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1. Introduction
• Transfering or sharing knowledge among languages is a popular solution to mitigate resource

scarcity and harness language-independent information in NLP.

• Their effectiveness is challenged by cross-lingual variation in morpho-syntactic structures. This
results in anisomorphism between the nodes V and U of equivalent dependency trees: there exists
no bijection f(V )→ U such that adjacencies between corresponding nodes are preserved.

• Can we a) measure anisomorphism, b) use it to select compatible source languages for knowledge
transfer, and c) process source dependency trees to tailor them and improve downstream tasks?

2a. Metrics: Jaccard Index
Language-wide anisomorphism is measured by the
Jaccard index of two sets of morphological features
(e.g. tense=past) MS and MT occurring at least
once in a treebank.

J(MS ,MT ) =
||MS ∩MT ||
||MS ∪MT ||
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2b. Metrics: Tree Edit Distance
Instance-level anisomorphism is estimated by the
(average) tree edit distance between tree pairs S and
T in a multi-parallel Bible corpus with the Zhang-
Sasha algorithm [1] based on a mapping M.

γ(M,S, T ) =
∑

i,j∈M

γ(Si → Tj) + γ(Si → ε) + γ(ε→ Tj)
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3. Processing Dependency Trees
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We leverage the ZS operations (change, delete, add)
to process trees. Thus we adapt the constructions
(e.g. predicative possession) of a source tree to the
strategies of a target language (as defined byWALS).

(1) Laday-himā ‘ašyā-‘u muštarakat-un
at-them thing-nom.pl common-nom.pl
‘They have things in common.’

4. Data
• Parsing: a sample of 21 treebanks from from

Universal Dependencies v1.4;

• Neural Machine Translation: a novel dataset
created from the Open Subtitles 2016 corpus
for Arabic-Dutch and Indonesian-Portuguese
(3M sentences train / 5K test);

• Sentence Similarity: Sentence pairs annotated
with a label ranging from 0 (dissimilarity) to 5
(equivalence). 9,709 train (in English from the
STS benchmark) / 250 test (in Arabic from
Task 1 of SemEval 2017).

5. Source Selection: Parsing
We perform delexicalised model transfer for syn-
tactic parsing with an SVM (DeSR) and a neural
network (Syntaxnet).

DA (4302) ES (5240) FI (2262) HE (4797) HR (8096) TA (3849) VI (4476)
Parser Transfer: Target Language
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For each of the 7 target languages, we choose
3 source languages (highest, middle, and lowest)
ranked according to the Jaccard Index.

6a. Task: Neural Machine Translation
We run a syntax-based NMT model in two settings:
with and without the tree processing.
we use an attentional encoder-decoder network that
jointly learns to translate and align words, enriched
with linguistic features (including syntax) [2].

AR-NL ID-PT
Baseline 7.01 14.79
+Syntax 14.40 23.70
++Preprocessing 15.40 24.12

6b. Task: Sentence Similarity
We classify sentence similarity based on original
and processed trees in a lexicalised transfer setting
(through multilingual word embeddings).
The two sentences are encoded with a Treelstm,
then concatenated, and finally fed to a multi-layer
perceptron [3].

Pearson MSE
Mono-lingual 77.9 0.94
Cross-lingual 44.7 1.82
+Preprocessing 48.0 1.64

7. Conclusions
The results demonstrate that reducing anisomor-
phism leads to enhancements in performance:

• Savvy metrics reliably rank source languages
by similarity (better than genealogy).

• Tree processing grants algorithms a better
leverage on syntactic information, which is
pivotal to several tasks, and make them more
robust to cross-lingual variation.
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