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Abstract. This paper proposes performing natural language generation using genetic 
algorithms to address two issues: the difficulty in controlling global textual features which 
arise from a large number of interdependent local decisions, and the difficulty in applying 
conventional NLG wisdom in domains where the communicative goal lacks sufficient 
detail. It presents details of an implemented system that embodies the aforementioned 
proposal, and discusses the results of an empirical study conducted using the system.  
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1. Background 
This paper proposes an approach to natural language generation (NLG) using the genetic 
algorithm (GA), a widely used stochastic search method. 

In this section we discuss two well known issues in NLG, and in Section 2 we discuss why 
and how genetic algorithms can address these issues. In Sections 3 to 5 we present an 
implementation of an NLG system that embodies the proposed approach. Our own interest is in 
developing a generator that conveys a given semantics as a text that simultaneously exhibits a 
certain metre, i.e. regular patterns in the rhythm of the text. Consequently, some of the design 
decisions, particularly concerning the evaluation functions, are domain-specific. However, we 
believe the architecture as a whole is of general-purpose interest. The paper concludes with 
some examples and discussion in Section 6. 

1.1.Achieving fidelity and fluency 
Oberlander and Brew (2000) argue that NLG systems must achieve fidelity and fluency goals, 
where fidelity is the faithful representation of the relevant knowledge contained within the 
communicative goal, and fluency is the ability to do it in a natural-sounding way such that it 
engenders a positive evaluation of the system by the user. In practice, applied NLG systems can 
often sidestep the fluency goal given a very restricted domain of output, with a limited style that 
may be just enough to serve the purpose of the application. 

Unfortunately, fluency may be controlled by global textual features which arise from a large 
number of local decisions, few of which are based on stylistic considerations. This does not suit 
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the prevalent paradigm of NLG as a top-down, goal-driven process, decomposed into the stages 
of content determination, text planning, and surface realisation, typically implemented within a 
pipeline architecture (Reiter, 1994) (cf. the “generation gap” problem in Meteer (1991)). 

Oberlander and Brew propose an architecture which consists of two collaborating modules: an 
author and a reviewer. The author faces the task of generating a text that conveys the correct 
propositional content, i.e. achieving fidelity, whereas the reviewer must ensure that the author’s 
output satisfies whatever macroscopic properties have been imposed on it, i.e. achieving fluency. 
Recent corpus-based NLG systems (Langkilde and Knight, 1998) essentially embody this 
architecture: a symbolic generator acts as the author, and a language model acts as the reviewer. 

1.2.Vague communicative goals 
Most NLG systems make two basic assumptions: that text generation is communicative goal-
driven, and that these goals are sufficient to dictate a top-down approach for the planning of the 
text’s structure and decomposition of goals. However, Mellish et al. (1998b) claim there is a 
class of NLG problems for which these basic assumptions do not apply. In the case of the ILEX 
system, this is due to two factors. Firstly, as ILEX produces explanation labels of jewelry items 
on display, there is often no clear plan or goal to be conveyed beyond “say something coherent 
and interesting about this artifact within the space available”. Secondly, ILEX can not plan far 
in advance, as it has to generate text in real-time based on the user’s choices. 

The alternative approach they adopt is opportunistic planning, whose key elements are 
interleaving of planning and execution, flexible choice of tasks from an agenda, expanding 
“sketchy plans” as needed, taking into account the current state of the world, and recognition of 
opportunities through detection of reference features. 

2. Using genetic algorithms to do NLG 
In addressing the above issues, we advocate treating the NLG process as a constraint 
satisfaction problem, where a solution is a text that satisfies multiple interdependent constraints 
relating to various levels of linguistic representation, e.g. semantic, syntactic, pragmatic, 
stylistic. Finding such a solution requires searching a space that is undoubtedly immense. Our 
proposed solution is to employ the genetic algorithm (GA), a widely-used heuristic search 
strategy that relies on random traversal of a search space with a bias towards more promising 
solutions. Specifically, it evolves a population of individuals over time, through an iterative 
process of evaluation, selection, and evolution. Upon termination, the fittest individual is hoped 
to be an optimal, or near-optimal, solution (Bäck et al., 1997). 

Using GAs to do NLG has been done before, e.g. Mellish et al. (1998a). However, these 
previous attempts employed GAs as optimisation functions for specific subtasks of NLG. We 
believe that handling the entire NLG process through GAs opens up the potential for various 
flexible approaches, which we discuss in Section 2.1. In particular, employing GAs allows a 
measure of opportunistic planning (Section 1.2), where the evolutionary cycle enables fitness 
functions to recognize opportunities and provide feedback to the executor, i.e. genetic operators. 

Finally, we note that using genetic algorithms for NLG also reflects a discriminative model of 
generation, where domain knowledge is stated declaratively, i.e. what a good text should look 
like instead of how to write one (cf. the corpus-based systems in Section 1.1). 

2.1.Representing linguistic constraints and the encoding of domain knowledge 
When using GAs for NLG, a solution is a text that must achieve fluency and fidelity goals. 
These goals can be expanded as a set of constraints to be satisfied by a text, e.g. it must be 
grammatical, it must convey some given meaning, it must be readable, etc. 

There are two ways constraints can be implemented: ensuring that all possibly evolvable 
solutions never violate the constraint, or imposing penalties on individuals that violate a 
constraint. There is a trade-off: the former approach is obviously ideal, but its intractability is 
often the very reason GAs are employed in the first place. On the other hand, imposing 
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excessively heavy penalties often leads to premature convergence on the first found well-formed 
solution, whereas if the penalties are too light, the GA may continue to evolve ill-formed 
solutions that score better than well-formed ones. 

Within this framework, there is large scope for flexibility in terms of where domain-specific 
knowledge is encoded to help satisfy these constraints. For NLG, it seems reasonable to assume 
that candidate solutions must at least be grammatically well-formed. 

Oberlander & Brew’s author-reviewer model specifies that the author focuses on achieving 
fidelity, whereas the reviewer focuses on maximizing fluency goals. In GAs, this suggests 
devising genetic operators that explicitly work towards realising some input semantics, and 
fitness functions that measure fluency factors such as readability, length, coherence, etc. 

However, other setups are possible. For instance, one could envisage an author (genetic 
operator) concentrating on fluency whilst a separate reviewer (fitness function) assessed the 
output for fidelity, or a pair of reviewers assessing a document of grammatical nonsense1, each 
concentrating on fluency and fidelity respectively. Such approaches may seem unnecessarily 
awkward for conventional NLG tasks, but may provide a more suitable platform for NLG 
systems without well-defined communicative goals (see Section1.2). 

Note that the various components, i.e. the ensemble of authors and reviewers, can more or less 
be defined independently of each other, modulo the need for a common representation of a 
candidate text. This addresses the “engineering argument”, one of the main arguments 
supporting the pipeline architecture as opposed to an integrated architecture (Reiter, 1994), i.e. 
it enables a modular decomposition of an NLG system, thus resulting in a more manageable 
implementation. 

3. Linguistic representation 
Our system represents candidate texts as lexicalized tree adjoining grammar (LTAG) derivation 
trees, augmented with the use of feature structures (Vijay-Shanker and Joshi, 1988). A 
derivation tree can be seen as the basic formal object that is constructed during the course of 
sentence generation from a semantic representation (Joshi, 1987). However, derivation trees are 
also the ideal data structure within our system for another reason, i.e. the non-monotonic 
structure building nature of GAs. Since the genetic operators may involve randomly altering 
subtrees through subtree deletion and swapping, we must somehow undo the unification of 
certain feature structures. Using the derivation tree as our primary data structure, we are able to 
store all local feature structures in their respective elementary trees (cf. Kilger (1992)). When 
required, e.g. to evaluate certain properties of the resulting text, the derived tree is rebuilt. 
Redundant computation is minimized by reusing a cached derived tree if it has not been 
modified between iterations. 

Within evolutionary theory, the LTAG derivation tree can be viewed as the genotypic 
representation of candidate solutions, from which we can compute the phenotypic information 
of semantic (Section 5.2) and prosodic (Section 5.1) features via the derived tree. 

We adopt a simple ‘flat’ semantic representation that is often used in NLG (Koller and 
Striegnitz, 2002). A semantic expression is a set of first order logic literals, which is logically 
interpreted as a conjunction of all its members. The arguments of these literals represent domain 
concepts such as objects and events, while the functors state relations between these concepts. 
See Section 5.2 for some examples. 

The semantic form of a tree is the union of the semantic expressions of its constituent 
elementary trees, with binding of variables during substitution and adjunction to control 
predicate-argument structure; cf. Stone et al. (2001). 

Finally, since our system requires information on prosody, each word is associated with its 
phonetic spelling, taken from the CMU pronouncing dictionary2. 

                                                           
1 As produced by a statistical language model, or by some combination of monkeys and typewriters. 
2 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
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4. Genetic operators for NLG 
Genetic operators are functions that are stochastically applied to candidate solutions to explore 
alternative solutions. In essence, they define the search space. When designing operators for our 
system, the following desiderata were considered: 
1. Grammaticality: The operators should ensure that syntactic well-formedness of the 

candidate texts be preserved. This suggests that genetic operators be based on the 
derivational rules of the underlying grammatical formalism (LTAG). 

2. Non-monotonicity: As operators are stochastically applied, it is highly improbable that 
optimal texts can be constructed using monotonic structure-building operators alone. Rather, 
they are typically built through the trial and error design mechanism that evolution affords. 
Therefore, one or more non-monotonic operators must facilitate this, such as deletion, 
replacement, and swapping of substructures. 

3. Incrementality: Constructing texts in an incremental fashion enables the generation process 
to benefit from the guiding hand of evolution. The appropriate granularity of operator 
incrementality is an open question. Furthermore, incomplete derivations may conflict with 
requirements of grammaticality. 

Within our framework, several sets of operators were implemented. 

4.1.Baseline operators 
Existing work in genetic programming defines genetic operators on tree data structures, such as 
grow, which randomly selects a leaf from a tree and replaces it with a randomly generated new 
subtree, shrink, which does the opposite, and switch, which randomly selects two nodes and 
swaps their position. 

Within the context of NLG, although it seems obvious to perform such structural 
manipulations on phrase structure trees, we argue that they are most appropriately applied to the 
LTAG derivation tree instead. This maintains the syntactic principle of well-formed LTAG 
structures being constructed through valid compositions of elementary trees using the operations 
of substitution and adjunction. The BLINDADD operator adds a node in the derivation tree; 
variants exist for both substitution and adjunction. The BLINDDELETE operator removes a node 
in the derivation tree, along with the subtree that it dominates. Finally, the BLINDSWAP operator 
swaps the positions of two subtrees, either belonging to the same derivation tree, resulting in 
mutation, or to another derivation tree, resulting in crossover. 

These baseline operators, while grammatically sound (in particular, all involved feature 
structures must license the operation), are oblivious to fidelity and fluency goals. Consequently, 
they indiscriminately add, delete, and swap both good and bad content, delegating judgments of 
quality to the fitness evaluation functions. 

4.2.Semantically motivated operators 
Given the task of generating the sentence “John loves Mary”, it seems absurd that an NLG 
system would attempt to add content concerning, say, Greek archaeological artefacts or medical 
conditions, yet this is an entirely possible scenario given the baseline operators above. 

Accordingly, we implemented a set of operators that deliberately attempts to bring the 
semantics of a candidate text closer to that of some pre-defined input semantics. This is 
precisely the task of surface realisation in NLG, and our approach is reminiscent of Nicolov 
(1998) and Stone et al. (2001). 

Our “semantically smart” operator, SMARTADD, explicitly tries to realise some portion of the 
input semantics S, specifically that which has not yet been realised, while simultaneously 
maintaining syntactic well-formedness. Nicolov calls this gradual process the consumption of 
semantics. Conversely, SMARTDELETE will only consider removing elementary trees whose 
lexical semantics are extraneous with respect to S, and SMARTSWAP will only consider 
swapping subtrees that preserve the predicate argument structure represented by S. 
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Such operators require a way of reasoning about the relationship between the input semantics 
and the semantics conveyed by the candidate text, i.e. which portion of the input semantics has 
been realised, and which portion of the candidate text semantics indeed realises the input, or is 
extraneous. This is achieved using the semantic mapping algorithm discussed in Section 5.2. 

5. Fitness functions for NLG 
In GAs, the fitness function is where the bulk of domain-specific knowledge and heuristics is 
typically encoded. Specifically for NLG, the fitness function serves as a metric, or more 
precisely a set of metrics, that measure whether a candidate text achieves the goals of fidelity 
and fluency. 

For our implemented system, we measured fidelity in terms of how well a candidate text 
realised a given propositional input, and fluency in terms of how closely the rhythmic stress 
patterns of a text matched a given poetic metre. 

5.1.Metre similarity 
Our system is tasked with conveying a given semantics as a text that exhibits a given metre. For 
example, Fig. 1 shows the metre of Hillaire Belloc’s “The Lion”, with stressed syllables in bold 
type, unstressed syllables in normal type, syllables extraneous to the underlying metre in italics, 
and • indicating a ‘missing’ syllable. 
 

The Lion, the Lion, he dwells in the waste, 
He has a big head and a very small waist; 

But his shoulders are stark, and his jaws they are grim, 
And a good little child • will not play with him. 

Figure 1: Metre pattern of Belloc’s “The Lion” 
 
Our system represents metre patterns as a list of stress syllables notated as follows: w (‘weak’) 

is an unstressed syllable, s (‘strong’) is a stressed syllable, x (‘wildcard’) is any syllable, and b 
indicates a linebreak. Fig. 2 shows example notations for (a) a limerick, and (b) “The Lion” 
(formatted into lines for readability purposes). 

 
[w,s,w,w,s,w,w,s,b, [w,s,w,w,s,w,w,s,w,w,s,b, 
w,s,w,w,s,w,w,s,b, w,s,w,w,s,w,w,s,w,w,s,b, 

w,s,w,w,s,b, w,s,w,w,s,w,w,s,w,w,s,b, 
w,s,w,w,s,b, w,s,w,w,s,w,w,s,w,w,s,b] 

w,s,w,w,s,w,w,s,b]  
(a) (b) 

Figure 2: Encoding for (a) a limerick and (b) “The Lion” 
 

Our metre evaluation function measures the degree of similarity between a given metre pattern 
and the metre exhibited by a candidate text. To compute this, we use the well-known minimum 
edit distance, in which the distance between two strings is the minimal sum of costs of 
operations (symbol insertion, deletion, and substitution) that transform one string into another. 
We have devised a suitable cost function that reflects our intuitions of metre. Since the edit 
distance only accounts for context-free operations, we implemented a metre compensation 
function to account for the fact that context can affect lexical stress, particularly in poetry. 

Our metre evaluation function, , takes the value computed by the minimum edit 
distance algorithm, adjusts it using our context-sensitive compensation scheme, and normalizes 
it to the interval [0,1]. Table 1 shows  values for various candidate texts, against the 
target form in Fig. 2(b). The first is Belloc’s actual poem, which itself contains some metrical 
imperfections; the second is a limerick by Edward Lear; the third is an extract from an academic 
text, containing roughly the correct number of syllables; the last is chosen for its 
inappropriateness. The  scores do not conflict with our intuitions of poetic metre. 
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Table 1: Metre fitness for various texts 

Candidate text  
The Lion, the Lion, he dwells in the waste. He has a big head and 
a very small waist. But his shoulders are stark, and his jaws they 
are grim, and a good little child will not play with him. 

0.787 

There was an old man with a beard, who said, “it is just as i 
feared! two owls and a hen, four larks and a wren, have all built 
their nests in my beard!” 

0.686 

Poetry is a unique artifact of the human language faculty, with its 
defining feature being a strong unity between content and form. 

0.539 

John loves Mary. 0.264 

5.2.Semantic similarity 
Following Love (2000), we propose two factors that must be considered: structural similarity 

and conceptual similarity. Structural similarity measures the degree of isomorphism between 
two semantic expressions. Conceptual similarity is a measure of relatedness between two 
concepts (logical literals). We simply use the following: two concepts are the same if and only if 
they share the same literal functor. However, one could envisage a refined approach using an 
underlying ontology such as WordNet, or using statistical models of lexical semantics, e.g. LSA. 

Computing a structural similarity mapping between two expressions is an instance of the NP-
complete maximal common subgraph problem. However, we have implemented a greedy 
algorithm that serves our purposes and runs in , based on Gentner’s structure mapping 
theory (Falkenhainer et al., 1989). It takes two sets of logical literals,  and , 
and attempts to ‘align’ the literals. We then apply a function , normalised to [0,1], to 
compute a score based on various aspects of the alignment; this is based on Love’s 
computational model of similarity Love (2000). 

Table 2 shows an example of computing semantic similarity for a selection of candidate texts 
against a target semantics that represents the second line of Belloc’s “The Lion”, i.e. “[The lion] 
has a big head and a very small waist”. The target semantic expression is as follows: 

 
 

The first two texts convey a subset of the target; the third text conveys an altogether different 
fact about the lion; the fourth text is purposely inappropriate; and the last text, conveys the 
semantics of the first text in its object to the verb ‘love’. As with our metre similarity function, 
we believe that the  scores roughly approximate human intuitions. 

 
Table 2: Semantic fitness for various texts 

Candidate text Candidate semantics  
The lion has a big head {lion(_,L), own(_,L,H), head(_,H), big(_,H)} 0.525 
The lion has a head and a 
waist 

{lion(_,L), own(_,L,H), head(_,H), own(_,L,W), 
waist(_,W)} 

0.598 

The lion dwells in the 
waste 

{lion(_,L), dwell(D,L), inside(_,D,W), waste(_,W)} 0.078 

John loves Mary {john(_,J), love(_,J,M), mary(_,M)} 0.0451 
John and Mary love the 
lion’s big head 

{john(_,J), love(_,J,H), mary(_,M), love(_,M,H), 
lion(_,L), own(_,L,H), head(_,H), big(_,H)} 

0.389 

6. Testing and discussion 
Throughout our testing, we employed proportionate selection, which assigns a distribution that 
accords parents a probability to reproduce that is proportional to its fitness. Individuals are 
sampled from this distribution using stochastic universal sampling, which minimises chance 
fluctuations in sampling. To reduce the chances of premature convergence or stagnation, we 
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used an elitist population of 20% of the entire population (the latter being 40). See Bäck et al. 
(1997) for a review of these issues. Each test was run five times, and each run lasted for 500 
iterations. The three mutation operators used, along with their probabilities, were substitution 
(0.5), adjunction (0.3), and deletion (0.2). For crossover, the subtree swapping operator was 
used. The probabilities of applying genetic operators were  = 0.6,  = 0.4, for 
both the “blind” and “smart” variants. A small handcrafted grammar and lexicon was used, with 
33 elementary trees and 134 lexical items, 28 of which were closed class words. Most of the 
content words were taken from Belloc’s “The Bad Child’s Book of Beasts”. 

6.1.Fluency and fidelity generation 
In this test, we measured the ability of our system to generate texts that simultaneously achieve 
fidelity and fluency goals. We took a very simple approach to combining the metre similarity 
and semantic similarity functions – the arithmetic mean of their scores, i.e. 

 
The target metre was that of a limerick, as in Fig. 2(a). The target semantics was a 

representation of the first two lines of “The Lion” (Fig. 1), with a slight alteration where the 
original opening noun phrase “The lion, the lion” was replaced with “The african lion”. The 
target semantic expression is as follows: 

 
 

Two variants of the test were conducted: one with the baseline ‘blind’ operators and one with 
the semantically-aware ‘smart’ operators. 

Table 3 shows the highest-scoring candidate from the blind operator test. The text is metrically 
perfect. However, the unmapped  literals show that the text fails to convey three 
concepts, i.e. that the lion is african, that its head is big, and that the waist is very small. 
 
Table 3: Solution for blind operators tests 

Fitness score: 
0.81 
Text: 
A lion, it dwells in a waste. 
A lion, it dwells in a waste. 
A waste will be rare. 
Its head will be rare. 
Its waist, that is small, will be rare. 
Unmapped : 
{african(_1, l), big(_6,h), very(_9, s)} 
Unmapped : 
{rare(_33,_34), will(_35,_36), waste(_37,_34), dwell(_38,_39), 
lion(_40,_39), inside(_41,_38,_42), waste(_43,_42), rare(_44,_45), 
will(_49,_50), rare(_51,_52), will(_55,_56)} 

 
Table 4 shows the highest-scoring candidate from the smart operators test. Although the fitness 
score is very similar to the one in Table 3, the characteristics of the text are markedly different. 
The smart operators, which increase bias towards semantics, have a detrimental effect on the 
metre. Unlike the metrically perfect limerick in Table 3, this text requires several edit 
operations: 2 insertions and 2 deletions (even Belloc’s original poem contains similar rhythmic 
imperfections – see Section 5.1). However, it does a better job of conveying , only 
failing to convey the fact that the waist is very small, whilst also conveying fewer extraneous 
semantics (most of which are repetitions of correct semantics). 

 
Table 4: Solution for smart operators test 
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Fitness score: 
0.83 
Text: 
A very • african lion, 
who is african, dwells in a waste. 
Its head, that is big, 
is very • big. 
A waist, that is its waist, it is small. 
Unmapped : 
{very(_9, s)} 
Unmapped : 
{very(_137,_135), big(_141,_136), waist(_145,_143), very(_153,_152), 
african(_154,_140)} 

6.2.Line by line generation 
In this test, we had our system generate each line of a limerick individually. The purpose is to 

see whether the system can perform better given a simpler task. We also based this test on a 
different limerick to show the flexibility of the system.The new input is shown in Table 5. Note 
that the target metres represent an ideal limerick. The “gold standard” limerick itself is 
metrically imperfect. 

 
Table 5: Buller’s original limerick as individual lines. 

Line 1: There was a young lady called Bright. 
 

[w,s,w,w,s,w,w,s,b] 
Line 2: She could travel much faster than light. 

 
[w,s,w,w,s,w,w,s,b] 
Line 3: She set out one day in a relative way. 

 
[w,s,w,w,s,w,s,w,w,s,b] 
Line 4: She returned on the previous night. 

 
[w,s,w,w,s,w,w,s,b] 

 
Table 6 shows the best solution obtained by trying to generate the whole limerick at once, as 

in previous tests, whereas Table 7 collects the results of generating each individual line. In the 
latter case, the resulting limerick is metrically much better than the former, as there are only two 
edits compared to five. Both of these generated texts are metrically superior to the original. 

 
Table 6: Solution for entire limerick. 

Fitness score: 
0.69 
Text: 
A lady could be on an evening, 
that could be preceding, one day. 
A young lady called Bright, 
who set out one day, 
travelled much faster than light. 
Unmapped : 
{can(_6, t), relative(_7, le), return(r, l)} 
Unmapped : 
{oneday(_199,_210), lady(_201,_197),can(_221,_207),can(_228,_213)} 

 
Table 7: Collected solution for individual lines. 
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Fitness score: 
Line 1: 0.82, Line 2: 0.66, Line 3: 0.78, Line 4: 0.86 
Text: 
A lady called Bright could be young. 
She travelled. The light could be light. 
She set out one day. She set out one day. 
She is on a previous night. 
Unmapped : 
{travel(t, l), faster(f, t, li), much(_1, f), relative(_0, le), {return(r, l)} 
Unmapped : 
{can(_57,_81), {light(_527,_524), travel(_603,_536), {leave(_359,_323), 
oneday(_333,_359)} 

 
However, the system fails to satisfy the semantics, and in fact does worse in the latter case, as 

there are five unmapped  literals as opposed to three. This suggests that, particularly 
given the smaller task of individual line generation, our evaluation function is not guiding the 
GA to optimize semantics as well as it is for metre. We attempt to address this in the final test. 

6.3.Evaluation weighting 
The results in the preceding test suggest that the evaluation function is biased towards metre 
optimisation. In our final test, we simply modified the linear combination by doubling the 
weight of semantic fitness as follows: 

 
Table 8 collects the results of generating each individual line using the modified evaluation 

function. We believe this text is definitely an improvement over the ones in Tables 6 and 7, and 
most closely resembles the original limerick in Table 5. Note that semantically it only lacks 2 
target literals and only has 1 extraneously conveyed literal. Metrically, it requires 9 edits. 
Subjectively, however, we believe it still scans reasonably well as a limerick. 

This suggests that semantic fitness should carry more weight than metre fitness, perhaps 
reflecting the intuition that fidelity is more of a ‘harder’ constraint than fluency is. 

 
Table 8: Collected solution, modified fitness 

Fitness score: 
Line 1: 0.78, Line 2: 0.79, Line 3: 0.95, Line 4: 0.76 
Text: 
There is a young lady called Bright. 
She will travel much faster than light. 
She set out one day * relatively. 
She is on a preceding * night. 
Unmapped : 
{can(_2, t), return(r, l)} 
Unmapped : 
{will(_409,_415)} 

7. A (Speculative) Summary 
We have proposed a flexible author-reviewer model for performing NLG that is based on GAs 
to address the two issues presented in Section 1. 

We then presented details of an implemented instance of this model, which specifically aims 
to convey a given semantics as a text that satisfies a given metre pattern. Through a series of 
small tests, we showed that it has the potential to satisfy the interdependent goals of fidelity and 
fluency (compare in particular, the output in Table 8 with the gold standard in Table 5). 
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As implemented, our system does not really address the difficulty of generation when the 
communicative goal is vague: the semantic similarity function (Section 5.2) still requires an 
existing propositional input. However, one can envisage other measures of fidelity that account 
for notions of coherence, interestingness, consistency. As for fluency, one could replace our 
very specific metre similarity function with a declarative model of, for instance, readability, 
document length, personality, and language complexity. 
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