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Abstract 

Natural language generation technology is now ripe for commercial exploitation, but one of the 
remaining bottlenecks is that of providing NLG •systems with user-friendly interfaces for Specifying the 
content of documents to be generated. We present here a new technique we have developed for providing 
such interfaces: WYSIWYM editing. WYSIWYM (What You See Is What You Meant) makes novel use 
of the system's generator to provide a natural language input device which requires no NL interpretation 

. . . . 

- -  only NL generation. 

1 Introduction 

It Is generally agreed that the technology of natural language generation has evolved to a stage where it can 
feasibly be expected to be found in ,real world', applied systems. Indeed, within theiast year there has been 
a specialist tutorial (Dale and Reiter, 1997) and a journal article (Reiter and Dale, 1997) aimed at guiding 
interested parties on how to build such systems; a textbook on this subject is also about to appear (Reiter and 
Dale, forthcoming). A problem that remains outstanding, however, is that of the input to NLG applications: 
where should we get it from and what should it look like (McDonald, 1993)? 

A popular school of thought on this issue is echoed in the following quotation: 

Rules of Thumb for NLG 

NL generation only makes sense when 

1) The data to be communicated is already present in an existing database (knowledge base etcO (em- 
phasis added) 
2) The users need the information, and want it presented as text (e.g., instead of graphically) 
3) The volume of documentation justifies the expense of building an NLG system. 

from Ehud Reiter, 'Using Natural Language Generation to Produce Real-World Documents'. Seminar presented at 
the iTRI, 1994 

This first rule of thumb clearly does make good general sense, and a number of successful systems have 
followed it: 

ANA takes a set of temporally ordered stock quotes fromthe Dow Jones News and Information 
Retrieval System and produces a natural language report on the activities of the stock market 
over the period• (Kukich, 1983). 
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• GOSSIP takes data from an audit trail of an operating system and produces a report (for a security 
officer) on user activity over the period (Carcagno and Iordanskaja, 1989). 

• FOG takes data from a time series of weather depiction charts and produces a bilingual (French 
and English) weather report for the period (Goldberg et al, 1994). 

• L F S  takes statistical data from labour force surveys and from this produces a report on employ- 
ment statistics over the given period (Iordanskaja et al, 1992). 

• MODELEXPLAINER takes data from graphical object oriented data models and from this gen- 
erates a textual description of the model (Lavoie et al, 1996). 

• POSTGRAPHE takes tabular data (of the sort found in a typical spreadsheet) and generates a 
report integrating both graphics and text (Fasciano and Lapalme, 1996). 

• PLANDOC takes the data from a simulation log file and from this produces a report of the 
explored simulation options (McKeown et al, 1994). 

• ALETHGEN takes data from a customer database and produces a customised letter (in French) 
(Coch, 1996). 

• A system developed by Johanna Moore and her colleagues at the University of Pittsburg takes 
the data from SAGE, a graphics presentation system (Roth et al, 1994), and produces an accom- 
panying natural language caption (Mittal et al, in press). 

However, it doesn't make the only sense. Some applications require the user to interact rather more closely 
with the semantic model that drives the generation process, and there is a small, but growing, number of 
systems that are able to provide this kind of interaction. They achieve this through a common solution: 
interfaces that allow the user to engage in symbolic authoring of the generated text. 

• EXCLASS is an intelligent support tool for personnel officers writing (bilingual English and 
French) job descriptions. The user builds the job description by composing and editing concep- 
tual representations; these representations are trees of concepts from a structured conceptual 
dictionary. Concepts are presented to the user through diagrammatic trees with natural lan- 
guage labels (Caldwell and Korelsky, 1994). 

• DRAFTER-I i s  an authoring tool to support technical authors and software developers in writing 
(bilingual English and French) software manuals. The user directly builds the domain model 
(semantic knowledge base) describing the procedures for using a selected software application. 
As it is being constructed, the model is presented to the user through diagrams and fragments 
of text (Paris et al, 1995). 

• G I S T  is an authoring tool to support forms designers. It generates (multilingual English, Ger- 
man, Italian) forms in the domain of social administration. The user's interaction with G I S T  is 
very similar to that with DRAFTER-I. (Power et al, 1995). 

• A tool to support inventors in the authoring of patent claims allows the user to build a semantic 
model of the invented apparatus by selecting (via multiple-choice menu options) the apparatus 
parts, their functions and relations to each other (Sheremetyeva and Nirenburg, 1996). 

These systems all comprise a natural language generator coupled to an interface that supports the manual 
creation of the generator's input (i.e., the authoring of the symbolic (conceptual) content of the output 
document). 

In the remainder of this paper we describe a new type of symbolic authoring, W Y S I W Y M  ( W h a t  You See 
Is What You Meant) editing. A unique feature of WYSIWYM is that it uses the text generator not only to 
produce the output document but also to contribute to the editing of its own input specification. 
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2 WYSIWYM editing 

WYSIWYM is a technique for creating and maintaining knowledge models (e.g., knowledge bases, databases, 
domain models) by direct knowledge editing with the benefit of dynamic natural language feedback. With 
WYSIWYM, each operation on the model results in a presentation in natural language of the current state of 

the 'model;  this textual description also includes explicit information about what parts of the model remain 
incomplete (and, of those, which must be obligatorily completed). In this way, text generation technology is 
used as a means to presen t complex data entry tasks in a way which is both easy to understand and practical 
to work with. 

The basic idea of WYSIWYM editing is that a special kind of natural language text is generated in order to 
present the current configuration. This text includes generic phrases called 'anchors' which mark attributes 
that have no value. The anchors serve as the locations where new objects may be added. By opening a pop- 
up menu on an anchor, you obtain a list of short phrases describing the types of objects that are permissible 
values of the attribute; if you select one of the options, a new object of the specified type is added to 
the semantic network. A new text is then generated to present the modified configuration, including the 
attributes o f  the new object. 

As more information is added about a new object, i t  will be represented by longer spans of text, com- 
prising whole sentences, or perhaps even several paragraphs. These spans of text are also mouse,sensitive, 
so that the associated semantic material can be  cut or copied. The cutting operation removes the network 
fragment that was previously the value of an attribute, and stores it in a buffer, where it remains available 
for pasting into another suitable location. The text associated with the fragment may or may not remain the 
same, depending on the context of  the new location. 

Although the user appears to be creating text, she is doing this only indirectly by creating knowledge; 
it is the system which creates the text. Whereas WYSIWYG editors (e.g., Microsoft Word, FRAMEMAKER 
and INTERLEAF)present the user with text as it will appear on the printed page, WYSIWYM editors present 
a text that reflects only what the user m e a n t  - not necessary what she will g e t  as the final output. 

3 Illustration of WYSIWYM editing 

Our first application of WYSIWYM editing was in the context of the DRAFTER project, which developed a 
system to support the production of software documentation in English and French (e.g., Paris et al, 1995). 
The system includes a knowledge editor, with which a technical author can define the procedures for using 
common software applications such as word processors .and diary managers; in this way the author builds 
the domain model from which a text  generator produces instructions, in English and French, that describe 
thesepr0cedures. The eventual aim of such Systems is to support the technical authors who produce tutorial 
guides and user manuals for software applications, by automatically generating routine procedural passages 
in many languages. 

In DRAFTER-I, the first version of the system, knowledge editing was performed through a graphical 
• interface in which objects in the knowledge base were presented through nested boxes with brief linguistic 
labels. Some authors found these diagrams hard to interpret and modify, so we decided to explore the 
new idea of presenting the growing domain model through a natural language text, thus exploiting the 
multilingual generator to support knowledge editing. The result was a completely re-engineered system, 
DRAFTER-II, in which the generator not only produces the final output texts, but also supports a WYSIWYM 
knowledge edi tor . :  
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As a detailed example of WYSIWYM editing, we will describe a session in which a technical author uses 
DRAFTER-II  in order to define the knowledge underlying a brief passage of software documentation. We 
will suppose that the author is producing a tutorial guide to the OpenWindows Calendar Manager, and is 
currently working on a section that explains how to schedule an appointment. 

The Calendar Manager's procedure for scheduling an appointment requires various data to be entered in 
a dialogue box called the Appointment Editor window. With some simplifications, it could be expressed by 
the following text, which we quote here in order to clarify the author's task. 

To schedule an appointment: 

Before starting, open the Appointment Editor window by choosing the Appointment option from the 
Edit menu. 

Then proceed as follows: 

1. Choose the start time of the appointment. 
2. Enter the description of the appointment in the What field. 
3. Click on the Insert button. 

The author's aim is to introduce this information into the domain model. In the conventional setting, the 
technical author would be using a word processor to construct this information as text. With DRAFTER-II, 
the author will be operating at the symbolic (conceptual) level by interacting directly with domain model. 
If  this is done successfully, the system will be able to generate the above text - -  or an equivalent one - -  in 
English, French, and any other supported language. 

We now follow stage by stage a session in which the procedure for scheduling an appointment was 
defined. Each stage is illustrated by the corresponding snapshot in Figure 1.1 

Stage 1 The process starts when the author selects the menu options I n p u t :  modality and New file (not 
shown). In response, the system constructs a model of an empty procedure, i.e. one in which a goal and 
the methods of  achieving it are undefined. From this model, the generator produces the single-sentence text 
shown in the figure. This text has special features related to its authoring function. 

• The phrase "Do this action" is coloured red, indicating that it marks a mandatory choice, a 
location where information must be added. In this case, the red phrase represents the undefined 
goal of the procedure. 

• The phrase "using these methods" is coloured green, indicating that it marks an optional choice, 
a location where information may be added. In this case, the green phrase represents the unde- 
fined methods for achieving the goal. 

• Both coloured phrases are mouse-sensitive. By clicking on either phrase, the author opens a 
pop-up menu from which a concept may be selected. 

We refer to the mouse-sensitive coloured phrases as 'anchors', by analogy with the links in a hypertext. 
Anchors can be developed in any order: we will assume in this illustration that the author decides to define 
the goal of the procedure first, and then the methods for achieving it. 

~For of lack of space, we have had to cut parts of the snapshots and occassionaUy assume intermediate displays. This means 
that at times we refer to parts of the display not visible in the figure (e.g., the end of a long pop-up menu) or take the reader through 
a step that is not shown. We ask the reader's indulgence in this. 
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Figure 1: Stages in knowledge editing with WYSIWYM 
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Stage 2 To begin the process of defining the goal (scheduling an appointmen0, the author clicks on the 
red anchor and obtains a pop-up menu listing the available action concepts. Near the bottom of this list 
(not shown) is the concept s c h e d u l e .  When this concept is selected, DRAFTER-II updateS its model by 
filling the goal slot with a scheduling action, which includes a new slot for the event to be scheduled (as yet 
undefined). 

Stage 3 From the updated model, a new text is generated and displayed. The green anchor remains the 
same, but the anchor "Do this action" is replaced by a phrase showing the information already defined (the 
scheduling action) in black, along with a new red anchor showing that the author must choose which kind 
of event is to be scheduled. Although the anchors can be developed in any order, it would be most logical 
for the author to continue defining the goal by clicking on this event and choosing the appropriate concept, 
in this case a p p o i n t m e n t .  

Stage 4 The goal is now completely specificed, since it is shown by a phrase with no red anchors. If 
an error has been made (e.g. choosing m e e t i n g  instead of a p p o i n t m e n t ) ,  the author can undo the 
mistaken choice by opening a pop-up menu on the relevant span of text (in this case, "the meeting") and 
selecting the option Cut .  This will yield the text in snapshot 3, including the anchor "this event", so that 
the correct choice can be made. If the goal were completely wrong, the author could cut the span "Schedule 
the meeting", undoing both choices and returning to snapshot 1. 

When satisfied that the goal is correctly defined, the author proceeds to specify the method (or methods) 
by which appointments can be scheduled. Opening the anchor "using these methods" yields a single menu 
choice, which the author selects. 

Stage 5 The inclusion of methods in the procedure requires a reorganization of the generated text. 

• Since the material will no longer fit into a single sentence, the generator chooses a different 
pattern in which the methods are presented in bulleted paragraphs, introduced by an infiniti- 
val phrase that presents the goal. The rephrasing of the goal is instructive: it shows that the 
author has been choosing the meaning, not the words. It is the generator, not the author, that 
decides how the procedure should be worded; as a result, the wording may change (without any 
intervention from the author) as the editing of the knowledge proceeds. 

• The model provides for more than one method, since sometimes a goal can be achieved in sev- 
eral ways. Since the author has decided that there will be at least one method, the components 
of the first method (so far undefined) are shown by suitable anchors; the optional anchor "Next 
method" can be opened if the author wishes to define further methods. 

• A method comprises a precondition (optional), a sequence of steps (obligatory), and an inter- 
rupt procedure (optional). Each step is a procedure, because in addition to a goal it may have 
methods of its own. The precondition is a task that should be performed before the steps; the 
interrupt procedure provides a way of abandoning the method if you have second thoughts. 

• Since there must be at least one step, the first step is shown by a sentence with anchors for goal 
and methods. Further steps can be added by opening the optional anchor "Next step". The same 
technique is thus used for a sequence of methods and a sequence of steps, except that the former 
is presented by a buUeted list and the latter by an enumerated list. 
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Stage 6 Since the basic mechanism should now be clear, we now jump to a later stage in which most of 
the information has been defined; the only missing piece is the method for opening the Appointment Editor 
window. The transition from snapshot-5 to snapshot 6 could have occurred in several ways, since anchors 
can be developed in any order; one possibility is the following: 

• The author develops the red anchor in the first step, defining the action of choosing the start 
time of the appointment. 

• The author develops the optional anchor "Next step". This yields a text in which the second 
step reads "Do this action by using these methods", and a third step with the optional anchor 
"Next step" is added. 

• The second and third steps are fully defined. 
• The author remembers that a precondition is needed, and develops the anchor "perform this 

task" at the end of the second line in snapshot 5. The regenerated text shows the undefined goal 
and methods of the precondition, so that the sentence now reads "Before starting, do this action 
by using these methods". 

• The goal of the precondition is fully defined, yielding the text shown in snapshot 6. 

Stage 7 To add the last piece of information, the method for opening the Appointment Editor window, the 
author opens the anchor "using these methods" (snapshot 6). This poses a problem for the generator, since 
as we have seen the material for an expanded method will not fit into a single sentence. The problem is 
solved by deferring the procedure for opening the Appointment Editor window to a separate paragraph. 

As a result of this reorganization of the text, the action of opening the window has to be expressed twice: 
in the first paragraph, it serves as the precondition in the procedure for scheduling an appointment; in the 
last paragraph, it serves as the goal of a sub-procedure. Of course this does not mean that there are now two 
actions. The author might decide to cut one of the phrases "the Appointment Editor window" in order to 
replace w i n d o w  by another concept, e.g. d i a l o g u e - b o x ,  thus redefining the action as one of opening 
the Appointment Editor dialogue-box; the effect on the text would be that both the sentences expressing this 
action would change. This reinforces the point that the author is editing meaning, not text. 

Stage g From snapshot 7, the author completes the model by developing the anchor "Do this action", 
which is eventually replaced by the phrase "Choose the Appointment option from the Edit menu". At this 
point the model is potentially complete, since it contains no red anchors 2. When a model is potentially 
complete, the author can switch the modality from I n p u t  to O u t p u t  in order to obtain a text which 
simply presents the knowledge base, without indicating the locations at which further information may be 
added. 

Note that the output text in snapshot 8 is completely regenerated; it is not obtained merely by omitting 
the green anchors from the input text. In particular, since the method for opening the Appointment Editor 
window can now be expressed by a phrase, there is no need to defer it to a separate paragraph as in snapshot 
7. 

This output text is a computer-generated draft of part of the section of a user manual for the OpenWin- 
dows Calendar Manager that instructs users on how to schedule appointments. 

2N0te that the model was also potentially complete at snapshots 4 and 6. 
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I 4 Implementation 

Figure 2 shows the basic architecture of a WYSIWYM editing system, including the following features: 

• The only thing presented to the user is a text generated from the current domain model. 
• The user can choose between input and output modality. 
• The only way in which the user can edit the domain model is by selecting from pop-up menus 

on an input text. 

Interface 
Text 
generator 

generated text 

updating 
model 

. ' lP  

input to 
generator 

generated text 

Figure 2: The WYSIWYM architecture 

The text is completely regenerated every time the user changes the domain model or switches the modal- 
ity. So far we have developed two experimental systems with this architecture. In DRAFTER-II, described 
above, the domain model and the generator are implemented in Prolog, while the interface is implemented 
in CLIM (CLIM 1994). In the other system, the Prolog generator produces HTML source files which can be 
read by a web browser. In both applications, texts several paragraphs long can be generated very quickly, so 
that when the model is changed the text seems to be updated instantaneously 3 . 

DRAFTER-II currently supports English, French and Italian. Switching from one language to another 
results in the immediate re-generation of the currently viewed text in the new chosen language. This takes 
no longer than the generation of a new text when the model is expanded during editing (as described in the 
steps of Figure 1). 

3Very large domain models might require regeneration of just one part of the domain model at a time. 
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5 Conclusion 

Natural language generation technology has till now been viewed exclusively as a method for producing 
textual o u t p u t  ~ answers to queries put to dialogue systems, report generation, software documentation, 
and the like. We have shown here that, with the use of WYSIWYM interfaces, the technology can be extended 
to include the i n p u t  as  well. WYSIWYM interfaces provide natural language input without the requirement 
of NL interpretation (i.e., no parsing takes place); instead, it makes use exclusively o f N L  generation. We 
believe that this method of input specification provides a new potential for natural language generation 
systems to be applied to a significantly wider range of 'real' applications than has previously been envisaged. 

WYSIWYM editing is a new idea that requires practical testing. We have not yet carried out formal 
usability trials, nor investigated the design of input texts (e.g. how best to word the anchors), nor confirmed 
that adequate response times could be obtained for full-scale applications. However, if satisfactory large- 
scale implementations prove feasible, the method brings many potential benefits: 

WYSIWYM editors are extremely easy to use. 
Since the knowledge base is presented through a document in natural language, it becomes 
immediately accessible to anyone peripherally concerned with the project (e.g. management, 
public relations, domain experts from related projects). Documentation of the knowledge base, 
often a tedious and time-consuming task, becomes automatic. 
The model can be viewed and edited in any natural language that is supported by the generator; 
further languages can be added as needed. When supported by a multilingual natural language 
generation system, as in DRAFTER-II, WYSIWYM editing obviates the need for traditional lan- 
guage localisation of the human-computer interface. New linguistic styles can also be added 
(e.g. a terminology suitable for novices rather than experts). 
As a result, WYSIWYM editing is ideal for facilitating knowledge sharing and transfer within a 
multilingual project. Speakers of several different languages could collectively edit the same ~ 
knowledge base, each user viewing and modifying the knowledge in his/her own language. 
Since the knowledge base is presented as a document; large knowledge bases can be navigated 

b y  the methods familiar from books and from complex electronic documents (e.g. contents 
page, index, hypertext links), obviating any need for special training in navigation. 
For systems in which information must be retrieved from the knowledge base by complex 
queries, WYSIWYM editing can be used in order to formulate queries as well as to edit the 
knowledge base. 
For systems which generate technical documentation, WYSIWYM editing ensures that the output 
texts will conform to desired standards of terminology and style. For instance, the generation 
rules could be tailored to meet the constraints of controlled languages such as AECMA (AECMA 

1995). 
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