

SINGAPORE UNIVERSITY OF TECHNOLOGY AND DESIGN

Chinese NER Using Lattice LSTM

Yue Zhang*, Jie Yang* * equal contribution Singapore University of Technology and Design

Overview

Named Entity Recognition: locate and classify text segments into pre-defined categories such as person, location etc.

我和[美国]_{Location}的[华莱士]_{Person}先生聊天.

I talked with Mr. [Wallace]_{Person} from [United States]_{Location}.

Chinese NER: character information and word information

Character-based models: take the character sequence as input, then label each character.

Hard to utilize word sequence information.

Baselines: LSTM+CRF

- **Word baselines**: word-based LSTM+CRF models
 - +char LSTM: with extra char LSTM to represent word.
 - +char+bichar+LSTM: extra char+bichar LSTM to represent word.
 - +char CNN: with extra char CNN to represent word.
 - +char+bichar+CNN: extra char+bichar CNN to represent word.
- Character baselines: character-based LSTM+CRF models.
 - **+softword:** auto-segmentation results as neural features.
 - +bichar: with extra char bigram embeddings.
 - +bichar+softword: with both extra bigram and softword features.

Results

Word-based models: text are segmented as word sequence and label each word.

Suffers from segmentation error propagation.

Lattice models:

Character-based model with word lattice shortcut connection. Interaction of both word and character sequence.

Models

- LSTM: (coupled)
 - **Char-based and word based** models have the same structure:

京 Capital

南 South

Dev Results:

- Char-based NER: char+bichar+softword gives the best result.
- **Word-based NER**: word+char+bichar LSTM gives the best result.
- **Lattice NER:** significantly improves the accuracy compared with both char-based and word-based baselines.
- **Char vs Lattice**: char bigram information is useful in char-based baseline, while it does not improve the accuracy of lattice LSTM.

Input	Models	P	R	F1
Auto seg	Word baseline	73.20	57.05	64.12
	+char LSTM	71.98	65.41	68.54
	+char LSTM'	71.08	65.83	68.35
	+char+bichar LSTM	72.63	67.60	70.03
	+char CNN	73.06	66.29	69.51
	+char+bichar CNN	72.01	65.50	68.60
No seg	Char baseline	67.12	58.42	62.47
	+softword	69.30	62.47	65.71
	+bichar	71.67	64.02	67.63
	+bichar+softword	72.64	66.89	69.64
	Lattice	74.64	68.83	71.62

Final Results:

- **OntoNotes:** lattice LSTM significantly outperforms all baselines.
- **MSRA**: previous state-of-the-are achieves 90.9% F1-value, our lattice LSTM significantly boosts the result as 93.18%.

***** Lattice LSTM:

Lattice path calculation:

Lattice & Character calculation:

 $exp(\mathbf{i}_{b,j})$

市 _{City}

长 Long

use multiple normalized gates to control the contributions of different lattice paths.

Weibo & Resume: lattice LSTM also has significant improvement on small datasets.

OntoNotes

Input	Models	P	R	F1
Gold seg	Yang et al. (2016)	65.59	71.84	68.57
	Yang et al. (2016)*†	72.98	80.15	76.40
	Che et al. (2013)*	77.71	72.51	75.02
	Wang et al. (2013)*	76.43	72.32	74.32
	Word baseline	76.66	63.60	69.52
	+char+bichar LSTM	78.62	73.13	75.77
Auto seg	Word baseline	72.84	59.72	65.63
	+char+bichar LSTM	73.36	70.12	71.70
No seg	Char baseline	68.79	60.35	64.30
	+bichar+softword	74.36	69.43	71.81
	Lattice	76.35	71.56	73.88

Weibo

Models	NE	NM	Overall
Peng and Dredze (2015)	51.96	61.05	56.05
Peng and Dredze (2016)*	55.28	62.97	58.99
He and Sun (2017a)	50.60	59.32	54.82
He and Sun (2017b)*	54.50	62.17	58.23
Word baseline	36.02	59.38	47.33
+char+bichar LSTM	43.40	60.30	52.33
Char baseline	46.11	55.29	52.77
+bichar+softword	50.55	60.11	56.75
Lattice	53.04	62.25	58.79

MSRA

Models	P	R	F1
Chen et al. (2006a)	91.22	81.71	86.20
Zhang et al. (2006)*	92.20	90.18	91.18
Zhou et al. (2013)	91.86	88.75	90.28
Lu et al. (2016)	_	_	87.94
Dong et al. (2016)	91.28	90.62	90.95
Word baseline	90.57	83.06	86.65
+char+bichar LSTM	91.05	89.53	90.28
Char baseline	90.74	86.96	88.81
+bichar+softword	92.97	90.80	91.87
Lattice	93.57	92.79	93.18

Resume

Models	Р	R	F1
Word baseline	93.72	93.44	93.58
+char+bichar LSTM	94.07	94.42	94.24
Char baseline	93.66	93.31	93.48
+bichar+softword	94.53	94.29	94.41
Lattice	94.81	94.11	94.46

 $\boldsymbol{\alpha}_{b,j} = \frac{1}{exp(\mathbf{i}_j) + \sum_{b' \in \{b'' \mid w_{b'',j}^d \in \mathbb{D}\}} exp(\mathbf{i}_{b',j})}$

Experiments

- **Datasets:** four Chinese NER datasets
 - **OntoNotes 4:** news domain, with 4entity types.
 - **MSRA**: news domain, with 3 entity types.
 - Weibo NER: social media NER corpus.
 - **Resume NER**: manual annotated, with 8 entity types.

Segmentation:

- **Segmentor:** SOTA word segmentor in Yang et al. ACL 2017
- Lexicon/Word embeddings: auto-segmented Chinese Gigaword with the above segmentor and trained with word2vec.

Analysis

F1 with Sentence Length:

- Char baseline: is not sensitive with the sentence length.
- Word baseline: works worse with the increase of sentence length, since the segmentor accuracy is worse in long sentences.

Lattice LSTM: In general, it gives better performance in all sentence length. It also suffers the accuracy deduction in long sentences, which can result from an exponentially increasing number of word combination in the lattice.