SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment Jisun An¹, Haewoon Kwak¹, Yong-Yeol Ahn²

¹Qatar Computing Research Institute, Hamad Bin Khalifa University ²Indiana University, Bloomington

Q Meaning of words can change?

Yes. **Context** can strongly alter the meaning of words. Fischer, 1958; Eckert and McConnell-Ginet, 2013; Hovy, 2015; Hamilton et al., 2016b

Kill in video games vs. news *Soft* in sports vs. toys

- Basics of our framework, SemAxis
- Building a word embedding of a given corpus
 Defining a semantic axis and computing its vector

Domain-specific sentiment lexicons

Hamilton et al., 2016a

Is it possible to generalize this idea to general word semantics other than sentiment?

3. Projecting word onto a semantic axis

POur key contributions

Evaluation

SemAxis outperforms others on

- the domain-specific word semantics.
- 2. We systematically identify **732 semantic axes** based on the antonym pairs in ConceptNet.

We propose a **general framework** to characterize

- 3. We demonstrate that SemAxis can capture **semantic differences** between two corpora.
- 4. We provide a **systematic evaluation** in comparison to the state-of-the-art, domain-specific sentiment lexicon construction methodologies.

both Standard English and Twitter datasets across all measures.

Domain	Positive pole words	Negative pole words
Standard	good, lovely, excellent, fortunate, pleasant, de- lightful, perfect, loved, love, happy	bad, horrible, poor, unfortunate, unpleas- ant, disgusting, evil, hated, hate, unhappy
Twitter	love, loved, loves, awesome, nice, amaz- ing, best, fantastic, correct, happy	hate, hated, hates, terrible, nasty, aw- ful, worst, horrible, wrong, sad

SemAxis in the wild

Method	AUC	Ternary F1	Tau	
SemAxis	92.2	61.0	0.48	
DENSIFIER	91.0	58.2	0.46	
SentProp	88.4	56.1	0.41	
WordNet	89.5	58.7	0.34	
Twitter				
Method	AUC	Ternary F1	Tau	
SEMAXIS	90.0	59.2	0.57	
DENSIFIER	88.5	58.8	0.55	
SENTPROP	85.0	58.2	0.50	
Sentiment140	86.2	57.7	0.51	

V Identifying 732 semantic axes

- 1. We begin with **a pair of antonyms**, called initial pole words. To build a comprehensive set of initial pole words, we compile a list of antonyms from **ConceptNet 5.5** (Speer et al., 2017).
- 2. To further refine the antonym pairs, we create a **crowdsourcing** task by asking *Do these two words*

We compare supporters of Donald Trump (/r/The_Donald) and Bernie Sanders (/r/SandersForPresident), and examine the semantic differences in minority issue based on different axes.

have opposite meanings?

Challenges

 Small-sized corpus: Pre-train a word embedding using a background corpus and update this reference model with the target corpora.
 Sensitivity to seed words: Use l closest words on the vector space as well as the two initial pole words. SemAxis can find, for a given word, a set of the best semantic axes. We map the target word on

our predefined 732 axes and

rank the axes based on the

projection values on the axes.

