Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing

Bo Chen, Le Sun, Xianpei Han

Institute of Software, Chinese Academy of Sciences

 Translate natural language sentences to meaning representations, e.g., logical forms.

 Translate natural language sentences to meaning representations, e.g., logical forms.

Sentence : Which city was Barack Obama born in ?

 Translate natural language sentences to meaning representations, e.g., logical forms.

Sentence : Which city was Barack Obama born in ?

Semantic Parsing

 Translate natural language sentences to meaning representations, e.g., logical forms.

Sentence : Which city was Barack Obama born in ?

Semantic Parsing

Logical form : $\lambda x. City(x) \land PlaceOfBirth(Barack_Obama, x)$

Outline

Motivation

- Sequence-to-Action
- Experiments & Conclusion

Semantic Graph Based

Semantic Graph Based

 Use semantic graphs to represent sentence meanings

Semantic Graph Based

- Use semantic graphs to represent sentence meanings
- Semantic parsing as semantic graph matching or staged semantic query graph generation

Semantic Graph Based

- Use semantic graphs to represent sentence meanings
- Semantic parsing as semantic graph matching or staged semantic query graph generation

[Reddy et al., 2014,2016,2017]

[Yih et al., 2015]

[Bast and Haussmann, 2015]

Semantic Graph Based

- Use semantic graphs to represent sentence meanings
- Semantic parsing as semantic graph matching or staged semantic query graph generation

[Reddy et al., 2014,2016,2017]

[Yih et al., 2015]

[Bast and Haussmann, 2015]

Semantic Graph Based

- Use semantic graphs to represent sentence meanings
- Semantic parsing as semantic graph matching or staged semantic query graph generation

[Reddy et al., 2014,2016,2017] [Yih et al., 2015]

[Bast and Haussmann, 2015]

Sequence-to-Sequence Based

Linearize logical forms

Semantic Graph Based

- Use semantic graphs to represent sentence meanings
- Semantic parsing as semantic graph matching or staged semantic query graph generation

[Reddy et al., 2014,2016,2017]

[Yih et al., 2015]

[Bast and Haussmann, 2015]

- Linearize logical forms
- Semantic parsing as a sequence-to-sequence problem

Semantic Graph Based

- Use semantic graphs to represent sentence meanings
- Semantic parsing as semantic graph matching or staged semantic query graph generation

[Reddy et al., 2014,2016,2017] [Yih et al., 2015]

[Bast and Haussmann, 2015]

Sequence-to-Sequence Based

- Linearize logical forms
- Semantic parsing as a sequence-to-sequence problem

[Dong and Lapata, 2016][Jia and Liang, 2016][Xiao et al., 2016][Rabinovich et al., 2017]

Semantic Graph Based

Semantic Graph Based

Strengths

 use semantic graphs to represent sentence meanings, no need for lexicons and grammars

Semantic Graph Based

Strengths

 use semantic graphs to represent sentence meanings, no need for lexicons and grammars

Challenges

 Hard to model semantic graph construction process

Semantic Graph Based

Strengths

 use semantic graphs to represent sentence meanings, no need for lexicons and grammars

Challenges

 Hard to model semantic graph construction process

Sequence-to-Sequence Based

Strengths

- End-to-end
- Powerful prediction ability

Semantic Graph Based

Strengths

 use semantic graphs to represent sentence meanings, no need for lexicons and grammars

Challenges

 Hard to model semantic graph construction process

Sequence-to-Sequence Based

Strengths

- End-to-end
- Powerful prediction ability

Challenges

- Hard to capture structure information
- Ignore the relatedness to KB

Seq2Act: synthesizes their advantages

Seq2Act: synthesizes their advantages

- Use semantic graphs to represent sentence meanings
 - tight-coupling with knowledge bases

Seq2Act: synthesizes their advantages

- Use semantic graphs to represent sentence meanings

 tight-coupling with knowledge bases
- Leverage the powerful prediction ability of RNN models
 End-to-End

Which states border Texas?

Which states border Texas?

action sequence

Outline

- Motivation
- Sequence-to-Action
- Experiments & Conclusion

Major components of Our Model

Major components of Our Model (1)

I Action set

Major components of Our Model (2)

Major components of Our Model (3)

Define atom actions involved in semantic graph construction

Define atom actions involved in semantic graph construction

Which states border Texas?

Node: A (variable), texas:st (entity), state (type) Edge: next_to Return node: A

- Add variable node
 - E.g., A
- Add entity node
 - E.g., texas:st
- Add type node
 - E.g., state
- Add edge
 - E.g., next_to
- Operation action
 - E.g., argmax, argmin, count
- Argument action
 - For type node, edge and operation

Typical encoder-decoder model (bi-LSTM with attention)

Typical encoder-decoder model (bi-LSTM with attention)

Action embedding

add_edge : next_to add_edge : loc

Structure part

Structure part Semantic part

Structure part Semantic part

Structure part Semantic part

 Φ (add_edge:next to) = [Φ (add_edge); Φ (next_to)]

Structure & Semantic Constraints

Structure & Semantic Constraints

Structure constraints

– Ensure action sequence will form a connected acyclic graph

- Semantic constraints
 - Ensure the constructed graph must follow the schema of knowledge bases

Structure & Semantic Constraints

- Action 1: violate type conflict
- Action 2: violate selectional preference constraint
- Action 3: structure constraint
- Action 4: YES

Outline

- Motivation
- Sequence-to-Action
- Experiments & Conclusion

Experiments

- Datasets: GEO[Zelle and Mooney, 1996], ATIS[He and Young, 2005], OVERNIGHT[Wang et al., 2015b]
- We generate the action sequences from logical forms automatically.

what is the population of illinois ?

add_node:-:B add_node:-:A add_edge:-:_population arg_node:-:B arg_node:-:A add_entity_node:-:Illinois:=:state arg_node:-:B return:-:A

Baselines

Traditional Methods

- Zettlemoyer and Collins, 2005
- Zettlemoyer and Collins, 2007
- Liang et al., 2011
- Zhao et al., 2015
- Wang et a., 2015

Sequence-to-Sequence Models

- Dong and Lapata, 2016
- Jia and Liang, 2016
- Xiao et al., 2016
- Rabinovich et al., 2017

	SOTA	SOTA without extra resources	Our full model
GEO	91.1 [Liang et al., 2011]	89.9 [zhao et al., 2015]	89.9
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	85.5
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	79.0

	SOTA	SOTA without extra resources	Our full model	
GEO	91.1 [Liang et al., 2011]	89.9 [zhao et al., 2015]	89.9	
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	85.5	
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	79.0	

	SOTA	SOTA without extra resources	Our full model
GEO	91.1 [Liang et al., 2011]	89.9 [zhao et al., 2015]	89.9
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	85.5
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	79.0

	Need to design	resources	Our full model
GEO	[Liang , 2011]	89.9 [zhao et al., 2015]	89.9
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	85.5
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	79.0

	SOTA	SOTA without extra resources	Our full model
GEO	91.1 [Liang et al., 2011]	89.9 [zhao et al., 2015]	89.9
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	85.5
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	79.0

	Seq2Seq SOTA	Seq2Seq SOTA without extra resources	Seq2Act
GEO	89.3 [Jia and Liang, 2016]	87.1 [Dong and Lapata, 2016]	87.5
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	84.6
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	78.0

	Seq2Seq SOTA	Seq2Seq SOTA without extra resources	Seq2Act
GEO	89.3 [Jia and Liang, 2016]	87.1 [Dong and Lapata, 2016]	87.5
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	84.6
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	78.0

	Seq2Seq SOTA	Seq2Seq SOTA without extra resources	Seq2Act
GEO	89.3 [Jia and Liang, 2016]	87.1 [Dong and Lapata, 2016]	87.5
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	84.6
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	78.0

	Seq2Seq SOTA	Need to design	
GEO	89.3 [Jia and Liang, 2016]	[Dong an ata, 2016]	87.5
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	84.6
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	78.0

	Seq2Seq SOTA	Seq2Seq SOTA without extra resources	Seq2Act
GEO	89.3 [Jia and Liang, 2016]	87.1 [Dong and Lapata, 2016]	87.5
ATIS	85.9 [Rabinovich et al., 2017]	85.9 [Rabinovich et al., 2017]	84.6
OVERNIGHT	77.5 [Jia and Liang, 2016]	75.8 [Jia and Liang, 2016]	78.0

Seq2Act+C1 outperforms Seq2Act

Seq2Act+C1+C2 outperforms Seq2Act+C1

Average Length of Logical Forms and Action Sequences

Average len of logical forms

□ Average len of action sequences

Error Analysis

- Un-covered Sentence Structure
 - Iowa borders how many states? (Formal Form: How many states does lowa border?)
- Under Mapping
 - Please show me first class flights from indianapolis to memphis one way leaving before 10am

Conclusion

- Sequence-to-Action: End-to-End Semantic Graph Generation
 - Representation ability of semantic graphs
 - Sequence prediction ability of RNN models
- Achieve competitive results on GEO, ATIS and OVERNIGHT

Future work

- Weak supervised learning algorithm for Seq2Act
 - So our method can be applied to (q, a) pair datasets such as WebQuestions
- Apply Seq2Act model to other parsing tasks (e.g., AMR parsing)

Thanks!

Data and code available: <u>https://github.com/dongpobeyond/Seq2Act</u>

Email: chenbo42424@gmail.com