
S H A R E D P R E F E R E N C E S

J a m e s B a r n e t t and Inder jee t Mani
MCC

3500 West Balcones Center Dr.
Austin, TX 78759

barnett@mcc.com
mani@mcc.com

!Abstract

This paper a t t e m p t s to develop a theory of
heuristics or preferences tha t can be shared be-
tween understanding and generation systems. We
first develop a formal analysis of preferences and
consider the relation between their uses in gener-
ation and understanding. We then present a bi-
directional a lgori thm for applying them and ex-
amine typical heuristics for lexical choice, scope
and anaphora in:, more detail.

1 I n t r o d u c t i o n

Understanding and generation systems must both
deal with ambiguity. In understanding, there are
often a number of possible meanings for a string,
while there are usually a number of different ways
of expressing a given meaning in generation. To
control the expl6sion of possibilities, researchers
have developed a variety of heuristics or prefer-
ences - for example, a preference for low attach-
ment of modifiers in understanding or for conci-
sion in generation. This paper investigates the
possibility of sharing such preferences between
understanding and generation as par t of a bidirec-
tional NL system. In Section 2 we formalize the
concept of a preference, and Section 3 presents
an algori thm fo ! applying such preferences uni-
formly in understanding and generation. In Sec-
tion 4 we consider specific heuristics for lexical
choice, scope , and anaphora . These heuristics
have special propert ies tha t permit a more effi-
cient implementa t ion than the general algori thm
from Section 3. Section 5 discusses some of the
short-comings of the theory developed here and
suggests directions for future research.

2 Preferences in Under-
s tand ing and G e n e r a t i o n

Natural language understanding is a mapping
from utterances to meanings, while generation
goes in the opposite direction. Given a set String
of input strings (of a given language) and a set Int
of interpretations or meanings, we can represent
understanding as a relation U C String x Int,
and generation as G C IntxStr ing. U and G are
relations, rather than functions, since they allow
for ambiguity: multiple meanings for an utter-
ance and multiple ways of expressing a meaning 1.
A minimal requirement for a reversible system is
that U and G be inverses of each other. For all
s 6 String and i 6 Int:

(s, Oeu (i,s)ec (1)

Intuitively, preferences are ways of controlling
the ambiguity of U and G by ranking some inter-
pretations (for U) or strings (for G) more highly
than others. Formally, then, we can view prefer-
ences as total orders on the objects in question
(we will capitalize the term when using it in this
technical sense). 2 Thus, for any s 6 String an un-
derstanding Preference Pint will order the pairs
{(s, 01(s,=) E U}, while a generation Preference

* The definitions of U and G allow for strings with no
interpretations and meanings with no strings. Since any
meaning can presumably be expressed in any language,
we may want to further restrict G so that everything is
express ib le : Y i 6 Int (Bs 6 String [(s, ,) E GI) .

2We use total orders rather than partial orders to avoid
having to deal with incommensurate structures. The re-
quirement of commensurability is not burdensome in prac-
tice, even though many heuristics apparently don't app ly
to certain structures. For example, a heuristic favoring low
attachment of post-modifiers doesn't clearly tell us how to
rank a sentence without post-modifiers, but we can insert
such sentences into a total order by observ ing that they
have all modifiers attached as low as po6sible.

109

P,,r will rank {(/,s)l(/,,) 6 G} s. Thus we can
view the task of understanding as enumerating
the interpretations of a string in the order given
by Pint. Similarly, generation will produce strings
in the order given by Po,,. Using Up,., and Gp.,.
to denote the result of combining U and G with
these preferences, we have, for all s G String and
i 6 Int:

Up,., (s) =d,l (ix , in) (2)

where U(s) = { i l , . . . , in} and

[j < k] ~ [(s, it) <p,., (s, ik)]

GPo,.(i) =d,! (s , . . . so 0 (3)

where G(0 = {sx, . . . , sin} and

IJ < --. < p . , . (i, sk))]

Alternatively, we note that any Preference P
induces an equivalence relation ='p which groups
together the objects that are equal under p.4
We can therefore view the task of Generation
and Understanding as being the enumeration of
P's equivalence classes in order, without worrying
about order within classes (note that Formulae 2
and 3 specify the order only of pairs where one
member is less than the other under P.)

The question now arises of what the relation be-
tween understanding Preferences and generation
Preferences should be. Understanding heuristics
are intended to find the meaning that the speaker
is most likely to have intended for an utterance,
and generation heuristics should select the string
that is most likely to communicate a given mean-
ing to the hearer. We would expect these Prefer-
ences to be inverses of each other: if s is the best
way to express meaning i, then i should be the
most likely interpretation of s. If we don't accept
this condition, we will generate sentences that
we expect the listener to misinterpret. There-
fore we define class(Preference, pair) to be the
equivalence class that pair is assigned to under
Preference's ordering, 5 and link the the first

3Note t h a t t h i s de f in i t ion al lows P re fe rences to work
' ac ross de r iva t ions . ' For e x a m p l e , it al lows Pint to r ank
pairs (s, ,}, (s', i9 where 8 # s ' . It p e r m i t s a P re fe rence to
say t h a t i is a b e t t e r i n t e r p r e t a t i o n for s t h a n i ' is for s: .
It is n o t c lear if t h i s so r t o f power is necessary , a n d the
a lgo r i th tns below requ i r e on ly t h a t P re fe rences be able to
r a n k d i f ferent i n t e r p r e t a t i o n s (s t r ings) for a g iven s t r i ng
(i n t e rp re t a t i on) .

4 A n y o rde r P on a se t o f o b j e c t s D p a r t i t i o n s D in to a
set o f equ iva lence c l a s ses by a s s i g n i n g each x E D to the
set {ulv _<P x :z x _<p u}.

Selass(Preference, pair) is de f ined as t h e n u m b e r of
c lasses c o n t a i n i n g i t e m s t h a t r a n k m o r e h i g h l y t h a n pair
u n d e r Preference.

(most highly ranked) classes under P/., and P.,r
as follows:

elass(eo,r, (/, 8)) = 0 (4)

- . crass(P,.,, (s, O) = 0

It is also reasonable to require that opposing
sets of preferences in understanding be reflected
in generation. If string s, has two interpretations
it and i2, with it being preferred to is, and string
ss has the same two interpretations with the pref-
erences reversed, then s, should be a better way
of expressing i, than i2, and vice-versa for ss:

[(sl, il) <p,., @1, is)
&

(as, i2) <e,., (as, il)]

[(i l , sd <p. , . (i ,82)
&

(is,as) <p. , . 62,.x)]

(5)

Formula 4 provides a tight coupling of heuris-
tics for understanding and generating the most
preferred structures, but it doesn't provide any
way to share Preferences for secondary readings.
Formula 5 offers a way to share heuristics for sec-
ondary interpretations, but it is quite weak and
would be highly inefficient to use. To employ it
during generation to choose between sl and ss as
ways of expressing il, we would have to run the
understanding system on both sl and ss to see if
we could find another interpretation i2 that both
strings share but with opposite rankings relative
to il.

If we want to share Preferences for secondary
readings, we will need to make stronger assump-
tions. The question of ranking secondary in-
terpretations brings us onto treacherous ground
since most common heuristics (e.g., preferring
low attachment) specify only the best reading
and don't help choose between secondary and
tertiary readings. Furthermore, native speakers
don't seem to have clear intuitions about the rel-
ative ranking of lesser readings. Finally, there is
some question about why we should care about
non-primary readings, since the best interpreta-
tion or string is normally what we want. However,
it is important to deal with secondary preferences,
in part for systematic completeness, but mostly
because secondary readings are vital in any at,-
tempt to deal with figurative language- humor,
irony, and metaphor - which depends on the in-
terplay between primary and secondary readings.

ii0

i

To begin to develop a theory of secondary Pref-
erences, we will simply stipulate that the heuris-
tics in question are shared 'across the board ' be-

I

tween understanding and generatmn.~ The sim-
plest way to do this is to extend Formula 4 into a
biconditional, a~d require it to hold of all classes
(we will reconsider this stipulation in Section 5).
For all s6S t r in~ l and i 6 I n t , we have:

et.ss(P,.,, (,,,)) = el.ss(P.,., (i, 8)) (6)
Since Preferences now work in either direction,

we can simplify our notation and represent them
as total orderings of a set T of trees, where each
node of each tre4 is annotated with syntactic and
semantic information, and, for any t 6 T , s tr (t)

• k
returns the string in S t r ing that t dominates (i.e.,
spans), and sere(t) returns the interpretation in
In t for the root node of t. For apreferenee P on
T and trees t l , th, we stipulate:

t, <p t2

Up(s t r (t l))

tl <p t2

=

&

G p (s e m (t l)) =

s t r (t l) = s t r (t 2) (7)

~ . . sem(t l) . . . sem(t2) . . .)

s e re (q) = sere(t2) (8)

6 . . s t r (t ,) . . . s t r (t 2) . . .)

We close this Section by noting a property of
Preferences t h a t w i l l be important in Section 4:
an ordered list Of Preferences can be combined
into a new Preference by using each item in the
list to refine the bordering specified by the previ-
ous ones. Tha t is, the second Preference orders
pairs that are equal under the first Preference,
and the third Preference applies to those that are
still equal under the second Preference, etc. If
P1- - . P , are Preferences, we define a new Com-
plex Preference P<,. . . ,> as follows:

tl <Pc-, ...,.) t2 (9)
~-;B l < j < n [Q <pj t2]

& - , 3 i < j [t2 <p, tl]

3 A n A l g o r i t h m for S h a r i n g
P r e f e r e n c e s

If we consider ways of sharing Preferences be-
tween understanding and generation, the simplest
one is to simply produce all possible interpreta-
tions(strings), and then sort them using the Pref-
erence. This is, of course, inefficient in cases

where we are interested in only the more highly
ranked possibilities. We can do better if we are
willing to make few assumptions about the struc-
ture of Preferences and the understanding and
generation routines. The crucial requirement on
Preferences is tha t they be 'upwardly monotonic '
in the following sense: if t , is preferred to t2, then
it is also preferred to any tree containing tz as a
subtree. Using subtree(t , , t2) to mean that tx is
a subtree of t2, we stipulate

[tl < p t2 ~ subtree(t2,t3)] (10)

--~ t l <P gS

Without such a requirement, there is no way to
cut off unpromising paths, since we can' t predict
the ranking of a complete structure from that of
its constituents•

FinaLly, we assume that both understanding
and generation are agenda-driven procedures that
work by creating, combining, and elaborating
trees. 6 Under these assumptions, the following
high-level algorithm can be wrapped around the
underlying parsing and generation routines to
cause the output to be enumerated in the order
given by a Preference P . In the pseudo-code be-
low, mode specifies the direction of processing and
input is a string (if mode is understanding) or a
semantic representation (if mode is generation).
execute_item removes an item from the agenda
and executes it, returning 0 or more new trees.
generate_items takes a newly formed tree, a set of
previously existing trees, and the mode, and adds
a set of new actions to the agenda. (The un-
derlying understanding or generation algorithm
is hidden inside generate_items.) The variable ac-
tive holds the set of trees that are currently be-
ing used to generate new items, while frozen holds
those that won't be used until later, complete_tree
is a termination test that returns True if a tree is
complete for the mode in question (i.e., if it has
a full semantic interpretation for understanding,
or dominates a complete string for generation).
The global variable classes holds a list of equiva-
lence classes used by equiv_class (defined below),
while level holds the number of the equivalence
class currently being enumerated. Thaw~restart
is called each time level is incremented to gener-
ate new agenda items for trees that may belong
to that class.

ALGORITHM 1

e A wide variety of NLP algorithms can be implemented
in this manner, particularly such recent reversible gen-
eration algorithms as [Shieber, van Noord, Moore, and
Pereira, 1989] and [Calder, Reape, and Zeevat, 1989].

iii

classes := Nil; solutions := Nil;
new-trees := Nil; agenda := Nil;
level := 1;
frozen := initialize.agenda(input, mode);
{end of global declarations}
whi le frozen do

beg in
solutions := get_complete_trees

(frozen, level, mode);
agenda := thaw&restart

(frozen, level, agenda, mode);
whi le agenda do

begin
new_trees := execute_item(agenda);
whi le new_trees do

begin
new_tree := pop(new_trees);
i f equiv_class (P, new_tree)

, > level
t h e n push(new_tree, frozen);
else i f complete_tree

(new_tree,mode)
t h e n push(newAree, solutions);

else generate, items
(new_tree, active,

agenda, mode);
end;

end; {agenda exhausted for this level}
{solutions may need partitioning}
whi le solutions do

begin
complete_tree := pop(solutions);
i f equiv_class(P, complete_tree)

> level
t h e n push(complete_tree, frozen);
else output(complete_tree, level) ;

end
{increment level to output next class}
level := level + 1;

end;

The function equiv_class keeps track of the
equivalence classes induced by the Preferences.
Given an input tree, it returns the number of
the equivalence class that the tree belongs to.
Since it must construct the equivalence classes as
it goes,along, it may return different values on
different calls with the same argument (for ex-
ample, it will always return 1 the first time it is
called, even though the tree in question may end
up ha a lower class.) However, successive calls
to equiv_class will always return a non-decreasing
series of values, so that a given tree is guaran-
teed to be ranked no more highly than the value

returned (it is this property of eqaiv_class that
forces the extra pass over the completed trees in
the algorithm above: a tree that was assigned to
class n when it was added to solutions may have
been demoted to a lower class in the interim as
more trees were examined). Less_than and eqeai
take a Preference and a pair of trees and return
True if the first tree is less than (equal to) the
second under the Preference. Create_class takes a
tree and creates a new class whose only member
is that tree, while insert adds a class to classes
in the indicated position (shifting other classes
down, if necessary), and select_member returns an
arbitrary member of a class.

f unc t ion equiv_class (P: Preference, T: Tree)
begin

class_num := 1;
for class in classes do
begin

i f less_than
(P, T, select_member(class))

t h e n
begin
insert(new_class(T),

classes, class_num);
return(classmum);

end;
else i f equal

(P, T, select_member(class))
t h e n

begin
add_member(T, class);
return(class_hum);
end;

else class_num := class_num + 1;
end ;
{T < all classes}
insert(new_class(T),

classes, class_num);
return(class_num);

end {equiv_elass}

To see that the algorithm enumerates trees in
the order given by <p, note that the first itera-
tion outputs trees which are minimal under <p.
Now consider any tree t , which is output on a
subseqent itertion N. For all other t , , output on
that iteration, t , =p t,,. Furthermore, t , con-
tains a subtree t,ub which was frozen for all levels
up to N. Using T(J) to denote the set of trees
output on iteration J, we have: VI_< I < N
IV ti 6 T(I) ti <p t,ub]], whence, by stipulation
10, t , <p ti. Thus t , is greater than or equal to

112

all trees which were enumerated before it. To cal-
culate the t ime complexity of the algorithm, note
that it calls equiv_class once for each tree created
by the underlying understanding or generation al-
gorithm (and once for each complete interpreta-
tion). Equiv_class, in turn, must potentially com-
pare its argument with each existing equivalence
class. Assuming that the comparison takes con-
stant time, the '.complexity of the algorithm de-
pends on the number k of equivalence classes < p
induces: if the Underlying algorithm is O(f(n)),
the overall comp~lexity is O(f(n)) x k. Depending
on the Preference, k could be a small constant,
or itself proportional to f (n) , in which case the
complexity woul~ be O(f(n)~).

4 O p t i m i z a t i o n o f Pre fer -
e n c e s

As we make more restrictive assumptions about
Preferences, more efficient algorithms become
possible. Initialily , we assumed only that Pref-
erences specified! total orders on trees, i.e., that
would take two I trees as input and determine
if one was less than, greater than, or equal to
the other ~. Given such an unrestricted view
of Preferences, ~ve can do no better than pro-
ducing all interp~-etations(strings) and then sort-
ing them. This simple approach is fine if we
want all possibilities, especially if we assume
that there won't, be a large number of them, so
that standard n ,2 or n logn sorting algorithms
(see [Aho, Hopcroft, and Ullman, 1983]) won't be
much of an addit~ional burden. However, this ap-
proach is inefficient if we are interested in only
some of the possibilities. Adding the monotonic-
ity restriction 10 permits Algorithm 1, which is
more efficient in. tha t it postpones the creation
of (successors of) lower ranked trees. However,
we are still opera'ting with a very general view of
what Preferencesl are, and further improvements
are possible when we look at individual Prefer-
ences in detail, in this section, we will consider
heuristics for lexical selection, scope, and anaphor
resolution. We do not make any claims for the
usefullness of these heuristics as such, but take
them as concrete 'examples that show the impor-
tance of considering the computational properties
of Preferences.

Note that Algorithm 1 is stated in terms of a
single Preference. It is possible to combine multi-
ple Preferences into a single one using Formula 9,

rWe also assume [hat this test takes constant time.

and we are currently investigating other methods
of combination. Since the algorithms below are
highly specialized, they cannot be combined with
other Preferences using Formula 9. The ult imate
goal of this research, however, is to integrate such
specialized algorithms with a more sophisticated
version of Algorithm 1.

4 . 1 L e x i c a l C h o i c e

One simple preferencing scheme involves assign-
ing integer weights to lexical items and syntactic
rules. Items or rules with higher weights are less
common and are considered only if lower ranked
items fail. When combined with restriction 10,
this weighting scheme yields a Preference <wt
that ranks trees according to their lexical and rule
weights. Using maz_wt(T) to denote the most
heavily weighted lexical i tem or rule used in the
construction of T, we have:

t l <tot 7t2 ('~del m a z - w t (t l) < maz_wt(t2)
(11)

The significant property here is that the equiva-
lence classes under <wt can be computed without
directly comparing trees. Given a lexical item
with weight n, we know that any tree contain-
ing it must be in class n or lower. Noting that
our algorithm works by generate-and-test (trees
are created and then ranked by equiv_class), we
can achieve a modest improvement in efficiency
by not creating trees with level n lexical items or
rules until it is t ime to enumerate that equivalence
class. We can implement this change for both
generation and understanding by adding level as
a parameter to both initialize_agenda and gener-
ate_items, and changing the functions they call
to consider only rules and lexical items at or be-
low level. How much of an improvement this
yields will depend on how many classes we want to
enumerate and how many lexical items and rules
there are below the last class enumerated.

4 . 2 S c o p e

Scope is another place where we can improve
on the basic algorithm. We start by consider-
ing scoping during Understanding. Given a sen-
tence s with operators (quantifiers) o l . . . o , , as-
signing a scope amounts to determining a total
order on ol . . . o , s. If a scope Preference can do

SNote that this ordering is not a Preference. A Prefer-
ence will be a total ordering of trees, each of which contains
such a scope ordering, i.e., a scope Preference will be an
ordering of orderings of operators.

113

no more than compare and rank pairs of scopings,
then the simple generate-and-test algorithm will
require O(n!) steps to find the best scoping since
it will potentially have to examine every possible
ordering. However, the standard heuristics for as-
signing scope (e.g., give "strong" quantifiers wide
scope, respect left-to-right order in the sentence)
can be used to directly assign the preferred or-
dering of ox . . . ON. If we assume that secondary
readings are ranked by how closely they match
the preferred scoping, we have a Preference <,c
can be defined. In the following (ol, oj) 6 Sc(s)
means that oi preceeds oj in scoping Sc of sen-
tence s, and Scb,,t(s) is the preferred ordering of
the operators in s given by the heuristics:

Sc,(s) <,~ Se2(s) ~ d , ! (12)

Vo ,oi [(o ,o9 e
Sc (s) --. (o, ,o9 sc,(.)]]

Given such a Preference, we can generate the
scopings of a sentence more efficiently by first pro-
ducing the preferred reading (the first equivalence
class), then all scopes tha t have one pair of oper-
ators switched (the second class), then all those
with two pairs out of order, etc. In the following
algorithm, ops is the set of operators in the sen-
tence, and sort is any sorting routine, switched?
is a predicate returning True if its two arguments
have already been switched (i.e., if its first arg
was to the right of its second in Scbe,t(s)), while
switch(o,, o2, ord) is a function that returns new
ordering which is the same as ord except that o~
precedes o, in it.

{the best scoping}
root_set := sort(operators, SCbe°~(s));
level := 1;
output(root_set, level);
new_set := Nil;
old_set := add_item(root_set, Nil);
{loop will execute n! - 1 times }
w h i l e old_set d o
b e g i n

fo r ordering in old_set do
b e g i n

fo r op in ordering do
b e g i n

{consider adjacent pairs of operators}
next := right_neighbor(op, ordering);
{switch any pair that hasn't already been}
i f next a n d not(switched?(op, next))
t h e n do
b e g i n
new_scope := switch(op, next, ordering);

add_item(new.scope, new_set);
output(new_scope, level) ;
e n d

e n d
e n d

old_set := new_set;
new_set := Nil;
en d

While the Algorithm 1 would require O(n!)
steps to generate the first scoping, this algo-
ri thm will output the best scoping in the n 2
or n log n steps that it takes to do the sort (cf
[Aho, Hopcroft, and Ullman, 1983]), while each
additional scoping is produced in constant time. 9
The algorithm is profligate in tha t it generates
all possible orderings of quantifiers, many of
which do not correspond to legal scopings (see
[Hobbs and Shieber, 1987]). It can be tightened
up by adding a legality test before scope is out-
put.

When we move from Understanding to Gener-
ation, following Formula 6, we see that the task
is to take an input semantics with scoping Sc
and enumerate first all strings that have Sc as
their best scoping, then all those with Sc as the
second best scoping, etc. Equivalently, we enu-
merate first strings whose scopings exactly match
Sc, then those that match Sc except for one pair
of operators, then those matching except for two
pairs, etc. We can use the Algorithm 1 to imple-
ment this efficiently if we replace each of the two
conditional calls to equiv_class. Instead of first
computing the equivalence class and then testing
whether it is less than level, we call the following
function class_less_than:

{True iff candidate ranked at level or below}
{ Target is the desired scoping}
f u n c t i o n classAess_than(candidate, target, level)
b e g i n

switchAimit := level; {global variable}
switches := O; {global variable}
r e t u r n test_order(candidate, target, target);

e n d {class_less_than }

f u n c t i o n test_order(eand, targ_rest, targ)
b e g i n
i f null(cand)
r e t u r n True;

else

9switched.¢ can be implemented in constant time if
we record the position of each operator in the original
scoping SCbest. Then switched.¢(Ol, 02) returns True iff
posiaon(o2) < p0siao,(ol).

114

!

begin
targ_tail := member(first(cand), targ_rest);
i f targ_tail
re turn test_order(rest(cand), targ_tail, targ);

e lse
begin

switches := switches + 1;
i f >(switches, switch.limit)

return FalSe;
end
else

i

i f (simple_test(rest(cand), targ_rest)
r e t u r n tesLorder(cand, targ, targ);

else r e t u r n False;
e n d

end {test_order} i

funct ion simple~test(cand_rest, targ_rest)
b e g i n
fo r cand in cand_rest do
begin
i f not(member(cand, targ_rest))
begin

switches := switches + l;
i f >(switches, switch_limit)
r e t u r n falsei

e n d
e n d

r e t u r n true;
e n d {simple_test}

To estimate the complexity of class_less_than,
note that if no switches are encountered,
test_orderwill make one pass through targ_rest (=
targ) in O(n) steps, where n is the length of targ.
Each switch encoUntered results in a call ' to sita- r
pie_test, O(n) steps, plus a call to test_arg on the
full list targ for another O(n) steps. The overall
complexity is thus O((j+ 1) x n), where level = j
is the number switches permitted. Note that
class_less_than tests a candidate string's scoping
only against the target scope, without having to
inspect other possible strings or other possible
scopings for the string. We therefore do not need
to consider all strings that can have Sc as a scop-
ing in order to fifid the most highly ranked ones
that do. Furthermore, class_less_than will work
on partial constituents (it doesn't require that
cand have the same number of operators as targ),
so unpromising p i th s can be pruned early.

4 . 3 ' A n a p h o i . a

Next we consider the problem of anaphoric ref-
erence. From the standpoint of Understanding,

resolving an anaphoric reference can be viewed
as a mat ter of finding a Preference ordering of
all the possible antecedents of the pronoun. Al-
gorithm 1 would have to produce a separate in-
terpretation for each object tha t had been men-
tioned in the discourse and then rank them all.
This would clearly be extremely inefficient in
any discourse more than a couple of sentences
long. Instead, we will take the anaphora reso-
lution algorithm from [Rich and Luperfoy, 1988],
[Luperfoy and Rich, 1991] and show how it can be
viewed as an implementation of a Complex Pref-
erence, allowing for a more efficient implementa-
tion.

Under this algorithm, anaphora resolution is
entrusted to Experts of three kinds: a Proposer
finds likely candidate antecendents, Filters pro-
vide a quick way of rejecting many candidates,
and Rankers perform more expensive tests to
choose among the rest. Recency is a good ex-
ample of a Proposer; antecedents are often found
in the last couple of sentences, so we should start
with the most recent sentences and work back.
Gender is a typical Filter; given a use of "he", we
can remove from consideration all non-male ob-
jects that the Proposers have offered. Semantic
plausibility or Syntactic parallelism are Rankers;
they are more expensive than the Filters and
assign a rational-valued score to each candidate
rather than giving a yes/no answer.

When we translate these experts into our
framework, we see that Proposers are Prefer-
ences that can efficiently generate their equiva-
lence classes in rank order, rather than having to
sort a pre-existing set of candidates. This is where
our gain in efficiency will come: we can work back
through the Proposer 's candidates in order, confi-
dent that any candidates we haven't seen must be
ranked lower than those we have seen. Filters rep-
resent a special class of Preference that partition
candidates into only two classes: those that pass
and those that are rejected. Furthermore, we are
interested only in candidates that aiifilters assign
to the first class. If we simply combine n Filters
into a Complex Preference using Formula 9, the
result is not a Filter since it partitions the input
into 2" classes. We therefore define a new sim-
ple Filter F(I ,..J.) that assigns its input to class
1 iff F1...Fn all do. Finally, Rankers are Pref-
erences of the kind we've been discussing so far.
When we observe that the effect of running a Pro-
poser and then removing all candidates that the
Filters reject is equivalent to first running the Fil-
ter and then using the Proposer to refine its first

115

class 1°, we see that the algorithm above, when run
with Proposer Pr, Filters F1... Fn and Rankers
Rt . . . Rj , implements the Complex Preference
P(Ftl ' I.),pr,at...a~), defined in accordance with
Formu'la 9. We thus have the following algorithm,
where nezt_class takes a Proposer and a pronoun
as input and returns its next equivalence class of
candidate antecedents for the pronoun.

class := 1; {global variable}
cand := next_class(Proposer, pronoun);
filtered_cand := cand;
w h i l e (cand) d o
b e g i n

f o r eand in cands d o
b e g i n
f o r filter in Filters d o
b e g i n
i f not(Fil ter(cand))
t h e n remove(cand, filtered_cand);

e n d
e n d
{filtered_cand now contains class n under}
{P(F(,,...l.),pr). Rankers R 1 - . . R j }

{may split it into several classes}
refine&output(filtered_cand, Rankers);
cand := next_class(Proposer);
e n d

f u n c t i o n Refine&Output(cands, Rankers)
b e g i n
refined_order := sort(cands, Rankers);
i f rest(Rankers)
t h e n refine&output(refined_order,

rest(Rankers));
e l s e

b e g i n
loc_class := 1; f o r cand in refined_order d o

i f >(equiv_class
first(Rankers), cand),

loc_class)
t h e n
b e g i n

loc_class := loe_elass + 1;
class := class + ioc_class;

e n d

output(cand, class);
e n d

e n d {Refine&Output}

Moving to Generation, we use this Preference

*0 In bo th cases, the result is: pl n f l , . - - P . , l ' lf l , w h e r e

Pl . . . p . are the equivalence classes induced by the Pro-
poser, and f l is the Fil ter 's first equivalence class.

to decide when to use a pronoun. Following For-
mula 6, we want to use a pronoun to refer to ob-
ject z at level n iff that pronoun would be inter-
preted as referring to z in class n during Under-
standing. First we need a test occursf(Proposer,
z) that will return True iff Proposer will even-
tually output z in some equivalence class. For
example, a Recency Proposer will never suggest a
candidate that hasn' t occurred in the antecedent
discourse, so there is no point in considering a
pronoun to refer to such an object. Next, we
note that the candidates that the Proposer re-
turns are really pairs consisting of a pronoun and
an antecedent, and that Filters work by compar-
ing the features of the pronoun (gender, number,
etc.) with those of the antecedent. We can im-
plement Filters to work by unifying the (syntac-
tic) features of the pronoun with the (syntactic
and semantic) features of the antecedent, return-
ing either a more fully-specified set of features for
the pronoun, or .L if unification fails. We can now
take a syntactically underspecified pronoun and z
and use the Filter to choose the appropriate set of
features. We are now assured that the Proposer
will suggest z at some point, and that z will pass
all the filters.

Having established that z is a reasonable can-
didate for pronominal reference, we need to de-
termine what claxs z will be assigned to as an an-
tecedent. Rankers such as Syntactic Parallelism
must look at the full syntactic structure**, so we
must generate complete sentences before doing
the final ranking. Given a sentence s contaning
pronoun p with antecedent z, we can determine
the equivalence class of (p, z) by running the Pro-
poser until it (p, z) appears, then running the Fil-
ters on all other candidates, and passing all the
survivors and (p ,x) to refine~ontpnt, and then
seeing what class (p, z) is returned in. Alterna-
tively, if we only want to check whether (p, z) is
in a certain class n or not, we can run the reso-
lution algorithm given above until n classes have
been enumerated, quitting if (p ,x) is not in it.
(See the next section for a discussion of this algo-
ri thm's obvious weaknesses.)

n T h e definitions we've given so far do not specify how
Preferences should rank "unfinished" structures, i.e., those
that don ' t contain all the information the Preference re-
quires. One obvious solution is to assign incomplete struc-
tures to the first equivalence class; M the structures be-
come complete, they can be moved down into lower daases
if necessary. Under such a strategy, Preferences such a s
Syntactic Parallelism will return high scores on the in-
complete constituents, but these scores will be meaning-
less, since many of the resulting complete structures will
be placed into lower classes.

116

5 D i s c u s s i o n

Related Work: There is an enormous amount
of work on preferences for understanding, e.g.,
[Whittemore, Ferrara, and Brunner, 1990],
[Jensen and Binot, 1988], [Grosz, Appelt, Mar-
tin, and Pereira, 1987] for a few recent examples.
In work on generation preferences (in the sense of
rankings of structures) are less clearly identifiable
since such rankings tend to be contained implic-
itly in strategies for the larger problem of deciding
what to say (but see [Mann and Moore, 1981] and
[Reiter, 1990].)i Algorithm 1 is similar in spirit
to the "all possibilities plus constraints" strategy
that is common in principle-based approaches (see
[Epstein, 1988])i, but it differs from them in that it
imposes a preference ordering on interpretations,
rather than rest'ricting the set O f legal interpreta-
tions to begin With.

I

Strzalkowski [Strzalkowski, 1990] contrasts two
strategies for r~versibility: those with a single
grammar and two intepreters versus those with
a single interpreter and two grammars. Although
the top-level algorithm presented here works for
both understanding and generation, the under-
lying generatio~ and understanding algorithms
can belong to either of Strzalkowski's categories.
However, the more specific algorithms discussed
in Section 4 belong to the former category. There
is also a clear "directionality" in both the scope
and the anaphora Preferences; both are basically
understanding h~euristics that have been reformu-
lated to work b~i-directionally. For this reason,
they are both considerably weaker as generation
heuristics. In particular, the anaphora Prefer-
ence is clearly insufficient as a method of choosing
when to use a pronoun. At best, it can serve to
validate the choices made by a more substantial
planning compoOent.

The Two Directions: In general, it is not clear
J

what the relation between understanding and
generation heuristics should be. Formulae 4 and
5 are reasonable requirements, but they are too
weak to provide ithe close linkage between under-
standing and generation that we would like to
have in a bi-directional system. On the other
hand, Formula 6 is probably too strong since it
requires t he equlivalence classes to be the same
across the boardl In particular, it entails the con-
verse of Formula.4, and this has counter-intuitive
results. For example, consider any highly convo-
luted, but grammatical , sentence: it has a best
interpretation, and by Formula 6 it is therefore
one of the best ways of expressing that meaning.

But if it is sufficently opaque, it is not a good
way of saying anything. Similarly, a speaker may
suddenly use a pronoun to refer to an object in
a distant part of the discourse. If the anaphora
Preference is sophisticated enough, it may resolve
the pronoun correctly, but we would not want the
generation system to conclude that it should use a
pronoun in that situation. One way to tackle this
problem is to observe that understanding systems
tend to be too loose (they accept a lot of things
that you don't want to generate), while genera-
tion systems are too strict (they cover only a sub-
set of the language.) We can therefore view gener-
ation Preferences as restrictions of understanding
Preferences. On this view, one may construct a
generation Preference from one for understanding
by adding extra clauses, with the result that its
ordering is a refinement of that induced by the
understanding Preference.

Internal Structure: Further research is neces-
sary into the internal structure of Preferences.
We chose a very general definition of Preferences
to start with, and found that further restrictions
allowed for improvements in efficiency. Prefer-
ences that partition input into a fixed set of
equivalence classes that can be determined in ad-
vance (e.g., the Preference for lexical choice dis-
cussed in Section 4) are particularly desireable
since they allow structures to be categorized in
isolation, without comparing them to other al-
ternatives. Other Preferences, such as the scope
heuristic, allow us to create the desired struc-
tures directly, again without need for compari-
son with other trees. On the other hand, the
anaphora Preference is based on an algorithm
that assigns rational-valued scores to candidate
antecedents. Thus there can be arbitrarily many
equivalence classes, and we can't determine which
one a given candidate belongs to without look-
ing at all higher-ranked candidates. This is not
a problem during understanding, since the Pro-
poser can provide those candidates efficiently, but
the algorithm for generation is quite awkward,
amounting to little more than "make a guess, then
run understanding and see what happens."

The focus of our future research will be a for-
mal analysis of various Preferences to determine
the characteristic properties of good understand-
ing and generation heuristics and to investigate
methods other than Formula 9 of combining mul-
tiple Preferences. Given such an analysis, Algo-
rithm 1 will be modified to handle multiple Pref-
erences and to treat the different types of Pref-
erences differently, thus reducing the need for

117

the kind of heuristic-specific algorithms seen in
Section 4. We also plan an implementation of
these Preferences as part of the KBNL system
[Barnett, Mani, Knight, and Rich, 1990].

References

[Aho, Hopcroft, and Ullman, 1983] Alfred Aho,
John Hopcroft, and Jeffrey Ullman. Data
Structures and Algorithms. Addison-Wesley,
1983.

[Barnett, Mani, Knight, and Rich, 1990]
Jim Barnett, lnderjeet Mani, Kevin Knight,
and Elaine Rich. Knowledge and natural lan-
guage processing. CACM, August 1990.

[Calder, Reape, and Zeevat, 1989] J. Calder, M.
Reape, and H. Zeevat. An algorithm for gen-
eration in unification categorial grammar. In
Proceedings of the ~th conference of the Eu-
ropean Chapter of the ACL, 1989.

[Epstein, 1988] Samuel Epstein. Principle-based
interpretation of natural language quanti-
tiers. In Proceedings of AAAI 88, 1988.

[Grosz, Appelt, Martin, and Pereira, 1987]
Barbara Grosz, Douglas Appelt, Paul Mar-
tin, and Fernando Pereira. Team: an exper-
iment in the design of portable natural lan-
guage interfaces. Artificial Intelligence, 1987.

[Hobbs and Shieber, 1987] Jerry Hobbs and Stu-
art Shieber. An algorithm for generating
quantifier scopings. Computational Linguis-
tics, 13(1-2):47-63, 1987.

[Jensen and Binot, 1988]
Karen Jensen and Jean-Louis Binot. Dic-
tionary text entries as a source of knowledge
for syntactic and other disambiguations. In
Second Conference on Applied Natural Lan-
guage Processing, Austin, Texas, 9-12 Febru-
ary, 1988.

[Luperfoy and Rich, 1991] Susan Luperfoy and
Elaine Rich. Anaphora resolution. Compu-
tational Linguistics, to appear.

[Mann and Moore, 1981] William
~Mann and James Moore. Computer gener-
ation of multiparagraph english text. Amer-
ican Journal of Computational Linguistics,
7(1):17-29, 1981.

[Reiter, 1990] Ehud Reiter. The computational
complexity of avoiding conversational impli-
catures. In Proceedings of the ACL, Pitts-
burgh, 6.9 June, 1990.

[Rich and Luperfoy, 1988] Elaine Rich and Susan
Luperfoy. An architecture for anaphora res-
olution. In Second Conference on Applied
Natural Language Processing, Austin, Texas,
9-12 February, 1988.

[Shieber, van Noord, Moore and Pereira, 1989]
S. Shieber, G. van Noord, R. Moore, and F.
Pereira. A semantic head-driven generation
algorithm for unification-based formalisms.
In Proceedings of the ACL, Vancouver, 26-
29 June, 1989.

[Strzalkowski, 1990] Tomek Strzalkowski. Re-
versible logic grammars for parsing and gen-
eration. Computational Intelligence, 6(3),
1990.

[Whittemore, Ferrara, and Brunner, 1990] Greg
Whittemore, Kathleen Ferrara, and Hans
Brunner. Post-modifier prepositional phrase
ambiguity in written interactive dialogues.
In Proceedings of the A CL, Pittsburgh, 6-9
June, 1990.

118

