

School of Information Systems

Searching for the X-Factor: Exploring Corpus Subjectivity for Word Embeddings

Maksim Tkachenko and Chong Cher Chia and Hady W. Lauw

Singapore Management University

Word Embeddings

- Dense vectors of words
- Unsupervised training: GloVe, Word2Vec
- Words in similar context tend to have similar meaning

 $good \rightarrow (\dots 0.0335, -0.1018, 0.2300, \dots) \in R^{300}$

 Words with similar meanings tend to be close in embedding space

Training Word Embeddings

Different Input Corpora

An article must be written from a neutral point of view, which among other things means "representing fairly, proportionately, and, as far as possible, without editorial bias, all of the significant views that have been published by reliable sources on a topic."

"Amazon values diverse opinions" and that "content [customer reviews] you submit should be relevant and based on your own honest opinions and experience."

Subjectivity Scale

More Objective

More Subjective

Subjective Embeddings (SE)

Objective Embeddings (OE)

Binary Classification Tasks

- Sentiment Classification (**positive** vs. **negative**):
 - Amazon Reviews (24 categories) + Rotten Tomatoes Reviews

"A very funny movie" vs. "One lousy movie"

- Subjectivity Classification (subjective vs. objective)
 - Rotten Tomatoes Reviews

"The story needs more dramatic meat" vs. "She's an artist"

- Topic Classification (in-topic vs. out-of-topic)
 - Newsgroups Dataset (6 categories)

Methodology

- Cross-validation on balanced samples
- Binary logistic regression classifier
- Sentence embedding = average of word embeddings
- The same number of sentences and the same vocabulary when training embeddings

Objective Embeddings (OE)

Subjective Embeddings (SE)

Empirical Findings

Top Words Similar to "good"

The Free Encyclopedia

Objective Embeddings WIKIPEDIA

Word	Similarity
bad	0.68
decent	0.67
nice	0.62
poor	0.61

Subjective Embeddings

Word	Similarity
decent	0.78
great	0.76
nice	0.69
terrific	0.64
	•••

Sentiment Words Still Cause Troubles!

amazon Subjective Embeddings

Word A	Word B	Their Similarity
waste	Save	0.51
love	hate	0.60
loves	hates	0.68
easy	difficult	0.56

SentiVec Embeddings WikiPEDIA Objective Word2Vec Embeddings Objective SentiVec

Similar to "good"	Similarity
bad	0.68
decent	0.67
nice	0.62
poor	0.61
	•••

Similar to "good"	Similarity
decent	0.79
nice	0.76
perfect	0.75
excellent	0.73

SentiVec: Infusing Sentiment

SentiVec = Word2Vec + Lexical Resource

- Predicts context words as in Word2Vec Skip-gram
- Predicts word category

Negative: waste, junk, horrible, defective, ...

Positive: love, great, recommend, easy, ...

Logistic SentiVec

Random Noise (good, frog) (good, duck)

...

Spherical SentiVec

Empirical Findings

SentiVec does not affect "objective" classification tasks

(average over 24 categories)

Rotten Tomatoes Sentiment

Target Word: Good

Target Word: Bad

Negative Words

Conclusion

- Explored effects of corpus subjectivity for word embeddings
- SentiVec, a method for infusing lexical information into word embeddings
- Sentiment-infused SentiVec embeddings space facilitate better sentiment-related similarity

Pre-trained Word Embeddings & Code: <u>https://sentivec.preferred.ai/</u>