Restricted Recurrent Neural Tensor Networks: Exploiting Word Frequency and Compositionality
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Summary

Increasing the capacity of recurrent neural networks
(RNN) usually involves augmenting the size of the
hidden layer, with significant increase of compu-
tational cost. Recurrent neural tensor networks
(RNTN) increase capacity using distinct hidden layer
weights for each word, but with greater costs in
memory usage. In this paper, we introduce re-
stricted recurrent neural tensor networks (r-
RNTN) which reserve distinct hidden layer
weights for frequent vocabulary words while
sharing a single set of weights for infre-
quent words. Perplexity evaluations show that for
fixed hidden layer sizes, -RNTNs improve language
model performance over RNNs using only a small
fraction of the parameters of unrestricted RNTNSs.
These results hold for -RN TNs using Gated Recur-
rent Units and Long Short-Term Memory.

Motivation

Sutskever et al. (2011) increased the performance of
a character-level language model with a multiplicative
RNN (m-RNN), the factored approximation of a re-
current neural tensor network (RNTN), which
maps each symbol to separate hidden layer
weights (recurrence matrices). Besides increas-
ing model capacity while keeping computation
constant, this approach has another motivation: view-
ing the RNN's hidden state as being transformed by
each new symbol in the sequence, it is intuitive that
different symbols will transform the network’s
hidden state in different ways.

Unfortunately, having separate recurrence matri-
ces for each symbol requires memory that is
linear in the symbol vocabulary size (|17]). This
Is not an issue for character-level models, which have
small vocabularies, but is prohibitive for word-level
models which can have vocabulary size in the millions
if we consider surface forms.

r-RNTN

To balance expressiveness and computational cost, we
propose restricting the size of the recurrence tensor in
the RNTN such that memory does not grow linearly
with vocabulary size, while still keeping dedicated ma-
trix representations for a subset of words in the vocabu-
lary. We call these Restricted Recurrent Neural Tensor

Networks (r-RNTN):
hy = o (Wi + UL by 4 6] ")

where U}, is a tensor of K < |V| matrices of size
Hx H, by, isa Hx K bias matrix with columns indexed
by f. The function f(w) maps each vocabulary word
to an integer between 1 and K.

We use the following definition for f:
f(w) = main(rank(w), K)

where rank(w) is the rank of word w when the vocabu-
lary is sorted by decreasing order of unigram frequency.

r-GRU and r-LSTM

GRU:
re =o(Wjxy+ U hy_1 + by)
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LSTM:
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¢y = tanh(Wyz, + Uy hi—1 + b))
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We create -RNTN GRUs (r-GRU) by making U and
b input-specific. For -RNTN LSTMs (r-LSTM), we
do the same for U; and b5.
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Method H | # Params Test PPL | # Params Test PPL Method H | # Params Test PPL
s-RNN 100 2M 146.7 7.6M 236.4 GRU 244 9.6M 92.2
r-RNTN f 100 3M 131.2 11.4M 190.1 GRU 650 15.5M 90.3
RNTN 100 103M 128.8 388M - r-GRU f | 244 15.5M 87.5
m-RNN 100 3M 164.2 11.4M 395.0 LSTM 254 10M 33.8
s-RNN 150 3M 133.7 11.4M 207.9 LSTM 650 16.4M 84.6
~RNTN f 150  5.3M 126.4  19.8M 171.7 | -LSTM f 254  16.4M 87.1

Comparison of validation and test set perplexity for rRNTNs with f mapping (K = 100 for PTB, K = 376 for text8) versus s-RNNs and

m-RNN. r-RNTNs with the same H as corresponding s-RNNSs significantly increase model capacity and performance with no computational
cost. The RNTN was not run on text8 due to the number of parameters required.
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PTB test PPL as K varies from 1 to 10000 (100 for gated net-
works). At K = 100, the -RNTN with f mapping already closely
approximates the much bigger RN TN, with little gain for bigger K,

showing that dedicated matrices should be reserved for frequent
words.

Test PPL

%—7)“”

>

>

>

>

As model capacity grows with K, test set perplexity
drops.

Rank-based f mapping more effective than
nseudo-random  f,,,,¢ mapping.

-or fixed hidden layer sizes, r-RNTNs vyield
significant improvements to s-RNNs, GRUs, and

LSTMs.

Given same # of parameters, r-RNTNs outperform

s-RNNs, r-GRUs outperform GRUs, using smaller
hidden layers.

Conclusion

In this paper, we proposed restricted recurrent neural
tensor networks, a model that restricts the size of recur-
rent neural tensor networks by mapping frequent words
to distinct matrices and infrequent words to shared ma-
trices. r-RNTNs were motivated by the need to in-
crease RNN model capacity without increasing
computational costs, while also satisfying the idea
that some words are better modeled by matrices
rather than vectors (Baroni and Zamparelli, 2010;
Socher et al., 2012). We achieved both goals by prun-
ing the size of the recurrent neural tensor network via
sensible word-to-matrix mapping. Results vali-
dated our hypothesis that frequent words benefit from

richer, dedicated modeling as reflected in large perplex-
ity improvements for low values of K.

Interestingly, results for s-RNINs and r-GRUs
suggest that given the same number of pa-
rameters, it is possible to obtain higher per-
formance by increasing K and reducing H.
This is not the case with r-LSTMs, perhaps to due
to our choice of which of the recurrence ma-
trices to make input-specific. We will further
investigate both of these phenomena in future work,
experimenting with different combinations of word-
specific matrices for r-GRUs and r-LSTMs (rather

than only U* and Uf), and combining our method

with recent improvements to gated networks in lan-
guage modeling (Jozefowicz et al., 2016; Merity
et al., 2018; Melis et al., 2018) which we believe
are orthogonal and hopefully complementary to our
own.

Finally, we plan to compare frequency-based and ad-
ditional, linguistically motivated f mappings
(for example different inflections of a verb
sharing a single matrix) with mappings learned
via conditional computing to measure how external
linguistic knowledge contrasts with knowledge auto-

matically inferred from training data.



