Neural Question Answering at BioASQ 5B

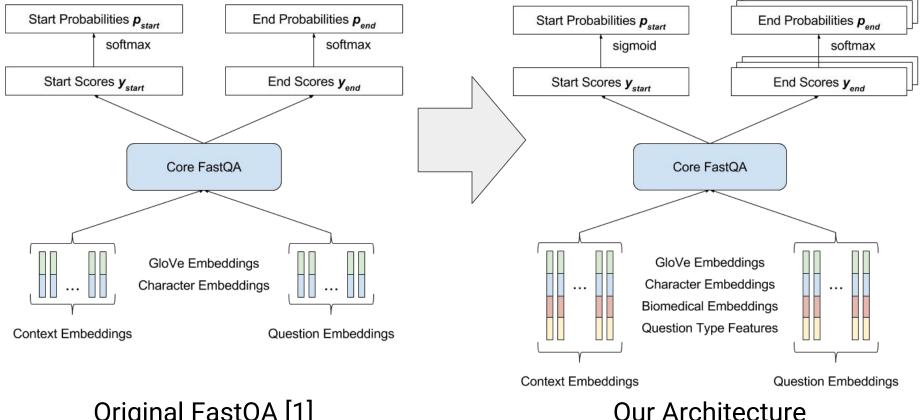
Georg Wiese, Dirk Weissenborn, Mariana Neves

German Research Center for Artificial Intelligence

Digital Engineering • Universität Potsdam

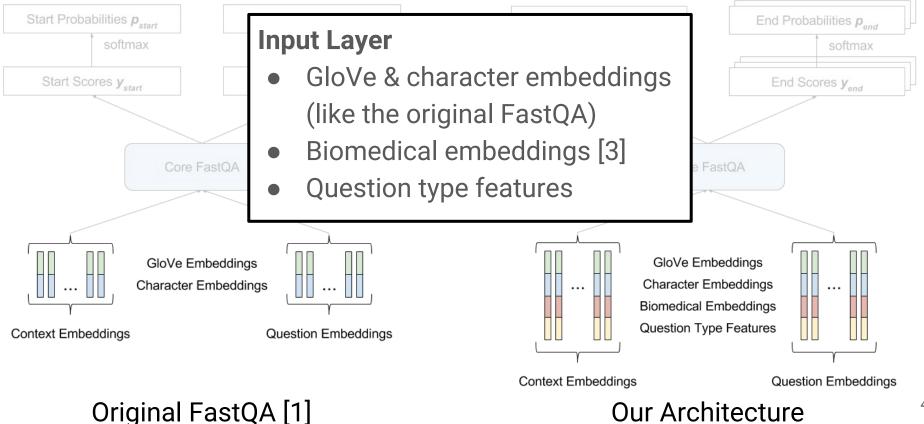
Motivation

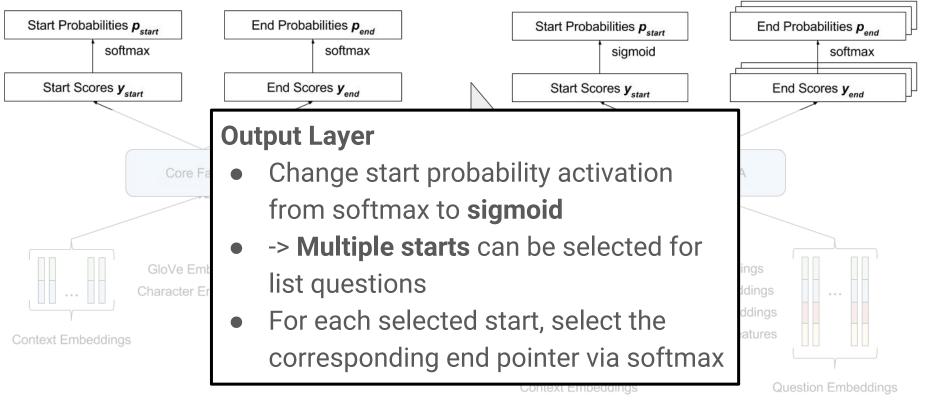
- Neural question answering (QA) systems are end-to-end trainable machine learning models which achieve top performance in domains with large training datasets
- We apply an **extractive neural QA** system (FastQA [1]) to BioASQ 5B Phase B (list & factoid questions)
- Extractive QA: Answer is given as start and end pointers in the context (snippets)



Original FastQA [1]

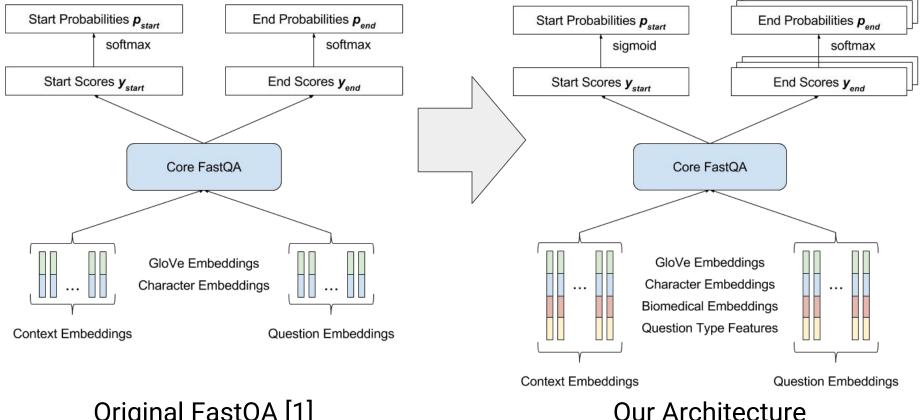
3





Original FastQA [1]

Our Architecture



Original FastQA [1]

6

Training Procedure

- **Problem**: Neural QA typically requires ~10⁵ questions to train
- Datasets of such scale exist in the open domain, e.g. SQuAD [2] with $\sim 10^5$ factoid questions on Wikipedia articles
- We train in two steps:
 - 1. Pre-training on a large (~10⁵ questions) open-domain dataset (SQuAD)
 - 2. Fine-tuning on BioASQ ($\sim 10^3$ questions)

Systems

- We trained **five models** using 5-fold cross validation on all available training data
- We submitted **two systems**:
 - **Single**: Best single model according to its respective development set
 - **Ensemble**: Ensemble of all five models (averaging scores before sigmoid/softmax activation)

Results

Factoid Results:

- Our system won 3/5 batches
- Averaged over the five batches, our system (ensemble) was 1.5 percentage points above the best competitor

Batch	Best Competitor	Single	Ensemble
1	40.0% (LabZhu-FDU)	52.0%	57.1%
2	48.4% (LabZhu-FDU)	38.3%	42.6%
3	38.5% (LabZhu-FDU)	43.1%	42.1%
4	32.1% (LabZhu-FDU)	29.7%	36.1%
5	42.4% (LabZhu-FDU)	39.2%	35.1%
Average	40.3%	39.7%	41.8%

Results

List Results:

- Our system won 2/5 batches
- On average, the best competitor performed 3.4 percentage points better than our ensemble model

Batch	Best Competitor	Single	Ensemble
1	31.3% (BioASQ_Baseline)	33.6%	33.5%
2	50.0% (LabZhu-FDU)	29.0%	26.2%
3	39.0% (LabZhu-FDU)	41.5%	49.5%
4	37.5% (LabZhu-FDU)	24.2%	29.3%
5	41.0% (LabZhu-FDU)	36.1%	39.1%
Average	39.2%	33.4%	35.8%

Discussion

Strengths: Competitive performance, despite:

- Less feature engineering than traditional QA systems
- A less domain-dependent architecture, because we don't rely on domain-specific structured resources

Limitations:

- Extractive QA cannot generate answer which are not explicitly mentioned in the snippets
 - -> No yes/no & summary questions

References

[1] Weissenborn et al.: "Making Neural QA as Simple as Possible but not Simpler"

[2] Rajpurkar et al.: "SQuAD: 100,000+ Questions for Machine Comprehension of Text"

[3] Pavlopoulos et al.: "Continuous Space Word Vectors Obtained by Applying Word2Vec to Abstracts of Biomedical Articles"

Thank You. Questions?

Related CONLL paper:

"Neural Domain Adaptation for Biomedical Question Answering"

Contact:

georg.wiese@student.hpi.de

Neural Domain Adaptation for Biomedical Question Answering

Georg Wiese^{1,2}, Dirk Weissenborn², Mariana Neves¹

'Hasso Plattner Institute, August Bebel Strasse 88, Potsdam, Germany 'Language Technology Lab, DFKI, Alt-Moabit 91c, Berlin, Germany

Motivation

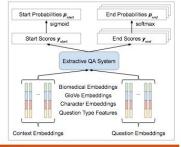
- Neural question answering (QA) systems outperform traditional methods in open-domain factoid QA.
- In biomedicine, datasets are too small to apply deep learning directly.
- · Can we bridge this gap via domain adaptation?

Architecture & Training

- Our architecture wraps an existing neural QA system (FastQA [1]), with the following changes:
- Input Layer: In addition to GloVe embeddings and character embeddings, we feed biomedical token embeddings and question type features.
- Output Layer: We generalize our activation and decoding process to support list questions in addition to factoid questions.
- During training, we explore several domain adaptation techniques, including mere fine-tuning, joint training, and forgetting cost regularization [2].

Domain Adaptation

- Our system is pre-trained on SQuAD, a large-scale (10⁵) open-domain factoid QA dataset.
- Then, we adapt the system to the biomedical domain, using BioASQ, a small (10³) biomedical QA dataset.



Results

- Pre-training on SQuAD and fine-tuning on BioASQ already improves performance significantly over training on BioASQ only.
- The forgetting cost improves results slightly for factoid questions.

Experiment	Factoid MRR	List F1
Training on BioASQ only	17.9%	19.1%
Training on SQuAD only	20.0%	8.1%
Fine-tuning on BioASQ	24.6%	23.6%
Fine-tuning on BioASQ w/ forgetting cost	26.2%	21.1%

Comparison to state of the art

- In order to compare our system to the state of the art in biomedical QA, we tested it on the 2016 BioASQ challenge.
- We compared a single model and model ensemble.
- Our system achieves state-of-the-art results on factoid questions and competitive results on list questions.

Experiment	Factoid MRR	List F1	
Single model	24.8%	27.8%	
Ensemble model	27.5%	26.5%	
Best competitor	24.0%	28.1%	

Research Center for Artificial Intelligence

