

Abstract Meaning Representations

The boys must not go

Fig. 1. An example of AMR, the dashed lines denote latent alignments, obligate-01 is the root.

Main Contributions

- Lack of gold alignment -> AMR parsing with a joint probabilistic model for alignment, concept and relation identification.
- Seq2seq model could work well for semantic parsing ? -> our non-autoregressive model achieves the best reported results (+3.4% over previous state of the art). Sequence tagging does not suffer from exposure bias.

AMR Parsing as Graph Prediction

Fig. 2. Concept Identification

Fig. 3. Relation Identification:

AMR Parsing as Graph Prediction with Latent Alignment

Chunchuan Lyu*, Ivan Titov*† *ILCC, School of Informatics, University of Edinburgh

Variational Auto-Encoder

Fig. 4. Joint Training for AMR parsing

Joint Training Objective

Conditional probability needs marginalizing $P_{\theta,\phi}(\mathbf{c}, R|\mathbf{w})$ over bi-jective alignment $= \sum P(\mathbf{a})P_{\theta}(\mathbf{c}|\mathbf{a},\mathbf{w})P_{\phi}(R|\mathbf{a},\mathbf{w},\mathbf{c})$ For concept identification model , treat soft alignment as prior $\log P_{\theta}(c_i | \mathbf{\hat{a}_i}, \mathbf{w}) \approx \log \sum_{k=1}^{\infty} \hat{\mathbf{a}_{ik}} P_{\theta}(c_i | a_i = k, \mathbf{w})$ $\mathbf{a} \in Perm$ Further conditional independence $P(\mathbf{a}) \prod P(c_i | \mathbf{h}_{a_i}) \prod P(r_{ij} | \mathbf{h}_{a_i}, \mathbf{c}_i, \mathbf{h}_{a_j}, \mathbf{c}_j)$ = $\sum_{i=1}^{n}$ $\mathbf{a} \in Perm$ i=1i,j=1• marginalization is intractable -> variational inference Variational Lower Bound Log of marginalized probability

• Sampling over permutation is still intractable

For permutation, Gumbel-Sinkhorn provides -> relaxed sample from approximate Perturb-and-MAP (Mena Et all. 2018)

,

⁺ILLC, University of Amsterdam

Gumbel-Sinkhorn Relaxation

$\mathbf{\hat{S}}_{ij} \sim \mathcal{G}(0, 1)$ $\mathbf{\hat{P}}_{ij} = \mathbf{c}_i^T B \mathbf{w}_j$ $\mathbf{\hat{a}} = S_t(\mathbf{\Phi}, \Sigma)$	Generate Gumbe concept word pa Compute bilinea RNN encoding Apply Sinkhorn o alignment	ir	Ours AM algebra (Groschwitz et al, 2018) Mul-BiLSTM (Foland and Martin, 2017)
$\Sigma) = \exp(\Phi + \Sigma)$ $\Sigma) = \mathcal{N}_r(\mathcal{N}_c(S_t))$	$\Sigma)$ expon	orn initialize with ential Iteratively normalize across columns and rows	AMREager (Damonte et al, 2017) JAMR (Flanigan et al, 2016) Sma
$\sum_{0,1)} [\log P_{\theta}(c S_t(0))] $ $\log P_{\phi}(R S_t(\Phi_{\psi}, 0))]$		Feed soft alignment to neural model	Ours AM algebra (Groschwitz et al, 2018)

Reparemetrized KL CharSeq +100K (van Noord and Bos, 2017) to be computable

> CharSeq (van Noord and Ros 2017)

(Buys

oord and Bos, 20	17)		04		
Neural-Pointer and Blunson, 20	17)		61.9		
	55	57 59 6	61 63 65	67 69	71 73 75
Models	A'17	J'16	Ch'17	AM	Ours
Dataset		R1			R2
Smatch	64	67	71	71	74.4±0.16
Unlabeled	69	69	74	74	77.1±0.10
No WSD	65	68	72	72	75.5±0.12
Concepts	83	83	82	84	85.9±0.11
NER	83	79	79	78	86.0±0.46
Negations	48	45	<i>62</i>	57	58.4±1.32
SRL	56	60	66	64	69.8±0.24

Table 1. F1 scores on individual phenomena. A'17 is AMREager, J'16 is JAMR, Ch'17 is CharSeq+100K, AM is AM algebra.

Full Joint

Fixed Align

Two Stages + Tune Align

Two Stage

Acknowledgements: We thank Marco Damonte, Shay Cohen, Diego Marcheggiani and Wilker Aziz for helpful discussions as well as anonymous reviewers for their suggestions. The project was supported by the European Research Council (ERC StG BroadSem 678254) and the Dutch National Science Foundation (NWO VIDI 639.022.518).

* Contact: chunchuan.lv@gmail.com

For relation identification, weight representation with soft alignment n

$$\hat{\mathbf{h}_{a_i}} := \sum_{k=1}^{\mathbf{\hat{a}_{ik}}} \mathbf{h}_k$$

• Soft alignment can not be used directly

Model Relaxation

-> Model relaxation is needed

Recategorization

Fig. 5 An example of re-categorized AMR

Results

Smatch Score on LDC2015E86 (R1)

