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Semantic Parsing

[ Logical form : Ax.City(x) A PlaceOfBirth(Barack_Obama, x) J
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Use semantic graphs to
represent sentence meanings

Semantic parsing as semantic
graph matching or staged
semantic query graph
generation

[Reddy et al., 2014,2016,2017]
Yih et al., 2015]

Bast and Haussmann, 2015]

» Linearize logical forms

= Semantic parsing as a
sequence-to-sequence
problem

[Dong and Lapata, 2016]
Jia and Liang, 2016]
Xiao et al., 2016]
[Rabinovich et al., 201 7]
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= Strengths

- End-to-end
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= Challenges

— Hard to capture structure
information

— Ignore the relatedness to KB
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» Use semantic graphs to represent sentence meanings
— tight-coupling with knowledge bases

= Leverage the powerful prediction ability of RNN models
- End-to-End
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Action Set

Action
Sequence
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Action Set

» Define atom actions involved in semantic graph construction

return
next_to
(texas:st )

4 N
Node: A (variable), texas:st (entity), state (type)

Edge: next to
Return node: A

o /




Action Set

u Add Vd riable nOde (Sentence: Which river runs through the most states? ]
Semantic Graph:
— Eg, A arg_for 1 arg_for 2
» Add entity node
- E.g., texas:st
= Add type node

/A\ traverse

type
i

return

_ Eg’ state Action Sequence:
Structure Semantic Arg
u Add edge add_operation most
_ Eg next to add_variable A
' . - . add_type river A
| Operat|0n aCt|On add_variable B
_ . add_type state B
E.g., argmax, argmin, count sdd_edge vaverse | AB
] Argument action end_operation  most A, B
return A

Vs
-

— For type node, edge and operation
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Structure & Semantic Constraints

s Structure constraints
— Ensure action sequence will form a connected acyclic graph

= Semantic constraints

— Ensure the constructed graph must follow the schema of
knowledge bases



Structure & Semantic Constraints

Sentence: Which states border Texas?
Partial Semantic Graph:

type

Structure Semantic| Arg Validity
add_variable A
Generated
add_type state A
Actions _
add_entity texas:st
add_type city texas:st X
Candidate | add_edge loc A, texas:st X
Next add_edge next_to A, A X
Action add_edge next_to A, texas:st v

Action 1: violate type conflict

Action 2: violate selectional preference constraint
Action 3: structure constraint
Action 4: YES
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Experiments

= Datasets: GEOjZelle and Mooney, 1996], ATIS[He and Young, 2005],

OVERNIGHT[Wang et al., 2015b]
= We generate the action sequences from logical forms

automatically.

generator

» | Semantic > Action
< Graph < : Sequence
generator compiler

compiler

Logical
Form

what is the population of illinois ?

add node:-:B add node:-:A add edge:-: population arg node:-:B
arg node:-:A add entity node:-:illinois:=:state arg node:-:B return:-:A/




Baselines

» Traditional Methods
— Zettlemoyer and Collins, 2005
— Zettlemoyer and Collins, 2007
— Liang et al., 2011
- Zhao et al., 2015
- Wang et a,, 2015

» Sequence-to-Sequence Models
- Dong and Lapata, 2016
- Jia and Liang, 2016
- Xiao et al,, 2016
— Rabinovich et al., 2017
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Seq2Act+C1 outperforms Seq2Act

89
87.5 88.2 C1: Structure Constraints

87
85 84.6 82
83
81
79 -g 784
. l
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Seq2Act+C1+C2 outperforms Seq2Act+C1

91

C1: Structure Constraints

88.9 . .
89 88.2 C2: Semantic Constraints
87.5
57 85.5
gc 84.6 8° gm
83
81
79
79 g 78.4
/5
GEO ATIS OVERNIGHT

Seq2Act Seq2Act+C1 mSeq2Act+C1+C2



Average Length of Logical Forms and Action Sequences
- —

GEO

ATIS

OVERNIGHT

0 Average len of logical forms

28.2

35.5%
|

18.2

28.4\ 9 29,

25.8

[0 Average len of action sequences

33.3

20 25 30 35 40

\ 28.5%

45 50



Error Analysis

= Un-covered Sentence Structure

— lowa borders how many states? (Formal Form: How many states
does lowa border?)

» Under Mapping

— Please show me first class flights from indianapolis to memphis
one way leaving before 10am



Conclusion

s Sequence-to-Action: End-to-End Semantic Graph Generation
— Representation ability of semantic graphs
— Sequence prediction ability of RNN models

s Achieve competitive results on GEO, ATIS and OVERNIGHT



Future work

= Weak supervised learning algorithm for Seq2Act

— So our method can be applied to (g, a) pair datasets such as
WebQuestions

= Apply Seq2Act model to other parsing tasks (e.g., AMR parsing)



Thanks!

Data and code available:
https://github.com/dongpobeyond/Seqg2Act

Email: chenbo42424@gmail.com


https://github.com/dongpobeyond/Seq2Act

