
A Appendix: ILP Model Details

To build the ILP model, we first obtain the ques-
tions terms (qterm) from the question by chunk-
ing the question using an in-house chunker based
on the postagger from FACTORIE. 14 We ignore
chunks that only contain stop-words.

Variables
The ILP model has an active vertex variable
for each qterm (xq), tuple (xt), tuple field (xf)
and question choice (xa). Table 4 describes
the coefficients of these active variables. For
example, the coefficient of each qterm is a
constant value (0.8) scaled by three boosts. The
idf boost, idfB for a qterm, x is calculated as
log(1 + (|Tqa | + |T 0

qa |)/nx) where nx is the
number of tuples in Tqa [T 0

qa containing x. The
science term boost, scienceB (set to 2.0) boosts
coefficients of qterms that are valid science terms
based on a list of 9K terms. The location boost,
locB of a qterm at index i in the question is given
by i/tok(q) (where i=1 for the first term). Finally
the objective function of our ILP model can be
written as:

X

q2qterms

cqxq +
X

t2tuples
ctxt +

X

e2edges
cexe

Description Var. Coefficient (c)

Qterm xq 0.8·idfB·scienceB·locB
Tuple xt -1 + jaccardScore(t, qa)
Tuple Field xf 0
Choice xa 0

Table 4: Coefficients for active variables.

Constraints Apart from the constraints de-
scribed in Table 1, we also use the which-term
boosting constraints defined by TABLEILP (Eqns.
44 and 45 in Table 13 (Khashabi et al., 2016)). As
described in Section B, we create a tuple from ta-
ble rows by setting pairs of cells as the subject and
object of a tuple. For these tuples, apart from re-
quiring the subject to be active, we also require
the object of the tuple to be active. This would be
equivalent to requiring at least two cells of a table
row to be active.

14http://factorie.cs.umass.edu/

B Experiment Details

We use the SCIP ILP optimization engine (Achter-
berg, 2009) to optimize our ILP model. To get the
score for each answer choice ai, we force the ac-
tive variable for that choice xai to be one and use
the objective function value of the ILP model as
the score. For each question, a solver gets a score
of 1 if it chooses the correct answer and 1/k if
it reports a k-way tie that includes the correct an-
swer. For evaluations, we use a 2-core 2.5 GHz
Amazon EC2 linux machine with 16 GB RAM.
To evaluate TABLEILP and TUPLEINF on curated
tables and tuples, we converted them into the ex-
pected format of each solver as follows.

B.1 Using curated tables with TUPLEINF

For each question, we select the 7 best matching
tables using the tf-idf score of the table w.r.t. the
question tokens and top 20 rows from each table
using the Jaccard similarity of the row with the
question. (same as Khashabi et al. (2016)). We
then convert the table rows into the tuple structure
using the relations defined by TABLEILP. For ev-
ery pair of cells connected by a relation, we cre-
ate a tuple with the two cells as the subject and
primary object with the relation as the predicate.
The other cells of the table are used as additional
objects to provide context to the solver. We pick
top-scoring 50 tuples using the Jaccard score.

B.2 Using Open IE tuples with TABLEILP
We create an additional table, TO in
TABLEILP using all the tuples in our KB,
T . Since TABLEILP uses fixed-length
(subject; predicate; object) triples, we need
to map tuples with multiple objects to this format.
For each object, Oi in the input Open IE tuple
(S;P ;O1;O2 . . .) 2 T , we add a triple (S;P ;Oi)

to the table, TO.

