Learning with Structured Representations for Negation Scope Extraction Hao Li and Wei Lu

Singapore University of Technology and Design hao_li@mymail.sutd.edu.sg luwei@sutd.edu.sg

Task

Negation Scope Detection

Recognize the negation scope, the parts of the sentence being negated, given the negation cue.

Example

He declares that he heard cries but is unable to state from what direction they came .

There is neither money nor credit in it , and yet one would wish to tidy it up .

Motivation

3 types of useful features that can be explicitly and implicitly captured and modelled

- Cue-level features
- Long Distance Dependencies
- Implicit Patterns.

Approach

Linear CRF for Cue-level features

the negation cue type features (c)
relative position with respect to the cue (r)

Negation scope (partial scopes) in orange, negation cue in blue, gaps as non-orange spans

Model

Analysis

Semi is better on recovering discontinuous partial scopes

Semi CRF for Long Distance Dependencies

partial scopes as spans (Semi i)
gaps as spans (Semi o)
both as spans (Semi io)

Latent CRF – Implicit Patterns

- implicit patterns on partial scopes
 (Latent i)
- implicit patterns on gaps (Latent o)
- implicit patterns on both (Latent io)

Main Result

This person is alone and can not <u>be approached by</u> letter without a breach of that absolute secrecy.

He has been there for ten days, and **neither Mr. Warren**, **nor I**, **nor the girl has once set eyes upon him**.

The incorrect predictions by Linear model are underlined

Latent tends to make more accurate predications

• We found that there is only 1 incorrect prediction from the **Latent** *io* that is corrected by the Linear model. This indicates that the **Latent** *io* model is able to fix errors for the **Linear** model without producing other wrong predictions.

Characteristics of our models

- Higher scope-level recall compared to previous works
- Tend to recognize shorter partial scopes
- 45% of top 200 features related to POS bigram

Sustam	To	ken-Le	vel	Scope-Level (Exact Scope Match)							
System	Р.	R.	F_1	P_A .	R_A .	F_{1A}	P_B .	R_B .	F_{1B}		
Read et al. (2012)	-	-	-	98.8	64.3	77.9	-	-	-		
Packard et al. (2014)	86.1	90.4	88.2	98.8	65.5	78.7	-	-	-		
Fancellu et al. (2016)	92.6	85.1	88.7	99.4	63.9	77.8	-	-	-		
Linear (- <i>c</i> - <i>r</i>)	84.7	73.9	78.6	99.2	49.4	65.6	51.5	49.4	50.4		
Linear (-r)	90.6	78.4	84.1	100	60.6	75.5	61.4	60.6	61.0	S	
Linear (-c)	91.0	78.9	84.5	99.3	56.6	72.1	60.0	56.6	58.3		
Linear	94.4	82.6	88.1	100	67.9	80.9	69.3	67.9	68.6	Li	
Semi <i>i</i>	95.0	84.1	89.2	100	67.5	80.6	69.4	67.5	68.4	Ve	
Semi o	94.0	85.3	89.4	100	69.1	81.7	71.1	69.1	70.1	Zo	
Semi io	94.5	84.1	89.0	100	68.3	81.2	70.3	68.3	69.3		
Latent <i>i</i>	94.4	83.4	88.6	99.4	67.9	80.7	69.6	67.9	68.7		
Latent o	90.4	83.9	87.1	99.4	65.5	78.9	66.3	65.5	65.9		
Latent io	94.8	83.2	88.6	100	69.5	82.0	70.6	69.5	70.0	L	

Model Robustness

System	Abstract		Full Paper		Clinical		l	System	Product Review					
	F_{1T}	F_{1A}	PCS	F_{1T}	F_{1A}	PCS	F_{1T}	F_{1A}	PCS	System	F_{1T}	F_{1A}	F_{1B}	PCS
Li et al. (2010)	-	-	81.8	-	-	64.0	-	-	89.8	(Zou et al., 2015)	-	-	-	60.93
Velldal et al. (2012)	-	74.4	-	-	70.2	-	-	90.7	-	Linear	89.60	81.86	69.39	69.39
Zou et al. (2013)	-	-	76.9	-	-	61.2	-	-	85.3	Semi io	90.78	83.49	71.69	71.69
Qian et al. (2016)	89.9	-	77.1	83.5	-	55.3	94.4	-	89.7	Latent io	90.60	83.95	72.43	72.43
Linear	90.3	90.3	82.3	80.8	74.0	58.8	96.4	96.6	93.3					
Semi io	92.1	91.3	84.1	83.1	75.1	60.1	97.5	97. 1	94.4					
Latent io	91.5	90.8	83.2	79.5	71.0	55.1	97.3	97.0	94.1					

CDS-CO (English)

BioScope (English)

CNeSp (Chinese)