

Syntax for Semantic Role Labeling,

To Be, Or Not To Be

Shexia He^{1,2}, Zuchao Li^{1,2}, Hai Zhao^{1,2,*}, Hongxiao Bai^{1,2} ¹Department of Computer Science and Engineering, Shanghai Jiao Tong University ²Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, China

Semantic Role Labeling (SRL)

- SRL a shallow **semantic parsing** task: recognize the **predicate-argument** structure, such as *who* did *what* to *whom*, *where* and *when*, etc.
- Four subtasks
 - - Predicate identification and disambiguation
 - - Argument identification and classification
- Applications:
 - – Machine Translation
 - – Information Extraction
 - – Question Answering, etc.

SRL - Example

Two formulizations of predicate-argument structure:

• Span-based (i.e., phrase or constituent)

	Marry	borrowed	а	book	from	john	last	week
borrow.01	A0			A1	А	.2	AN	/I-TMP

• **Dependency-based:** head of arguments

	Marry	borrowed	а	book	from	john	last	week
borrow.01	A0			A1	A2			AM-TMP

Related Work

• Previous methods

Traditional	Neural network
Pradhan et al. (2005) utilized a SVM classifier Roth and Yih (2005) employed CRF with integer linear programming Punyakanok et al. (2008) enforced global consistency with ILP Zhao et al. (2009) proposed a huge feature engineering method	Zhou and Xu (2015) introduced deep bi- directional RNN model Roth and Lapata (2016) proposed PathLSTM modeling approach He et al. (2017) used deep highway BiLSTM with constrained decoding Marcheggiani et al. (2017) presented a simple BiLSTM model Marcheggiani and Titov (2017) proposed a GCN-based SRL model

Focus - Dependency SRL

- Syntax-aware:
 - Maximum entropy model (Zhao et al., 2009)
 - Path embedding (Roth and Lapata, 2016)
 - Graph convolutional network (Marcheggiani and Titov, 2017)
- Syntax-agnostic:
 - The simple BiLSTM Marcheggiani et al., 2017)

Method - Overview

- Pipeline
 - Predicate Disambiguation & Argument Labeling
 - Sequence labeling: BiLSTM MLP
 - Enhanced representation: ELMo
 - Argument Labeling Model
 - Preprocessing: *k*-order pruning

k-order argument pruning

- Initialization: Set the marked predicate as the current node;
- 1. Collect all its descendant node as argument candidates, which is at most k syntactically distant from the current node.
- 2. Reset the current node to its syntactic head and repeat step 1 until the root is reached.
- 3. Collect the root and stop.

Reference: Zhao et al., 2009

--1st-order --2nd-order -- 3rd-order

CoNLL-2009 English training set

CoNLL-2009 English development set

CoNLL-2009 Results

	Models	English	Chinese	OOD
Non-NN	Zhao et al., 2009	86.2	77.7	74.6
	Bjorkelund et al., 2010	85.8	78.6	73.9
	Lei et al., 2015	86.6	-	75.6
NN syntax-aware	FitzGerald et al., 2015	86.7	-	75.2
	Roth and Lapata, 2016	86.7	79.4	75.3
	Marcheggiani and Titov, 2017	88.0	82.5	77.2
	Ours	89.5	82.8	79.3
NN	Marcheggiani et al., 2017	87.7	81.2	77.7
syntax-agnostic	Ours	88.7	81.8	78.8

Results on CoNLL-2009 English, Chinese and out-of-domain (OOD) test set.

End-to-end SRL

• Integrate predicate disambiguation and argument labeling

• CoNLL-2009 results

	Models	F1
auntau agnactia	end-to-end	88.4
syntax-agnostic	pipeline	88.7
auntau auvara	end-to-end	89.0
syntax-aware	pipeline	89.5

Results of end-to-end model on the CoNLL-2009 data.

CoNLL-2008 Results

• Indispensable task: predicate identification

Models	LAS	Sem-F1	
Johansson and Nugues, 2008	90.13	81.75	
Zhao and Kit, 2008	87.52	77.67	
Zhao et al, 2009	88.39	82.1	
	89.28	82.5	
Zhao et al, 2013	88.39	82.5	
	89.28	82.4	
Ours (syntax-agnostic)	-	82.9	
Ours (syntax-aware)	86.0	83.3	

Results on the CoNLL-2008 in-domain test set.

Syntactic Role

- Different syntax-aware SRL models may adopt different syntactic parser
 - PathLSTM SRL (Roth and Lapata, 2016): mate-tools
 - GCN-based SRL (Marcheggiani and Titov, 2017): BIST Parser
- How to quantitatively evaluate the syntactic contribution to SRL?
 - Evaluation Measure: the Sem-F₁ / LAS ratio
 - Sem-F₁: the labeled F₁ score for semantic dependencies
 - LAS: the labeled attachment score for syntactic dependencies

Reference: Surdeanu et al., CoNLL-2008 Shared Task

Performance Comparison

Models	LAS	Sem-F1	Sem-F1/LAS
Zhao et al, 2009 [CoNLL SRL-only]	86.0	85.4	99.3
Zhao et al, 2009 [CoNLL Joint]	89.2	86.2	96.6
Bjorkelund et al, 2010	89.8	85.8	95.6
Lei et al, 2015	90.4	86.6	95.8
Roth and Lapata, 2016	89.8	86.7	96.5
Marcheggiani and Titov, 2017	90.3	88.0	97.5
Ours + CoNLL-2009 predicted	86.0	89.5	104.0
Ours + Auto syntax	90.0	89.9	99.9
Ours + Gold syntax	100.0	90.3	90.3

Sem-F1/LAS ratio on CoNLL-2009 English test set.

Faulty Syntactic Tree Generator

- How to obtain syntactic input of different quality?
 - A Faulty Syntactic Tree Generator (STG)
 - Produce random errors in the output parse tree
- STG implementation
 - Given an input error probability distribution
 - Modify the syntactic heads of nodes

Sem-F1 - LAS Curve

- Syntactic inputs generated from STG
- The 10th-order SRL gives quite stable results regardless of syntactic quality
- The 1st-order SRL model yields overall lower performance
- Better syntax could result in better SRL

1st and 10th-order SRL on CoNLL-2009 English test set.

Conclusion and Future Work

- We present an effective model for dependency SRL with extended *k*-order pruning.
- The gap between syntax-enhanced and -agnostic SRL has been greatly reduced, from as high as **10%** to only **1-2%** performance loss.
- High-quality syntactic parses indeed enhance SRL.
- Future work:
 - Develop a more effective syntax-agnostic SRL system.
 - Explore syntactic integration method based on high-quality syntax.

Thank You!

{heshexia, charlee}@sjtu.edu.cn

Code is publicly available at:

https://github.com/bcmi220/srl_syn_pruning