the
support region of DPrior is finite as it corresponds
to the convex hull of the dictionary atoms. There-
fore, future work considers extending our frame-
work to the more general infinite support region.
We will also apply DPrior to more text generation
tasks like poetry generation (Yi et al., 2020) and
machine translation (Li et al., 2020b, 2019b).
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A Dataset Statistics

We list the data statistics of all experiments in Ta-
ble 7. PTB, Yelp, Yahoo, and SNLI datasets are
used in the language modeling experiments in Sec-
tion 4.1. Yelp-s, Yelp-t, Yelp-st, and Arxiv datasets
are used in the controlled text generation experi-
ments in Section 4.2.

B Language Modeling Results

The language modeling performance was evaluated
by perplexity(PPL), Mutual Information(MI), Ac-
tive Units(AU), Evidence Lower Bound(ELBO),
KL divergence(KL), and Reconstruction(Rec) on
PTB, SNLI, Yelp, and Yahoo datasets are shown in
Table 8 and 9.

C Analysis on Language Modeling

The Influence of Dictionary Size To analyze
how the dictionary size m influences the language
modeling performance, we vary m = 2F k €
{8,9,10,11,12,13,14, 15}, and conduct experi-
ments on the PTB dataset. The curves shown in
Figure 3 present slight fluctuations in terms of PPL,
MI, ELBO, and Rec, indicating the experiment re-
sults are insensitive to the size of the dictionary.
We set m to 2048 for all language modeling ex-
periments in Table 2, 8 and 9 for the highest MI.
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Figure 3: Influence of various dictionary sizes m for
language modeling on PTB dataset.

Atoms Analysis To gain a better understanding
of the prior space, we conduct atoms analysis on
the SNLI dataset, i.e., we randomly choose an atom
from the dictionary and search top-9 nearest atoms
via euclidean distance to this atom, and then feed
the sampled atom and top-9 nearest atoms to the de-
coder to obtain red and blue sentences respectively,
as shown in Table 3 and 10, which show similar se-
mantics, grammar and text length are well clustered
in the prior space.

Latent Interpolation To demonstrate DPrior
can learn a smooth latent space that captures sen-
tence semantics, we implement linear interpolation
between latent vectors on the SNLI dataset, i.e., we
take two sentences x; and X2, and use their poste-
rior as the latent features z; and zo, respectively.
We interpolate a path z, = z1 - (1 —7) + 29 - T
with 7 increases from O to 1 by a step size of 0.1.
As shown in Table 11, the interpolated sentences
using greedy decoding conditioned on z, exhibit
smooth semantic evolution.

Sentence Transfer To testify the ability of high-
level sentence editing in latent space, we also con-
duct a one arithmetic latent vector operation on
the SNLI dataset. Specially, given source sentence
x 4 and target sentence x g, the goal is to re-write
the input sentence ¢ as output in analogy to the
transition from x 4 to & g. We take encoded latent
features z 4, zp, zc from T 4, g, T, then apply
the arithmetic operator zp = zp — z4 + Z¢, and
generate « p conditioned zp using greedy decod-
ing. As shown in Table 12, two style transitions
are well achieved, i.e., from singular to plural sub-
ject and from daily-life activity to sport, indicating
DPrior can well support the sentence editing.

D Implementations for Controlled Text
Generation

We implement all the baselines on our own un-
der the same protocols as there is hardly any ref-
erence code for controlled text generation. For
transformer-based models, reported in the top block
of Table 4, all encoders and decoders are stacked
by two transformer layers. These models share the
same hyper-parameter settings, including the di-
mension of latent space, word embedding, and self-
attention module. The dimension of latent variable
and dictionary atom is set to 32. Adam (Kingma
and Ba, 2015) optimizer is employed with an ini-
tial learning rate of 0.001. Among pretrained-based
models in the bottom block, CVAE+c and DPrior+c
adopt OPTIMUS framework (Li et al., 2020a) that
employs BERT as the encoder and GPT-2 as the
decoder with an initial learning rate of 1e-5. GPT-2
model is fine-tuned on the above datasets with an
initial learning rate of le-5 directly. We prepend
the attribute label words (e.g., positive, negative) to
each sentence such that GPT-2 learns to treat them
as prompt words. For Yelp-s, Yelp-t, and Yelp-st
datasets, the size of the subset for each attribute in
the dictionary is set to 2048, and v = 1/ 29, and
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we sample 1000 sentences each attribute for auto-
matic evaluation. Similarly, the size of each subset
in the dictionary is set to 256 for Arxiv dataset,
and v = 1/2, and we sample 200 sentences each
attribute for automatic evaluation.

E Case Study on Controlled Text
Generation

We show some sampled sentences from DPrior+c
trained on the Yelp dataset in terms of sentiment
and tense, and the combination of them. Each
attribute is paired with two sentences, and we high-
light the corresponding salient words in Table 13.
We also choose three long controlled text gener-
ations from DPrior+c trained on Arxiv dataset in
Table 14.

F Human evaluation for controlled text
generation

We also conduct human evaluation for the con-
trolled text generation besides automatic evalua-
tion. Due to the limited budgets, here we only com-
pare DPrior+c with Reference, GPT-2, CVAE+c,
as shown in Table 5. And we experiment on the
Yelp-s and Yelp-t datasets in terms of sentiment and
tense attributes. We randomly select 50 samples for
each attribute, so there is a total of 200 sentences
from each model.

Four annotators with well linguistic background
were invited to assess each sentence with desired
attributes in a blind manner. The evaluation is on
a scale of 1-5 regarding two criteria: accuracy and
fluency. Better controlled generation would come
with higher accuracy and higher fluency. For exam-
ple, given a generated sentence "the price is great
and i recommend them!" with desired "positive”
sentiment, the accuracy scores [5, 5, 5, 5] were
annotated as the sentiment of the sentence could
be easily assessed. When it is hard to determine
the sentiment of the sentence, annotators might
differ their opinions. An example is that [3, 2, 3,
4] were annotated for the sentence "this was abso-
lutely the first time for me."” with desired "negative"
sentiment. The fluency scores were assessed in
the same manner. Each sentence was reviewed by
four judges and the average scores are reported in
Table 5. We can see that our DPrior+c achieves
the best accuracy, as well as best fluency score ex-
cept for the Reference. We also set an agreement
metric on accuracy and fluency via the percentage
of the scale that most annotators agree with. For

annotated scores [5, 5, 5, 5] and [3, 2, 3, 4], the
agreement would be 100% and 50%, respectively.
As seen, humans have a higher agreement when
the model performance is high.

G Influence of Dirichlet Distribution

As v in Equation 2 determines the density of
the Dirichlet distribution which further determines
the interpolation coefficients 7r, here we analyze
its influences on text generation from three as-
pects, i.e., controllability, fluency, and diversity
as in the main results in Section 4.2. We vary
v =1/27,5 € {4,5,6,7,8,9,10,11,12,13, 14},
and conduct controlled text generation on the Yelp-
s dataset on the transformer-based architecture. We
sample 2000 sentences for each v and employ met-
rics introduced in Section 4.2 for automatic eval-
uation. As shown in Figure 4(a), when we set
a comparatively large value to =y, the DPrior+c
model achieves great performance on controlla-
bility, while DPrior gains very poor accuracy, indi-
cating the importance of contrastive learning in our
framework. We also take generation fluency into
consideration which is measured by GPT-2 PPL
score. As in Figure 4(b), the PPL score increases
gradually on both models when v declines, show-
ing larger v would lead to more fluent generations.
Finally, the influence of «y on generation diversity
is depicted in Figure 4(c). We can see the two mod-
els have similar trends, i.e., the diversity evaluated
by Dist increases rapidly when ~ decreases from
1/2% to 1/2'2, then diversity has a slight decline.
Comprehensively considering the controllability,
fluency, and diversity of text generation, we set
v = 1/2Y for all experiments on Table 4.

We also analyze the influence of Dirichlet dis-
tribution on the OPTIMUS-based architecture that
could leverage extra large-scale text corpus. The
most salient change is that the diversity measured
by Dist significantly increases from 0.1 to 0.5
when ~y equals 1/2, as shown in Figure 4(c) and
Figure 4(f), indicating the combination of DPrior
and the pre-trained model could generate out-of-
domain sentences that exploit more words. In terms
of controllability, the OPTIMUS-based architec-
ture exhibits the same trend but slightly lower con-
trollability, as illustrated in Figure 4(a) and Fig-
ure 4(d). In terms of fluency, shown in Figure 4(e),
OPTIMUS-based architecture presents more simi-
lar fluency to the test dataset as reported in Table 4.
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Figure 4: Influence of Dirichlet distribution on text generation controllability, fluency and diversity. (a) (b) (c) are
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Dataset Attributes #Train | #Dev | #Test | #Vocab | Max-Length | Mean-Length
PTB (Marcus et al., 1993) None 42068 | 3370 | 3761 10000 82 21.1
Yelp (Yang et al., 2017) None 100000 | 10000 | 10000 | 19994 200 96.0
Yahoo (Yang et al., 2017) None 100000 | 10000 | 10000 | 19998 200 78.8
SNLI (Bowman et al., 2015) None 100000 | 10000 | 10000 | 9987 70 9.7
. Negative 177218 | 2,000 | 500
Yelp-s (Li et al., 2018a) Positive 266041 | 2.000 | 500 9355 15 8.9
. Present 298524 | 2594 577
Yelp-t (Li et al., 2018a) Past 133460 | 1290 394 9355 15 8.8
Negative Present | 96944 | 1091 244
. Negative Past 76153 860 244
Yelp-st (Lietal., 2018a) Positive Present | 201580 | 1503 | 333 | > 15 88
Positive Past 57307 430 150
Al 9981 200
Arxiv (Sergio, 2019) CV 14382 200 162239 567 139.3
NLP 14314 200
Table 7: Data Statistics
Dataset PTB SNLI
Method PPL] | MIf | AUT | -ELBOJ | KLT | Rec| | PPL] | MIf | AUT | -ELBO} | KLt | Recl
LSTM-LMT 100.47 - - - - - 21.44 - - - - -
GPT-2f 24.23 - - - - - 20.24 - - - - -
VAE 101.39 | 0.01 0 101.27 | 0.00 | 101.27 | 21.67 | 0.03 1 33.12 0.04 | 33.08
Annealing—VAET 101.40 | 0.00 0 101.28 0.00 | 101.28 | 21.50 | 1.42 2 33.07 1.42 | 31.66
Lag-VAEJr 99.83 | 0.83 4 101.19 0.93 | 100.26 | 21.16 | 1.38 5 32.95 142 | 31.53
FB-VAES(\ = 5.0) | 101.42 | 4.80 4 102.21 5.10 | 97.12 | 21.58 | 4.95 6 33.49 5.10 | 28.38
= AE-FBS(\ = 5.0) 96.86 | 5.31 32 102.41 6.54 | 95.87 | 21.64 | 7.71 32 34.47 9.53 | 24.94
; MoG-VAE® 97.50 | 0.68 32 101.79 2.35 | 99.44 | 28.05 | 0.41 1 41.40 0.44 | 40.96
~ Vamp—VAE<> 97.83 | 0.72 32 101.84 231 99.53 | 25.98 | 0.00 0 41.35 0.00 | 41.35
Flow-Prior® 93.58 | 2.83 31 106.41 7.21 99.20 | 26.19 | 3.16 32 51.15 7.59 | 43.56
APo-VAE* 53.02 | 4.50 32 87.00 8.90 | 78.10
iVAE! 5344 | 1220 | 32 87.20 12.51 | 74.69 | 7.40 | 9.93 32 21.54 10.19 | 11.35
DPrior (Our) 46.08 | 12.59 | 32 83.95 12.62 | 71.33 | 6.44 | 10.02 | 32 20.04 10.04 | 10.00
n AE-FBT(\ = 1.0) 35.53 | 8.18 32 77.65 28.50 | 77.65 | 29.63 | 9.20 32 47.35 28.96 | 18.39
2 AE-FBf(\=05) 26.69 | 7.64 32 96.82 15.72 | 81.09 | 16.67 | 8.89 32 38.50 1635 | 22.14
E AE-FBT(A = 0.05) | 23.58 | 3.78 32 91.31 4.88 | 86.43 | 1347 | 3.49 32 33.08 3.92 | 29.17
% iVAE 1549 | 1586 | 32 74.19 16.07 | 58.11 5.65 | 1428 | 32 19.54 1430 | 5.24
DPrior (Our) 14.74 | 1596 | 32 72.84 1596 | 56.88 | 5.54 | 1442 | 32 19.33 14.42 | 4.90

Table 8: Language modeling performance comparison on PTB and SNLI datasets. "LSTM" indicates autoencoder
architectures are built with two-layer LSTMs, while "OPTIMUS" employs pre-trained BERT and GPT-2 as the
encoder and decoder. T: results from (Li et al., 2020a). *: results from (Fang et al., 2019). 8: results from (Li et al.,
2019a). *: results from (Dai et al., 2021). ©: results from (Ding and Gimpel, 2021). "-" indicates the models are
improper to report these values. Empty cells indicate the results were not reported in the literature.
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Dataset Yelp Yahoo
Method PPL| | MIT | AUt | -ELBOJ} | KLt | Rec| | PPL| | MIt | AUt | -ELBO| | KL1 | Rec|
LSTM-LMT 42.60 - - - - - 60.75 - - - - -
GPT-2f 2340 | - - - - - 2200 | - - - - -
VAE 40.56 | 0.00 0 357.90 | 0.00 | 357.90 | 61.52 | 0.00 0 329.10 | 0.00 | 329.10
Annealing-VAE? 4039 | 0.13 1 357.76 | 0.14 | 357.62 | 61.21 | 0.00 0 328.80 | 0.00 | 328.80
Lag-VAE! 39.84 | 2.16 12 59.77 | 29 19 328.40 | 5.70 | 322.70
FB-VAES(\ = 0.5) 62.78 | 5.00 3 331.32 | 5.07 | 326.26
= AE-FBY(\ =5.0) | 47.97 | 7.89 32 59.28 | 8.08 32 329.31 | 10.76 | 318.55
& MoG-VAE® 64.60 | 0.00 0 33290 | 0.00 | 332.90
—~ Vamp-VAE® 74.81 | 0.00 0 344.61 0.00 | 344.61
Flow-Prior® 68.29 | 0.61 25 356.67 | 10.99 | 345.68
APo-VAE* 3291 | 6.20 32 46.61 | 4.90 32
iVAE! 36.88 | 11.00 | 32 348.70 | 11.60 | 337.10 | 47.93 | 10.70 | 32 309.10 | 11.40 | 297.70
DPrior (Our) 32.79 | 11.35 | 32 337.35 | 11.36 | 325.99 | 45.18 | 10.93 | 32 304.34 | 10.94 | 293.40
n AE-FBT(\ = 1.0) 24.59 | 9.13 32 353.67 | 27.89 | 325.77 | 24.92 | 9.18 32 301.21 | 30.41 | 270.80
2 AEFBI(A=05) | 2279 | 7.67 32 344.10 | 15.09 | 329.01 | 23.11 | 8.85 32 293.34 | 17.45 | 275.89
E AE-FBT(A = 0.05) | 21.99 | 2.54 32 337.41 3.09 | 33431 | 22.34 | 5.34 32 28270 | 6.97 | 282.84
% iVAE 15.44 | 15.07 | 32 294.55 | 15.35 | 279.19 | 15.04 | 12.52 | 32 246.26 | 12.95 | 233.31
DPrior (Our) 14.52 | 17.05 | 32 287.92 | 17.05 | 270.87 | 14.67 | 12.99 | 32 244.01 | 13.00 | 231.01

Table 9: Language modeling performance comparison on Yelp and Yahoo datasets. "LSTM" indicates autoencoder
architectures are built with two-layer LSTMs, while "OPTIMUS" employs pre-trained BERT and GPT-2 as the
encoder and decoder. T: results from (Li et al., 2020a). *: results from (Fang et al., 2019). 8: results from (Li et al.,
2019a). *: results from (Dai et al., 2021). ©: results from (Ding and Gimpel, 2021). "-" indicates the models are
improper to report these values. Empty cells indicate the results were not reported in the literature.

a man in white shirt is jogging on an iron horse in a women’s path.

aman in a green and white outfit is racing a motocross machine.

a man in a white shirt in his silk blue robe with animals.

a skier in blue jeans is jousting on a pier in a city.

a man in blue shirts is holding up cans and laying at a skateboard drawing.
a male basketball players is led by another male as the waves on the beach.
a man wearing a shirt does his legstand on a hovering horse.

a man dressed in a white shirt and black hat is using sticks.

the man in the men’s pants and helmet beats a rugby on a wave at their race.
the blond man will race two dogs back to shore in their same boat.

O 001NN B W —

Table 10: Atom analysis on SNLI dataset.

0.0 ayoung woman with a black hairbrush brushes her teeth while a man in a white shirt watches.
0.1 ayoung woman with a black hairnet brushes her teeth while a man in a gray shirt watches her.
0.2 ayoung woman with a black shirt brushes her teeth in a house while a family watches.

0.3 ayoung woman with a black shirt cuts her teeth in a yard while a man watches.

0.4 ayoung man in a blue shirt with a black hair grabs a rag on her shoulder while other people work in the background.
0.5 ayoung man in a gray shirt holds a bottle of food with his two dogs in a distance.

0.6 aman in a brown shirt is holding a blue bag with a body of water in front of him.

0.7 aman in a blue shirt is holding a small dog with a bag in the grass.

0.8 aman in a blue shirt is holding a small dog in a area of grass.

0.9 aman in a blue shirt is holding a bag of food in a grassy area.

1.0 aman in a blue shirt is holding a bag of food in a small area of grass.

Table 11: Interpolating latent space z, = z; - (1 — 7) + 22 - 7. Each row shows 7, and the generated sentence (in
blue) conditioned on z..

Source x 4 Target x

a girl makes a silly face two soccer players are playing soccer

Input ¢ Output zp

e a girl poses for a picture e two soccer players are posing

e a girl in a blue shirt is taking pictures of a microscope e two boys are wearing soccer uniforms in a soccer field
e a woman with a red scarf looks at the stars e two men in green jerseys are at rugby

e a boy is taking a bath e two players are running

e a little boy is eating a bowl of soup e two soccer boys are playing a soccer ball

Table 12: Sentence transfer via arithmetic operator zp = zp — z 4 + Z¢. The output sentences are in blue.
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Types Attributes Samples
positive [s] this is followed by good movies, grez}t food. [/s]
sentiment [s] for sure. the burrito is amazing and atfordable. [/s]
negative [s] for me it looks crappy and understaffed. [/s]
[s] i must have seen the disgusting and overpriced boxes. [/s]
present [s] this res_taurant l.las an excellent view. [/s]
tense [s] plus this place is clean and genuine customer service. [/s]
past [s] 1 was able to get the delicious sushi! [/s]
[s] plus my car was messed up but our expectations were extremely low. [/s]
positive present [s] drinks are excellent as well as wine. [/s]
[s] the haircut is completely worth the price! [/s]
positive past [s] the environment‘was a})vesom(.i and friendly. [/s] .
multi-set [s] ﬁnall.y gota pf:r?ect.hz.nrcut with great cgstomer service. [/s]
negative present [s] well in my opinion it is a waste of calories. [/s]
[s] probably the worst haircut they have ever had. [/s]
. [s] to my surprise, the plate was empty. [/s]
negative past [s] it might have been worst haircut you called or even asked for. [/s]

Table 13: DPrior+c case study on the Yelp dataset. Red and blue words indicate the sentiment and tense of
sentences respectively.

Attributes | Samples

[s] the paper studies the use of generative adversarial networks (gans) for natural language
parsing applications. upon retrieval of natural text digits, with a gan fixed-sized dictionary
and a small set of rules, contextual grammar is generated for a given input group. this
contextual grammar offers various incremental mechanism for gans to capture context,
including a violation-theoretic scheme for the recognition rate of contextual grammars,
exacerbated by accounts of its integration with quantitative metrics such as ver studies or
globally-confluent grammars. our approach is primarily agnostic to concepts. furthermore,
with real world examples, we show that with just a simple implementation we can expect to
improve word parsing performance, carry out a state-of-the-art sequence learning algorithm,
and finally generate an effective lexical prop grounding from its trace on the text data. [/s]
[s] the topic of computer vision that attempts to predict gestures (i.e., hands) using prob-
ability distributions is rapidly gaining popularity. additionally, binary constraints lead to
efficient finite state machine (fsm) composition strategies that tend to preserve image corre-
spondences, since intuitive expressions of the departing fsm mechanisms only require a few
trace steps from a given fsm state. we introduce a general cnn architecture that efficiently
processes images with probabilistic hand model elements. we present a novel classification
setting where the fsm parameters only need to be confirmed at a small level of training and
test to improve the classification performance. we perform experiments (toads, limitation,
handdisc) on datasets with numbers varying from about 320k samples to a relatively small
amount of activity on a held-out dataset of collections of well-known hand gestures. through
experiments, we have validated the effectiveness of our architecture; and we discovered that
our gated knuckle-less fsm constraints selectively preserve image correspondences. [/s]

[s] one of the problems in real-world monte carlo tree search problems (mcts) is the
generation of promising algorithms and performing efficient learning of mcts parameters.
parameters distributional constraints induced by a large number of observations are difficult
to generate and therefore a way to overcome this issue is posed in this paper. through an
empirical analysis of a prototype mct based on the control-box machine learning (cbm)
and kleywagatoff-lofert satisfiability problems, we advocate deep belief learning (dl),
Al a procedure with epistemic discretization to kickstart training. dl operates through an
abstraction tree which enables better reasoning, language understanding, and preference
of trained models. we introduce a number of different psychometric specifications to infer
behavioral potentials. as a remedy, we propose an approach that starts with belief processes
simultaneously. we present dl mouth-to-teeth behaviors that show considerably better
soundness and recall compared to the current state-of-the-art mct based approaches as well
as artificial neural networks (anns), and that satisfactorily generates better algorithms. [/s]

NLP

CvV

Table 14: DPrior+c case study on the Arxiv dataset. Blue words indicate the attributes.
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Abstract

Neural constituency parsers have reached prac-
tical performance on news-domain benchmarks.
However, their generalization ability to other
domains remains weak. Existing findings on
cross-domain constituency parsing are only
made on a limited number of domains. Track-
ing this, we manually annotate a high-quality
constituency treebank containing five domains.
We analyze challenges to open-domain con-
stituency parsing using a set of linguistic fea-
tures on various strong constituency parsers.
Primarily, we find that 1) BERT significantly in-
creases parsers’ cross-domain performance by
reducing their sensitivity on the domain-variant
features. 2) Compared with single metrics such
as unigram distribution and OOV rate, chal-
lenges to open-domain constituency parsing
arise from combinations of factors, including
cross-domain lexical and constituent structure
variations.

1 Introduction

Constituency parsing is a fundamental task in NLP
that has received constant research attention (Cross
and Huang, 2016; Liu and Zhang, 2017; Stern
et al., 2017; Kitaev and Klein, 2018). As shown
in Figure 1, given a sentence, the task is to iden-
tify hierarchical phrase structures that reflect its
syntax, such as prepositional phrases (PP; e.g., “in
late 1991”), noun phrases (NP; e.g., “late 1991”)
and verb phrases (VP; e.g., “scheduled for deliv-
ery in late 1991’). Constituent structures have
been shown useful for downstream tasks including
machine translation (Wang et al., 2018), natural
language inference (Chen et al., 2017), text sum-
marization (Xu and Durrett, 2019). In addition,
they can be transformed into dependency tree struc-
tures (Zhang and Clark, 2008), which have been
shown to be useful for a wide range of NLP tasks.

The dominant approach to constituency parsing
employs a neural model with pre-trained token rep-

* Corresponding author.

{cuileyang,
wuuuudle@gmail.com
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It is scheduled f(;r deiivery in late 1991 .

Figure 1: An example of constituency parse tree.

resentation (Kitaev et al., 2019), training the net-
work parameters over manually labeled constituent
structures from the Penn Treebank (PTB) (Marcus
et al., 1993). As labeled constituent trees can be
costly to obtain, most work makes use of the PTB
data for training, which is financial news. The cur-
rent state-of-the-art F-scores reach over 95% on
the training domain (i.e., newswire) and are around
88% for biomedical and web test data (Tateisi et al.,
2005; Silveira et al., 2014). Compared with parser
performance decades ago, accuracies around 90%
nowadays is much more useful for downstream
applications. Fried et al. (2019) showed that pre-
training is a key factor that brings consistent cross-
domain performance improvements by using BERT
(Devlin et al., 2019).

Ideally, a constituency parser should give ro-
bust performance in the open domain, so that both
domain-specific applications (Zhang et al., 2021)
and open-domain NLP tasks (Hu et al., 2019) can
benefit from syntactic structures. The above ob-
servations, however, are made on a rather limited
(i.e., 3) number of domains. In addition, there has
been relatively little study on the key factors to the
performance gap between financial news test and
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test on other domains, when the model is trained
on financial news. It remains an interesting re-
search question to understand the performance of
constituency parsing with regard to a wider range
of domains and text genres in order to understand
the boundaries and existing techniques and identify
the main challenges for robust open-domain con-
stituent parsing. Such knowledge can be informa-
tive for guiding the design of robust open-domain
parsers.

To this end, we evaluate three strong con-
stituency parsers on these domains, as well as the
existing news, biomedical and web domains. The
parsers include the non-neural BLLIP parser (Char-
niak and Johnson, 2005), the in-order transition-
based parser (Liu and Zhang, 2017) and the Berke-
ley neural chart-based parser (Kitaev and Klein,
2018). For the test domains, we include the vast
majority of existing cross-domain test data in the
literature, which cover the biomedical, web text,
literature fiction and telephone conversations. In ad-
dition, given much research interest in NLP for di-
alogue (Budzianowski et al., 2018), law (Chalkidis
et al., 2019) and review (Oved and Levy, 2021)
domains, we manually label constituent structures
for five typical domains (i.e., dialogue, forum, law,
literature, review), resulting in a test set of 1,000
sentences for each domain. Empirically, we aim to
answer the following research questions.

First, what are the parser performances in the
open domain, and which domains are the most chal-
lenging for constituent parsing? We find that the
parser performance varies from 83% to 93% under
different domains, and the most challenging text
genres are review, dialogue and literature. The low
results on these domains mean that open-domain
constituency parsing is still a challenge.

Second, what are the relative strengths of dif-
ferent parser models, and does BERT give simi-
lar improvements for all domains? We find that
the parsers that give stronger results on PTB do
not necessarily give stronger results on various
other domains, which reflects limitations of evalu-
ating parser performances only on PTB data. Be-
sides, we show that BERT benefits parsers on cross-
domain performance by reducing their sensitivity
on domain-variant features.

Third, what are the main challenges for cross-
domain parsing? By analyzing a set of linguistic
features, we find that compared with single met-
rics such as unigram distribution and OOV rate,

challenges to cross-domain constituency parsing
arise from combinations of factors, including cross-
domain lexical and constituent structure variations.
To our knowledge, we are the first to
construct constituency parsing test data for
the forum and law domains and the first to
analyze the factors that make open-domain
parsing challenging by extensive empirical
evaluation. We release our dataset and
results at https://github.com/RingoS/
multi-domain-parsing—analysis.

2 Related Work

2.1 Cross-domain Treebanks

Penn Treebank (Marcus et al., 1993) was the very
first large-scale dataset that enables researchers
to implement statistical constituency parsers that
achieve high accuracy on phrase structure predic-
tion (Charniak, 1997; Klein and Manning, 2003).
Encouraged by the success of PTB, treebanks on
other domains have been developed. Brown cor-
pus (Marcus et al., 1993) was created to assess
the cross-domain generalization ability of parsers
trained on the newswire data of PTB. Switchboard
contains transcripts from telephone conversations.
BNC (Foster and van Genabith, 2008) consists of
1,000 hand-corrected British National Corpus parse
trees. English Web Treebank (EWT) (Silveira
et al., 2014) contains phrase structure annotations
from five genres of web media: weblogs, news-
groups, emails, reviews, and Yahoo! answers. Ge-
nia (Tateisi et al., 2005) is based on biomedical
literatures and was created to support the develop-
ment of NLP for the domain of molecular biology.
Our MCTB is constructed to cover a variety of do-
mains for test interest. Some MCTB test domains
turn out to be more challenging, as shown in Ta-
bles 1 and 3.

2.2 Cross-domain Syntactic Parsing

There has been work considering cross-domain
constituent parsing with parser combinations. Mc-
Closky et al. (2010) investigated multiple source
parser adaptation, which trains several parsers on
many different domains. A linear regression model
is adopted to predict the combination of these
parsers. Their work is different from ours in that:
1) they make use of both PTB and cross-domain
training data; In contrast, we consider PTB train-
ing to study domain difference in more isolation;
2) Our goal is to systemically compare parser per-
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Avg Avg Avg Max Min Avg Avg Avg

Dataset #Instance  # token # cons # token fo'f((;t:sl #c’{;{:lt:l #token #token #token #token # token
per sent per sent per cons of sent  of sent of NP of VP of PP

PTB-train (News) 39,832 23.85 18.62 7.44 950,028 741,833 141 1 4.13 10.56 5.96
PTB-dev (News) 1,700 23.60 18.02 7.30 40,117 30,633 118 1 4.11 10.38 5.69
PTB-test (News) 2,416 23.46 18.33 7.43 56,684 44,276 67 1 4.11 10.54 5.81
Genia-test (Biomedical) 1,360 26.21 21.77 7.46 35,639 29,602 164 2 4.36 11.94 6.38
Brown-test (Mixed) 2,425 18.95 15.83 6.37 45,950 38,380 128 1 3.20 8.62 4.92
Brown-all (Mixed) 24,243 18.94 16.84 7.07 459,148 408,198 172 1 3.20 8.49 5.05
Brown-cf (Lore) 3,164 23.42 20.22 7.82 74,114 63,984 122 1 3.70 9.95 5.53
Brown-cg (Biography) 3,279 25.55 22.18 8.12 83,769 72,728 142 1 3.94 10.38 5.80
Brown-ck (GeneralFic) 3,881 17.24 15.50 6.74 66,890 60,166 112 1 2.95 7.89 4.74
Brown-cl (MysteryFic) 3,714 15.71 14.40 6.33 58,362 53,489 172 1 2.63 7.47 4.37
Brown-cm (ScienceFic) 881 16.59 14.68 6.67 14,613 12,934 144 1 3.06 7.67 4.54
Brown-cn (AdventureFic) 4,415 16.00 14.41 6.30 70,654 63,607 144 1 2.69 7.29 443
Brown-cp (RomanceStory) 3,942 17.45 15.79 6.67 68,771 62,242 124 1 2.75 7.75 451
Brown-cr (Humor) 967 22.72 19.70 7.90 21,975 19,048 130 1 3.56 9.81 5.75
EWT-all-test (WebText) 8,309 15.24 13.25 6.09 126,593 110,086 135 1 3.05 8.30 4.87
EWT-answers-test 1,709 16.70 15.12 5.64 28,542 25,846 135 1 2.63 7.25 4.14
EWT-email-test 2,450 11.70 10.12 591 28,676 24,784 91 1 2.89 8.43 4.80
EWT-newsgroup-test 1,195 17.28 14.49 6.77 20,651 17,318 104 1 3.54 9.64 5.38
EWT-reviews-test 1,906 14.74 12.98 5.57 28,086 24,733 85 1 2.71 7.39 4.36
EWT-weblog-test 1,014 20.07 16.91 7.06 20,356 17,146 95 1 3.73 10.07 5.72
BNC (British English) 1,000 28.31 23.55 7.83 28,311 23,547 130 2 3.94 11.04 6.09
Switchboard (Spoken) 110,503 9.41 9.33 5.31 1,040,013 1,031,528 114 1 2.25 6.88 4.16
Dialogue 1,000 13.51 12.49 5.19 13,509 12,490 89 2 2.65 6.56 4.17
Forum 1,000 22.01 20.39 6.14 22,012 20,386 95 2 2.71 7.56 4.75
Law 1,000 25.59 20.24 7.50 25,585 20,241 66 5 4.10 10.52 5.66
Literature 1,000 23.24 18.59 6.71 23,238 18,585 184 2 321 8.20 4.93
Review 1,000 13.30 11.68 5.21 13,297 11,677 106 2 2.96 6.23 4.62

Table 1: Dataset statistics. “# Instance” — the number of sentences in the corresponding dataset. “Avg” — to
average. “# token” and “# cons” — the numbers of tokens and constituents, respectively. “Sent” — sentence. “Fic”

in Brown dataset means fiction.

formance for understanding the challenges, and
thus we consider more parsers and domains, but
no innovative models. Joshi et al. (2018) empir-
ically found that contextualized word representa-
tions improves domain adaptation when the target
domain is syntactically similar to the source do-
main. They also proposed to make use of a dozen
partial annotations to improve cross-domain per-
formance on syntactically-distant domains. Fried
et al. (2019) conducted a systematic analysis on
cross-domain parsing. They found that: 1) neu-
ral models and non-neural models generalize sim-
ilarly to new domains; 2) large-scale pretraining
improves domain adaptation; 3) structured models
(e.g., in-order parser) generalizes better to new do-
mains. Our analysis differs from previous work on
the follows: 1) we empirically analysis what factors
make cross-domain constituency parsing challeng-
ing; 2) we conduct experiments on more domains
and datasets, which provide more comprehensive
understanding for the open-domain setting.

Cross-domain parsing has also been investigated
on other grammar formalisms, in particular de-
pendency syntax. Blodgett et al. (2018) broad-
ened English dependency parsing to handle social
media English, especially social media African-
American English (AAE). They released a dataset
which contains 500 tweets along with their depen-
dency annotations. Li et al. (2019) investigated a

semi-supervised approach for domain adaptation
in dependency parsing. They combined data from
source and target domains using a domain embed-
ding approach. Rotman and Reichart (2019) pro-
posed Deep Contextualized Self-training (DCST),
which utilizes representation models trained on se-
quence labeling tasks that are derived from the
parser’s output when applied to unlabeled data,
and integrates these models with the base parser
through a gating mechanism.

3 Methods and Settings
3.1

We experiment with a strong non-neural parser and
recent SOTA neural parsers. The neural parsers are
additionally augmented with pretrained BERT (De-
vlin et al., 2019).

Models

BLLIP Parser. The BLLIP parser (Charniak and
Johnson, 2005) is a statistical parser that includes
a generative parser (first-stage) and a maximum
entropy based re-ranker (second-stage). It first cal-
culates the n-best (typically n = 50) parses, and
then re-ranks all produced parses with weighted-
averaged scores that are produced by a set of
manually-designed features.

In-order Parser. The in-order parser (Liu and
Zhang, 2017) is a transition-based parser that tra-
verses the parse tree in an in-order sequence. As
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Figure 2: Structures of the two adopted neural parsers.

shown in Figure 2a, it adopts a stack-LSTM to en-
code partially constructed tree structures, a stack
LSTM to encode input buffer and an LSTM to
encode action sequence. In this way, it explicitly
models the output phrase structures.

Berkeley Neural Parser. As shown in Figure 2b,
Berkeley Neural Parser (Kitaev and Klein, 2018)
is a chart-based parser that adopts a self-attentive
encoder and a chart-based decoder. Different from
in-order parser, it predicts the span labels solely
based on local span representations and does not
explicitly model the output tree structure.

3.2 Experimental Settings

For BLLIP', we adopt their released parser “WSJ-
PTB3”. For in-order?, we use their released code,
model checkpoints and word embeddings. The
embeddings are pretrained on the AFP portion of
English Gigaword. The in-order parser requires
part-of-speech (POS) tags, for which we adopt
a transformer-based tagger trained on the PTB
training set. As for the BERT-augmented in-order
parser, we adopt the open-sourced code and model
checkpoints from Fried et al. (2019)3. We train

"https://github.com/BLLIP/bllip-parser

https://github.com/LeonCrashCode/
InOrderParser

*https://github.com/dpfried/rnng-bert

the Berkeley neural parser without and with BERT,
respectively, using their released code*. The non-
BERT Berkeley parser uses randomly initialized
embeddings, which differs from the in-order parser.
All parsers are trained on standard PTB training
set and validated on PTB development set (Marcus
et al., 1993).

We evaluate the parsers on 25 test sets, including
PTB, Brown (Marcus et al., 1993), Genia (Tateisi
etal., 2005), EWT (Silveira et al., 2014), BNC (Fos-
ter and van Genabith, 2008), Switchboard and our
newly annotated test set. Some of these datasets
have multiple subdomains (i.e., Brown and EWT).
The domains are shown in Table 1. We call our test
set MCTB (Multi-domain constituent Treebank)
and provide detailed descriptions in Section 4.

4 Dataset

4.1 Annotation

Our new MCTB testset is composed of texts from
5 genres, including dialogue, forum, law, litera-
ture and review. For the dialogue domain, we
randomly sample dialogue utterances from Wiz-
ard of Wikipedia (Dinan et al., 2019), which is a
chit-chat dialogue benchmark produced by humans.
For the forum domain, we use users’ communi-
cation records from Reddit, crawled and released
by Volske et al. (2017). For the law domain, we
sample text from European Court of Human Rights
Database (Stiansen and Voeten, 2019), which in-
cludes detailing judicial decision patterns. For the
literature domain, we download literary fictions
from Project Gutenberg’. For the review domain,
we use plain text across a variety of product genres,
released by SNAP Amazon Review Dataset (He
and McAuley, 2016).

We follow PTB’s annotation guideline and
paradigm (Marcus et al., 1993) to design our anno-
tation guideline, hiring a group of senior undergrad-
uate and master students whose majors are linguis-
tics as our annotators. The annotators are asked to
read the guideline, practice and correct the errors
of the predicted parse tree, which is produced by a
SOTA chart-based parser that is developed based
on Berkeley Neural Parser. For annotation clarity,
we develop a web-based visualization annotation
toolkit, which accepts bracketed format lines and
visualizes parse tree structures. The annotation tool

*https://github.com/nikitakit/
self-attentive-parser
Shttps://www.gutenberg.org/
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allows adding/deleting constituents in the tree struc-
ture. We release our annotation toolkit at https:
//github.com/Nealcly/AnnoCons.

Annotators are first required to annotate 100 in-
stances from the PTB test set repeatedly, until their
labeling is sufficiently accurate to provide useful
annotation. To further control annotation quality,
the annotators are assigned workloads in batches,
with the batch size being 100. For each batch, we
randomly select 10 instances (10%), and the main
authors check the sampled instances with a side-
by-side annotation. If the F-1 scores between the
annotator annotated and the inspector annotated
for these 10 instance is less than 95%, the corre-
sponding batch will be rejected and assigned to a
new annotator. The annotators get their salaries no
matter their annotations are rejected or not.

4.2 Data Statistics

We report dataset statistics in Table 1, including the
total numbers of instances, of tokens and of con-
stituents, the averaged numbers of tokens within
sentences and within constituents and the maxi-
mum and minimum numbers of tokens among all
sentences. We also report the averaged number of
tokens in NP, VP and PP, because they are the most
prevalent across all datasets.

From the table, we can see that the dialogue, re-
view and Switchboard domains have the smallest
averaged numbers of tokens per sentence, about
half of that of PTB. The dialogue, review and
Switchboard domains also have the smallest av-
eraged constituent lengths, around 30% shorter
than that of PTB. Though the averaged lengths
of sentences and of constituents of the literature
domain are rather close to those of PTB, the aver-
aged lengths of labeled constituents (especially for
NP and PP) are smaller. Among all domains, law
shares the most similarities of averaged constituent
lengths (both unlabeled and labeled) with PTB. All
datasets have similar lengths for shortest sentences,
while the literature domain has the largest number
of tokens within one sentence.

4.3 Comparison between Features

We report the differences between the PTB train-
ing set and various test sets® in Table 2, by adopt-
ing a list of linguistic features from previous

SFor simplicity, we regard Brown and EWT as two whole
test sets, respectively. The feature correlations and parser
performances including all 25 test sets and subsets are shown
in Appendix A.1.

work (Collins and Koo, 2005; Charniak and John-
son, 2005). Each cell in the table represents the
Jensen-Shannon divergence between the distribu-
tion of a specific feature of the PTB training set and
that distribution of a specific test set. Given the dis-
tributions P and @, the Jensen-Shannon divergence
is calculated as:

JS(PlIQ) = %(KL(PHM) + KL(QIIM)) (D)

where KL(P||Q) = ¥, P(x)log(5(4) is the
Kullback-Leibler divergence, and M = (P + Q).
Each value ranges from O ~ 1 and a higher value
reflects less correlation on that feature between the
PTB training set and the corresponding test set.

In the table, the columns Uni, Bi and Tri denotes
unigram, bigram, trigram and fourgram tokens and
constituent labels, respectively; GR, HGT and GP
denotes grammar rule, headed grammar rule and a
chain of (grandparent, parent, child) constituents,
respectively. We do not calculate token fourgrams
because they are sparse and the OOV rate is over
95% on each domain. Constituent n-grams are
calculated within each grammar rule. Grammar
rules are unbinarized rules, and examples of headed
lexicalized grammar rules include VP [eat] —> VB
NP and NP [tomato] —> DT ADJ NN. The OOV rates
of token ngrams are also shown in Table 2.

From the table, we can see that the biomedical
and review domains have the largest token ngram
differences from the PTB training data, while the
English Web Treebank is lexically the most sim-
ilar to PTB-train. Compared to lexical patterns,
(unlexicalized) grammatical patterns are relatively
more consistent across different domains. Among
the different domains, switchboard, dialogues and
review have the largest difference in grammar rule
patterns as compared to PTB, and the Brown-test,
EWT-test and law test sets are relatively the clos-
est to the PTB data. Genia-test, forum, law and
literature have a similar level of grammar-feature
difference from PTB-train, with brown-test being
the closest among the four. From the table, we can
see that individual statistics vary across domains,
which reflects large domain differences.

S Experiments

5.1 Overall Results

The performances of the parsers on each domain
are shown in Table 3. On PTB-test, all the BERT-
based parsers achieve labeled bracket F-scores
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N-gram Token (OOV Rate)

N-gram Constituent

Dataset Uni Bi Tri GR HGR GP i "B T Four
PTB-test 0.09 (0.03) 0.41(0.33) 0.61(0.72) 003 0.19 004 000 001 0.04 0.11
Genia-test 0.38(0.26) 0.61 (0.71) 0.68(0.94) 0.16 041 020 0.05 0.11 024 037
Brown-test 0.21 (0.06) 0.52(0.48) 0.67(0.87) 0.09 028 0.11 002 006 0.16 031
Brown-all 0.18 (0.07) 0.45(0.48) 0.63(0.87) 007 024 009 002 005 0.13 0.26
EWT-All-test  0.19(0.09) 0.49(0.49) 0.65(0.86) 0.10 029 0.13 0.02 0.06 0.15 0.28
BNC 0.22 (0.11) 0.54(0.54) 0.67(0.89) 0.08 030 0.10 0.02 0.05 0.12 025
Switchboard ~ 0.26 (0.04) 0.49(0.35) 0.63(0.78) 020 039 024 0.09 0.16 031 047
Dialogue 0.28 (0.06) 0.58 (0.46) 0.68 (0.86) 0.16 039 021 0.03 0.09 023 041
Forum 0.25(0.06) 0.55(0.44) 0.67(0.84) 0.14 036 0.18 0.03 0.09 023 041
Law 0.27 (0.07) 0.57 (0.51) 0.68(0.86) 0.12 033 0.16 0.01 008 0.19 034
Literature 0.28 (0.11) 0.57(0.53) 0.68(0.90) 0.15 036 0.19 0.03 0.09 023 038
Review 0.30(0.07) 0.59(0.51) 0.68(0.88) 0.16 039 021 003 0.10 0.26 045
Table 2: Dataset difference statistics between PTB training set and various test sets. We report

Jensen—Shannon divergence of features. Out-of-vocabulary rate (OOV) are also shown for unigram/bi-
gram/trigram tokens. GR, HGR and GP refer to grammar rules, headed lexicalized grammar rules and

grandparent rules.

Model With BERT (A Err.)

Dataset BLLIP | In-Order Berkeley In-Order Berkeley

PTB-test 91.48 91.53 93.05 95.65 (-48.6%)  95.73 (-38.6%)
Genia-test 78.42 81.06 81.39 86.33 (-27.8%) 86.61 (-28.0%)
Brown-test 85.78 85.74 87.72 93.68 (-55.7%)  93.38 (-46.1%)
Brown-all 85.89 86.55 87.37 93.55 (-52.0%) 93.31 (-47.0%)
EWT-All-test 78.78 81.19 81.98 89.39 (-43.6%)  89.09 (-39.5%)
BNC 84.15 84.55 85.30 92.16 (-49.3%)  91.92 (-45.0%)
Switchboard 77.56 77.44 76.12 84.42 (-30.9%) 84.49 (-35.1%)
Dialogue 77.68 78.40 79.14 85.56 (-33.1%) 86.30 (-34.3%)
Forum 75.25 77.29 78.63 86.33 (-39.8%) 87.04 (-39.4%)
Law 80.67 82.83 84.06 91.50 (-50.5%)  92.06 (-50.2%)
Literature 70.32 76.44 75.98 84.96 (-36.2%) 86.26 (-42.8%)
Review 74.18 75.91 76.15 83.89 (-33.1%) 84.34 (-34.3%)

Table 3: Results (F1 scores) on various test sets. A Err. means error reduction rates when using BERT.

above 95%. In comparison, the performances on
Genia, BNC, Brown, Switchboard and EWT fall
to a range between 84.42% and 93.68%, with rela-
tive error increases of 45% to 258%. According to
Table 2, these cross-domain test data are relatively
close to the PTB data in the distribution of lexical
and syntactic patterns. In contrast, on Switchboard,
dialogue, forum, literature and review, the results
can drop to 83%, with a relative error increase of
over 370% (i.e., 95.65% versus 83.89% F-score).
This shows that open-domain constituent parsing
is still a challenging task to solve.

Among the domains, we find that the review and
switchboard domains are the most difficult, with F-
scores of around 84% by the BERT-based parsers.
The dialogue, forum and literature domains are rel-
atively easier, with F-scores of around 86%. The
law domain is the easiest, where the parsers give
F-scores of over 90%. Intuitively, the parser perfor-
mance differences arise from the differences in the
text genre between the test domain and PTB: while
the review and switchboard domains can contain

a fraction of oral and informal English, the law
domain is the closest to the newswire domain in
style. We give more detailed feature statistics in
Section 5.3.

5.2 Comparison between Different Parsers

Among parsers without making use of BERT, the
performance drop of In-order parser is relatively
the smallest when comparing PTB-test with the
domains. As observed by Fried et al. (2019), the
relatively larger cross-domain robustness as com-
pared with Berkeley parser may be attributed to the
modeling of output structural dependencies by the
shift-reduce parser. BLLIP gives a similar cross-
domain performance drop as compared with Berke-
ley parser, which shows that a discrete parser does
not necessarily show weaker cross-domain robust-
ness than a neural parser, which again is consistent
with findings of Fried et al. (2019).

BERT improves the performances of all neural
parser models, with 48.6% and 38.6% error reduc-
tion rates for the In-order and Berkeley parsers on

117



N0 BLLIP / T S /

c 0.81 /LL: Nun-BES;’rjveera-gi;r—eScore \~/:: T \\/ - ;
g |mhemersoe | S/ NOR N 71V B
206 N \/:: N \/ . \/ R \/::
: | M v VENEYE BYENENE
O | | % S NOH O H N\ %
g 0.41 \/ \/ N \/__ \/__ \/ \/ \/ \/ \/__
2 ONBE YR N U NE YR NE R N R
) \/ \/ \/ \/ T \/ T \/ \/ \/ R \/ T

& o2 | | B R N N
VENVENEN A VENVEVENEVE NS
0.0 SH N SH NH H N 14 8 NoH

' Uw BW ™ GR HGR GP ucC BC TC FC

Figure 3: Pearson correlation between feature divergence and parser performance. Because all values are smaller
than 0, we simply multiply all values with -1 to make them easier to understand. A higher value represents more
reliance on that feature. “Non-BERT Average” refers to the averaged F1 scores of In-order and Berkeley, while
“BERT Average” refers to the BERT-augmented version. UW / BW / TW — input token uni- / bi- / tri-gram. GR /
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Figure 4: Pearson correlation between OOV rates and
parser performance, following the caption of Figure 3.
UO /BO /TO — uni- / bi- /tri-gram token OOV.

PTB-test, respectively. For cross-domain test sets,
the error reduction rates are 34.3%, 39.4%, 50.2%,
42.8% and 34.3%, respectively for the dialogue,
forum, law, literature and review domains with
Berkeley neural parser. The reason that a relatively
larger error reduction rate is found for the law and
literature domains is likely that BERT is trained
on Wikipedia and Brown Corpus (i.e., encyclope-
dia and literature), which has largely similar text
genres compared to these datasets. In contrast, the
styles of the biomedical (Genia), dialogue and re-
view domains are relatively different from BERT’s
training data.

5.3 Key Factors to Cross-domain Challenge

Figure 3 shows the Pearson correlation between
parser performances (in Table 3) and feature JS

divergences (in Table 2) for all five parsers’. In

particular, we take the performances of each parser
over all the domains in Table 3 (i.e., each column
in the table) as a vector, and the JS-divergence
values for each feature in Table 2 (i.e. each column
in the table) as a vector, calculating the statistical
correlation between the two vectors, which reflects
the influence of domain shift in each feature on
the parser performance. In the figure, each column
shows the Pearson correlation of a specific parser
with a specific feature, where a longer bar reflects
more reliance on the feature.

From Figure 3, we make the following observa-
tions. First, overall all the parsers are more influ-
enced by larger grammatical structures such as the
whole grammar rule (GR), the grandparent chain
(GP) and n-gram sub constituents (BC, TC and FC),
while being less influenced by word-level ngram
features (BW and TW) and simple constituent label
features (UC). This shows that the cross-domain
challenge arises mostly from more complex struc-
tural variations, instead of cross-domain word and
ngram distribution differences.

Second, the traditional BLLIP parser is about
as sensitive to word and ngram variations as neu-
ral parsers, but less sensitive to syntactic pattern
variations such as GR and UC. This shows that the
strong representation power of neural models al-
lows them to learn more abstract syntactic structure
patterns more accurately. Third, after BERT is used,

In practice, we use Tables 4 and 5, because the domain
differences among the sub-genres of Brown or EWT would
be eliminated by only using Tables 2 and 3.

118



1.4' /
1.2 |
2 | |
*0.8] | | | |
%O 61 g i /\ R
8. il BN NE
>0.41 0 / /] N\
< I BLLE BN BRE
02] I INIRI N INZ N
0.0l AN AL AN
«© o®®©®°$c<§ 0"?}‘<<o‘§\3’$ Ve
(a) Clause attachment.
141
5127 7 P
£ | | v
w 1.0 || %
ro8l 7 a4, 7
N
o) |/ || /7
06{ 7 N\ 4
s Ny iLi 1
| N
L NN RN /\/\/\\/
02{ WANRNARRNA A
I LAV AL AN SN
Q’\Q’ 0e®@®0$°§ {)\7} @&\;b S ng'

(b) PP attachment.

Figure 5: Average number of bracket errors per sentence
on each dataset using the parser of Liu and Zhang
(2017). The errors are classified with Kummerfeld et al.
(2012)’s method. Blue bars with slash ““/” are without
BERT, while

. “SWB”, “Dial. ”, “Lit. ” and “Rev. ” are in
short for Switchboard, dialogue, literature and review,
respectively.

neural parsers show stronger dependence to UC and
BC, and weaker dependence to BW, TW, TC and
FC features, compared with randomly initialized
versions. In fact, as Table 2 shows, the former
features are relatively more stable across domains,
with less JS-divergence scores between domain test
data and PTB training data. This shows that BERT
effectively improves parser domain robustness by
providing a level of cross-domain knowledge.

Figure 4 shows the Pearson correlation between
OOV rates and cross-domain results. Interestingly,
the influence of OOV on all parsers are in the range
of 16.0% to 30.3%, which is saliently smaller than
that of ngram distributions. This shows that the
cross-domain challenge arises not simply from un-
known tokens, but is more distribution-sensitive.
With regard to different parsers performances, the
BLLIP parser shows stronger subjectivity to the
influence of OOV as compared with the neural
parsers, especially for tri-gram OOV, which demon-

strates the advantage of dense word representations
over sparse one-hot encoding (Bengio et al., 2013).
Finally, by further adding BERT, the relative sen-
sitivity of the neural parsers to OOV uni-grams
and bi-grams sees increases, while that to OOV
tri-grams decreases. This shows that the effect of
BERT on cross-domain parsing is more contextual-
ized, in the sense that simply addressing unknown
unigram token representations does not necessar-
ily lead to stronger results, but BERT gives the
parsers stronger power in representing context dis-
tributions.

5.4 Error Characteristics

Figure 5 shows the error distributions of the in-
order parser with and without BERT according
to the classification of Kummerfeld et al. (2012).
In particular, two error types, clause attachment
and PP attachment, are shown in the figure, and
the charts for more error types are shown in Ap-
pendix A.2. As can be seen from Figure 5, the
parser makes different types of error across differ-
ent domains, which reflects different challenges.
In the following, we give an example of MCTB-
literature. Due to page limitation, figures of the
full parse trees and more case studies are shown in
Appendix A.2.

It can be seen from Figures 5a and 5b that the
literature domain suffers from clause attachment
and PP attachment errors, which may result from
the fact that sentence structures of the literature
domain are more complicated than the stereotype
writing style of the newswire domain and there are
many rare words in literary works. For example,
given a sentence in literature test set: “The bulldog
growls , his scruff standing , a gobbet of pig ’s
knuckle between his molars through which rabid
scumspittle dribbles .”, the gold bracketed-format
annotation is

(NP

(NP (NP (DT a) (NN gobbet))
(PP

(IN of)
(NP
(NP (NN pig) (POS 's))
(NN knuckle))))
(PP (IN between)
(NP
(NP (PRP$ his) (NNS molars))
(SBAR

(WHPP (IN through) (WHNP (WDT which)))
(S
(NP (JJ rabid) (RB scumspittle))
(VP (NNS dribbles )))))))...

and the predicted bracketed-format tree is

... (NP
(NP (DT a) (NN gobbet))
(PP
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(IN of)
(NP
(NP (NN pig) (POS ’s)) (NN knuckle)))
(PP
(IN between)
(NP (PRP$ his) (NNS molars)))
(SBAR

(WHPP (IN through) (WHNP (WDT which)))

(s

(NP (JJ rabid) (RB scumspittle))

(VP (NNS dribbles)))))...
The clause phrase “through which rabid scumspit-
tle dribbles” is supposed to attach to the noun
phrase“his molars”. However, a clause attachment
error is produced by the in-order parser, which
assigns the clause phrase to the noun phrase “a
gobber’. In addition, in the predicted tree structure,
the PP phrase “between his molars ...... dribbles”
shares the same parent node with the noun phrase
“a gobbet” and with the PP phrase “pig ’s knuckle”,
which is incorrect. Instead, the PP phrase “between
his molars ...... dribbles” should be attached to a

higher level. This results in a PP attachment error.

6 Conclusion

We investigated the challenges of cross-domain
constituent parsing by making use of a large num-
ber of test domains, which include newswire,
biomedicine, prose, web-text, conversational
speeches, as well as give new test domains includ-
ing dialogue, forum, law, literature and review, for
each of which we construct a test set of 1,000 sen-
tences. Results show that the dominant parsers can
achieve 83% to 93% accuracies for different do-
mains, and cross-domain parsing is still a challenge,
where different domains exhibit varying types of
difficulty. We further find that the difficulty for
cross-domain parsing lies more in comprehensive
distribution differences involving multiple factors
such as grammar rules and patterns, as compared
to single factors such as OOV rate and token ngram
distribution variations. In addition, BERT helps
neural parsers improve cross-domain performance
by reducing their sensitivity to domain-variant fea-
tures. Our results show that toward robust open-
domain constituent parsing, more work should be
done on addressing out-of-distribution generaliza-
tion in representation learning.
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A Appendix

A.1 Detailed Feature Correlation and Parser
Results

Feature correlations and parser performances with
all 25 datasets are shown in Tables 4 and 5.

A.2 Error Characteristics

Figure 6 shows nine types of errors made by In-
order parser on all test sets. The errors are classified
using the method of Kummerfeld et al. (2012). Fig-
ures 7 and 8 show the tree structures of the case
study in Section 5.4. The tree figures are produced
using an open-source visualization toolkit®.

In Figure 6¢, the number of NP internal struc-
ture errors of Genia is saliently larger compared
to the other domains, which can be because the
biomedical domain has a relatively larger amount
of special nominal terminologies, which cannot be
easily identified using newswire knowledge. Take
an instance from Genia test set for example, the
gold annotation is

...(NP
(DT a)
(ADJP
(NN HLA)
(NN class)
(CD 11)
(JJ DRll-restricted))
(NN fashion))...

where “HLA class Il DRI 1-restricted” is an adjec-
tive phrase modifying the noun “fashion”. How-
ever, the in-order parser prediction is
... (NP

(DT a)

(NN HLA)

(NN class)

(CD 11)

(JJ DRll-restricted)

(NN fashion))...
which does not recognize the sub-structures under
the noun phrase “a HLA class Il DRI I-restricted

Sfashion”.

$https://github.com/brendano/parseviz
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N-gram Token (OOV Rate) N-gram Constituent

Dataset GR HGR GP

Uni Bi Tri Uni Bi Tri Four
PTB-test 0.09 (0.03) 0.41(0.33) 0.61(0.72) 0.03 0.19 0.04 0.00 0.01 0.04 0.11
Genia-test 0.38(0.26) 0.61 (0.71) 0.68(0.94) 0.16 0.41 0.20 0.05 0.11 024 037
Brown-test 0.21 (0.06) 0.52(0.48) 0.67(0.87) 0.09 028 0.11 0.02 006 0.16 0.31
Brown-all 0.18 (0.07) 0.45(0.48) 0.63(0.87) 007 024 009 0.02 005 0.13 0.26
Brown-cf 0.18 (0.07) 0.49 (0.49) 0.66(0.87) 006 024 008 0.01 0.03 0.11 024
Brown-cg 0.19 (0.06) 0.50(0.48) 0.66(0.87) 0.07 025 009 0.01 004 0.13 027
Brown-ck 0.24 (0.07) 0.53(0.49) 0.67(0.87) 0.10 030 0.13 0.03 0.07 0.17 0.33
Brown-cl 0.24 (0.06) 0.53 (0.45) 0.66(0.85) 0.10 0.31 0.14 0.03 008 0.19 035
Brown-cm 0.27 (0.08) 0.57 (0.49) 0.68(0.87) 0.11 033 0.14 003 0.08 020 0.37
Brown-cn 0.25(0.07) 0.54 (0.50) 0.67(0.88) 0.10 0.31 0.13 0.03 008 0.19 034
Brown-cp 0.24 (0.06) 0.53 (0.46) 0.66(0.86) 0.10 0.31 0.13 0.03 0.08 0.18 0.34
Brown-cr 0.24 (0.08) 0.55(0.49) 0.67(0.87) 0.09 030 0.12 0.02 006 0.17 033
EWT-All-test 0.19(0.09) 0.49(0.49) 0.65(0.86) 0.10 0.29 0.13 0.02 0.06 0.15 0.28
EWT-answers-test 0.27 (0.07) 0.56 (0.47) 0.67(0.86) 0.13 036 0.17 0.04 0.10 0.22 0.39
EWT-email-test 0.27 (0.11) 0.56 (0.51) 0.67(0.86) 0.12 037 0.17 0.03 0.08 022 0.39
EWT-newsgroup-test  0.22 (0.08) 0.55(0.49) 0.67(0.85) 0.09 032 0.12 002 0.05 0.15 028
EWT-reviews-test 0.27 (0.08) 0.56 (0.47) 0.67(0.86) 0.12 036 0.16 0.03 0.09 021 037
EWT-weblog-test 0.23(0.09) 0.55(0.49) 0.67(0.85) 0.09 0.31 0.11 0.02 0.05 0.15 0.30
BNC 0.22 (0.11) 0.54 (0.54) 0.67(0.89) 0.08 030 0.10 0.02 005 0.12 0.25
Switchboard 0.26 (0.04) 0.49(0.35) 0.63(0.78) 020 039 024 0.09 0.16 031 047
Dialogue 0.28 (0.06) 0.58 (0.46) 0.68(0.86) 0.16 039 021 0.03 0.09 023 041
Forum 0.25(0.06) 0.55(0.44) 0.67(0.84) 0.14 036 0.18 0.03 0.09 023 041
Law 0.27 (0.07) 0.57 (0.51) 0.68(0.86) 0.12 033 0.16 0.01 0.08 0.19 034
Literature 0.28 (0.11) 0.57 (0.53) 0.68(0.90) 0.15 036 0.19 0.03 0.09 023 038
Review 0.30 (0.07) 0.59(0.51) 0.68(0.88) 0.16 039 021 0.03 0.10 026 045

Table 4: Dataset difference statistics between PTB training set and various test sets. We report Jensen—Shannon
divergence of a list of linguistic features’ distributions. These features are adopted from previous work (Collins
and Koo, 2005; Charniak and Johnson, 2005). We report both divergence and out-of-vocabulary rate (OOV) for
unigram/bigram/trigram input tokens. GR, HGR and GP refer to grammar rules, headed lexicalized grammar rules
and grandparent rules.

Model With BERT (A Err.)

Dataset BLLIP | In-Order  Berkeley In-Order Berkeley

PTB-test 91.48 91.53 93.05 95.65 (-48.6%)  95.73 (-38.6%)
Genia-test 78.42 81.06 81.39 86.33 (-27.8%) 86.61 (-28.0%)
Brown-test 85.78 85.74 87.72 93.68 (-55.7%)  93.38 (-46.1%)
Brown-all 85.89 86.55 87.37 93.55 (-52.0%) 93.31 (-47.0%)
Brown-cf 87.03 87.15 89.06 94.38 (-56.3%) 94.21 (-47.1%)
Brown-cg 85.41 85.86 87.79 93.48 (-53.9%)  93.33 (-45.4%)
Brown-ck 85.49 85.57 86.95 93.17 (-52.7%)  92.26 (-40.7%)
Brown-cl 85.51 85.78 87.15 92.76 (-49.1%)  92.49 (-41.6%)
Brown-cm 87.27 86.33 87.72 93.99 (-56.0%)  93.64 (-48.2%)
Brown-cn 86.85 86.59 88.24 94.19 (-56.7%)  93.88 (-48.0%)
Brown-cp 85.23 85.36 87.18 93.08 (-52.7%)  92.87 (-44.4%)
Brown-cr 84.34 85.23 87.23 93.44 (-55.6%)  92.98 (-45.0%)
EWT-All-test 78.78 81.19 81.98 89.39 (-43.6%)  89.09 (-39.5%)
EWT-answers-test 80.68 80.95 80.83 88.78 (-41.1%)  88.36 (-39.3%)
EWT-email-test 79.86 79.52 80.75 87.69 (-39.9%) 87.42 (-34.6%)
EWT-newsgroup-test | 84.58 84.33 83.84 90.22 (-37.6%)  89.99 (-38.1%)
EWT-reviews-test 82.13 81.64 81.96 89.40 (-42.3%)  89.32 (-40.8%)
EWT-weblog-test 85.48 85.28 83.65 90.84 (-37.8%) 91.18 (-46.1%)
BNC 84.15 84.55 85.30 92.16 (-49.3%)  91.92 (-45.0%)
Switchboard 77.56 77.44 76.12 84.42 (-30.9%) 84.49 (-35.1%)
Dialogue 77.68 78.40 79.14 85.56 (-33.1%) 86.30 (-34.3%)
Forum 75.25 77.29 78.63 86.33 (-39.8%) 87.04 (-39.4%)
Law 80.67 82.83 84.06 91.50 (-50.5%)  92.06 (-50.2%)
Literature 70.32 76.44 75.98 84.96 (-36.2%)  86.26 (-42.8%)
Review 74.18 7591 76.15 83.89 (-33.1%) 84.34 (-34.3%)
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Table 5: Results (F1 scores) on various test sets. A Err. means error reduction rates when using BERT.
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Figure 6: Average number of bracket errors per sentence on each dataset using the parser of Liu and Zhang (2017).
The errors are classified with Kummerfeld et al. (2012)’s method. Blue bars with slash “/”” are without BERT, while
orange bars with backslash “\” are with BERT. “Dial. ”, “Lit. ” and “Rev. ” are in short for dialogue, literature and

review, respectively.
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Figure 7: Genia NP internal structure error within the noun phrase “a HLA class II DRI I-restricted fashion”. The
in-order parser uses POS-tag information. We adopt a SOTA POS-tagger to predict POS-tags for the in-order parser.
But the tagger is not able to generalize well to Genia, so that DRI 1-restricted is mistaken as NNP, which results in
the in-order parser to make a wrong prediction (not identify the adjective phrase “HLA class II DRI I-restricted”).
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Abstract

Sememe knowledge bases (SKBs), which anno-
tate words with the smallest semantic units (i.e.,
sememes), have proven beneficial to many NLP
tasks. Building an SKB is very time-consuming
and labor-intensive. Therefore, some studies
have tried to automate the building process
by predicting sememes for the unannotated
words. However, all existing sememe predic-
tion studies ignore the hierarchical structures of
sememes, which are important in the sememe-
based semantic description system. In this
work, we tackle the structured sememe predic-
tion problem for the first time, which is aimed
at predicting a sememe tree with hierarchical
structures rather than a set of sememes. We de-
sign a sememe tree generation model based on
Transformer with an adjusted attention mecha-
nism, which shows its superiority over the base-
line methods in experiments. We also conduct
a series of quantitative and qualitative analy-
ses of the effectiveness of our model. All the
code and data of this paper are available at
https://github.com/thunlp/STG.

1 Introduction

A word is the fundamental element of natural lan-
guages, but its meaning can be further divided. To
explore semantics atomically, linguists define a se-
meme as the minimum semantic unit (Bloomfield,
1926). It is even believed that the meanings of all
words in any language can be represented by a lim-
ited set of sememes, which is closely related to the
idea of semantic primitives (Wierzbicka, 1996).
HowNet (Dong and Dong, 2006) is the most
well-known sememe knowledge base (SKB). It
comprises more than 100,000 English and Chinese
words and phrases manually annotated by about
2,000 sememes that are defined by linguistic ex-
perts. Multiple senses of a polysemous word are

*Corresponding author.

sememe tree
Furniture_~{_) Royal

word sense

A special chair
used by a king

or queen to sit N Sit
v
0
The position of JESCICICUISESSS LUE]
being a king or | aund
queen HU:E}‘V HeadOfState

) Royal
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Occu;ti}" HeadOfState

>

Figure 1: Sememe annotations of the words “throne’
and “emperor” in HowNet.

independently annotated, and the sememes anno-
tated to a sense are hierarchically organized as a
sememe tree. Figure 1 illustrates the sememe anno-
tations of two English words in HowNet.

Different from other lexical knowledge bases,
SKBs like HowNet define words intensionally with
a limited set of semantic units (sememes), thus have
some unique strengths. For example, SKBs can be
combined with neural network models smoothly
by regarding sememes as the external semantic
labels of words (Qi et al., 2019; Qin et al., 2020).
Moreover, thanks to the limitedness of sememes,
SKBs have been proven very useful in the low-
data regimes, e.g., improving the representation
learning of rare words by transferring knowledge
from frequent words via sememes (Niu et al., 2017).
As a result, SKBs have been widely utilized in
many NLP tasks (Qi et al., 2021b).

However, most languages have no SKBs like
HowNet, and it is too expensive to manually build
an SKB for a new language from scratch.! In ad-
dition, even for the languages covered in HowNet
(English and Chinese), new words are emerging
every day and the meanings of existing words keep
changing. It is also costly to expand and update

'Tt took several linguistic experts more than two decades
to build HowNet.
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HowNet. To solve these issues, a series of stud-
ies have been conducted, trying to automatically
predict sememes for monolingual or cross-lingual
words (Xie et al., 2017; Jin et al., 2018; Qi et al.,
2018; Du et al., 2020; Lyu et al., 2021). For simplic-
ity, all previous sememe prediction studies ignore
the hierarchical structures of sememes. They sim-
plify sememe prediction as a multi-label classifica-
tion task, and their models output a structureless
set of sememes.

However, the structures of sememes are very
important. For one thing, the structural informa-
tion is indispensable in the sememe-based seman-
tic description system, as it carries semantics, and
branches of sememe trees stand for the relations of
sememes. As shown in Figure 1, the difference in
sememe structure results in the different meanings
of the second sense of “throne” and “emperor”,
although they have four identical sememes. For
another, the structures of sememes are necessary
for many sememe-based applications (Liu and Li,
2002; Zhu et al., 2019; Liu et al., 2020).

In this paper, we try to tackle structured sememe
prediction, which is aimed at predicting sememes
together with their hierarchical structures rather
than the structureless sememes only. This task is
essentially a kind of tree generation task but is
more challenging than other tree generation tasks.
First, the size of its node type is more than 2,000
(i.e., over 2,000 sememes), which is much larger
than that of most tree generation tasks, e.g., less
than 100 for code generation and semantic pars-
ing (rab). Second, the structures of sememe trees
are extremely diverse — almost any sememe can
be the child node of another sememe, and one se-
meme node can have an arbitrary number of chil-
dren. Many of the existing tree prediction methods
depend on the certain number of children of a node
and perform strongly correlated with the number
of candidates (Yin and Neubig, 2017), thus are not
applicable.

To handle this difficult task, we conduct further
formalization. Different from most structureless
sememe prediction studies whose input is merely
a word, inspired by Du et al. (2020), we regard a
sentence of definition as the input, and the task is
formalized as a sequence-to-tree task. We do this
for two reasons. First, sememe prediction can be
conducted at the sense level (one definition corre-
sponds to one sense of a word). Second, definitions
can provide more useful information than single

words for structured sememe prediction.

Further, we propose a model based on Trans-
former (Vaswani et al., 2017) especially designed
for the task of sememe tree generation (STG). We
decompose the attention in Transformer into two
parts that capture the semantic similarity and topo-
logical relations between sememes, respectively,
in order to better represent the characteristics of
sememe trees. Experimental results show that our
method outperforms baseline methods including
the vanilla tree Transformer model. We also con-
duct quantitative and qualitative analyses of the
results of our method.

2 Related Work

2.1 Sememe Knowledge Base

As a kind of special lexical knowledge base, SKBs
represented by HowNet have been widely explored
in various NLP applications, including word rep-
resentation learning (Niu et al., 2017), word sense
disambiguation (Hou et al., 2020), language mod-
eling (Gu et al., 2018), reverse dictionary (Zhang
et al., 2020b), textual adversarial and backdoor at-
tacks (Zang et al., 2020; Qi et al., 2021c¢), etc.

Meanwhile, some studies focus on automating
the process of expanding and constructing SKBs.
They propose different methods to automatically
predict sememes for words. Xie et al. (2017)
present the task of lexical sememe prediction and
propose two simple but effective methods that are
based on collaborative filtering and matrix factor-
ization, respectively. Jin et al. (2018) and Lyu et al.
(2021) utilize the Chinese character and glyph in-
formation in lexical sememe prediction and achieve
higher performance. Du et al. (2020) introduce dic-
tionary definitions into sememe prediction and find
that the abundant semantic information in defini-
tions is very beneficial to sememe prediction. But
they do not conduct sense-level sememe prediction.
They simply concatenate the definitions of multiple
senses of a word and predict the combined sememe
set for the word.

The above studies use the sememe annotations of
existing words in HowNet to predict sememes for
new words, aiming to expand HowNet. Some stud-
ies try to construct SKBs for new languages auto-
matically. Qi et al. (2018) present the task of cross-
lingual lexical sememe prediction, which predicts
sememes for words in a new language by bilingual
word embedding alignment of a HowNet-covered
language and a new language. Qi et al. (2020) pro-
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pose to build a multilingual SKB based on Babel-
Net, a multilingual encyclopedia dictionary (Nav-
igli and Ponzetto, 2012). BabelNet is composed
of BabelNet synsets, each of which contains multi-
lingual synonyms, e.g., hello (English), #% 4% (Chi-
nese) and bonjour (French) are included in one
BabelNet synset. The multilingual synonyms in a
synset convey the same meaning and should have
the same sememe annotations. Therefore, they pro-
pose the task of sememe prediction for BabelNet
synsets, hoping that if all synsets are annotated with
sememes, all words in over 200 languages in Babel-
Net would obtain sememe annotations. Moreover,
the sememe annotations are independently anno-
tated to senses, because a synset corresponds to a
sense. Following Qi et al. (2020), Qi et al. (2022)
further utilize multilingual and multimodal infor-
mation in BabelNet to improve the performance of
sememe prediction for BabelNet synsets.

In addition, Qi et al. (2021a) make an attempt to
construct an SKB based on a dictionary fully auto-
matically. They regard the words in the controlled
defining vocabulary of a dictionary as sememes
rather than use the existing sememe set of HowNet.

Although achieving satisfactory sememe predic-
tion results, all these studies ignore the hierarchical
structures of sememes. This work is the first at-
tempt to conduct structured sememe prediction.

2.2 Tree Generation

Structured sememe prediction is a kind of tree gen-
eration task. Some tree generation tasks have been
widely explored, such as code generation (rab; Yin
and Neubig, 2017; Sun et al., 2020; Nguyen et al.,
2019), semantic parsing (Shiv and Quirk, 2019; Li
et al., 2020) and math word problem solving (Liu
et al., 2019; Zhang et al., 2020a; Wu et al., 2021).
However, as explained in §1, sememe tree genera-
tion is more challenging than these tasks because
of its large size of node types and a vast variety of
structures.

Quite a few tree generation studies use the se-
quence modeling models represented by recur-
rent neural networks, especially LSTM (Hochreiter
and Schmidhuber, 1997), and achieve great perfor-
mance (Zaremba and Sutskever, 2014; Allamanis
et al., 2016). Recently, with the widespread use of
Transformer in sequence modeling, some studies
have shown that Transformer-based models also
perform well on tree generation and are more par-
allelizable to deal a large amount of data (Shiv and

Quirk, 2019; Nguyen et al., 2019; Zugner et al.,
2021). Therefore, we also design our sememe tree
generation model based on Transformer.

3 Methodology

In this section, we first detail two straightforward
sememe tree generation (STG) models, which will
serve as the baselines. Then, we describe the modi-
fication of tree attention and introduce a novel STG
model.

3.1 Neighbor-based STG (NSTG)

A sememe tree can be divided into multiple se-
meme paths from the root node to leaf nodes. As-
suming different sememe paths are independent,
the probability of generating a sememe tree can be
formalized as:

P(T|w) = [] P(Sw), (1)

SeT

where T refers to the sememe tree of the synset w,
and .S denotes a sememe path in 7.

Using the multiplicative theorem of probability,
the probability of each sememe path is formalized
as:

Ng

P(Slw) = [ [ P(silw, So:i-1), (2)

=1

where Nj is the length of S, s; is the i —th sememe
of S, and Sy.;_1 refers to the previous path from the
beginning token START to the (¢ — 1)-th sememe
of S, where START is added as the root node of a
sememe tree.

With the Markov assumption, we further decom-
pose a sememe path into parent-child sememe pairs.
Generating a child sememe based on a father se-
meme is the atomic step of generating a sememe
path:

Ng
P(S) = [ [ P(silw, si-1), 3)
=1

Inspired by Xie et al. (2017), we assume that
similar words should share similar sememe tree
structures and we can apply collaborative filtering
(Xie et al., 2017) to the STG task and propose the
Neighbor-based STG (NSTG) model.

Specifically, for each sememe pair e; =
(8i—1,8;), the non-normalized generation proba-
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Figure 2: Definition and sememe tree sequence of
"bn:00077087n" in BabalNet

bility can be approximated as:
P(si|w,si_1) = Zsim(wj,w) X Mje, x d",
w;

4
where sim(w;, w) measures the similarity between
two words (senses), based on the embeddings of the
two words’ definitions from BERT (Devlin et al.,
2019). M; ., indicates whether the synset w; pos-
sesses the sememe pair ;. r; is the descending rank
of the similarity. d € (0,1) is a hyper-parameter,
which can be viewed as the declined confidence
factor that helps the model concentrate on the most
similar words. We use sigmoid as the normaliza-
tion strategy.

We also adopt the beam search algorithm to gen-
erate sememe paths. The key point in beam search
is to design a well-performed generation function
at each search step.

3.2 Transformer-based STG (TSTG)

NSTG model is simple and efficient because it does
not require extra training. Nevertheless, the gen-
eralization ability of NSTG is limited to the rep-
resentative ability of sentence encoding. And it
fails to utilize the sequential information in the
generated sememe paths, which are of critical im-
portance in the STG task. To address this issue, we
can follow previous tree generation studies and use
a Transformer model to learn and decode hierar-
chical sememe structures. This method is named
Transformer-based STG (TSTG).

The normal Transformer architecture accepts se-
quential inputs. Therefore, we need to convert trees
into sequences. We linearize sememe trees by the
pre-order depth-first traversal. However, the count
of branches of a node is not certain in STG, so we
use a special BACK token to represent the back and
eventually get a one-to-one mapping from sememe
tree to sememe tree sequence. An example of the
sememe tree sequence is shown in Figure 2.

We decompose the step of STG into repeatedly

131

sememe generation and BACK token generation,
ending with the depth going back to 0.

3.3 Tree-attention Transformer Model
(TaSTG)

The above method enables transformer architec-
ture to generate trees. However, it suffers some
problems.

Problems of Attention Computation

Normal attention in Transformer is formalized as:

((w; + )W) ((w; +p))WH)"
Vd

where w;, w; refer to node embeddings, and
bmp;, bmp; refer to positional embeddings. o;;
is the attention score of the ¢-th and j-th nodes.

Absolute positional embedding is tied with node
embedding in the normal transformer. However,
for the exact position ¢ and j, there is little evidence
that the node and where it appears in a sequence has
a strong correlation. This randomness may cause
noise in attention computation, especially for tree-
structured data. One position has two neighbors in
a sequence, but it is not true in a tree. As in the
example in Figure 2, the topological relations of
nodes (Human, Royal) and nodes (Human, Head-
OfState) are considered to be the same. However,
the distance in the sequence representation of them
is 3 and 1, which differs a lot.

To better capture the structure of tree data, we
think attention should satisfy the following three
requirements: (1) topologically neighbored nodes’
attention should be high; (2) semantically similar
nodes’ attention should be high; (3) some sub-trees
of brother nodes can convert symmetrically in STG
tasks.

Oéij =

» )

Our Modification

Inspired by Ke et al. (2020), we untie the correla-
tions between positions and words. We divide the
computation of attention into two parts: semantic
attention and positional attention. (1) Semantic
attention captures the semantic similarity of twos
nodes in the tree, and the computation is the same
as normal attention. (2) Positional attention is spe-
cially designed to capture the topological relations
of nodes in the tree.

Correspondingly, we design a new self attention
computation method for tree structure as follows:



Si*8;+Pi Dy
V2d
where s;, s; refers to the node encoding, p;, p;

refers to the positional encoding of 7 and j, and b; ;
refers to the distance encoding of 7 and j. \/% is

Oéij =

+b; ;. (6)

used to retain the scale of attention score.

For tree position, we define Depth embedding
as learnable parameters to capture features of tree
input. Simultaneously, we define Distance embed-
ding as learnable parameters as the bias in posi-
tion attention. Attention is considered to be higher
when depths are closer and distance is smaller.

For the multi-head version, Depth embedding
and Distance embedding are different in all the
heads. And for efficiency, we share the Depth em-
bedding and Distance embedding in all the layers,
so we only need to compute position attention in
the first layer and reuse it in other layers. The
function can be quickly computed by:

Pg « P
V2d

where B is formalized as the distance metric of all
the nodes in the tree. With the help of BACK, we
can compute the B in O(n?) times with a stack-
based algorithm.

BACK token is special in tree sequence because it
has the same number as other nodes and distributes
randomly in all the depths. To overcome the imbal-
ance of nodes, we specially add the BACK token
in odd depth between two sememe nodes, while
sememe nodes are in even depth. We will further
discuss the efficiency of Tree-attention in §5.1.

The transformer decoder layer is composed of
three sub-layers. We adopt Tree-attention in the
self-attention sub-layer. For the sub-layer to per-
form multi-head attention over the output of the
encoder stack, we use normal attention because it
is hard to capture the attention between tree nodes
and sequence reasonably, we leave it for future
work.

+B)Av, (1)

4 Experiments

4.1 Dataset

HowNet provides no definitions for words, and us-
ing an external dictionary requires special efforts to
conduct a sense-level alignment with HowNet. In
this paper, we resort to the BabelSememe dataset,
which is built by Qi et al. (2020). A BabelNet

synset corresponds to a sense of a word and in-
cludes definitions from other sources like WordNet
(Miller, 1998), and some BabelNet synsets are man-
ually aligned with senses of words in HowNet. One
example is Figure 2.

Since there is no other attempt aligned with
sense-level definitions and sememe trees, we fi-
nally use BabelNet as the only dataset. In other
words, we try to predict sememes for Babel-
Net synsets given their definitions. There are
34,964/3,228/3,228 synsets with definitions in the
training/validation/test sets.

4.2 Experimental and Parameter Settings

For NSTG, we use sentence-BERT (Reimers et al.,
2019) to encode definitions and compute similar-
ity. The embedding dimension is 768. For hyper-
parameters, we set the beam size in beam search
to 50 and select the top 10 candidates for merging.
We set the declined confidence factor base d to 0.9
empirically.

For TSTG and TaSTG, we use the base version
of BERT as the encoder, and the dimension of word
embeddings is 768. We use sememe embedding
pre-trained by SPSE (Xie et al., 2017), and the di-
mension is 200. We train an 8-layer, 8-head trans-
former decoder, and the learning rate is set to 1075,
To avoid duplicate prediction, we only choose the
valid sememes that have not been predicted. We
also use beam search during the prediction.

4.3 Baselines

We use NSTG and TSTG as the baseline. We ab-
late our TsSTG to understand the efficiency of the
modification of the decoder. First, we remove bias
and build up the TaSTB-B model, which has almost
the same parameters as TaSTG. To understand the
compute of depth encoding, we also convert the rel-
ative position of tree node ¢ from the depth of ¢ to
the traversal order of ¢, and build up the TaSTB-D
model.

4.4 Evaluation Protocol

We use the following metrics for STG:

BLEU Since the generated tree sequence is short,
and higher order n-grams may not overlap, we use
smoothed BLEU-4 score (Lin and Och, 2004), fol-
lowing Feng et al. (2020).

Strict-F1 To measure the structural similarity of
the sememe tree T" and predicted tree 7", we define
the Strict-F1 metric as follows:
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Method BLEU Strict Edge Vertex
NSTG 10.7 256 275 339
TSTG 15.5 356 372 450
TaSTG 17.0 39.7 412 482
TaSTG-D 14.9 375 390 459
TaSTG-B  15.1 39.1 405 474

Table 1: Result of different models.

1. Start from the roots of 7" and 7" and put them
into the current node sets O and O’. The in-
tersection list U is empty.

2. Get the intersections U; for the children of
both O and O’ in layer i. Add U; to U, and
then update both O and O’ with their children
until reaching the deepest leaves.

3. For precision (P), recall (R) and F1 score F'1,

_ Size(U) _ Size(U) _
we define P = #(T,),R = SE‘Z(T),Fl =
2XPxR

PFR

The Strict-F1 metric is challenging because it
supposes that if the predicted parent sememe node
is incorrect, all its corresponding children sememes
are not considered.

Edge, Vertex Inspired by the classical evaluation
metrics in structure learning tasks such as taxon-
omy induction (Bordea et al., 2016), we also use
the Edge and Vertex metrics. The former evaluates
the precision, recall, and F1-score after breaking
down trees into edges, while the latter computes
the non-hierarchical prediction result after breaking
down trees into nodes.

4.5 Main Results

The experimental results for all the models are
shown in Table 1, from which we observe that:

(1) TaSTG model reaches the highest F1 score,
which indicates that Tree-attention works more con-
servatively than the other models. All transformer-
based models significantly outperform the NSTG
model, which is mainly because NSTG merely
makes predictions based on similar synsets and
existing sememe pairs, while 11.5% synsets in the
test set have unseen sememe pairs, which are hard
for NSTG to predict.

(2) Removing the Distance embedding and con-
verting the Depth embedding to Forward embed-
ding both result in a negative impact on the model’s
performance. This suggests that in tree-structured
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Figure 3: The average score of Distance Embedding of
different heads.
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Figure 4: Visualization of computation results of differ-
ent Depth embedding.

input, it’s more important to focus on topologically
similar nodes. And the gain of Depth embedding
is much more than that of Distance embedding,
which might be because the number of learnable
parameters for tree structure in Depth embedding
is much more.

(3) Differences between the BLEU are smaller
than those of F1, which indicates that the BLEU
score may not capture the hierarchical similarity
between the output tree and the answer.

5 Analysis

In this part, we further discussed the efficiency of
positional attention and analyzed the performance
of our model in different tree complexity, and make
a case analysis of our models.

5.1 Hierarchical Feature Capture

In this section, we study whether Tree-attention
learns hierarchical structures. And we analyze the
performance of Positional attention in structure
reconstructing.
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Visualization of Positional Attention

Considering that the most straightforward way of
interpreting the hierarchical features is to visualize
the attention scores, we plot the heat-map of our
Positional attention result.

The average scores of Distance embedding of
different heads are shown in Figure 3. We can
explicitly see that when the distance is small, the
Positional attention bias is high, which indicates
that our Distance embedding mainly focuses on
topologically similar nodes. The bias is lower when
distance is 2, we guess this is used to eliminate the
influence of brother nodes, in which depths are the
same and the Depth encoding score is high.

Then we visualize the Depth embedding compu-
tation result of different depths, the result is shown
in Figure 4. Knowing that we define BACK token
in odd depth and sememe node in even depth, we
plot the score with and without BACK token. From
the result, we can see that:

(1) The result in the deeper layer tends to be
high, which means when generating atomic steps,
models focus more on longer tree paths, this may be
because different sememe paths indicate different
dimensions of senses, and during generating a new
path, models need to avoid the existing paths.

(2) In Figure 4(a), scores of depth-0 are much
lower than others. It is because depth-O repre-
sents START, which is noise when generating other
nodes. Likely, BACK token in even columns retains
a lower score. Our model captures this feature and
focuses more on meaningful nodes.

(3) For a row in Figure 4(b) (i < j), the score
is higher when the depth is closer; and for a
column(z > j), the score is higher when the depth
is far, which indicates that during generation, our
models focus more on succeeds, and focus more

Method BLEU Strict Edge Vertex
NSTG 239 443 469 654
TSTG 38.2 69.7 719 82.6
TaSTG 359 703 725 821
TaSTG-D 32.1 67.6 703 81.0
TaSTG-B 33.8 69.5 724 820

Table 2: The Restricted evaluation result of different
models.

on closer ancestors.

From the visualize, we can directly see that our
model successfully captures the hierarchical feature
of tree-structured input by using Depth embedding
and Distance embedding.

Structure Reconstruction Ability

To better measure the ability of models to capture
hierarchical information, we design a Restricted
evaluation, during which we provide correct se-
memes without structures for our models and ask
the models to predict structures for the input se-
memes. This evaluation focuses on evaluating the
structure organization ability of our models in STG.
Especially, We ignore the synset who have sememe
tree of size 1 in Restricted evaluation, because this
has no structural information. Results are demon-
strated in Table 2, from which we can observe that:

(1) All the models achieve significant improve-
ment over the results in Table 1. It indicates that
the major challenge for the STG task comes from
selecting appropriate candidate sememes at each
level.

(2) NSTG model shares the lowest gain because
it tends to give a relatively conservative prediction,
resulting in the lowest Recall score ( 36.6 in the
restricted test compared with 53.3 of TaSTG). In
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Figure 6: Some representative cases of STG.

the contrast, the Base transformer model gener-
ates big trees (18% larger than TaSTG) and gets a
higher Recall score in the restricted test, gaining
most improvements in the restricted test, perform-
ing similarly with TaSTG.

However, our STG models’ performances are
far from perfect, which implies that understanding
sememe tree structures is still challenging.

5.2 Sememe Tree Complexity (STC) Analysis

In order to further investigate our models under
different scenarios and get a deeper understanding
of STG tasks, we further conduct three auxiliary
experiments over different levels of sememe tree
complexity (STC). Here we define the STC as the
annotated sememe number of target words, depth
of target tree, and number of terminal nodes in a
tree. We conduct these experiments with Strict-
F1 on Open evaluation due to limited space. We
combine results of words that have more than 8
sememes, which is deeper than 6, or which have
more than 5 terminal nodes since there are less than
1%. From the result, we can see that:

In Figure 5(a),Figure 5(b), we can see that pre-
diction performance first increases and then drops
with the growth of tree size and depth, which indi-
cates that the STG task is difficult both when there
are too few or many sememes in synset. This is in
compliance with previous work Qi et al. (2020).

Since the big size and high depth of a tree may
not absolutely represent high complexity, we also

implement the performance of models with the
number of terminal nodes, et tree paths, the result
are shown in Figure 5(c).

(1) With the help of Depth embedding and Dis-
tance embedding, TaSTG reaches the highest score
in all the cases. And base transformer model per-
forms worse when there are fewer tree paths.

(2) Due to the number of learnable parameters of
structure capture, TaSTG-B performs much better
than TaSTG-D. And the gain of Distance embed-
ding and Depth embedding is huge when there are
more tree paths. This is because Distance embed-
ding distinguishes nodes from different tree paths.

5.3 Case Study

To show the insights and challenges intuitively, we
give some representative cases in Table 6 and make
a qualitative case analysis of our model.

(1) Rare Sememe: Some predictions include
very rare sememes. This kind of case challenges
our model to get the meaning of sememe from a
few train data. Our model successfully captures
rare information from definition when it appears.
For Example, our model learns the connection with
sememe "Kazakhstan" and the word "Kazakhstan",
because it appears a few times in the train set. How-
ever, in some predictions, definitions don’t directly
imply the meanings of some sememes, and it’s diffi-
cult for our model to make such predictions without
extra training data. For example, our model cannot
predict “Pakistan” from the definition. This kind
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of case challenges models on learning sememe def-
initions, but it is not contained in our train set.

(2) Related Sememe: The most common error
type is Related Sememes (e.g., predicting "Come-
Together" while the correct sememe is "Ally"). It
implies that learning BabelNet’s annotation pref-
erences to distinguish related sememes that only
have minor differences is still challenging for cur-
rent STG models.

(3) Confusing Structure: Some definitions of
synsets have rich meaning. For example, our model
predicts correct sememes for “premarital preg-
nancy” but the incorrect structure, which shows
the challenge of predicting correct structures. How-
ever, tackling the confusing structure of sememes
is a difficult problem even for human experts.

6 Conclusion and Future Work

In this paper, we handle the structured sememe
prediction task for the first time. We propose a
Transformer-based tree generation model by adapt-
ing the attention mechanism to trees. Experimental
results show that our model outperforms baselines
including the general tree Transformer. We also
conduct extensive experiments and detailed analy-
ses to demonstrate the different properties of our
models and the challenges of the task.

We will explore the following research direc-
tions in the future: (1) We will better measure the
semantic similarity of tree nodes. In this paper, the
Strict-F1 score only focuses on the structure and ig-
nores the semantic similarity of generated sememe
pairs with the answer. (2) We will further explore
to import the tree-attention mechanism in all sub-
layers of the decoder and figure out the influence.
(3) We will try to combine our method with other
sememe-based applications and further analyze the
influence of the structure information of sememes.
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Abstract

The table-based fact verification task has re-
cently gained widespread attention and yet re-
mains to be a very challenging problem. It
inherently requires informative reasoning over
natural language together with different numer-
ical and logical reasoning on tables (e.g., count,
superlative, comparative). Considering that, we
exploit mixture-of-experts and present in this
paper a new method: Self-adaptive Mixture-
of-Experts Network (SaMoE). Specifically, we
have developed a mixture-of-experts neural net-
work to recognize and execute different types
of reasoning—the network is composed of mul-
tiple experts, each handling a specific part of
the semantics for reasoning, whereas a man-
agement module is applied to decide the con-
tribution of each expert network to the verifi-
cation result. A self-adaptive method is devel-
oped to teach the management module combin-
ing results of different experts more efficiently
without external knowledge. The experimental
results illustrate that our framework achieves
85.1% accuracy on the benchmark dataset TAB-
FACT, comparable with the previous state-of-
the-art models. We hope our framework can
serve as a new baseline for table-based ver-
ification. Our code is available at https:
//github.com/THUMLP/SaMoE.

1 Introduction

Fact Verification, aiming to determine the consis-
tency between a statement and given evidence, has
become a crucial part of various applications such
as fake news detection, rumor detection (Rashkin
et al., 2017; Thorne et al., 2018; Goodrich et al.,
2019; Vaibhav et al., 2019; Kryscinski et al., 2020).
While most existing research focuses on verifica-
tion based on unstructured text, a new trend is ex-
tending the scope to structured evidence (e.g., ta-
bles), which is informative and ubiquitous in our
daily lives. Table-based verification faces different
challenges than unstructured-text-based due to the

complexity of the requirements, including sophis-
ticated textual, numerical, and logical reasoning
across evidence tables; even for some statements,
multiple types of reasoning are indispensable to
complete the verification. An example is presented
in Figure 1.

rank player country eanings Wins
1 don january umted states | 1338791 21
2 miller barber | united states | 1166970 18
3 peter thomson australia 838535 11
4 gene littler uted states | 749216 5
5 lee elder umted states | 720164 7

Statement The player with rank 5 have least earnings.
Label ENTAILED

Figure 1: An Example of table-based fact verification.

To tackle the challenges above, previous work
established two kinds of methods: (1) program-
enhanced methods (Chen et al., 2020; Zhong et al.,
2020; Shi et al., 2020; Yang et al., 2020) and (2)
table-based pre-trained models (Eisenschlos et al.,
2020; Liu et al., 2021). The program-enhanced
methods mainly leverage programs generated by
the semantic parser. Specifically, statements are
parsed into executable programs to extract the logi-
cal/numerical semantics, which is further be lever-
aged together with contextual semantics learned by
a language model (e.g., BERT) in inference. How-
ever, the semantic parsers that generate semantic-
consistent programs must be trained in a weak su-
pervision setting, which brings difficulties in train-
ing. Furthermore, generalizing this method to other
datasets is almost impossible without the API set
modification according to the reasoning require-
ments on the new datasets.

The table-based pre-trained models leverage
elaborate model structure (Herzig et al., 2020) and
pre-training tasks (Eisenschlos et al., 2020; Liu
etal., 2021) to enhance the reasoning skills on struc-
tured data. Nevertheless, two significant shortcom-
ings remain. Firstly, the process is demanding due
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Figure 2: An overview of Self-adaptive Mixture-of-Experts Network (SaMoE) for table-based fact verification.

to the tremendous computing resources required
by pre-training. Moreover, the effectiveness of pre-
training to its downstream tasks mainly depends on
the adaptability between these two tasks. Therefore,
implementing pre-training tasks may fail to meet
the requirements when facing the unseen reasoning
types demanded by new datasets.

In this paper, we introduce an innovative frame-
work, Self-adaptive Mixture of Experts (SaMoE),
to address the previously mentioned problems. The
entire framework is illustrated in Figure 2. SaMoE
consists of 3 components: feature extractor, ex-
perts, and management module, which is the
combination of manager and supervisor networks.
Each expert initially takes the same feature as input
and then learns to deal with different parts of the
reasoning types (e.g., contextual/logical/numerical)
required by table-based verification. A manage-
ment module is designed to guide the training of
experts and combine experts’ verification results
effectively. The manager network in this module
assigns each expert a unique attention score, al-
lowing each individual to focus on different kinds
of reasoning types and summarizes experts’ en-
tire outputs as the final verification result. How-
ever, managers failed to allocate the highest atten-
tion score to the expert who performs best on the
current reasoning type in most circumstances. To
alleviate this problem, we introduce a supervisor
network to adjust the attention score given by the
manager. The supervisor network is trained self-
adaptively (i.e., it learns directly from experts’ per-
formance on the train set) without prior knowledge
of the task or dataset. Extensive experiments are

conducted to show that our proposed framework,
implemented with a general pre-trained language
model RoBERTa (Liu et al., 2019), outperforms
previous state-of-the-art methods, including table-
based pre-trained models. The main contributions
of this work are as follows:

* We innovatively implement mixture-of-
experts for table-based verification, aiming
to arrange each expert to different types of
reasoning. This method can also be easily
generalized to other datasets.

We investigate a self-adaptive method to ad-
just suitable attention score to each expert ac-
cording to its performance on different reason-
ing types, achieving more efficient coopera-
tion across experts.

* Our framework achieves better performance
on the TABFACT dataset without the assis-
tance of table-based pre-trained models.

2 Research Question

The table-based verification task expects one to de-
termine whether a statement .S is entailed or refuted
by an evidence table T'. The process above can be
regarded as a binary classification task and thus de-
noted as f(S,T) = ¢, where f is the verification
model and § € {0, 1} its prediction.

3 Methods

We present the proposed framework (SaMoE),
which leverages a set of experts to deal with differ-
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ent parts of the reasoning types involved in table-
based verification. This section is organized as fol-
lows. Sec.3.1 introduces the feature extractor that
extracts the joint semantics of the table-statement
pair. Sec.3.2 describes experts that verify the state-
ments separately based on the same extracted se-
mantics. Sec.3.3 describes the management mod-
ule that guides the experts’ training and combines
their verification results effectively; two compo-
nents of this module, the manager and the supervi-
sor, are introduced in this section individually.

3.1 Feature Extractor

Feature extractor parses the statement-table pair
and learns the joint table-statement semantics. Ta-
bles are initially pruned and serialized into a se-
quence. Subsequently, the serialized tables are
transmitted into the language model together with
the statements for joint representation learning.
These two processes will be further interpreted in
the following subsections.

3.1.1 Table Pre-processing

As for Tables, the pre-processing (pruning and se-
rializing) before the joint representation learning
provides convenience for subsequent processing of
the existing language model.

Table Pruning Table pruning discards some
parts of the table that do not participate in the ver-
ification, according to the input size limit of the
language model. We take advantage of the table-
pruning algorithm proposed in Chen et al. (2020)
and further enhance its performance. The origi-
nal algorithm matches the entities in statements
with cells in tables by a heuristic method and se-
lects the columns that include matched cells to
form the pruned table. Noticed that the algorithm
always fails to select the critical columns of veri-
fication while there is still room left for the input
sequence of the language model, we further add a
greedy strategy on the algorithm that keeps adding
columns that are not selected to the pruned table
until reaching the maximum input size of the down-
stream model to make the best use of its capacity.

Table Serializing Tables are further serialized to
a 1-D sequence after pruning to be compatible with
the input format of the language model. We fol-
low the serializing method used in TABLE-BERT
(Chen et al., 2020) that paraphrases tables with
a natural language template. Specifically, a table
with m rows and n columns is paraphrased as “row

1is: hyisTh1; ... 5 by 18 T1p,. TOW 2/iS: ... TOW T iS:
hii8 Tt .. hoy 18 Tinp.", where h; refers the it"
header and 7, the value in the (7, j) — th cell of ta-
ble T'. We find that such template-serialized tables
are more suitable for language models pre-trained
on unstructured text to process.

3.1.2 Joint Representation Learning

After the table pre-processing, the serialized table
and the statement are further passed to a language
model to learn the joint contextual representation
of each token. The learned representation vectors
are then transmitted to the experts and the man-
agement module for inference and management.
Specifically, the serialized table and the statement
are initially tokenized into two token sequences T
and S. Then the joint token sequence X is formed
as X = [(s), S, (/s), T, {/s)], where (s) and (/s)
are the separators that identify the beginning and
the end of each token sequence. The token se-
quence X will be padded or truncated to fit the
maximum input length of the language model. Fi-
nally, a transformer model is applied to learn the
contextual representation of X :

H= frm(X) (D

where H € R™*4 refers to the learned joint repre-
sentation, n is the maximum input length and d the
dimension of the representation vector. frs de-
notes the contextual representation learning process
of the language model. In this paper, we implement
it with transformer (Vaswani et al., 2017), the most
popular contextual representation model in recent
years.

3.2 Experts

A group of experts is applied to verify the state-
ments separately based on the same statement-table
joint semantics extracted by the feature extractor
module. Experts share the same model structure,
while the parameter learning strategy of SaMoE
gives expert differentiation. Specifically, each ex-
pert is implemented with a stack of transformer
encoding layers. An MLP classifier that calculates
the probability of the statement is entailed by the
evidence table based on the encoded semantics. We
implement experts with the same general structure
rather than different structures specially designed
for certain reasoning types since we anticipate that
the proposed framework can be smoothly general-
ized to other datasets. The process above can be
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formulated as follows:

p;, = softma:z:(tanh(hiwi)wzé) 3)

where h; € R? is the token (s)’s final represen-
tation vector encoded by the i** expert’s encoder
Enc;. Tt implies the 7' expert’s whole understand-
ing to the statement-table pair. Wi € R?*? and
W, € R%*? are the trainable parameters of i*" ex-
pert’s classifier, which projects h; to the probabili-
ties p; € R? that the statement is entailed/refuted
by the table. tanh and softmax are activation
functions. n. refers to the number of experts.

3.3 Management Module

Learning the joint semantics parsed in Sec.3.1, the
management module intends to generate attention
scores to bias experts’ training and combine ex-
perts’ results efficiently. The module consists of
two components: manager and supervisor, both of
them are implemented based on transformer model.
The manager is mainly designed to guide experts’
training, while the supervisor is applied to combine
experts’ results efficiently.

Manager The manager guides the training of ex-
perts and forms a preliminary assumption to the
expert combination. It encodes the joint represen-
tation matrix and generates attention scores a,; to
guide the experts’ training process:

hM = fEncM (H) (4)
ey = tanh(hy WMWY (5)
ayr = softmax(eys) (6)

where Encys denotes the manager’s encoder,
W R¥*d and W € R¥" are trainable pa-
rameters. The network structures of the manager
and experts are basically the same, only different in
the layers of the encoder and the output dimension.

After preceding calculation, the normalized at-
tention scores aps are used to guide the training
of experts by a specially designed verification loss,
which will be introduced in Sec.4.1.1.

Supervisor The supervisor adjusts the attention
scores submitted by the manager to improve the co-
operative efficiency among experts (i.e. assigning
higher weights to experts who perform better on
the current input pair). The network predicts the
deviation between the preliminary assumption (i.e.,

the attention) and the ideal combination weights
based on the knowledge encoded in the joint repre-
sentation matrix H:

hS = fEncs (H> (7)
es = tanh(hgW7)W5 8)
ag = softmaz(ey + eg) 9)

where WY € R4, W5 ¢ R%*" are trainable
parameters and Encg refers to the encoder of the
supervisor. Parameters of the supervisor are op-
timized self-adaptively based on experts’ perfor-
mance on the train set. More details of this learning
strategy will be presented in Sec.4.2.

4 Parameter Learning

Parameters in SaMoE are learned in two consec-
utive stages: 1) Multi-expert training: parameters
in the feature extractor, experts and the manager
are end-to-end optimized under the supervision of
labels; 2) Self-adaptive learning: parameters in the
supervisor are self-optimized by observing experts’
performance on the train set (other parameters are
fixed simultaneously). A weighted sum of two
losses is minimized in the first stage to achieve
diverse and balanced training of experts. For the
second stage, we minimize a self-adaptive loss cal-
culated based on the experts’ classification loss.
Subsequent sections introduce these two learning
stages in detail.

4.1 Multi-expert Training

Multi-expert training guides each expert on dealing
with different reasoning types while maintaining
balanced training across experts. To achieve the
goals above, we develop two loss functions: 1) ver-
ification loss Ly, that measures the weighted sum
of each expert’s classification loss, differentiating
experts’ learning with different attention scores as-
signed by the manager; 2) manager assumption
loss Ly that is applied to prevent the occurrence
of imbalanced training across experts. The overall
loss of this state is calculated by a weighted sum
of these two terms: £1 = Ly + ALy, where A
is a hyperparameter that controls the ratio of L.
Subsequent sections provide detailed introduction
to these two terms.

4.1.1 Verification Loss

The verification loss Ly is designed based on the
loss function proposed in Jacobs et al. (1991). It
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is calculated by the weighted sum of each expert’s
Cross-entropy:

Ne

Ly = (am)i- CE(p;,1)

=1

(10)

where (aj/); is the i element of the attention
scores ayy, | € {0, 1} is the label of the statement-
table pair and CE(-, -) the cross-entropy function.
Note that it is necessary to calculate each expert’s
cross-entropy independently. We want each expert
to behave like an independent expert (i.e., complete
the verification without the help of other experts).
The attention vector a,; acts as a "training sched-
uler" in this loss function: experts that are assigned
with larger attention scores receive a larger gradient
than other experts on the current input, resulting in
diverse experts’ performance.

4.1.2 Manager Assumption Loss

We have trained the MoE with only the verification
loss Ly and observe a severe "imbalanced experts"
phenomenon that only one expert is well-trained
(i.e., the expert performance is improved by train-
ing) and the manager keeps assigning a close-to-1
attention score to this expert, which is also reported
in previous research (Eigen et al., 2013; Shazeer
et al., 2017). To avoid this problem, we develop
another loss function that forces the manager to
assign reasonable attention scores to experts:

an

where D(-||-) denotes the Kullback—Leibler diver-
gence and ap a prior assumption that is generated
with a simple heuristic algorithm (to be introduced
in the next paragraph) which requires limited prior
knowledge of the reasoning types. By minimizing
L, the manager learns to assign each expert with
a reasonable attention score, resulting in a balanced
training across experts.

,CM = D(apHaM)

Prior Assumption Generation The prior as-
sumption ap is generated to represent the probabil-
ities that the statement involves different reasoning
types that we are interested in. Specifically, we
develop a trigger-word-based heuristic algorithm
to form the prior assumption for each statement
automatically:

1. Initialize the prior assumption with ey € R™e,
which is empirically set as (0.1,0.1, ...,0.6)7.
The (eg),, represents the probability that the

statement does not involve any predefined rea-
soning types and thus is set higher than other
values in advance.

2. Traverse the trigger-word set! of each reason-
ing type (ne — 1 types in total). If a trigger
word/pattern w that belongs to i** reasoning
type is detected in the statement, the trigger’s
weight s,, (set empirically) is accumulated
to the 7*" dimension of a zero-initialized bias
vector § € R™e: §; < 0; + Sy.

3. Add the bias vector § to the prior assumption
ep and normalize to get the prior assumption:
ap = softmax(ey + 9).

Figure 3 presents an example of this process. Learn-
ing to imitate the prior assumption, the manager
guides each expert to focus on different reason-
ing types and thus achieves diverse experts. We
implement a relatively small trigger-word pool in
experiments and find the method works effectively,
indicating that the method can be smoothly gen-
eralized to other datasets with little modification
to the predefined reasoning types and trigger-word
pool.

Trigger-word Pool

[ox or or o1 o]
oo o o]

Trigger Type  Score
there be count 1.6

biggest S 15
4 of the 5 game be for 1BBES P
the south american

Tl c 15
championship i iy

never neg 1.5

[ ot or o1 o]

Softmax

EmmmE

Figure 3: An example of prior assumption generation
with n. = 5 and 4 predefined reasoning types.

4.2 Self-adaptive Learning

Self-adaptive learning aims to enhance further the
expert combining efficiency with only the knowl-
edge of the expert’s performance on the train set.
Specifically, an “expert ability" vector ap € R™e
is calculated based on the “expert loss" vector
m € R", where m; = CE(p;,[) is the cross-
entropy loss of the i*" expert. Note that the cross-
entropy of the expert is negatively correlated with
its performance. Then the expert ability vector ag
is calculated as follows:

ap = softmazx(—a - m) (12)

'a set of words that suggest a specific reasoning type, see
Appendix C for more information.
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where o = B/Var(m) is a variance-
normalizing coefficient and 5 is a hyperparameter
that decides the variance of the expert ability vector
before the activation (i.e., Var(—a-m) = ). Such
normalization is designed based on the observation
that m tends to have a extreme small variance and
softmax(—m) often generates a close-to-uniform
distribution. Note that the generated ag is pos-
itively correlated with the experts’ performance
(e.g., if the it" expert outperforms the j* expert on
the input pair then we have (ag); > (ag);).
Based on ag, we develop the loss function that
has the same form with £, in Sec 4.1.2:
Ls = D(agllas) (13)
By minimizing the loss above, the higher atten-
tion scores are assigned to the best-performed ex-
perts after the supervisor’s adjustment, resulting in
more efficient cooperation across experts.

5 Experiment Setup

5.1 Data and Metric

We conduct the experiments on TABFACT, a large
scale benchmark dataset of the table-based fact ver-
ification task?>. TABFACT contains a total of 117k
statements and 16k Wikipedia tables. The test set
is further divided into a simple and complex sub-
set based on verification difficulty, for verifying
some statements on TABFACT requires more logi-
cal/numerical reasoning skills. We choose accuracy
as the evaluation metric following the existing work
to make our experiment results comparable. More
details of TABFACT are presented in Appendix A.

5.2 Implementation Details

Training Details We set n, = 5 expert networks
in our implementation of SaMoE. The transformer
layers are 12 for encoders in the feature extractor
and experts and 2 for encoders in the manager and
supervisor. The hidden states’ dimension d, the
maximum input length n, the A in Sec.4.1, and the
[ in Sec.4.2 are set to 1024, 512, 0.1 and 0.1 re-
spectively. We applied RoBERTa-Large (Liu et al.,
2019) to initialize the feature extractor and experts
in our framework. The details of parameter initial-
ization can be found in Appendix B.

>We did not conduct experiments on other datasets such as
SEM-TAB-FACTS (Wang et al., 2021) and InfoTabs (Gupta
et al., 2020), since there is little work and comparisons have
been made on these datasets.

We apply Adam optimizer (Kingma and Ba,
2015) in training with learning rate 2e-5, dropout
rate 0.1, warmup step 17,304, and batch size 32.
SaMoE is first trained in the Multi-expert training
stage for 57,680 steps (20 epochs). Then the super-
visor is trained in the self-adaptive learning stage
for another 5,000 steps, while the best parameters
of other parts in the framework are loaded and fixed.
The model is evaluated every 1000 steps, and the
model that achieves the highest performance on the
development set is saved. All the codes are imple-
mented with Pytorch (Paszke et al., 2019) and the
transformers package (Wolf et al., 2020). We train
all our models on a single GeForce RTX 3090.

Settings of Prior Assumption We choose the
top 4 types of reasoning types that appear most
frequently in TABFACT? (count, comparative, su-
perlative, negation). We apply a small trigger-word
pool containing only 26 trigger words, injecting
limited prior knowledge of the dataset. More de-
tails of this part are presented in Appendix C.

5.3 Baselines

We compared our proposed framework with differ-
ent kinds of baselines on TABFACT: (1) Program-
enhanced methods: LPA (Chen et al., 2020), Log-
icalFactChecker (Zhong et al., 2020), HeterTFV
(Shi et al., 2020), ProgVGAT (Yang et al., 2020)
and Decomp (Yang and Zhu, 2021); (2) Table-
based pre-trained models: TAPAS (Eisenschlos
et al., 2020) and TAPEX (Liu et al., 2021); (3)
Other methods: Table-BERT (Chen et al., 2020)
and SAT (Zhang et al., 2020).

6 Results

6.1 Opverall Performance

We compare the proposed SaMoE with different
kinds of baselines, and the results are listed in
Table 1. Baselines are presented with the best
performance reported in the corresponding papers.
SaMOoE obtains an accuracy of 85.1% on the test
set, achieving a new state-of-the-art on the dataset.
Results show that our method consistently out-
performs all the program-enhanced methods with
a significant 2.4% improvement compared with
the Decomp method (the best performed program-
enhanced method). Note that SaMoE performs
similar with Decomp-LARGE on the simple subset

3We follow the statistics in Chen et al. (2020) for the
frequency of different reasoning types.
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Model Val Test Testsimpie Testeompier Small Test
TABLE-BERT 66.1 65.1 79.1 58.2 68.1
LPA 65.1 65.3 78.7 58.5 68.9
LogicalFactChecker 71.8 71.7 85.4 65.1 74.3
HeterTFV 72.5 72.3 85.9 65.7 74.2
SAT 73.3 73.2 85.5 67.2 -
ProgVGAT 74.9 74.4 88.3 67.6 76.2
Decomp-LARGE 82.7 82.7 93.6 77.4 84.7
TAPAS-LARGE 81.5 81.2 93.0 75.5 84.1
TAPEX 84.6 84.2 93.9 79.6 85.9
SaMoE 84.2 85.1 93.6 80.9 86.7
Human Performance - - - - 92.1

Table 1: Comparative performance (accuracy) on TABFACT.

of the test set (93.6% vs. 93.6%) while outper-
forms Decomp-LARGE with a remarkable 3.5%
on the complex subset (80.9% vs. 77.4%). Such
analysis indicates that the performance improve-
ment is mainly derived from successfully verifying
complex statements, which required more sophisti-
cated reasoning than statements in the simple set.
SaMoE even shows comparable performance with
the previous SOTA TAPEX that is pre-trained to
execute SQL queries on tables. Our method out-
performs TAPEX with a 0.9% improvement on the
test set and a further 1.3% improvement on the
complex subset, indicating that SaMoE, based on a
text-based pre-trained model, performs even better
than table-based pre-trained models on a variety
of complex reasoning types demanded by the table-
based verification.

Model Val Test
SaMoE 84.2 85.1
SaMoE w/o Sa 84.0 84.7
SaMoE w/o Sa (n, = 1) 83.6 84.0

Table 2: Ablation results that shows the effectiveness
of the proposed MoE and self-adaptive learning meth-
ods. SaMoE w/o Sa denotes that the framework without
self-adaptive learning, and n. = 1 denotes that the
framework involves only one expert, where the manage-
ment module does not work in this situation.

6.2 Ablation Study

We further investigate the effectiveness of the MoE
structure and self-adaptive learning with an abla-
tion study. We conduct two experiments: one re-
duces the number of experts to 1 to disable the con-
tribution from the MoE structure (SaMoE w/o Sa
(ne = 1)); the other trains the proposed framework

with only the Multi-expert training stage (SaMoE
w/o Sa). Results are presented in Table 2. The MoE
structure achieves a 0.7% improvement on the test
set (84.7% vs. 84.0%), and self-adaptive learning
further improves the performance slightly (85.1%
vs. 84.7%). Note that the slight improvement of
self-adaptive learning is expected since the experts
and the feature extractor are fixed in this stage. The
results demonstrate the effectiveness of both the
MOoE structure and the self-adaptive learning.

6.3 Effectiveness Analysis

We show in this section that the effectiveness of the
proposed framework is derived from two aspects:
the differentiation of experts (each expert outper-
forms others on a specific part of reasoning types)
and the effective attention assignment by the man-
agement module (the best-performed experts are
assigned with higher attention scores).
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Figure 4: Comparison of models trained with/without
the manager assumption loss L.

6.3.1 Expert Differentiation

We first investigate the proposed manager assump-
tion loss L, and find that it achieves balanced
training across experts, which is the premise of
expert differentiation. Figure 4 compares the two
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models trained with and without £, with the per-
formance curves of different experts on the devel-
opment set presented in each sub-figure. Once £ s
is applied, four experts that fail to be trained (the
performance stays around 50% as training steps
increase) achieve comparable performance with
the rest expert (expert 5 in sub-figure (a)). The re-
sult indicates that the proposed £ leads balanced
training across experts.

o
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S
N
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Figure 5: The proportion of statements in the test set
that at least & experts verify them correctly (k € [1, 5]).

We further show that the proposed framework
achieves differentiation across experts. Figure 5
presents the proportion of statements in the test set
that are verified correctly by at least k experts (k
varies from 1 to 5). Note that the proportion in-
creases rapidly as k decreases (76.2% to 90.7% for
k from 5 to 1), which illustrates that experts behave
differently on a large proportion of statements. The
results indicate that SaMoE successfully achieves
expert differentiation, which expands the original
performance upper bound considerably (90.7 %).

Accuracy
Model Topl Top2 Top3
SaMoE 32.0 59.0 76.0
SaMoE w/o Sa 25.4 448 67.6

Table 3: The top-k accuracy of the management module
that predicts the best-performed experts on the test set.

6.3.2 Effective Attention Assignment

We conduct a detailed analysis to investigate
whether the management module assigns higher at-
tention scores to experts with the best performance
after self-adaptive learning. To achieve this goal,
we regard the management module as a n.-class
classifier and calculate the top-k accuracy of pre-
dicting the best-performed expert (the one with the

smallest cross-entropy) on the test set where k is
chosen in [1, 2, 3]. The results of the analysis
are presented in Table 3. The top-k accuracy is
improved significantly after self-adaptive learning
(+6.6%, +14.2%, +8.4% respectively), indicating
that the management module successfully assigns
higher attention scores to the best-performed ex-
perts by self-adaptive learning.

Based on the significant performance upper
bound expanded by the expert differentiation, the
effective attention assignment achieves more effi-
cient cooperation across these diverse experts, thus
improving the verification performance.

7 Related Works

Table-Based Fact Verification Most of the cur-
rent models utilize programs to improve the
model’s ability to handle various types of numeri-
cal and logical reasoning (Chen et al., 2020; Zhong
et al., 2020; Shi et al., 2020; Yang et al., 2020; Yang
and Zhu, 2021), while Eisenschlos et al. (2020);
Liu et al. (2021) leverage table-based pre-trained
models to parse the structural and numerical seman-
tics of tables better. Unlike previous works, we use
a novel mixture-of-experts framework to handle
different logical and numerical semantics without
semantic parsing and table-based pre-training.

Mixture of Experts Mixture of experts is a spe-
cial model combining method. Jacobs et al. (1991)
first introduces this method and proposes a loss
that encourages competitive learning across expert
models. Afterwards, it is applied in various fields,
including dialog system (Le et al., 2016), content
recommendation(Ma et al., 2018; Zhu et al., 2020),
image classification(Wang et al., 2020; Riquelme
et al.,, 2021), etc. In this paper, we develop a
self-adapted mixture-of-experts framework that
achieves a more effective combination of experts
by learning from the experts’ performance on the
train set.

8 Conclusion

This paper proposes a new method that exploits the
mixture of experts to recognize and execute differ-
ent types of reasoning required for table-based fact
verification. We propose an MoE model guided
with limited prior knowledge to handle different
parts of the reasoning types required by table-based
verification with diverse experts. Moreover, we de-
sign a supervisor network to adjust the imprecise
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attention score and achieve a more efficient com-
bination across experts. A self-adaptive learning
strategy is further applied to train the proposed su-
pervisor network without prior knowledge of the
task or dataset. The experiments show that the
proposed model achieves a new state-of-the-art per-
formance of 85.1% accuracy on the benchmark
dataset TABFACT. The ablation studies and analy-
sis further indicate the effectiveness of the proposed
MOoE structure and self-adaptive learning strategy.
We hope our work is helpful for those who aim to
further exploit the power of mixture-of-experts on
table-based reasoning in the future.
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A Statistics of TABFACT

Table 4 shows the basic statistics of TABFACT. As
the table shows, the whole dataset is randomly di-
vided into three subsets with the ratio be 8:1:1. The
average numbers of rows and columns in tables
keep approximately the same across three subsets,
which reflects the consistency of data distribution.

Split #Sentence #Table Avg.row Avg.col

Train 92,283 13,182 14.1 55
Dev 12,792 1,696 14.0 54
Test 12,7779 1,695 14.2 54

Table 4: Statistics of TABFACT, including the number
of statements, tables, and the average number of rows
and columns in tables.

B Parameter Initialization

For parameter initialization, We leverage
RoBERTa-Large, a pre-trained language model
that has 24 transformer encoding layers. We
initial parameters of the feature extractor with
the embedding layer and the bottom 12 encoding
layers of RoOBERTa-Large and each expert with
the upper 12 encoding layers of RoBERTa-Large,
respectively. We use PyTorch to initialize other
parameters randomly.

C Specific Setting of Prior Assumption
Generation

We choose four reasoning types that appear most
frequently in TABFACT: count, comparative, su-
perlative, and negation. The detailed definitions of
four reasoning types chosen in our implementation
are listed below:

1. Count: counting the number of specific rows
in the table, such as “xxx be listed a total of 3

times", “xxx win only 1 time in ...", etc.

2. Comparative: comparing two values in the
statement or cells, such as “xxx play in more
than 1 game during ...", “xxx has a larger yyy

than zzz", etc.

3. Superlative: finding the highest/lowest value
of the specific column, such as “the longest
xxx be yyy", “the lowest score at xxx be yyy",

etc.

4. Negation: negating the original semantics of
the statement, such as “xxx has never lost a

game in ...", “xxx never score 0 points", etc.

Type Trigger Weight

Count only+[number] 1.6
Count [number]+times 2

Count [number]+of 1.6
Count there be+[number] 1.6
Negation no 1.5
Negation not 1.5
Negation never 1.5
Negation didn’t 1.5
Comparative  [JJS] or [RBS] 1.5
Superlative  [JJR] or [RBR] 1.5

Table 5: Some trigger words/patterns applied in the
generation of the prior assumption on TABFACT.

A small trigger-word pool that contains only 26
trigger words/patterns is applied for the prior as-
sumption generation: 11 triggers for the "count"”
type, 15 for "negation"; and for the rest types (i.e.,
"comparative" and "superlative" types), the NLTK
package is employed to recognize the comparative
and superlative words automatically. Such a small
trigger-word pool injects limit prior knowledge of
the dataset, indicating that the proposed method
can be generalized to other datasets by simply mod-
ifying the pool of trigger words. Table 5 presents
some words/patterns in the trigger-word pool ap-
plied in our experiments. x+[number] denotes a
combination of a word and a number that is served
as a trigger (e.g., for the statement “xxx win 3
times in ...", we match the phrase “3 times" with
the trigger “[number]+times").
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Abstract

Current practices in metric evaluation focus on
one single dataset, e.g., Newstest dataset in
each year’s WMT Metrics Shared Task. How-
ever, in this paper, we qualitatively and quan-
titatively show that the performances of met-
rics are sensitive to data. The ranking of met-
rics varies when the evaluation is conducted
on different datasets. Then this paper further
investigates two potential hypotheses, i.e., in-
significant data points and the deviation of In-
dependent and Identically Distributed (i.i.d) as-
sumption, which may take responsibility for
the issue of data variance. In conclusion, our
findings suggest that when evaluating auto-
matic translation metrics, researchers should
take data variance into account and be cautious
to claim the result on a single dataset, because
it may leads to inconsistent results with most
of other datasets.

1 Introduction

Assessing the quality of machine translation (MT)
systems is always crucial to promote MT re-
search (Marie et al., 2021). Since it is costly and
time-consuming for human graders to evaluate ma-
chine translation (MT) systems, designing auto-
matic metrics for MT has drawn booming attention
during the past decades, and many metrics such
as BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006) have been proposed consequently.
Generally, it is non-trivial to measure auto-
matic metrics. Conference Machine Translation
(WMT) (Ma et al., 2019, 2018; Machacek and Bo-
jar, 2013a,b; Bojar et al., 2016) thereby holds the
Metric Shared Task to evaluate the performance of
automatic metrics. In each year, WMT organizers
collect a dataset consisting of many MT outputs
annotated with human judgments, and automatic
metrics are evaluated on the dataset in terms of

*Work done while J. Xiang was an intern at Tencent AI
Lab.

their correlations to human judgments. Over the
past ten years, the official evaluation reports only
independently analyzed the results of that year. To
the best of our knowledge, there are no studies to
put the evaluation results of ten years together and
make a more systematic analysis. Therefore, some
key questions remain unknown: are the evaluation
results consistent across different years? Are the
results on each dataset reliable?

One may simply summarize the existing results
from the official evaluation reports of the past years
and answer the above questions accordingly. How-
ever, the existing results use Pearson’s correlation
for evaluation which suffers from sensitivity to out-
lier data points as argued by Mathur et al. (2020).
Besides, involved metrics in the evaluation are dif-
ferent year by year, thus it is difficult to directly
compare the results among different years. To
this end, in this work, we firstly re-evaluate ten
popular metrics on all available datasets in the
past ten years, with the Error Number evaluation
method (Mathur et al., 2020). We then empiri-
cally investigate the fluctuation of metric evalua-
tion results. Surprisingly, our experiments show
that the evaluation result is sensitive to the choice
of datasets, which suggests that the results on some
datasets may not be reliable (§3).

Then we investigate two potential hypotheses
about the emergence of data variance, i.e., the in-
significant data points (§4.1) and deviation of Inde-
pendent and Identically Distributed (i.i.d) assump-
tion (§4.2). First, we show that the data variance
issue is substantially alleviated when the insignifi-
cant data points are removed. To further understand
the variance that cannot be alleviated by the first
hypothesis, we design a simple method to measure
the distributional differences between datasets, and
hypothesize that the deviation of the i.i.d assump-
tion may contribute to the variance. For future met-
ric evaluation, we recommend WMT community
pay attention to the potential issue of data variance
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Dataset Size  System Number Link
Newssyscombtest2010 2,034 31 http://www.statmt.org/wmt10/results.html
Newssyscombtest2011 2,000 26 http://www.statmt.org/wmtll/results.html
Newstest2012 3,003 16 http://www.statmt.org/wmtl2/results.html
Newstest2013 3,000 23 http://www.statmt.org/wmt1l3/results.html
Newstest2014 3,003 13 http://www.statmt.org/wmtl4/results.html
Newstest2015 2,169 13 http://www.statmt.org/wntl5/results.html
Newstest2016 2,999 10 http://www.statmt.org/wmtl6/results.html
Newstest2017 3,004 11 http://www.statmt.org/wmtl7/results.html
Newstest2018 2,998 16 http://www.statmt.org/wmt18/results.html
Newstest2019 2,000 16 http://www.statmt.org/wntl1l9/results.html

Table 1: The data statistics for German-English language pair.

when conducting evaluations.

Metrics Features Average Type
BLEU n-grams macro
WER Levenshtein distance macro

TER edit distance macro
PER edit distance macro
chrF character n-grams micro
chrF+ character n-grams micro
BEER char. n-grams, trees micro
CharacTER char. edit distance micro
BERTScore neural representations micro
MoverScore  neural representations micro

Table 2: Features for the metrics we use in the paper.
Note that we implement PER by ourselves.

2 Experiment Settings

2.1 Datasets and evaluation metrics

We collect the testing set data and the human as-
sessments of the WMT Metrics Task from 2010 to
2019. In this work, we mainly conduct experiments
on the De=-En task and more details about datasets
are shown in Table 1. However, as shown in §3.1,
our conclusions are consistent on other translation
tasks, such as Ru=-En.

Since participating metrics in the WMT Metrics
Task varied over years, we collect ten most popular
metrics and re-evaluate them on all ten datasets
to study their performance.These metrics are sum-
marized as follows: BLEU (Papineni et al., 2002),
WER (Morris et al., 2004), PER (Tillmann et al.,
1997), TER (Snover et al., 2006), chrF (Popovié,
2015), chrF+ (Popovié, 2017), BEER (Stanojevi¢
and Sima’an, 2014), CharacTER (Wang et al.,
2016), BERTScore (Zhang et al., 2020), and Mover-
Score (Zhao et al., 2019). The first 4 metrics are
in system-level (i.e., macro) while others are in
sentence-level (i.e., micro), as shown in Table 2.
Since extending sentence-level metrics to system-
level is more natural (Zhang et al., 2020), we only

compare them on the system-level.

For each system pair, metrics or humans give a
comparison result about whether one system is bet-
ter than another. Following Graham et al. (2014),
we use statistical significance tests to detect if
the difference in scores (metrics or humans) be-
tween two systems is significant. Specifically, for
RR scores, we use the bootstrap method (Koehn,
2004). For DA scores, we apply the Wilcoxon
rank-sum test. For macro-average metrics, i.e.,
BLEU, WER, PER, and TER, we use the bootstrap
method (Koehn, 2004). For other micro-average
metrics, we use the paired t-test method.

2.2 Measuring Automatic Metrics

The previous WMT Metrics Tasks used Pearson’s
r to measure the ability of a metric to evaluate MT
systems. However, as pointed out by Mathur et al.
(2020), Pearson’s r is unstable for a small sample
size and sensitive to outlier systems. Besides, in
practice, metric scores are always used to compare
pairs of MT systems'. Thus following Mathur et al.
(2020), we measure an automatic metric with the
number of errors made by the metric when compar-
ing system pairs. Error Number can be considered
as an absolute view of measuring a metric.

Error Number Following Mathur et al. (2020),
we measure the performance of a metric by its con-
sistency with humans. Specifically, each metric or
human can judge whether a system performs bet-
ter compared to another system (details of system
comparison process are presented in the appendix),
and the error number is the number of contrary
cases between the results of metric and human. As
mentioned by Graham and Liu (2016), when the
number of compared MT systems are too small
on a dataset, differences among different metrics

"Unless otherwise specified, a system always denotes MT
system in our work, rather than an evaluation metric.
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Dataset

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
BERTScore 1/24.4 1/37.1 2/289 1/106 2/204 1/147 1/145 6/246 2/153 3/37.0
CharacTER  6/27.6 1/37.1 1/242 6/18.0 1/173 1/147 3/17.6 1/208 1/144 4/382
MoverScore  2/25.2 4/393 2/288 2/11.7 2/203 1/147 2/160 5/239 2/154 1/366
chrF 3/267 1/378 4/297 2/12.1 2/208 4/177 4/189 2/229 2/153 1/37.0
BEER 3/263 5/453 5/335 4/134 6/250 5/190 5/195 2/232 2/152 6/384
chrF+ 3/269 5/458 6/35.1 4/138 7/264 6/192 5/202 2/233 2/152 4/37.7
BLEU 8/323 8/583 8/423 7/209 8/293 7/231 8/212 7/263 9/18.1 7/41.3
WER 7/317 7/577 7/40.8 8/234 9/323 7/229 5/197 8§/272 7/17.0 77409
TER 9/350 9/612 9/439 9/247 10/362 7/227 8/209 10/28.6 7/172 9/43.0
PER 10/38.6 9/61.7 10/480 10/269 5/23.8 7/228 10/282 8/27.6 9/184 9/435

Table 3: Metric evaluation results on De=-En datasets from 2010 to 2019. The tuple "R / E” shows the perfor-
mance of a metric, where R denotes Significant Ranking (§2.3) among all metrics and E denotes the Error Rate
(Error Number divided by the total number of system pairs).

may be insignificant. Thus, the results of the met-
ric evaluation can be highly inconclusive. We in-
deed observe similar results in our experimental set-
ting. Therefore, we use the hybrid super-sampling
method (Graham and Liu, 2016) to create a large
number of hybrid system pairs: on each dataset,
we synthesize 142 systems in total, which form
10K system pairs. Finally, we calculate the error
number of each metric on all 10K system pairs.

2.3

Significant Ranking Based on the measurement
of error number, a qualitative approach to know
whether those metrics perform consistently on dif-
ferent datasets is to evaluate the variance of their
rankings. To make the ranking more reliable, we
propose a significant ranking method, which con-
ducts significant test when sorting the error num-
bers of metrics. For example, in Table 3, the sig-
nificant ranking of all metrics on 2010 dataset is
“1, 6, 2,3, 3,3,8, 7,9, 10” where chrF, BEER
and chrF+ are with the same relative ranking of 3.
This is because they are not significantly different,
although their absolute error numbers are slightly
different. We employ the bootstrap re-sampling
method (Koehn, 2004) to test if the number of
errors of one metric is significantly less than the
others. For the bootstrap method, we repeat re-
sampling 1000 times and set the p-value to 0.05 for
all the significance tests.

Measuring Data Variance

Disagreement Number In addition, we also pro-
pose a method to quantitatively measure the vari-
ance between two datasets D and D', namely, dis-
agreement number. Specifically, we construct a
set Sp by collecting all pairwise metrics that one
is significantly better than the other on dataset D.
Then to measure the mismatch between D and 7',

2010- O
2011

2012
2013- 4
2014
2015
2016
2017

2018
2019

Figure 1: The heatmap for the disagreement numbers
between every two datasets on De=-En task.

we count the disagreement number between the
pairwise metrics in Sp and that in Spr. For ex-
ample, disagreement number plus one, if BLEU
is significantly better than TER on D and worse
than TER on D’. Although this number is linear to
Kendall’s Tau (Kendall, 1938), it is able to show
more informative difference between two overall
rankings. For example, two metrics with totally
different ranks may just have a slight difference
on disagreement number. As a result, we employ
disagreement number rather than Kendall’s Tau
to show the quantitative difference between two
overall rankings more intuitively for more detailed
analysis. It is worth mentioning that the disagree-
ment number is at most 45 in our setting where
there are 10 metrics in total.

3 Data Variance in Metric Evaluations

3.1 Variance of Different Datasets

We conduct experiments on all 10 datasets. We
have 10 metrics, which can form 45 metric pairs.
On each dataset, for each metric, we calculate its
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Dataset

Metric 2015 2016 2017 2018 2019
BERTScore 2/18.0 3/167 2/32.1 3/245 1/358
CharacTER  6/20.5 6/194 1/304 1/223 4/372
MoverScore 1/14.9 1/15.1 2/314 3/245 1/36.1
chiF 3/187 2/157 2/319 2/240 4/37.1
BEER 3/19.0 3/17.0 5/332 3/243 9/39.6
chrF+ 5/19.7 5/17.6 5/333 3/245 4/369
BLEU 10/27.9 7/21.0 9/348 8/250 9/39.8
WER 8/234 7/215 5/332 8/250 8/379
TER 8/234 10/233 9/345 10/258 4/36.9
PER 6/21.1 7/215 7/340 2/234 1/35.7

Table 4: Metric evaluation results on Ru=-En datasets
from 2015 - 2019.

error number (described in Section 2.2). In addi-
tion, we perform a statistical significance test for
each metric pairs in terms of both error numbers,
from which we can obtain a ranking result among
10 metrics accordingly.

Table 3 illustrates the error numbers and ranks
on 10 datasets. It shows that the ranks are always
variant along with different datasets. For example,
on the dataset of 2011, the error rate of MoveScore
is larger than chrF (39.3 v.s. 37.8), and the former
ranks 4 while the latter ranks 1. However, it is
opposite on the dataset of 2015, where MoveScore
ranks 1 with an error rate of 14.7 while chrF ranks
4 with an error rate of 17.7. As shown in Table 4,
we observe a similar trend on the Ru=-En task.

As shown in Figure 1, there is a high inconsis-
tency between the results of different datasets and
none of the dataset pairs achieve zero disagree-
ments. The difference between the datasets in 2010
and 2013 is the smallest (i.e., only 4 disagreed
metric pairs). However, most of the disagreement
numbers are larger than 10 (the maximum achieves
18). Moreover, datasets from 2017 to 2019 not only
have a high disagreement number with datasets of
early years, but also have high variances among
themselves. This finding is a little surprising, be-
cause in our sense the quality of WMT’s datasets
must be improved year by year.

4 Potential Reasons for Data Variance

Many factors may contribute to the data variance
issue, but lots of them are difficult to be evaluated,
such as the personal preferences of humans. In
this section, we propose to analyze two potential
factors that can be quantitatively evaluated.

12
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Figure 2: The heatmap for the disagreement numbers
between every two datasets on De=-En task. Insignifi-
cant system pairs according to human assessments are
removed.

4.1 Insignificant Data Points

Intuitively, if the translations H 4 from system A
are much better than those Hp from system B in
translation quality according to human evaluation,
then it is easy to judge the better system even for
a weak automatic metric. In contrast, if H4 is
similar to H p in translation quality, it is typically
difficult to judge the better system even for a good
metric. This motivates us that such an insignificant
data point (H 4, Hp) may take responsibility for
the data variance issue.

To validate the above intuition, we remove the
system pairs that are not significantly different ac-
cording to human evaluation, and compute the dis-
agreement number between any two datasets again.
The experimental results are shown in Figure 2. We
can see the disagreement number decreases greatly
comparing to the results in Figure 1. In the previ-
ous experiment, most of the disagreement numbers
are greater than 10, while in the new experiment
most of them are less than 5, and some of them
even achieve 0, such as the number between 2012
and 2015, which means the ranks of metrics are
exactly the same on those datasets. The results in-
dicate that part of the data variance issue can be
explained by system pairs that humans think are
not significantly different.

However, After the removal of insignificant data
points, some disagreement number are still high,
e.g., the number between 2013 and 2017 is 13. It
demonstrates that there are still some other under-
lying problems that give rise to the data variance
phenomenon. In addition, the datasets for both
2014 and 2017 do not agree well with others. This
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indicates that we should be cautious to report over-
all results on some datasets, e.g., 2014 and 2017.

4.2 Deviation of LI.D Assumption

How to interpret the high variance on datasets, e.g.,
2014 and 2017, remains to be an open question. In
this section we try to give a hypothesis based on
the i.i.d assumption. According to the principle of
statistical sampling, if two samples are drawn from
the same distribution, then a statement made on
one sample is likely to hold on the other sample.
Therefore, one hypothesis about the high variance
may be that datasets from different years deviate
i.i.d assumption. In fact, this may be true in our
scenario because each dataset is generated by a
set of translation systems but the set of systems is
variant each year.

To this end, we design an experiment to measure
the extent to which each dataset is drawn from the
same distribution during the past ten years. Since
the standard method such as Kolmogorov-Smirnov
test (Massey Jr, 1951) is difficult to scale with re-
spect to feature dimension, we employ adversarial
validation to distinguish the difference between
two datasets (Pan et al., 2020). Its basic idea is to
formulate the i.i.d test as a classification problem
and train a classifier between two datasets. If the
classifier can accurately distinguish the data from
different datasets, then the distributions of the two
datasets are regarded as highly different. Since it is
too slow to train classifiers for all pairs of datasets,
we conduct experiments on three years from 2017
to 2019. More details are shown in appendix.

The results on two kinds of datasets are shown
in Table 5, where higher accuracy indicates clearer
distributional differences between two datasets.
Note that accuracy scores in main diagonal are
got from two subsets of each year via randomly
splitting. As shown in Table 5, the distributional
differences between MT datasets have been intro-
duced by source sentences. After accompanied
with the system outputs, the distributional differ-
ences are more severe between different years. This
fact shows that some datasets in past ten years de-
viate the i.i.d assumption, which may be related to
the inconsistency of metrics.

4.3 Suggestions

According to those potential factors, we propose
some suggestions to alleviate some potential issues
for metric evaluation due to data variance in future.
First, it would be better if pay more attention to

17 18 19 17 18 19
17]50.4 52.8 65.8 17(51.4 753 80.2
18(52.8 514 67.5 18|75.3 55.6 79.2
19165.8 67.5 50.9 19180.2 79.2 52.2

(a) Src

(b) Src+Output

Table 5: The accuracy of classifiers. The higher value
means two datasets deviate i.i.d assumption. We run
the model with 5 different random seeds to calculate
the average accuracy.

those insignificant data points such that their man-
ual annotations are as good as possible. Since it
is costly to hire more annotators for data points, it
would be possible to ask more annotators only for
those insignificant data points. Second, it would
be helpful to construct a dataset with diverse do-
mains and explicitly show the evaluation results
for each subset with the same domain rather than a
single evaluation result for the entire dataset. Gen-
erally, although inconsistent results from different
domains are possible, however, the inconsistency in
the same domain may be undesirable. Thus, show-
ing the domain information could help researchers
to better promote the datasets and metrics.

5 Conclusion

Over the past ten years, the official evaluation re-
ports of WMT Metrics Shared Task only indepen-
dently analyzed the results of that year. In this
paper, we re-evaluate ten popular metrics on all
available datasets in the past ten years and com-
paratively analyze the evaluation results among
different years together. We show the problem of
conducting evaluations with only one dataset. In
addition, we analyze its potential reasons that the
insignificant data points and deviation of i.i.d as-
sumption may induce the issue of data variance.
This fact suggests that future researches on evaluat-
ing automatic translation metrics should take data
variance into account and be cautious to conclude
the result on a single dataset.
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A Settings for Adversarial Validation

To train the classifier, we need to construct a bi-
nary classification dataset first. Since the differ-
ence between distributions may come from both the
source sentences and system outputs, we consider
two types of classification datasets correspondingly.
The first kind of dataset only considers the source
information. Supposing that we want to compare
the distributions of source sentences of MT datasets
from year Y1 and Y2, we follow the three steps
below to construct the classification dataset:

1. We label the source sentences from Y1 and
Y2 with 0 and 1, respectively;

2. We split the data from Y1 and Y2 to train, dev,
and test sets without overlap;

3. We merge the data from Y1 and Y2 according
to their split.

For each pairs of MT datasets from year 2010 to
2019, we construct a classification dataset follow-
ing the steps above. Besides the source informa-
tion, we also construct another kind of classifica-
tion datasets that also consider the information of
system outputs. The procedure to construct this
kind of dataset is almost similar to the previous
one, except that we concatenate each system out-
puts with its source sentences after the Step-2 is
finished. In our experiments, we use mBERT (De-
vlin et al., 2019; Wolf et al., 2020) as the classifier,
thus an unified structure can be used for the two
kinds of datasets.
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Abstract

In linguistics, a sememe is defined as the
minimum semantic unit of languages. Se-
meme knowledge bases (KBs), which are built
by manually annotating words with sememes,
have been successfully applied to various NLP
tasks. However, existing sememe KBs only
cover a few languages, which hinders the wide
utilization of sememes. To address this is-
sue, the task of sememe prediction for Ba-
belNet synsets (SPBS) is presented, aiming
to build a multilingual sememe KB based on
BabelNet, a multilingual encyclopedia dictio-
nary. By automatically predicting sememes
for a BabelNet synset, the words in many lan-
guages in the synset would obtain sememe
annotations simultaneously. However, previ-
ous SPBS methods have not taken full advan-
tage of the abundant information in BabelNet.
In this paper, we utilize the multilingual syn-
onyms, multilingual glosses and images in Ba-
belNet for SPBS. We design a multimodal in-
formation fusion model to encode and com-
bine this information for sememe prediction.
Experimental results show the substantial out-
performance of our model over previous meth-
ods (about 10 MAP and F1 scores). All the
code and data of this paper can be obtained at
https://github.com/thunlp/MSGI.

1 Introduction

A word is the smallest unit of language that can
stand on its own (O’Grady et al., 1997), but its
meaning can be further divided into smaller com-
ponents. In linguistics, a sememe is defined as the
minimum semantic unit (Bloomfield, 1926). It is
believed by some linguists that the meanings of
all the words in any language can be decomposed
of a limited set of language-independent sememes,

*Equal contribution
t Corresponding author. Email: sms@tsinghua.edu.cn

| 1

I ® family,
! I
| human :
husband | ® male |
! |
l "carefully use" economize |
o ____ 1
word sense sememe

Figure 1: Sememe annotations of the English word
“husband” in HowNet. For succinctness, we only show
the English notations of sememes, although sememes
have both English and Chinese notations in HowNet,
e.g., family | K.

which is equated with the idea of semantic primi-
tives (Wierzbicka, 1996).

Sememes are implicit in words and hence cannot
be utilized in natural language processing (NLP)
directly. To tackle this challenge, Dong and Dong
(2006) manually defined about 2, 000 sememes and
used them to annotate over 100, 000 English and
Chinese words, whereupon a sememe knowledge
base called HowNet was established. Figure 1 gives
an example of sememe annotations in HowNet.

HowNet is a special lexical knowledge base
(KB). Different from other lexical KBs like Word-
Net (Miller, 1998), which explain meanings of
words by relations between words, e.g., hyponym
and meronym, HowNet provides intensional defini-
tions of words using infra-word sememes. This dis-
tinctness gives HowNet unique advantages. First,
sememes can be easily incorporated into neural
networks as semantic labels (Qi et al., 2019; Qin
et al., 2020), which displays the particular suit-
ability of HowNet in knowledge integration into
deep learning. Second, the nature that limited se-
memes can represent meanings of unlimited words
endows HowNet with the ability to handle low-data
regimes, e.g., sememes can improve the embed-
dings of rare words (Niu et al., 2017). Because of
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these advantages, HowNet has been successfully
utilized in various NLP tasks (Qi et al., 2021b).

HowNet is distinctive and useful, but it covers
only two languages (English and Chinese). Plus
there are no sememe KBs like HowNet in other
languages, which hinders NLP of most languages
from benefiting by sememes. Manually building a
sememe KB for each language is an obvious solu-
tion. But it is not realistic at all because the building
process would be extremely time-consuming and
labor-intensive — it takes several linguistic experts
more than two decades to build HowNet.

To solve this problem, Qi et al. (2020) pioneer-
ingly propose to build a multilingual sememe KB
based on BabelNet (Navigli and Ponzetto, 2012a),
a multilingual encyclopedic dictionary. The entries
of BabelNet are synsets composed of synonyms
in almost 500 languages, as illustrated in Figure
2. All the multilingual synonyms in a synset have
the same meaning and thus should be annotated
with the same sememes. Therefore, sememe an-
notations of words in many languages would be
simultaneously obtained by annotating sememes
for BabelNet synsets. For example, suppose we an-
notate four sememes human, family, spouse
and ma le to the synset in Figure 2, all the multilin-
gual synonyms in the synset (“husband”, “époux”,
“3L X7, etc.) would be simultaneously annotated
with these sememes.!

Further, Qi et al. (2020) build a seed dataset by
manually annotating sememes for some synsets,
and present the task of sememe prediction for Ba-
belNet synsets (SPBS), which is aimed at automati-
cally predicting sememes for the other unannotated
synsets. In addition, they put forward two SPBS
methods that utilize different information in Ba-
belNet synsets, namely synset-related Wikipedia
articles and relations between synsets.

In this paper, we argue that some other infor-
mation contained in BabelNet can be exploited
for SPBS. As shown in Figure 2, in addition to
the multilingual synonyms, each BabelNet synset
comprises multilingual glosses that are extracted
from different sources including WordNet and
Wiktionary.” Besides, many synsets contain im-
ages from Wikipedia and Wikidata (Vrandecic¢
and Krotzsch, 2014). The multilingual synonyms,
glosses and images of a synset convey the meaning
of the synset, thus naturally helpful in predicting

'Tf a word is polysemous, it would be included in multiple

BabelNet synsets and have multiple sets of sememes.
https://www.wiktionary.org/

/ Multilingual Synonyms and Glosses

[EY] husband, hubby

A woman's partner in marriage

ﬁ mari, époux, marié

Partenaire masculin dans un mariage

ZHES YN VW
BLIEWAHNBIENTRE, SEFHENE

(]2 Ehemann, Gemahl, Gatte

Mainnliche Partner in einer ehelichen Beziehung

K ...... j

Figure 2: A BabelNet synset that comprises multilingual
synonyms and glosses as well as some images.

sememes for the synset. Therefore, we propose to
utilize all the information in BabelNet synsets for
the task of SPBS.

We design a multimodal information fusion
model named MSGI (sememe prediction with Mul-
tilingual Synonyms and Glosses as well as Images),
which comprises a multilingual text encoder, an
image encoder and a multi-label classifier. The
text encoder is based on a cross-lingual pre-trained
language model that encodes the multilingual syn-
onyms and glosses. To adapt the general pre-
trained language model for the task of SPBS, we
introduce a new pre-training task named masked
contextual sememe prediction to it. The image en-
coder learns the embeddings of the images, and we
adopt the attention-based multi-instance learning
mechanism to process multiple images.

In experiments, we find that our MSGI model
substantially outperforms previous SPBS methods
(by about 10 MAP and F1 scores). We also conduct
a series of quantitative and qualitative analyses of
the sememe prediction results of MSGI, aiming to
explain the effectiveness of MSGI.
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2 Related Work

2.1 Sememe Knowledge Base

HowNet is the most famous sememe KB and has at-
tracted wide attention since it was published (Dong
and Dong, 2006). So far it has displayed its ef-
fectiveness in various NLP tasks, such as word
similarity computation (Liu and Li, 2002), senti-
ment analysis (Fu et al., 2013), word sense disam-
biguation (Hou et al., 2020), word representation
learning (Niu et al., 2017), language modeling (Gu
et al., 2018), relation extraction (Li et al., 2019),
reverse dictionary (Zhang et al., 2020), textual ad-
versarial and backdoor attacks (Zang et al., 2020;
Qi et al., 2021c¢), text matching (Lyu et al., 2021b),
quote recommendation (Qi et al., 2022), etc.
Besides the application of sememe KBs, another
line of research is the automatic expansion and
construction of sememe KBs. Among these stud-
ies, most of them focus on automatic expansion
of existing sememe KBs (Xie et al., 2017b; Jin
et al., 2018; Lyu et al., 2021a). They propose dif-
ferent methods to automatically predict sememes
for English/Chinese words that are not covered in
HowNet, aiming to expand and update HowNet.
Only a few studies try to automatically construct
a sememe KB for a new language. Qi et al. (2018)
present the task of cross-lingual lexical sememe
prediction, aiming to predict sememes for words in
a new language based on the sememe annotations
of English/Chinese words in HowNet. However, it
is not efficient because it can handle only one lan-
guage at a time. Moreover, it cannot conduct sense-
level sememe prediction and thus hardly processes
polysemous words. Afterwards, Qi et al. (2020)
pioneeringly propose the scheme of the BabelNet-
based multilingual sememe KB, which is a more
efficient and economical way to build sememe KBs
for many languages. They take advantage of the
multilingual nature of BabelNet and try to automat-
ically predict sememes for all BabelNet synsets,
so that all words in almost 500 languages in Ba-
belNet would obtain sememe annotations. Further,
they build a seed dataset by aligning the words
in HowNet and BabelNet and propose two meth-
ods to automatically predict sememes for synsets.
Building on this work, we utilize more information
incorporated in BabelNet to predict sememes for
BabelNet synsets, achieving much better results.
Moreover, a recent work tries to construct a se-
meme KB on the basis of a dictionary (Qi et al.,
2021a). It does not rely on the existing sememe

annotations of HowNet or use the sememe set of
HowNet. Instead, it views the words in the con-
trolled defining vocabulary of a dictionary as “se-
memes”, and extracts them directly from dictionary
definitions.

2.2 BabelNet

BabelNet (Navigli and Ponzetto, 2012a) is a multi-
lingual encyclopedic dictionary that merges many
heterogeneous resources, mainly including Word-
Net (Miller, 1998), Wikipedia and Wikidata (Vran-
deci¢ and Krotzsch, 2014). It has been utilized in
multiple NLP tasks (Navigli et al., 2021), especially
the cross-lingual or multilingual tasks, such as mul-
tilingual word sense disambiguation (Navigli and
Ponzetto, 2012b), cross-lingual lexical entailment
(Vyas and Carpuat, 2016) and cross-lingual AMR
parsing (Blloshmi et al., 2020). Most of these stud-
ies regard BabelNet as a large multilingual sense
inventory and utilize the multilingual synonyms
and glosses in BabelNet synsets, and some studies
also use images in it, e.g., Calabrese et al. (2020)
learn multimodal sense embeddings with the con-
cepts and images in BabelNet.

Due to the multilingual mapping between dif-
ferent resources, BabelNet has become the hub
to ground many linguistic resources, e.g., Babel-
Net is at the core of a dictionary matrix within the
ELEXIS project® that aims to interlink different
lexicographic resources.

3 Methodology

In this section, we elaborate on our MSGI model.
Before that, we first introduce the formalization
of the SPBS task. Then we describe the details of
MSGI, and finally we present the training strategy
of MSGI. Figure 3 illustrates the framework and
training strategy of MSGI.

3.1 SPBS Task Formalization

According to Qi et al. (2020), SPBS neglects the
hierarchical structures of sememes and regards se-
memes as discrete semantic labels. Therefore,
SPBS is essentially a multi-label classification
problem that is aimed at attaching appropriate la-
bels (sememes) to the target BabelNet synset. For-
mally, suppose B is the set of all BabelNet synsets
and S is the set of all sememes. For a given tar-
get synset b € B, SPBS is intended to predict its

*https://elex.is/
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sememe set Sy = {s1,---,55,|} C S, where | - |
represents the cardinality of a set.

To this end, a prediction score is computed for
each sememe. Then the sememes whose prediction
scores are higher than a threshold are selected as the
prediction results. Formally, the predicted sememe
set for the target synset b is

Sy = {s € S|P(s|b) > 4}, (1)

where P(s|b) is the prediction score of a sememe
s and ¢ is the prediction score threshold.

3.2 The MSGI Model

MSGI is a multimodal information fusion model
that is composed of a text encoder, an image en-
coder and a multi-label classifier. Next, we describe
the three parts one by one.

Text Encoder

The text encoder is aimed at encoding the seman-
tic information of the multilingual synonyms and
glosses of a BabelNet synset. We combine all the
multilingual synonyms and glosses into a multi-
lingual text sequence and utilize XLM-R (Con-
neau et al., 2020) to encode it. XLM-R is a large
cross-lingual pre-trained language model, and is
pre-trained on a large corpus in many languages
using self-supervised training objectives includ-
ing masked language model (Devlin et al., 2019).
Because of the popularity and outstanding perfor-
mance on multiple cross-lingual NLP tasks, we
choose XLM-R as the base text encoder in this
paper. But our method also works based on other
cross-lingual pre-trained language models.

We construct the multilingual text sequence of
a synset in the following way. For a target synset,
we first concatenate the synonyms and gloss in the
same language. Inspired by Du et al. (2020), we
put a special separator token, specifically a colon
(1), between the synonyms and gloss to discrimi-
nate them. Besides, we use another separator token,
namely vertical bar (]), to separate the synonyms.
For example, the concatenation of the English syn-
onyms and gloss of the example synset in Figure
2is {[/s] husband | hubby : A woman’s partner
in marriage [/s]}, where [/s] is the language
separator token in XLM-R.

After obtaining the monolingual text sequences
in many languages, we concatenate them into the
final multilingual text sequence. For example, the
concatenation of the English and French text se-
quences is Sgeny={ [/s] husband | hubby : A

woman’s partner in marriage [/s] [/s] mari
| époux | marié : Partenaire masculin dans un
mariage [/s]}, as shown in Figure 3.

Next, we feed the multilingual text sequence into
XLM-R and obtain a series of hidden states:

hi s, - = XLM-R(S). 2)

We use the first hidden state as the text-based se-
mantic representation of the synset: by = h,4;.

Image Encoder

The image encoder is used to capture the semantic
information contained in the images in a BabelNet
synset. Previous studies have shown that images
can help learn better semantic representations for
concepts and entities (Xie et al., 2017a; Calabrese
et al., 2020). We believe that images are also bene-
ficial to SPBS.

We use the popular image classification model
ResNet (Deng et al., 2009) as the image encoder to
learn image embeddings. Most BabelNet synsets
have multiple images, and we need to combine the
embeddings of multiple images into one aggregated
image-based representation. Simply averaging all
image embeddings may suffer from noises and can-
not highlight important information. Inspired by
Xie et al. (2017a), we utilize the attention-based
multi-instance learning mechanism to construct the
aggregated image-based representation.

Suppose a BabelNet synset b has m images and
the embedding of the j-th image obtained from
RestNet is e;. Based on the text-based representa-
tion of the synset by, we calculate the attention of
each image:

__ exp(bs-ej)
Z;Qn:l exp(bt : ek) .

The aggregated image-based representation is the
attention-weighted sum of the image embeddings:
bi = Zznzl a;e;.

In experiments, however, we find that images in
BabelNet are too diversified, and some are even
not related to the corresponding synsets at all.* For
example, among the displayed four images in the
example synset in Figure 2, they vary markedly in
styles and semantic descriptive perspectives. Even
with the attention mechanism, the model would
still be confused if we consider all the images.

3

aj

*It is because most images in BabelNet are automatically
extracted from Wikipedia and Wikidata without manual exam-
ination.
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Figure 3: The illustration of the MSGI model. For simplicity, we only show the synonyms and glosses in two

languages (English and French) in the multilingual text

To tackle this issue, we take the following
two measures: (1) Removing Low-quality Im-
ages. We adopt an unsupervised outlier detec-
tion algorithm, more specifically One-Class-SVM
(Scholkopf et al., 1999), to detect and filter out
some low-quality images based on their image em-
beddings; (2) Adding High-quality Images. Since
BabelNet synsets are connected with WordNet
synsets, we can retrieve more images for some Ba-
belNet synsets from ImageNet (Deng et al., 2009)
that is also organized based on WordNet. Images in
ImageNet are manually annotated and have much
higher quality. After the two measures, we obtain
a better image set, and then we adopt the attention-
based multi-instance learning mechanism to obtain
the final image-based representation b;.

Multi-label Classifier

We concatenate the text-based and image-based rep-
resentations of a synset, and pass the concatenation
vector into a single-layer perceptron for multi-label
classification:

p = o(W[bs; bi] + ), “4)

where W is a weight matrix, p is a bias vector, and
o is the sigmoid function. The obtained p € RISI
is the sememe prediction score vector whose i-th
element is the prediction score of the i-th sememe.

3.3 Training Strategy of MSGI

We can simply train MSGI using the cross-entropy
loss, during which the text encoder (XLM-R) is
fine-tuned, the multi-label classifier is trained, but
the image encoder (ResNet) is frozen.” The train-

SWe find that freezing rather than tuning ResNet can obtain
higher performance, presumably because of the limited size

sequence.

ing loss of a training instance b is

1
£b = _g [ Z logps + Z log(l _ps)]7 (5)

SESy S¢Sy

where p; is the sememe prediction score of s.

Here we directly use the raw XLM-R, which is
general and independent on downstream tasks. We
argue that it can be enhanced by integrating spe-
cific adaptation to the SPBS task. Inspired by the
masked language model (Devlin et al., 2019) and
sememe-incorporated language model (Gu et al.,
2018), we propose the masked contextual sememe
prediction (MCSP) pre-training task as the adapta-
tion of XLM-R.

MCSP Pre-training

MCSP is aimed at predicting sememes for a
masked word in a sentence by utilizing the con-
textual information. It is viable for English and
Chinese glosses thanks to HowNet that annotates
sememes for English and Chinese words. We hope
that MCSP pre-training can make the raw XLM-R
more familiar with sememes and in turn, perform
better in the subsequent training of SPBS.

More specifically, for a multilingual text se-
quence of a synset, we randomly replace some
words in its English and Chinese glosses with a spe-
cial [MASK] token. Then we feed the corrupted
text sequence into the raw XLM-R, and pass the
hidden states of the [MASK] tokens to a multi-
label classifier like Equation (4), which serves as
the sememe predictor for words. Following previ-
ous studies on sememe prediction for words (Xie

of the training set, which is consistent with the findings in
previous studies (Xie et al., 2017a).
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et al., 2017a; Jin et al., 2018), we neglect the pol-
ysemy of the masked words and group sememes
of all senses together to form the sememe set of a
word.

The training loss for MCSP is also multi-label
cross-entropy loss. After the MCSP pre-training,
we conduct the training of SPBS as in Equation

(5).
4 [Experiments

In this section, we evaluate the sememe prediction
performance of our MSGI model.

4.1 Experimental Settings

Dataset The evaluation is conducted on BabelSe-
meme, the seed dataset of the multilingual se-
meme KB based on BabelNet that is built by Qi
et al. (2020). Its training/validation/test sets have
12,369/1, 546/1, 546 synsets that are manually an-
notated by a total of 2, 106 sememes.

Baseline Methods We choose the two methods
proposed by Qi et al. (2020) as main baselines: (1)
SPBS-SR, which performs collaborative filtering-
based sememe prediction (Xie et al., 2017b) using
NASARI embeddings (Camacho-Collados et al.,
2016), a set of synset embeddings trained with re-
lated Wikipedia articles; (2) SPBS-RR, which mod-
els SPBS as a relation prediction task in knowledge
graph by considering relations between synsets; (3)
the Ensemble of the above two methods. Besides,
we have two naive baselines that are used for com-
parison in Qi et al. (2020); (4) Logistic regression
(LR), which directly uses NASARI embeddings
for multi-label classification; (5) TransE (Bordes
et al., 2013), which is a classical relation prediction
model and adapted for SPBS in a similar way to
SPBS-RR.°

Evaluation Metrics Following Qi et al. (2020),
we use mean average precision (MAP) and F1 score
as the evaluation metrics.

Selection of Languages It is impractical to con-
sider all the 500 languages in BabelNet together.
In our experiments, we pick 3 representative lan-
guages, namely English, French and Chinese. En-
glish and Chinese are the two languages in HowNet
and are required for MCSP pre-training. French
is a high-resource language and most synsets have

®SPBS-SR and LR require NASARI embeddings that only

cover nominal synsets. Thus the two methods work on the
nominal synsets only.

French glosses in BabelNet. Besides, these 3 lan-
guages have different linguistic distances: English
is close to French while Chinese is far from the two.
Some synsets have no glosses in French or Chinese,
and we remove the whole corresponding monolin-
gual part from the multilingual text sequences.

Implementation Details For the text encoder, we
use the pre-trained base version of XLM-R with the
help of the Transformers library (Wolf et al., 2020),
and the hidden size is 768. For the image encoder,
we choose ResNet-152 that contains 152 layers and
delivers 1000-dimensional image embeddings, and
implement the model with PyTorch.” We transform
the image embeddings into 768 dimensions with
a linear layer in order for attention calculate and
concatenation with the text-based representation.
For images from BabelNet, we resize them into
256x256. For images from ImageNet, we use the
processed version of ImageNet 21K (Ridnik et al.,
2021) whose images are resized into 224 x224. In
BabelSememe, 9,356 synsets have images, among
which 2,538 synsets have images from both Babel-
Net and ImageNet. The average image number of
a synset is 45.

We use the Adam (Kingma and Ba, 2015) op-
timizer in both MCSP pre-training and the final
training. The prediction score threshold § in Equa-
tion (1) is continuously tuned on the validation set
and set to 0.42 finally. The learning rates for XLM-
R and the multi-label classifier are separately tuned
in {1le-6, 5e-6, 1e-5, 5e-5, 1e-4} and {1e-4, Se-4,
le-3, 5e-3, le-2}, where the boldfaced ones are
final picks based on the validation set performance.

4.2 Main Results

Table 1 shows the SPBS results of different models
on the test set. We have the following observations:
(1) The MSGI model achieves consistent and
substantial outperformance over previous meth-
ods (about 10 for both MAP and F1 score), which
demonstrates the usefulness of the multilingual and
multimodal information in BabelNet in the SPBS
task and the effectiveness of the MSGI model.

(2) Among the four PoS types, MSGI performs
best on nominal synsets, which is possibly because
nominal synsets have the largest amount and the
most abundant information in BabelNet (Navigli
and Ponzetto, 2012a).

"https://pytorch.org/hub/pytorch_
vision_resnet/
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PoS (#synset) | Noun (10,360)  Verb (2.240) Adj. 2.419) Adv. 442) | All (as461)
Model ‘ MAP F1 MAP F1 MAP F1 MAP F1 ‘ MAP F1
LR 5442 39.81 - - - - - - - -
TransE 61.05 46.78 3475 26.76 29.11 2299 30.05 20.69 | 51.73 39.73
SPBS-SR 65.16 49.75 - - - - - - - -
SPBS-RR 6250 47.92 3476 25.28 32.68 2451 30.86 20.07 | 53.31 40.53
Ensemble 68.85 55.35 3476 2528 32.68 24.51 30.86 20.07 | 57.64 45.61
MSGI (ours) | 71.81 64.36 59.78 47.01 55.61 41.02 68.52 55.20 | 67.23 57.68
-Synonym | 67.40 59.07 3531 2499 3633 26.18 4833 37.45 | 5725 48.54
-Gloss | 66.90 56.99 5422 41.54 53.11 39.20 68.76 55.14 | 62.67 52.21
-Image | 71.41 61.58 59.70 44.29 55.86 43.15 63.81 51.63 | 67.13 56.62
-MCSP | 70.58 61.99 57.55 4327 5257 40.61 6849 5279 | 65.70 56.05

Table 1: SPBS performance of different models on the test set of BabelSememe. The boldfaced results exhibit
statistically significant improvement over the other results with p < 0.1 according to the paired ¢-test, and the

underlined results indicate no significant difference.

(3) MSGI largely improves the performance on
the non-nominal synsets compared with TransE and
SPBS-RR. It is because the baselines rely on the
relations between synsets, and non-nominal synsets
have sparse relations (Qi et al., 2020). In contrast,
MSGI utilizes the internal information of BabelNet
synsets and is immune to the relation density.

Ablation Study

We conduct a series of ablation studies to show the
effectiveness of different parts of the MSGI model.
(1) -Synonym. We eliminate all the synonyms and
separator tokens in the multilingual text sequences,
i.e., retain the glosses only. (2) -Gloss. We remove
all the multilingual glosses and the colon separa-
tor tokens, and keep the synonyms together with
the vertical bar separator tokens only. (3) -Image.
We remove the image encoder and use the text en-
coder together with the multi-label classifier only.
(4) -MCSP. We skip the MCSP pre-training and
directly train the MSGI model on the raw XLM-R.
The results are also shown in Table 1. We can
see that the original MSGI model has better overall
results than all the above four incomplete models,
which proves the effectiveness of the four parts.

4.3 Effectiveness of Image Encoding

According to the ablation study, the benefit of the
images seems to be marginal. We conjecture that
it is because many synsets (6,105, ~40%) have no
available images and the image encoder only plays
a limited role. To better demonstrate the effective-
ness of image encoding, we conduct experiments
on the 9,356 synsets with images, which are ran-

Used Images MAP F1

No Images 69.40 60.44
All BabelNet Images 70.25 60.99
Filtered BabelNet Images 70.63 61.21
Filtered BabelNet + ImageNet Images 71.33  62.10

Table 2: SPBS performance of the MSGI model incor-
porated with different image information.

domly split into the training, validation and test
sets in the ratio of 8:1:1. In addition, we investigate
the effectiveness of the two measures in image en-
coding, i.e., filtering BabelNet images and adding
ImageNet images, on this subset.

Table 2 shows the results. We can see that the
improvement brought by image encoding is better
exhibited (nearly 2 MAP and F1 scores). Further,
both the two measures in image encoding are effec-
tive and improve the SPBS performance.

4.4 Effectiveness of Multilinguality

In this subsection, we investigate the effective-
ness of the multilingual information in the MSGI
model. We extract the 8,974 synsets that have
synonyms and glosses in all the three languages
(English, French and Chinese), and randomly split
them into training/validation/test sets in the ratio of
8:1:1. Then we train MSGI with multilingual text
sequences in different combinations of languages.

The evaluation results on the test set are shown
in Table 3. We observe that considering more lan-
guages can bring performance enhancement indeed,
which demonstrates the usefulness of the multilin-
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Languages MAP  Fl

En 67.22 55.80
Fr 59.87 50.87
Zh 70.87 61.13
En+Fr 68.01 57.48
En+Zh 71.95 61.53
Fr+Zh 71.65 60.45
En+Fr+Zh 72.98 63.46

Table 3: SPBS performance of the MSGI model with
information in different language combinations.

0.8
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Figure 4: SPBS results of synsets with different numbers
of sememes. The numbers of synsets in the six ranges
are 422, 422, 287, 208, 119 and 88, respectively.

gual information in the SPBS task. We conjecture
the possible reason is that the text sequences in
different languages provide semantic information
from different perspectives, and combining them
can obtain more semantic information to better pre-
dict sememes. Besides, En+Zh and Fr+Zh outper-
form En+Fr, which indicates that the combination
of distant languages can produce more benefits,
presumably because text sequences in distant lan-
guages have more different semantic information.

5 Analysis

In this section, we conduct some quantitative and
qualitative analyses of the SPBS results of MSGI.
All the experiments are conducted on the validation
set of BabelSememe.

5.1 Effect of Synset’s Sememe Number

We first investigate how the characteristics of a
synset affect its sememe prediction results. The ef-
fect of PoS has been studied in §4.2. Here we focus
on another quantitative characteristic, namely the
number of a synset’s annotated sememes. Figure 4
shows the average sememe prediction MAP and F1

0.8

. MAP
s F1

0.71

0.6 1

MAP/F1

0.51

0.4

0.3-
[0,20) [20,40) [40,60) [60,80)

Sememe Frequency

[80,100)  [100,)

Figure 5: SPBS results of synsets having sememes with
different frequencies. The numbers of synsets in the six
ranges are 708, 164, 66, 35, 21 and 49, respectively.

scores of the synsets that have different numbers
of sememes. We find that the sememe prediction
performance of a synset is basically not influenced
by its sememe number. In contrast, according to
Qi et al. (2020), the baseline methods (SPBS-SR,
SPBS-RR and Ensemble) perform badly on the
synsets with too few or too many sememes. These
results show the higher robustness of our MSGI
model to sememe number.

5.2 Effect of Sememe Frequency

In this subsection, we explore what sememes are
easy or hard to predict. We study the characteristic
of sememe frequency, i.e., the number of synsets
having a target sememe in the training set, which
is the only quantitative feature of sememes. Figure
5 shows the results, where the x-axis denotes the
sememe frequency ranges while the y-axis denotes
the average sememe prediction performance of the
synsets having the sememes within a specific fre-
quency range. We find that the frequent sememes
are easier to predict broadly, which is consistent
with the findings in previous work (Qi et al., 2020).

5.3 Qualitative Analysis

In this subsection, we conduct qualitative analysis
and case studies into the SPBS results of the MSGI
model. We randomly select fifty synsets from the
validation set, and carry out error analysis one by
one. According to their sememe prediction results,
we can classify the synsets into four types, namely
(1) Good: MSGI performs well on these synsets
with MAP/F1 score higher than 85; (2) Fewer,
MSGI predicts fewer sememes for these synsets
than the ground truth; (3) More, MSGI predicts
more sememes for these synsets than the ground
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Type Example Synset Predicted Sememes Ground Truth
Synonym | Gloss
L. . politics, place, country, politics, place, country,
A 1 heas Africe -
Good Egypt republic in northeastern Africa ProperName, Africa ProperName, Africa
Fewer | anorexia A psychological dlsorde'r char'acterlzed‘ by somatic delusions disease disease, disgust, eat
that you are too fat despite being emaciated
. A pressurized system in which water is vaporized to steam StateChange, produce, industrial,
M 1 . , W , tool
ore boiler by heat transferred from a source of higher temperature burn, cook, WarmUp, tool burn, WarmUp, too
Similar | semantic | Of or relating to meaning or the study of meaning language, knowledge language, information

Table 4: Example synsets of four types classified according to sememe prediction results. We only show one English
synonym and gloss for succinctness. The boldfaced sememes are the correctly predicted ones.

truth; (4) Similar: MSGI predicts some sememes
that are different from but similar to the ground-
truth sememes. The number of synsets belonging
to the four types are 23 (46%), 10 (20%), 3 (6%)
and 14 (28%), respectively.

We pick one example synset for each type and
show their basic information and sememe predic-
tion results in Table 4. For the synset of “anorexia”,
the gloss doesn’t embody any information about
“disgust at eating”, thus the MSGI model doesn’t
predict the two sememes “disgust” and “‘eat”. For
the synset of “boiler”, the gloss provides much in-
formation and the model predicts more sememes
than the ground truth, which are basically reason-
able. For the synset of “semantic”, our model pre-
dicts “knowledge” rather than “information”, while
the two sememes are similar and related.

6 Conclusion and Future Work

In this paper, we propose to utilize the multilin-
gual and multimodal information in BabelNet, i.e.,
multilingual synonyms, multilingual glosses and
images, to predict sememes for BabelNet synsets.
We design the MSGI model and it achieves abso-
lute outperformance over previous methods. In the
future, we will try to leverage more information
in BabelNet, e.g., semantic relations, to better pre-
dict sememes. We will also consider expanding
BabelSememe with the prediction results of our
model after manual examination.
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Abstract

Event extraction is typically modeled as a
multi-class classification problem where event
types and argument roles are treated as atomic
symbols. These approaches are usually lim-
ited to a set of pre-defined types. We propose
a novel event extraction framework that uses
event types and argument roles as natural lan-
guage queries to extract candidate triggers and
arguments from the input text. With the rich
semantics in the queries, our framework ben-
efits from the attention mechanisms to better
capture the semantic correlation between the
event types or argument roles and the input
text. Furthermore, the query-and-extract for-
mulation allows our approach to leverage all
available event annotations from various on-
tologies as a unified model. Experiments on
ACE and ERE demonstrate that our approach
achieves state-of-the-art performance on each
dataset and significantly outperforms existing
methods on zero-shot event extraction.'

1 Introduction

Event extraction (Grishman, 1997; Chinchor and
Marsh, 1998; Ahn, 20006) is a task to identify and
type event triggers and participants from natural
language text. As shown in Figure 1, married and
left are triggers of two event mentions of the Marry
and Transport event types respectively. Two argu-
ments are involved in the /eft event mention: she is
an Artifact, and Irap is the Destination.
Traditional studies usually model event extrac-
tion as a multi-class classification problem (Mc-
Closky et al., 2011; Li et al., 2013; Chen et al.,
2015; Yang and Mitchell, 2016; Nguyen et al.,
2016; Lin et al., 2020), where a set of event types
are first defined, and then supervised machine learn-
ing approaches will detect and classify each can-
didate event mention or argument into one of the
'Our code is open sourced at https://github.com/

VT-NLP/Event_Query_Extract for reproduction pur-
pose.

Marry Transport

was just a month before for

Person Artifact Destination

Figure 1: An example of event annotation.

target types. However, each event type or argument
role is treated as an atomic symbol, ignoring their
rich semantics in these approaches. Several studies
explore the semantics of event types by leveraging
the event type structures (Huang et al., 2018), seed
event mentions (Bronstein et al., 2015; Lai and
Nguyen, 2019), or question answering (QA) (Du
and Cardie, 2020; Liu et al., 2020). However, these
approaches are still designed for and thus limited to
a single target event ontology?, such as ACE (Con-
sortium, 2005) or ERE (Song et al., 2015).

With the existence of multiple ontologies and the
challenge of handling new emerging event types, it
is necessary to study event extraction approaches
that are generalizable and can use all available train-
ing data from distinct event ontologies.’

To this end, we propose a new event extraction
framework following a query-and-extract paradigm.
Our framework represents event types and argu-
ment roles as natural language queries with rich
semantics. The queries are then used to extract
the corresponding event triggers and arguments by
leveraging our proposed attention mechanism to
capture their interactions with input texts. Specifi-
cally, (1) for trigger detection, we formulate each
event type as a query based on its type name and
a short list of prototype triggers, and make binary
decoding of each token based on its query-aware

2 An ontology is defined as a collection of event types and
argument roles for a particular domain (Brown et al., 2017;
Song et al., 2015).

3For argument extraction, the QA-based approaches have
certain potential to generalize to new ontologies, but require
high-quality template questions. As shown in our experiments,
their generalizability is limited compared to ours.
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Figure 2: Architecture overview. Each cell in Argumen

t Role Score Matrix indicates the probabilities of an entity

being labeled with an argument role. The arrows in Multiway Attention module show four attention mechanisms:
(a) entity to argument roles, (b) argument role to entities, (c) entity to entities, (d) argument role to argument roles.

embedding; (2) for argument extraction, we put to-
gether all argument roles defined under each event
type as a query, followed by a multiway attention
mechanism to extract all arguments of each event
mention with one-time encoding, with each argu-
ment predicted as binary decoding.

Our approach can naturally handle various on-
tologies as a unified model — compared to previ-
ous studies (Nguyen and Grishman, 2016; Wadden
et al., 2019; Lin et al., 2020), our binary decod-
ing mechanism directly works with any event type
or argument role represented as natural language
queries, thus effectively leveraging cross-ontology
event annotations and making zero-shot predic-
tions. Moreover, compared with the QA-based
methods (Du and Cardie, 2020; Liu et al., 2020;
Li et al., 2020a) that can also conduct zero-shot
argument extraction, our approach does not require
creating high-quality questions for argument roles
or multi-time encoding for different argument roles
separately, thus being more accurate and efficient.

We evaluate our approach on two public bench-
mark datasets, ACE and ERE, and demonstrate
state-of-the-art performance in the standard super-
vised event extraction and the challenging transfer
learning settings that generalize to new event types
and ontologies. Notablely, on zero-shot transfer to
new event types, our approach outperforms a strong
baseline by 16% on trigger detection and 26% on

argument detection. The overall contributions of
our work are:

* We refine event extraction as a query-and-
extract paradigm, which is more generalizable
and efficient than previous top-down classifi-
cation or QA-based approaches.

We design a new event extraction model that
leverages rich semantics of event types and
argument roles, improving accuracy and gen-
eralizability.

We establish new state-of-the-art performance
on ACE and ERE in supervised and zero-shot
event extraction and demonstrate our frame-
work as an effective unified model for cross
ontology transfer.

2 Our Approach

As Figure 2 shows, given an input sentence, we
first identify the candidate triggers for each event
type by taking it as a query to the sentence. Each
event type, such as Attack, is represented with a
natural language text, including its type name and
a shortlist of prototype triggers, such as invaded
and airstrikes, which are selected from the training
examples. Then, we concatenate the input sen-
tence with the event type query, encode them with
a pre-trained BERT encoder (Devlin et al., 2019),
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compute the attention distribution over the sequen-
tial representation of the event type query for each
input token, and finally classify each token into a
binary label, indicating it as a trigger candidate of
the specific event type or not.

To extract the arguments for each candidate trig-
ger, we follow a similar strategy and take the set
of pre-defined argument roles for its corresponding
event type as a query to the input sentence. We
use another BERT encoder to learn the contextual
representations for the input sentence and the query
of the argument roles. Then, we take each entity
of the input sentence as a candidate argument and
compute the semantic correlation between entities
and argument roles with multiway attention, and
finally classify each entity into a binary label in
terms of each argument role.

2.1 Trigger Detection

Event Type Representation A simple and intu-
itive way of representing an event type is to use
the type name. However, the type name itself can-
not accurately represent the semantics of the event
type due to the ambiguity of the type name and
the variety of the event mentions of each type. For
example, Meet can refer to an organized event or
an action of getting together or matching. Inspired
by previous studies (Bronstein et al., 2015; Lai and
Nguyen, 2019), we use a short list of prototype
triggers to enrich the semantics of each event type.
Specifically, for each event type ¢, we collect a
set of annotated triggers from the training exam-
ples. For each unique trigger word, we compute its
frequency from the whole training dataset as f,, and
its frequency of being tagged as an event trigger
of type ¢ as f;, and then obtain a probability f;/ f,,
which will be used to sort all the annotated trig-
gers for event type . We select the top-K* ranked
words as prototype triggers {71, T2, ..., Tk }.
Finally, each event type will be represented with
a natural language sequence of words, consisting
of its type name and the list of prototype triggers
T = {t,7},7%,...,7%}. Taking the event type
Attack as an example, we finally represent it as
Attack invaded airstrikes overthrew ambushed.

Context Encoding Given an input sentence
W = {wy,ws, ..., wyN}, we take each event type
T = {t,7{,75,..., 7L} as a query to extract the
corresponding event triggers. Specifically, we first

“In our experiments, we set K = 4.

concatenate them into a sequence as follows:

[CLS][EVENT][SEP] w; ... wx [SEP]
t i ... Tk [SEP]

where [SEP] is a separator from the BERT en-
coder (Devlin et al., 2019). Following (Liu et al.,
2020), we use a special symbol [EVENT] to em-
phasis the trigger detection task.

Then we use a pre-trained BERT encoder to
encode the whole sequence and get contextual
representations for the input sentence W =
{wo, wa, ..., wn} as well as the event type T' =
{t, ¢, v, ..., 7}

Enriched Contextual Representation Given a
query of each event type, we aim to automatically
extract corresponding event triggers from the input
sentence. To achieve this goal, we need to capture
the semantic correlation of each input token to the
event type. Thus we apply attention mechanism
to learn a weight distribution over the sequence of
contextual representations of the event type query
and get an event type aware contextual representa-
tion for each token:
7|

1

T

A; =T Elaij'Tja
j:

aij = cos(wi, Tj)

where Tj is the contextual representation of the
j-th token in the sequence 7' = {¢, 74,74, ..., 7k }.
cos(+) is the cosine similarity function between
two vectors. AZ-T denotes the event type ¢t aware
contextual representation of token w;.

In addition, the prediction of event triggers also
depends on the occurrence of a particular context.
For example, according to ACE event annotation
guidelines (Consortium, 2005), to qualify as a Meet
event, the meeting must be known to be “face-to-
face and physically located somewhere”. To cap-
ture such context information, we further apply
in-context attention to capture the meaningful con-
textual words for each input token:

1 N
w § ~
Ai = N Q5 - Wy,
j=1

aij = p(wi, wj),
where p(.) is the attention function and is computed

as the average of the self-attention weights from
the last m layers of BERT.®

>We use bold symbols to denote vectors.
®We set m as 3 as it achieved the best performance.
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Event Trigger Detection With the event type
oriented attention and in-context attention mecha-
nisms, each token w; from the input sentence will
obtain two enriched contextual representations A}
and A;TF. We concatenate them with the original
contextual representation w; from the BERT en-
coder, and classify it into a binary label, indicating
it as a candidate trigger of event type ¢ or not:

gl = U, ([wi; AY; AT, P)),

where [; | denotes concatenation operation, U, is
a learnable parameter matrix for event trigger de-
tection, and P; is the one-hot part-of-speech (POS)
encoding of word w;. We optimize the following
objective for event trigger detection

V]
1
TV

teT i=1

where 7 is the set of target event types and \ is the
set of tokens from the training dataset. y! denotes
the groundtruth label vector.

2.2 Event Argument Extraction

After detecting event triggers for each event type,
we further extract their arguments based on the
pre-defined argument roles of each event type.

Context Encoding Given a candidate trigger r
from the sentence W = {wy,ws,...,wyx} and
its event type t, we first obtain the set of pre-
defined argument roles for event type t as G =
{g}, g%, ..., g5 }. To extract the corresponding argu-
ments for r, similar as event trigger detection, we
take all argument roles G* as a query and concate-
nate them with the original input sentence

[CLS] wy wy ... wy [SEP] ¢t ¢% ... g% [SEP]

where we use the last [SEP] separator to denote
Other category, indicating the entity is not an argu-
ment. Then, we encode the whole sequence with
another pre-trained BERT encoder (Devlin et al.,
2019) to get the contextual representations of the
sentence W = {wy, W, ..., Wy}, and the argu-
ment roles G = {96; giv "'79337gf0ther]}'

As the candidate trigger r may span multiple
tokens within the sentence, we obtain its contex-
tual representation r as the average of the con-
textual representations of all tokens within r. In
addition, as the arguments are usually detected

from the entities of sentence W, we apply a BERT-
CRF model, which is optimized on the same train-
ing set as event extraction to identify the entities
E = {ei,ea,...,ep}. As each entity may also
span multiple tokens, following the same strategy,
we average the contextual representations of all
tokens within each entity and obtain the entity con-
textual representations as E = {ej,ea, ...,epr}.

Multiway Attention Given a candidate trigger r
of type t and an entity e;, for each argument role
gj-, we need to determine whether the underlying
relation between 7 and e; corresponds to g§. or not,
namely, whether e; plays the argument role of g§<
in event mention 7. To do this, for each ¢;, we first
obtain a trigger-aware entity representation as

hi=Uy - ([e;; r; e;or]),

where o denotes element-wise multiplication oper-
ation. Uy, is a learnable parameter matrix.

In order to determine the semantic correlation be-
tween each argument role and each entity, we first
compute a similarity matrix S between the trigger-
aware entity representations {h, ho, ..., hjs} and
the argument role representations {g{, g, ..., g%}

Sij = \}ga(hi, g5)

where o denotes dot product operator, d denotes
embedding dimension of g?, and S;j indicates the
semantic correlation of entity e; to a particular ar-
gument role g§- given the candidate trigger r.

Based on the correlation matrix S, we further
apply a bidirectional attention mechanism to get an
argument role aware contextual representation for
each entity and an entity-aware contextual repre-
sentation for each argument role as follows:

D
e2g t
A7 = Z Sij g5
Jj=1

M
2e
AP =3"8;; - h;.
i=1

In addition, previous studies (Hong et al., 2011;
Lietal., 2013; Lin et al., 2020) have revealed that
the underlying relations among entities or argument
roles are also important to extract the arguments.
For example, if entity e; is predicted as Attacker
of an Artack event and e; is located in another
entity eo, it’s very likely that es plays an argument
role of Place for the Attack event. To capture the
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underlying relations among the entities, we further
compute the self-attention among them

1

pij = ﬁa(hi, h;j) ,

M
= Z fij - hj
=1

Similarly, to capture the underlying relations
among argument roles, we also compute the self-
attention among them

f; = Softmax () ,

eZe
Ai

1
Vjk = ﬁ(j(g;’ gltf) )

929
E ng gk

Event Argument Predication Finally, for each
candidate event trigger r, we determine whether an
entity e; plays an argument role of g} in the event
mention by classifying it into a binary class:

v; = Softmax(v;) ,

st t 2 2 2 2
z;; = U, ([hi; g}; AT AT A ASY)),
where U, is a learnable parameter matrix for ar-
gument extraction. And Z! is argument role score
matrix for event type ¢. The training objective is to
minimize the following loss function:

Al €]

2: |.A|| ‘Zzzmlogzmy

7j=11i=1

where A denotes the collection of possible argu-
ment roles, and & is the set of entities we need to
consider for argument extraction. z;; denotes the
ground truth label vector. During test, an entity will
be labeled as a non-argument if the prediction for
Other category is 1. Otherwise, it can be labeled
with multiple argument roles.

3 Experiments

3.1 Experimental Setup

We perform experiments on two public bench-
marks, ACEO5-E*7 and ERE-EN (Song et al.,
2015)%. ACE defines 33 event types while ERE
includes 38 types, among which there are 31 over-
lapped event types. We use the same data split of

7https ://catalog.ldc.upenn.edu/
LDC2006T06

8Following Lin et al. (2020), we merge LDC2015E29,
LDC2015E68, and LDC2015E78 as the ERE dataset.

ACE and ERE as (Wadden et al., 2019; Lin et al.,
2020; Du and Cardie, 2020) for supervised event
extraction. For zero-shot event extraction, we use
the top-10 most popular event types in ACE as seen
types for training and treat the remaining 23 event
types as unseen for testing, following Huang et al.
(2018). In our experiments, we use random seeds
and report averaged scores of each setting. More
details regarding the data statistics and evaluation
are shown in Appendix A.

We further design two more challenging and
practical settings to evaluate how well the approach
could leverage resources from different ontologies:
(1) cross-ontology direct transfer, where we only
use the annotations from ACE or ERE for train-
ing and directly test the model on another event
ontology. This corresponds to the domain adapta-
tion setting in transfer learning literature; (2) joint-
ontology enhancement, where we take the annota-
tions from both ACE and ERE as the training set
and test the approaches on ACE or ERE ontology
separately. This corresponds to the multi-domain
learning setting in transfer learning literature. In-
tuitively, an approach with good transferability
should benefit more from the enhanced training
data from other ontologies. We follow the same
train/dev/test splits of ACE and ERE as supervised
event extraction.

3.2 Supervised Event Extraction

Table 1 shows the supervised event extraction re-
sults of various approaches on ACE and ERE
datasets. Though studies (Yang and Mitchell, 2016;
Liu et al., 2020, 2018; Sha et al., 2018; Lai et al.,
2020; Veyseh et al., 2020) have been conducted
on the ACE dataset, they follow different set-
tings’, especially regarding whether the Time and
Value arguments are considered and whether all
Time-related argument roles are viewed as a single
role. Following several recent state-of-the-art stud-
ies (Wadden et al., 2019; Lin et al., 2020; Du and
Cardie, 2020), we do not consider Time and Value
arguments. Our approach significantly outperforms
most of the previous comparable baseline methods,
especially on the ERE dataset!?. Next, we take
BERT_QA_Arg, a QA_based method, as the main
baseline as it shares similar ideas to our approach
to compare their performance.

9Many studies did not describe their argument extraction
setting in detail.

' Appendix E describes several remaining challenges iden-
tified from the prediction errors on ACEQS dataset.
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ACE05-E* ERE-EN

Model

Trigger Ext.  Argument Ext. | Trigger Ext.  Argument Ext.
DYGIE++ (Wadden et al., 2019) 67.3* 42.7* - -
BERT_QA_Arg (Du and Cardie, 2020) 70.6* 48.3* 57.0 39.2
OnelE (Lin et al., 2020) 72.8 54.8 57.0 46.5
Text2Event (Lu et al., 2021) 71.8 54.4 59.4 48.3
FourlE (Nguyen et al., 2021) 73.3 57.5 57.9 48.6
Our Approach 73.6 (0.2) 55.1(0.5) 60.4 (0.3) 50.4 (0.3)

Table 1: Event extraction results on ACEO5-E™ and ERE-EN datasets (F-score, %). * indicates scores obtained
from their released codes. The performance of BERT_QA_Arg is lower than that reported in (Du and Cardie,
2020) as they only consider single-token event triggers. Each score of our approach is the mean of three runs and

the variance is shown in parenthesis.

Specifically, for trigger detection, all the base-
line methods treat the event types as symbols and
classify each input token into one of the target types
or Other. So they heavily rely on human annota-
tions and do not perform well when the annota-
tions are not enough. For example, there are only
31 annotated event mentions for End_Org in the
ACEQS training dataset, so BERT_QA_Arg only
achieves 35.3% F-score. In comparison, our ap-
proach leverages the semantic interaction between
the input tokens and the event types. Therefore it
still performs well when the annotations are lim-
ited, e.g., it achieves 66.7% F-score for End_Org.
In addition, by leveraging the rich semantics of
event types, our approach also successfully detects
event triggers that are rarely seen in the training
dataset, e.g., ousting and purge of End-Position,
while BERT_QA_Arg misses all these triggers. A
more detailed discussion about the impact of seed
triggers is in Appendix B.

For argument extraction, our approach shows
more consistent results than baseline methods. For
example, in the sentence “Shalom was to fly on
to London for talks with British Prime Minister
Tony Blair and Foreign Secretary Jack Straw”, the
BERT_QA_Arg method correctly predicts Tony
Blair and Jack Straw as Entity arguments of the
Meet event triggered by talks, but misses Shalom.
However, by employing multiway attention, espe-
cially the self-attention among all the entities, our
approach can capture their underlying semantic
relations, e.g., Shalom and Tony Blair are two per-
sons to talk, so that it successfully predicts all the
three Entity arguments for the Meet event.

3.3 Zero-Shot Event Extraction

As there are no fully comparable baseline methods
for zero-shot event extraction, we adapt one of the
most recent states of the arts, BERT_QA_Arg (Du

Model Trigger Ext.  Arg Ext. (GT)
BERT_QA_Arg' 31.6 17.0
Our Approach 47.8 43.0

Table 2: Zero-shot F-scores on 23 unseen event types.
1: adapted implementation from (Du and Cardie, 2020).
GT indicates using gold-standard triggers as input.

and Cardie, 2020), which is expected to have
specific transferability due to its QA formulation.
However, the original BERT_QA_Arg utilizes a
generic query, e.g., “trigger” or “verb”, to classify
each input token into one of the target event types
or Other, thus is not capable of detecting event
mentions for any new event types during the test.
We adapt the BERT_QA_Arg framework by taking
each event type instead of the generic words as a
query for event detection. Note that our approach
utilizes the event types as queries without prototype
triggers for zero-shot event extraction.

As Table 2 shows, our approach significantly
outperforms BERT_QA_Arg under zero-shot event
extraction, with over 16% F-score gain on trigger
detection and 26% F-score gain on argument ex-
traction. Comparing with BERT_QA_Arg, which
only relies on the self-attention from the BERT
encoder to learn the correlation between the in-
put tokens and the event types or argument roles,
our approach further applies multiple carefully de-
signed attention mechanisms over BERT contex-
tual representations to better capture the semantic
interaction between event types or argument roles
and input tokens, yielding much better accuracy
and generalizability.

We further pick 13 unseen event types and an-
alyze our approach’s zero-shot event extraction
performance on each of them. As shown in Fig-
ure 3, our approach performs exceptionally well on
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Source Target BERT_QA_Argmui BERT_QA_Argpinary f Our Approach
Trigger Ext.  Argument Ext. | Trigger Ext. ~ Argument Ext. | Trigger Ext.  Argument Ext.

ERE ACE | 48.9 (48.9) 18.5 (18.5) 50.8 (50.8) 20.9 (20.9) 53.9 (52.6) 30.2 (29.6)
ACE ACE 70.6 48.3 722 50.4 73.6 55.1
ACE+ERE | ACE 70.1 47.0 71.3 49.8 74.4 56.2
ACE ERE 47.2 (47.2) 18.0 (18.0) 47.2 (45.0) 17.9 (17.1) 55.9 (46.3) 31.9 (26.0)
ERE ERE 57.0 39.2 56.7 429 60.4 50.4
ACE+ERE | ERE 57.0 38.6 54.6 37.1 63.0 52.3

Table 3: Cross ontology transfer between ACE and ERE datasets (F-score %). The scores in parenthesis indicate
the performance on the ACE and ERE shared event types.

Marry
Divorce
Trial-Hearing
Sue
Release-Parole
Fine
Extradite
Execute
Convict
Charge-Indict
Appeal
Demonstrate
Declare-
Bankruptcy
0.0 0.2 0.4 0.6 0.8 1.0

F1 score

Figure 3: Zero-shot event extraction on each unseen
event type. The number in parenthesis indicates # gold
event mentions of each unseen type in the test set.

Marry, Divorce, Trial-Hearing, and Fine, but worse
on Sue, Release-Parole, Charge-Indict, Demon-
strate, and Declare-Bankruptcy, with two possible
reasons: first, the semantics of event types, such
as Marry, Divorce, is more straightforward and
explicit than other types, such as Charge-Indict,
Declare-Bankruptcy. Thus our approach can bet-
ter interpret these types. Second, the diversity of
the event triggers for some types, e.g., Divorce, is
much lower than other types, e.g., Demonstrate.
For example, among the 9 Divorce event trig-
gers, there are only 2 unique strings, i.e., divorce
and breakdowns, while there are 6 unique strings
among the 7 event mentions of Demonstrate.

3.4 Cross Ontology Transfer

For cross-ontology transfer, we develop two varia-
tions of BERT_QA_Arg as baseline methods: (1)
BERT_QA_Argmui, which is the same as the orig-
inal implementation and use multi-classification to
detect event triggers. (2) BERT_QA_Argpinary, for
which we apply the same query adaptation as Sec-
tion 3.3 and use multiple binary-classification for
event detection. For joint-ontology enhancement,
we combine the training datasets of ACE and ERE

and optimize the models from scratch.'!

Table 3 shows the cross-ontology transfer results
in both direct transfer and enhancement settings.
Our approach significantly outperforms the base-
line methods under all the settings. Notably, for
direct transfer, e.g., from ERE to ACE, by compar-
ing the F-scores on the whole test set with the per-
formance on the ACE and ERE shared event types
(F-scores shown in parenthesis), our approach not
only achieves better performance on the shared
event types but also extracts event triggers and argu-
ments for the new event types in ACE. In contrast,
the baseline methods hardly extract any events or
arguments for the new event types. Moreover, by
combining the training datasets of ACE and ERE
for joint-ontology enhancement, our approach’s
performance can be further boosted compared with
using the annotations of the target event ontology
only, demonstrating the superior transfer capability
across different ontologies. For example, ACE in-
cludes a Transport event type while ERE defines
two more fine-grained types Transport-Person and
Transport-Artifact. By adding the annotations of
Transport-Person and Transport-Artifact from ERE
into ACE, our approach can capture the underly-
ing semantic interaction between Transport-related
event type queries and the corresponding input to-
kens and thus yield 1.5% F-score gain on the Trans-
port event type of ACE test set. In contrast, both
baseline methods fail to be enhanced with addi-
tional annotations from a slightly different event
ontology without explicitly capturing semantic in-
teraction between event types and input tokens. Ap-
pendix C provides a more in-depth comparison be-
tween our approach and the baseline approaches.

" Another intuitive training strategy is to train the model on
the source and target ontologies sequentially. Our pilot study
shows that this strategy performs slightly worse.
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3.5 Ablation Study

We further evaluate the impact of each attention
mechanism on event trigger detection and argu-
ment extraction. As Table 4 shows, all the attention
mechanisms show significant benefit to trigger or
argument extraction, especially on the ERE dataset.
The Event Type Attention and Multiway Atten-
tion show the most effects to trigger and argument
extraction, which is understandable as they are de-
signed to capture the correlation between the input
texts and the event type or argument role-based
queries. We also notice that, without taking entities
detected by the BERT-CRF name tagging model
as input, but instead considering all the tokens as
candidate arguments'?, our approach still shows
competitive performance for argument extraction
compared with the strong baselines. More ablation
studies are discussed in Appendix D.

Model ACE ERE
Our Approach 73.6 | 60.4
Trigger w/o Seed Trigger 722 | 58.2
w/o In-Context Attention 72.3 | 579
w/o Event Type Attention 71.1 | 56.9
Our Approach 55.1 | 504
w/o Entity Detection 53.0 | 47.6
Arg. w/o Multiway Attention 53.4 | 42.8
w/o Entity Self-attention 53.7 | 48.3
w/o Arg Role Self-attention | 54.1 | 47.7

Table 4: Results of various ablation studies. Each score
is the average of three runs for each experiment.

3.6 Pros and Cons of Type-oriented Decoding

The advantages of our type-oriented binary decod-
ing include: (1) it allows the model to better lever-
age the semantics of event types which have been
proved effective for both supervised and zero-shot
event extraction; (2) it allows the approach to lever-
age all available event annotations from distinct on-
tologies, which is demonstrated in zero-shot event
extraction and cross-ontology transfer; (3) in prac-
tice, new event types and annotations could emerge
incessantly, and it is not possible to always train a
model for all the event types. Our approach has the
potential to be continuously updated and extract
events for any desired event types.

We also admit that binary decoding usually in-
creases the computation cost. We design two strate-
gies to mitigate this issue: (1) More than 69% of

12We take consecutive tokens predicted with the same argu-
ment role as a single argument span.

the sentences in the training dataset do not con-
tain any event triggers, so we randomly sample
20% of them for training. (2) Our one-time ar-
gument encoding and decoding strategies extract
all arguments of each event trigger at once. It
is more efficient than the previous QA-based ap-
proaches, which only extract arguments for one
argument role at once. With these strategies, for
trigger detection, our approach takes 80% more
time for training and 19% less for inference com-
pared with BERT_QA_Arg which relies on multi-
class classification, while for argument extraction,
our approach takes 36% less time for training and
inference than BERT_QA_Arg. Even on a more
fine-grained event ontology MAVEN (Wang et al.,
2020), which consists of 168 event types, for trig-
ger extraction, our approach roughly takes 20%
more time for training and twice the time for infer-
ence compared with BERT_QA_Arg, with slightly
better performance than the state of the art (Wang
et al., 2021)'3.

4 Related Work

Traditional event extraction studies (McClosky
etal., 2011; Li et al., 2013; Chen et al., 2015; Cao
et al., 2015; Feng et al., 2016; Yang and Mitchell,
2016; Nguyen et al., 2016; Zhang et al., 2017; Wad-
den et al., 2019; Lin et al., 2020; Wang et al., 2021)
usually detect event triggers and arguments with
multi-class classifiers. Unlike all these methods
that treat event types and argument roles as sym-
bols, our approach considers them queries with
rich semantics and leverages the semantic interac-
tion between input tokens and each event type or
argument role.

Several studies have explored the semantics of
event types based on seed event triggers (Bronstein
et al., 2015; Lai and Nguyen, 2019; Zhang et al.,
2021), event type structures (Huang et al., 2016,
2018), definitions (Chen et al., 2019) and latent rep-
resentations (Huang and Ji, 2020). However, they
can hardly be generalized to argument extraction.
Question answering based event extraction (Du and
Cardie, 2020; Liu et al., 2020; Li et al., 2020a; Lyu
et al., 2021) can take advantage of the semantics
of event types and the large-scale question answer-
ing datasets. Compared with these methods, there
are three different vital designs, making our ap-
proach perform and be generalized better than these

130Our approach achieves 68.8% F-score on MAVEN. We do
not discuss more as MAVEN only contains trigger annotations.
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QA-based approaches: (1) our approach directly
takes event types and argument roles as queries. In
contrast, previous QA-based approaches rely on
templates or generative modules to create natural
language questions. However, it is difficult to find
the optimal format of questions for each event type,
and many studies (Du and Cardie, 2020; Li et al.,
2020b) have shown that MRC or QA models are
sensitive to the subtle change of the questions. (2)
QA-based approaches can only detect arguments
for one argument role at once, while our approach
extracts all arguments of an event trigger with one-
time encoding and decoding, which is more effi-
cient and leverages the implicit relations among
the candidate arguments or argument roles. (3)
QA-based approaches rely on span prediction to
extract arguments without requiring entity extrac-
tion, which could result in more entity boundary
errors. Thus we choose to pre-train a name tag-
ging model and use binary decoding over system
detected entities.Moreover, it is pretty challenging
to fully adapt the event extraction task to the span-
based Question Answering. The main reason is that
each sentence may contain multiple triggers for a
particular event type. Even if we can formalize a
question, e.g., “what is the trigger for Attack?” it
is difficult for the model to return all the spans of
event triggers correctly.

5 Conclusion and Future Work

We refine event extraction with a query-and-extract
paradigm and design a new framework that lever-
ages rich semantics of event types and argument
roles and captures their interactions with input texts
using attention mechanisms to extract event trig-
gers and arguments. Experimental results demon-
strate that our approach achieves state-of-the-art
performance on supervised event extraction and
shows prominent accuracy and generalizability to
new event types and across ontologies. In the fu-
ture, we will explore better representations of event
types and argument roles and combine them prompt
tuning approach further to improve the accuracy
and generalizability of event extraction.
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A Data Statistics and Implementation
Details

Table 5 shows the detailed data statics of the train-
ing, development and test sets of the ACEO5S-E+
and ERE datasets. The statistics for the ERE
dataset is slightly different from previous work (Lin
et al., 2020; Lu et al., 2021) as we consider the
event triggers that are annotated with multiple types
as different instances while the previous studies
just keep one annotated type for each trigger span.
For example, in the ERE-EN dataset, a token “suc-
ceeded” in the sentence “Chun ruled until 1988
, when he was succeeded by Roh Tae - woo , his
partner in the 1979 coup .” triggers a End-Position
event of Chun and a Start-Position of Roh. Previ-
ous classification based approaches did not predict
multiple types for each candidate trigger.

Dataset Split  #Events # Arguments
Train 4419 6605

ACEO5-E+  Dev 468 757
Test 424 689
Train 7394 11576

ERE-EN Dev 632 979
Test 669 1078

Table 5: Data statistics for ACE2005 and ERE datasets.

Zero-Shot Event Extraction To evaluate the
transfer capability of our approach, we use the top-
10 most popular event types in ACEOS as seen
types for training and treat the remaining 23 event
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types as unseen for testing, following Huang et al.
(2018). The top-10 training event types include
Attack, Transport, Die, Meet, Sentence, Arrest-Jail,
Transfer-Money, Elect, Transfer-Ownership, End-
Position. We use the same data split as supervised
event extraction but only keep the event annotations
of the 10 seen types for training and development
sets and sample 150 sentences with 120 annotated
event mentions for the 23 unseen types from the
test set for evaluation.

Implementation For fair comparison with pre-
vious baseline approaches, we use the same pre-
trained bert-large—uncased model for fine-
tuning and optimize our model with BertAdam.
We optimize the parameters with grid search: train-
ing epoch 10, learning rate € [3e-6, le-4], train-
ing batch size € {8,12,16, 24, 32}, dropout rate
€ {0.4,0.5,0.6}. Our experiments run on one
Quadro RTX 8000. For trigger detection, the aver-
age runtime is 3.0 hours. For argument detection,
the average runtime is 1.3 hours. We use Spacy to
generate POS tags.

Evaluation Criteria For evaluation of super-
vised event extraction, we use the same criteria
as (Li et al., 2013; Chen et al., 2015; Nguyen et al.,
2016; Lin et al., 2020) as follows:

» Trigger: A trigger mention is correct if its
span and event type matches a reference trig-
ger. Each candidate may act as triggers for
multiple event occurrences.

e Argument: An argument prediction is correct
only if the event trigger is correctly detected.
Meanwhile, its span and argument role need
to match a reference argument. An argument
candidate can be involved in multiple events
as different roles. Furthermore, within a single
event extent, an argument candidate may play
multiple roles.

B Impact of Seed Triggers

To investigate the impact of seed triggers on event
trigger extraction, we take the supervised event
extraction ACE dataset as a case study, where we
divide the triggers in the evaluation dataset into two
groups: overlapped triggers with the seeds or non-
overlapped ones with the seeds. Then, we compare
the performance of our approach with and with-
out using seed triggers as part of the event type

representations. As Table 6 shows, by incorpo-
rating the seed triggers as part of the event type
representations, our approach achieves better per-
formance on both overlapped and non-overlapped
triggers, demonstrating the benefit of seed triggers
on representing event types. As the total number of
overlapped triggers (34) is much lower than that of
non-overlapped triggers (390), we view the impact
of seed triggers on overlapped and non-overlapped
triggers as comparable. On the other hand, by com-
paring our approach without using seed triggers
with the BERT_QA_Arg baseline, our approach
also achieves much better performance which is
mostly due to the attention mechanism we used
which can better capture the semantic consistency
between the input tokens and the event type query
which just consists of the event type name.

C In-depth Comparison for Cross
Ontology Transfer

To deeply investigate the reason that our approach
performs better than QA-based baselines from
cross ontology transfer, we conducted ablation
study by removing the seed triggers from the event
type queries of our approach, as shown in Table 7.
The BERT_QA_Argny,y utilizes a generic query,
e.g., what’s the trigger, and classify each input to-
ken into one of the target types. It’s essentially
a multiclass classifier but just taking a query as
the prompt. The BERT_QA_Argpinary utilizes each
event type as the query to extract the correspond-
ing event mentions. Comparing the two baseline
methods, BERT_QA _Argpinary Works slightly bet-
ter than BERT_QA_Argmui, especially on ACE,
demonstrating the benefit of type-oriented binary
decoding mechanism. The only difference be-
tween BERT_QA_Argpinary and our approach with-
out seed triggers is the learning of enriched con-
textual representations. The comparison of their
scores demonstrates the effectiveness of the atten-
tion mechanisms designed for trigger extraction. Fi-
nally, by incorporating the seed triggers into event
type representations, our approach is further im-
proved significantly for all the settings. These in-
depth comparisons demonstrate the effectiveness
of both seed triggers and the attention mechanisms
in our approach for transferring annotations from
old types to the new types.
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Overlapped Triggers

Non-overlapped Triggers

OnelE (Lin et al., 2020) 88.2 71.0
BERT_QA_Arg (Du and Cardie, 2020) 72.2 70.9
Our Approach w/o Seed Triggers 88.9 70.8
Out Approach w/ Seed Triggers 97.2 71.3

Table 6: Impact of seed triggers on supervised trigger extraction on ACE (F-score, %)

Our Approach
Source Target BERT_QA_Argmui f = BERT_QA_Argpinry w/o Seed Triggerspp w/ Seed Triggers
ERE ACE 48.9 50.8 53.8 53.9
ACE ACE 70.6 72.2 72.2 73.6
ACE+ERE | ACE 70.1 71.3 722 74.4
ACE ERE 47.2 47.2 48.7 55.9
ERE ERE 57.0 56.7 58.2 60.4
ACE+ERE | ERE 57.0 54.6 56.2 63.0

Table 7: Cross ontology transfer results for queries without seed triggers, between ACE and ERE datasets (F-score

%)

D More Ablation Studies of Supervised
Event Extraction

The entity recognition model is based on a pre-
trained BERT (Devlin et al., 2019) encoder with
a CRF (Lafferty et al., 2001; Passos et al., 2014)
based prediction network. It’s trained on the same
training dataset from ACEQS before event extrac-
tion, and the predictions are taken as input to argu-
ment extraction to indicate the candidate argument
spans. Table 8 shows the comparison of the entity
extraction performance between our BERT-CRF
approach and the baselines.

Model F1
OnelE 89.6
FourlE 91.1
BERT+CRF 89.3

Table 8: Performance of Entity Extraction (F-score, %)

To understand the factors that affect argument
extraction and decompose the errors propagated
along the learning process (from predicted triggers
or predicted entities), we conduct experiments that
condition on given ground truth labels for those
factors. Specifically, we investigate three settings:
1) given gold entity, 2) given gold event trigger,
and 3) given both gold entity and event trigger. The
experimental results is shown in Table 9.

Given Information ACE ERE
None 55.1 50.2
GE 59.7 (+4.6) 59.5 (+9.3)
GT 68.7 (+13.6) | 67.2 (+17.0)
GT & GE 74.2 (+19.1) | 72.2 (+22.0)

Table 9: Performance of argument extraction condition-
ing on various input information: gold trigger (GT),
and gold entities (GE). (F-score, %)

E Remaining Challenges for Supervised
Event Extraction

We sample 200 supervised trigger detection and ar-
gument extraction errors from the ACE test dataset
and identify the remaining challenges.

Lack of Background Knowledge Background
knowledge, as well as human commonsense knowl-
edge, sometimes is essential to event extraction.
For example, from the sentence “since the intifada
exploded in September 2000, the source said”, with-
out knowing that intifada refers to a resistance
movement, our approach failed to detect it as an
Attack event mention.

Pronoun Resolution Extracting arguments by
resolving coreference between entities and pro-
nouns is still challenging. For example, in the fol-
lowing sentence “Attempts by Laleh and Ladan to
have their operation elsewhere in the world were
rejected, with doctors in Germany saying one or
both of them could die”, without pronoun resolu-
tion, our approach mistakenly extracted one, both
and them as Victims of the Die event triggered by
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die, while the actual Victims are Ladan and Laleh.

Ambiguous Context The ACE annotation guide-
lines (Consortium, 2005) provide detailed rules and
constraints for annotating events of all event types.
For example, a Meet event must be specified by
the context as face-to-face and physically located
somewhere. Though we carefully designed sev-
eral attention mechanisms, it is difficult for the
machines to capture such context features accu-
rately. For example, from the sentence “The admis-
sion came during three-day talks in Beijing which
concluded Friday, the first meeting between US
and North Korean officials since the nuclear crisis
erupted six months ago.”, our approach failed to
capture the context features that the talks is not an
explicit face-to-face meet event, and thus mistak-
enly identified it as a Meet event mention.
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Feng Yao'*, Chaojun Xiao>?*, Xiaozhi Wang?>?, Zhiyuan Liu
Lei Hou?3, Cunchao Tu®, Juanzi Li>?, Yun Liu', Weixing Shen', Maosong Sun

2,345
b
2,345

ISchool of Law, Institute for Al and Law, Tsinghua University, Beijing, China
2Dept. of Comp. Sci. & Tech., Institute for Al Tsinghua University, Beijing, China
3Beijing National Research Center for Information Science and Technology, China

“International Innovation Center of Tsinghua University, Shanghai, China
SBeijing Academy of Artificial Intelligence, Beijing, China
®Beijing Powerlaw Intelligent Technology Co., Ltd., China

{yaof20,xiaocj20}@mails.tsinghua.edu.cn
{liuzy,wxshen}@tsinghua.edu.cn

Abstract

Recognizing facts is the most fundamental
step in making judgments, hence detecting
events in the legal documents is important
to legal case analysis tasks. However, ex-
isting Legal Event Detection (LED) datasets
only concern incomprehensive event types and
have limited annotated data, which restricts
the development of LED methods and their
downstream applications. To alleviate these
issues, we present LEVEN, a large-scale Chi-
nese LEgal eVENt detection dataset, with
8,116 legal documents and 150,977 human-
annotated event mentions in 108 event types.
Not only charge-related events, LEVEN also
covers general events, which are critical for le-
gal case understanding but neglected in exist-
ing LED datasets. To our knowledge, LEVEN
is the largest LED dataset and has dozens of
times the data scale of others, which shall
significantly promote the training and evalua-
tion of LED methods. The results of exten-
sive experiments indicate that LED is chal-
lenging and needs further effort. Moreover,
we simply utilize legal events as side infor-
mation to promote downstream applications.
The method achieves improvements of average
2.2 points precision in low-resource judgment
prediction, and 1.5 points mean average preci-
sion in unsupervised case retrieval, which sug-
gests the fundamentality of LED. The source
code and dataset can be obtained from https:
//github.com/thunlp/LEVEN.

1 Introduction

Finding out the occurred events and causal rela-
tions between them is fundamental to analyzing
legal cases and making judgments. Legal event
detection (LED) aims to automatically extract the

*Equal contribution. Listing order is random.
t Corresponding authors.
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Fact Description

Alice drove a car at night and crashed into Bob, a
pedestrian, on Green Avenue. To prevent being spotted,
Alice took Bob away from the scene, dumped him under
an isolated bridge and drove off in a panic. Two hours later,
Bob died of excessive bleeding ...

Event Detection
Event Timeline

crashed into dumped drove off %
& 8- & A
A e o 7
dumped Trigger Word Event Type Result
Related Law Article
Traffic accident crime ... if the occurs, the

crime should be sentenced to imprisonment more than 3
if the perpetrator

, he shall be convicted of
Intentional homicide crime and sentenced to death, life

years but less than 7 years ...
the victim, resulting in the

imprisonment or imprisonment of no less than 10 years ...
Crime & Prison Term

Intentional homicide crime; 10 years and 6 months

Figure 1: An example legal document describing the
fact with the annotated event triggers, the correspond-
ing event types, the related law article, and penalties.

event triggers from legal cases and then classify
their corresponding event types, which will natu-
rally benefit many legal artificial intelligence appli-
cations, such as Legal Judgment Prediction (LJP)
and Similar Case Retrieval (SCR) (Zhong et al.,
2020a). For instance, Figure 1 shows a case with
the trigger words highlighted in the plain text and
the corresponding event types. Based on the de-
tected events, we can observe that Alice causes a
traffic accident, and the subsequent Desertion
and Escaping events jointly result in the Death
event, which changes Alice’s charge from traffic
accident crime to intentional homicide crime and
increases the expected penalties.

Findings of the Association for Computational Linguistics: ACL 2022, pages 183 - 201
May 22-27, 2022 (©)2022 Association for Computational Linguistics



Inspired by the previous success for general-
domain event detection (Ji and Grishman, 2008;
Li et al., 2013; Chen et al., 2015; Nguyen et al.,
2016; Feng et al., 2016; Yan et al., 2019; Wang
et al., 2020), some works attempt to build LED sys-
tems with hand-crafted features (Lagos et al., 2010;
Bertoldi et al., 2014), or neural networks (Li et al.,
2019, 2020a; Shen et al., 2020). However, two ma-
jor challenges of existing LED resources seriously
restrict the development of LED methods:

(1) Limited Data. Existing LED datasets (Shen
et al., 2020; Li et al., 2020a) only contain thou-
sands of event mention annotations, which can not
provide sufficient training signals and reliable eval-
uation results. To promote the progress of legal
information extraction and legal document analy-
sis, it is an urgent need to develop a large-scale and
high-quality dataset for the LED task. (2) Incom-
prehensive Event Schema. Existing LED works
merely concern a dozen of charge-oriented event
types, which are either the judicial event types de-
fined in general-domain datasets (Maxwell et al.,
2009) or some newly-defined charge-oriented event
types to meet specific downstream requirements (Li
et al., 2019, 2020a; Shen et al., 2020). Their event
schemata only cover a narrow scope of charges.
Besides, existing datasets focus on charge-oriented
events and ignore the general events in the cases,
such as Desertion and Escaping in Figure 1,
which are also critical for analyzing legal cases.

To alleviate the above issues and provide a solid
foundation for LED, we present LEVEN, a large-
scale Chinese legal event detection dataset, based
on the cases published by the Chinese government!.
We highlight LEVEN with the following merits:

(1) Large scale. LEVEN contains 8,116 le-
gal documents covering 118 criminal charges and
has 150,977 human-annotated event mentions,
which is dozens of times larger than previous LED
datasets. To the best of our knowledge, LEVEN
is also the largest Chinese event detection dataset.
Based on the scale, we believe LEVEN can well
train and reliably benchmark data-driven LED
methods, which shall promote this field. (2) High
coverage. LEVEN contains 108 event types in
total, including 64 charge-oriented events and 44
general events. The LEVEN event schema has a so-
phisticated hierarchical structure, which is shown
in appendix E. To build the schema, we conduct a
two-stage event schema construction process. We

'https://wenshu.court.gov.cn/

first summarize the critical charge-oriented event
types based on law articles and then simplify and
supplement the event schema based on the events
in sample cases. The two-stage process ensures the
high coverage of LEVEN schema.

To explore the challenges of LEVEN, we im-
plement some state-of-the-art models and evaluate
them on our dataset. The results show that though
existing models can achieve better performance on
legal documents than in the general domain, it still
needs future efforts to reach a practical level.

Moreover, we demonstrate the fundamentality of
LED for downstream Legal Al applications. Specif-
ically, we train an LED model on LEVEN and use
it to detect events for unlabeled legal documents.
We then use the auto-detected events as side in-
formation to handle LJP and SCR. Experiments
show that the performance of these two tasks can
be substantially improved in this simple way, indi-
cating that LED can provide helpful fine-grained
information and thus serve as a fundamental pro-
cess in Legal Al. Hence we advocate more research
attention to LED.

2 Related Work

2.1 Event Detection

Event detection (ED) is an important information
extraction task and many efforts have been de-
voted to (Ji and Grishman, 2008; Li et al., 2013;
Chen et al., 2015; Nguyen et al., 2016; Liu and
Zhao, 2017; Zhao et al., 2018; Yan et al., 2019;
Wang et al., 2021b). The majority of existing
ED datasets are developed for the general do-
main (Christopher et al., 2006; Song et al., 2015;
Wang et al., 2020) and mostly for English. Be-
sides, some datasets are also developed for spe-
cific domains (Thompson et al., 2009; Kim et al.,
2008; Ritter et al., 2012; Yang et al., 2018; Zheng
et al., 2019) and Chinese (Li et al., 2020b). Con-
sidering the rapid growth of Chinese legal artificial
intelligence (Zhong et al., 2020a), we believe con-
structing Chinese LED datasets is helpful and nec-
essary. In the context of LED, some works define
specific legal event types to analyze for legal docu-
ments (Maxwell et al., 2009; Lagos et al., 2010; Li
et al., 2019; Shen et al., 2020; Li et al., 2020a), but
these constructed datasets are typically small-scale
and cannot well train and evaluate practical LED
systems. Hence we construct LEVEN, which is the
largest LED dataset and also the largest Chinese
event detection dataset to our knowledge.
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2.2 Legal Artificial Intelligence

Thanks to the rapid progress of natural language
processing and the openness of legal documents,
legal artificial intelligence (LegalAl) has drawn in-
creasing attention from both Al researchers and
legal professionals in recent years (Bommarito 11
et al., 2021; Ye et al., 2018; Chalkidis et al., 2021;
Zhong et al., 2020a; Tsarapatsanis and Aletras,
2021; Wang et al., 2021a). LegalAl can not only
provide handy references for people who are not
familiar with legal knowledge, but also reduce the
redundant paperwork for legal practitioners. Many
efforts have been devoted to a variety of Legal Al
tasks, including legal judgment prediction (Zhong
et al., 2018; Chalkidis et al., 2019; Yang et al.,
2019), legal question answering (Ravichander et al.,
2019; Zhong et al., 2020b; Kien et al., 2020), con-
tract review (Hendrycks et al., 2021; Zhang et al.,
2021; Koreeda and Manning, 2021), legal case re-
trieval (Ma et al., 2021; Shao et al., 2021), and
legal pre-trained models (Chalkidis et al., 2020;
Xiao et al., 2021). Most existing works focus on
the application in Legal Al while ignoring the ba-
sic key event information in the legal documents.
Some works attempt to extract events from the le-
gal documents (Li et al., 2019; Shen et al., 2020;
Li et al., 2020a). But these works are limited to the
event coverage and the number of annotation in-
stances. We argue that our proposed large-scale and
comprehensive dataset, LEVEN, can promote the
development of legal event detection and thus ben-
efit downstream legal artificial intelligence tasks.

3 Data Collection

Our ultimate goal is to construct a large-scale legal
event detection dataset with a high-coverage event
type schema and sufficient event instances, which
is scarce in existing LED datasets. Therefore, we
need to redefine a new event schema, select the
trigger candidates, and annotate the correspond-
ing event types. As criminal cases usually involve
principal rights and complex facts, we focus on
criminal legal events in this paper. In the follow-
ing sections, we first introduce the construction
of event schema and then describe the process of
annotation of candidates and related event types.

3.1 Event Schema Construction

To construct an event schema with high coverage,
we need to consider events for both judicial behav-
iors and general behaviors. Therefore, we follow a

two-stage process to define our new event schema:
1) We first collect charge-oriented events based on
the law articles and legal textbooks. 2) We then
collect general events from the sampled case docu-
ments. The two-stage process enables LEVEN to
cover essential events recorded in legal documents.

Inspired by previous works (Li et al., 2020a;
Shen et al., 2020), in the first stage, we use
law articles and a classical legal textbook, Spe-
cific Theory of Criminal Law, as our references
to summarize the charge-oriented events. Crim-
inal Law provides the definition of each crimi-
nal charge and a hierarchical structure for these
charges. We first collect 459 criminal charges,
which are then divided into 61 types based on the
targets and measures of criminal behaviors. Con-
sidering that some criminal charges are too abstract
to be specific event types (e.g., dereliction),
we manually filter out them. Besides, as there
are some similar charges involving the same
event types (e.g., intentional_homicide
and involuntary_homicide), we merge
them. After the first stage, we obtain 198 event
types highly correlating to the criminal charges.

As the charge-oriented event schema is con-
structed from legal professional references, there
are two main issues: 1) The charge-oriented event
schema mainly focuses on illegal behaviors, while
ignoring important general behaviors. 2) There
are some event types that infrequently or never oc-
cur in real-world cases. To address these issues,
we further modify the event schema based on the
summarization of real-world cases. Specifically,
we sample 20 case documents for each criminal
charge, which can ensure good coverage. And
then we invite a legal expert to manually extract
and summarize the event mentions occurring in
sampled cases. Based on the extracted events, we
further filter out the abstract event types and merge
some detailed event types in the schema. We fi-
nally get 108 event types to annotate, with both
charge-oriented events and general events.

According to the criminal theory, the key ele-
ments of the crime include the act, the harmful re-
sults, and the causal relation between them. There-
fore, we organize the event types in a hierarchical
structure, with three categories representing behav-
ior and a category representing results. During the
annotation process, the annotators are required to
label the most fine-grained types. Please refer to
Appendix E for details of the event schema.
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Dataset \ #Documents  #Tokens #Sentences #Event Types #Event Mentions Language Domain
MAVEN 4,480 1,276k 49,873 168 118,732 English  General
ACE2005-zh 633 185k 7,955 33 4,090 Chinese  General
DuEE 11,224 530k 16,900 65 19,640 Chinese  General
DivorceEE* 3,100 - - 13 - Chinese Legal
CLEE* 3,000 - 6,538 5 6,538 Chinese Legal
DyHiLED* - - - 11 2,380 Chinese Legal
LEVEN | 8,116 2,241k 63,616 108 150,977 Chinese Legal

Table 1: The statistics of widely-adopted event detection datasets. For Chinese datasets, we adopt JIEBA toolkit to
perform tokenization. Datasets denoted with * are not publicly available, and — means the value is not accessible.

3.2 Document Selection

To support the manual annotation, we adopt cases
collected from the government website as our data
source. Following Xiao et al. (2018), we only keep
the criminal judgment documents for annotation.

We first extract the related charges with reg-
ular expression from the documents and divide
each document into several parts based on the con-
tent, where only the fact description is maintained.
Moreover, to ensure the dataset quality, we filter
out the documents with less than 50 characters and
more than 2, 500 characters in fact description. No-
tably, though we get 198 charges in the first stage of
event schema construction, there are some charges
where no cases are published due to the privacy
and secrecy involved. Therefore, we get case docu-
ments with only 107 charges. We randomly sample
200 documents for charges with high frequency and
maintain all cases for charges with low frequency.
Finally, we select 8, 288 documents for annotation.
After discarding the low-quality documents labeled
by annotators, we finally retain 8, 166 documents.

3.3 Candidate Selection

The annotation of LED dataset requires the anno-
tators to find the triggers from the documents and
label the corresponding event types within 108 op-
tions. Following Wang et al. (2020), we adopt
heuristic methods to automatically select the trig-
ger candidates and narrow down the event type
options for each trigger candidate.

Candidate trigger selection. Inspired by Chen
et al. (2017), which utilizes the lexical unit in
FrameNet (Baker et al., 1998) to select trigger
words, we require a legal expert to collect semantic-
related words for each event type in our schema.
And we obtain a semantic vocabulary consisting of
1,013 words with their corresponding event types.
Then we apply tokenization and POS tagging with

JIEBA toolkit?, and all the content words, including
nouns and verbs, are selected as trigger candidates.