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Textual Entailment (Bowman et al., 2016)

Semantic Parsing (Hopkins et al., 2017)

Sentiment Analysis (Socher et al., 2013)

Language Modeling (Dyer et al., 2016)

Constituency Parsing is Useful
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Penn Tree Bank (PTB) (Marcus et al., 1993)
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40,000 annotated sentences

Newswire domain



Geometry Problem:

In the rhombus PQRS, PR = 24 and QS = 10.

Question:

What's the second-most-used vowel in English?

Biochemistry:

Ethoxycoumarin was metabolized by isolated epidermal cells via dealkylation to 

7-hydroxycoumarin ( 7-OHC ) and subsequent conjugation.

But, Target Domains Are Diverse!
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Parse geometry sentence with PTB trained parser

Performance Outside Source Domain
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Parse geometry sentence with PTB trained parser

Performance Outside Source Domain
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How can we cheaply create high 
quality parsers for new domains?
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Relevant Recent Developments in NLP 
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Contextualized word 
representations improve sample 
efficiency. (Peters et al., 2018)

Span-focused models achieve 
state-of-the-art constituency 
parsing results. (Stern et al., 2017)



Contributions
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Show contextual word embeddings help domain adaptation.
E.g., Over 90% F1 on Brown Corpus.

Adapt a parser using partial annotations.
E.g., Increase correct geometry-domain parses by 23%.



Outline
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Review Contextual Word Representations

Partial Annotations:
Definition
Training
Parsing as Span Classification
The Span Classification Model

Experiments and Results:
Performance on PTB and new Domains
Adapting Using Partial Annotations



Contextualized Word Representations
ELMo trained on Billion Word Corpus (Peters et al., 2018).
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Contextualized Word Representations
ELMo trained on Billion Word Corpus (Peters et al., 2018).

Improve sample efficiency
13
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Partial 
Annotations

Definition

Training

Parsing as Span Classification

The Span Classification Model



A triangle has a perimeter of 16 and one side of length 4.

Selectively Annotate Important Phenomena
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A triangle has [a perimeter of 16] and one side of length 4.

Selectively Annotate Important Phenomena
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A triangle has [a perimeter of 16] and one side of length 4.

Selectively Annotate Important Phenomena
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A triangle has [a perimeter {of 16] and one side of length 4}.

Selectively Annotate Important Phenomena
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Full Versus Partial Annotation

(S (NP A triangle) (VP has (NP (NP (NP a perimeter) (PP of 
16)) and (NP (NP one side) (PP of (NP length 4))))) .)

A triangle has [a perimeter {of 16] and one side of length 4}.
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Partial Annotation Definition

Partial annotation is a labeled span.

A triangle has [a perimeter of 16] and one side of length 4 .

A triangle has [NP a perimeter of 16] and one side of length 4 .

A triangle has a perimeter {of 16 and one side of length 4} .
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Allowing annotators to selectively annotate important 
phenomena, makes the process faster and simpler. 

(Mielens et al., 2015)

Why Partial Annotations?
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Definition

Training

Parsing as Span Classification

The Span Classification Model



Objective for Full Annotation
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Since we do not have a full parse, 

marginalize out components for which no supervision exists. 

Objective for Partial Annotation
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Marginalize out components for which no supervision exists. 

Objective for Partial Annotation
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Expensive!
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One Solution: Approximation*

*(Mirroshandel and Nasr, 2011; Majidi and Crane, 2013, Nivre et al., 2014; Li et al., 2016)



Our Solution: Parsing as Span Classification
Assume probability of a parse factors into a product of probabilities.
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Our Solution: Parsing as Span Classification
Assume probability of a parse factors into a product of probabilities.
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Our Solution: Parsing as Span Classification
Assume probability of a parse factors into a product of probabilities.
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Our Solution: Parsing as Span Classification
Assume probability of a parse factors into a product of probabilities. 

Objective now simplifies to:

Easy if model classifies spans! 
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Definition

Training

Parsing as Span Classification

The Span Classification Model



Parse Tree Labels All Spans*

32*(Cross and Huang, 2016; Stern et al., 2017)
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Parse Tree Labels All Spans*

42*(Cross and Huang, 2016; Stern et al., 2017)



▪ A partial annotation is a labeled span.

▪ A full parse labels every span in the sentence.

Therefore, training on both is identical under our derived objective.

Training on Full and Partial Annotations
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Parsing Using Span Classification Model
Find maximum using dynamic programming:
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Partial annotations are labeled spans.
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Summary



Partial annotations are labeled spans.

Use a span classification model to parse.
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Summary



Partial annotations are labeled spans.

Use a span classification model to parse.

Training on partial and full annotations becomes identical.
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Summary
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Definition

Training

Parsing as Span Classification

The Span Classification Model



Model Architecture (Stern et al., 2017)
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She       enjoys    playing     tennis         .  



Model Architecture (Stern et al., 2017)
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Model Architecture (Stern et al., 2017)
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She       enjoys    playing     tennis         .  

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM



Model Architecture (Stern et al., 2017)

52She       enjoys      playing     tennis         .  

... ... ... ... ...



Span Embedding (Wang and Chang, 2016; Cross and Huang, 2016; Stern et al., 2017)
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“enjoys playing” = -

She       enjoys      playing     tennis         .  

... ... ... ... ...



Model Architecture (Stern et al., 2017)
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“enjoys playing” = -

She       enjoys      playing     tennis         .  

... ... ... ... ...

MLP



Differences
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Ours Stern et al., 2017

Objective Maximum 
likelihood on labels

Maximum margin 
on trees

ELMo Yes No

POS Tags as Input No Yes
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Ours Stern et al., 2017

Objective Maximum 
likelihood on labels

Maximum margin 
on trees
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Experiments
and

Results 

Performance on PTB

Learning Curve on New Domains

Adapting Using Partial Annotations



Performance on PTB
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+2.2 F1
+ELMo

91.8 F1
Stern et al., 2017

+0.3 F1
+Maximum Likelihood on Labels 

-POS tags

94.3 F1
Ours

=



Performance on PTB
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92.6 F1
Effective Inference for 

Generative Neural Parsing 

94.3 F1
Ours

+1.7 F1
Over Previous SoTA*

*New SoTA is 95.1 (Kitaev and Klein, ACL 2018)
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Performance on PTB

Learning Curve on New Domains

Adapting Using Partial Annotations



Question Bank (Judge et al., 2006)

▪ 4,000 questions.
▪ In contrast, PTB has few questions.

Who is the author of the book, ``The Iron Lady: A Biography 
of Margaret Thatcher''?
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Do We Need Domain Adaptation?
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89.9 F1
PTB

Number of parses from Question Bank

F1 +7.2 %
Training on QB



How Much Data Do We Need?
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89.9 F1
PTB

Number of parses from Question Bank

F1

+0.9 %
From 100 to 2,000 parses

+6.3 %
From 0 to 100 parses



How Much Data Do We Need?
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89.9 F1
PTB

Number of parses from Question Bank

F1 Not Much
Improvements taper quickly
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Experiments
and

Results 

Performance on PTB

Learning Curve on New Domains

Adapting Using Partial Annotations



Geometry Problems (Seo et al., 2015)

In the diagram at the right, circle O has a radius of 5, and CE = 2. Diameter AC is 
perpendicular to chord BD at E. What is the length of BD?
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Biochemistry (Nivre et al., 2007)

Ethoxycoumarin was metabolized by isolated epidermal cells via dealkylation to 
7-hydroxycoumarin ( 7-OHC ) and subsequent conjugation .



Setup

Annotator is a parsing expert.

Sees parser output.

Annotated sentences randomly split into train and dev.
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Biochemistry Annotations

610 partial annotations (Avg. 4.6 per sentence)
train: 72 sent, dev: 62 sent

[ [ In situ ] hybridization ] has revealed a striking subnuclear 
distribution of [ c-myc RNA transcripts ] .

[ Cell growth of neuroblastoma cells in [ serum containing 
medium ] ] was clearly diminished by [ inhibition of FPTase ]
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What do partial annotations buy us?

71
Correct Constituent % Error-Free Sentences %

+9.4%

+29.7%



Geometry Annotations

379 partial annotations (Avg. 3 per sentence)
train: 63 sent, dev: 62 sent

What is [ the value of [ y { + z } ] ] ?
[ Diameter AC ] is perpendicular [ to chord BD ] [ at E ] .

Find [ the measure of [ the angle designated by x ] ] .
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What do partial annotations buy us?
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Correct Constituent % Error-Free Sentences %

+15.1%

+33.4%



Iterative Annotation
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Error Analysis on Geometry Training Set

44% math syntax
Eg: “dimensions 16 by 8,” “BAC = ¼ * ACB”

19% right-attaching participial adjectives
Eg: “segment labeled x,” “the center indicated”

19% PP-attachment 
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Right Attaching Participial Adjective Error 
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Find the hypotenuse of 
the triangle labeled t.



Iterative Annotation Proof-of-Concept

Invent 3 sentences similar to the incorrect one:
Find the hypotenuse of [ the triangle labeled t ] .
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Iterative Annotation Proof-of-Concept

Invent 3 sentences similar to the incorrect one:
Find the hypotenuse of [ the triangle labeled t ] .

Given [ a circle with [ the tangent shown ] ] .
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Iterative Annotation Proof-of-Concept

Invent 3 sentences similar to the incorrect one:
Find the hypotenuse of [ the triangle labeled t ] .

Given [ a circle with [ the tangent shown ] ] .

Examine [ the following diagram with [ the square 

highlighted ] ] .
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Performance after Iterative Annotation

Correctly identified constituents:

87.0% → 88.6% (+1.6)

Error free sentences:

72.6% → 75.8% (+2.7)
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Conclusion
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● Recent developments make it much easier to train on 

partial annotations and build custom parsers.

● Making a few partial annotations can lead to significant 

performance improvements.
Demo: http://demo.allennlp.org/constituency-parsing

Datasets: https://github.com/vidurj/parser-adaptation/tree/master/data

http://demo.allennlp.org/constituency-parsing
https://github.com/vidurj/parser-adaptation/tree/master/data


82


