
Framework for Question-Answering in Sanskrit through
Automated Construction of Knowledge Graphs

Hrishikesh Terdalkar Arnab Bhattacharya
hrishirt@cse.iitk.ac.in arnabb@cse.iitk.ac.in

Dept. of Computer Science and Engineering,
Indian Institute of Technology Kanpur,

India.

Abstract

Sanskrit (saṃskṛta) enjoys one of the largest and most varied literature in the whole
world. Extracting the knowledge from it, however, is a challenging task due to multiple
reasons including complexity of the language and paucity of standard natural language
processing tools. In this paper, we target the problem of building knowledge graphs
for particular types of relationships from saṃskṛta texts. We build a natural language
question-answering system in saṃskṛta that uses the knowledge graph to answer factoid
questions. We design a framework for the overall system and implement two separate
instances of the system on human relationships from mahābhārata and rāmāyaṇa, and
one instance on synonymous relationships from bhāvaprakāśa nighaṇṭu, a technical text
from āyurveda. We show that about 50% of the factoid questions can be answered
correctly by the system. More importantly, we analyse the shortcomings of the system
in detail for each step, and discuss the possible ways forward.

1 Introduction and Motivation

Sanskrit (IAST1: saṃskṛta, Devanagari: सृंकत) is one of the most ancient and richest languages
in the world. Its literature boasts of text spanning every facet of life and contains works on
mathematics, arts, sciences, religion, philosophy, etc. Unfortunately, the large volume of such
works and the relative lack of proficiency in the language have kept treasures in those text hidden
from the common man. Unraveling information from these texts in a targeted and systematic
manner can not only help in enhancing the knowledge systems but can also revive an interest
in the language.

Many of these texts are technical in nature, prime examples of which include āyurveda (आयवुेद)
texts such as bhāvaprakāśa (भावपकाश). The nighaṇṭu (िनघण्टु) portion of bhāvaprakāśa is com-
piled as a glossary of the various substances (dravya, दय) and their properties (guṇa, गणु).
Although the information is generally provided in a format that enables scholars to study and
analyse it systematically, the large volume of such texts makes it harder for any individual to
extract all the information. An automated system can, therefore, greatly aid this processing of
information. However, to the best of our knowledge, there does not exist any system that can
query this knowledge trove directly and automatically.

While it can be argued that English translations of bhāvaprakāśa nighaṇṭu are available, and
building information retrieval (IR) systems for it is a routine for today’s IR/NLP tools, there
are two main shortcomings of it. First, there are many such nighaṇṭu texts and translations
in English are available for only a minuscule number of them. Second, and more importantly,
many of the translations of saṃskṛta texts had been done without a proper understanding of
the context and culture in which they were composed in the first place. They may had been
forced to use English words and phrases that are not a true reflection of the spirit of the original

1Entire paper uses the IAST encoding scheme for writing Sanskrit words in romanized format. https://en.
wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration



meaning. A notable case in point, as mentioned by Swami Vivekananda himself, is the word
śraddhā (शधा), for which the English translation “regards” is not enough.

Thus, it is always best to rely on the original language. The need of the hour, hence, is to use
natural language processing (NLP) of saṃskṛta itself to understand the texts in saṃskṛta.

Our aim in this work is to take the first step towards a concrete NLP task, namely, natural
language question-answering in saṃskṛta. In particular, we aim to design a framework that
processes saṃskṛta texts, extracts the information in it, and stores it in a format that can be
queried using questions posed in saṃskṛta.

We propose to store the knowledge base (KB) in a knowledge graph (KG) format. KGs have
a rich structure and store the information in the form of entities (as nodes) and relationships
(as edges between the nodes). The edges are directed, and both the nodes and edges can store
labels describing their attributes. There are multiple off-the-shelf tools available for storing and
querying KGs, including graph databases2, Property Graphs3, Resource Description Framework
(RDF) (Lassila et al. (1998)), Gremlin queries4, SPARQL queries5, etc. The popularity of KBs
such as YAGO (Suchanek et al. (2007)), DBpedia (Auer et al. (2007)) and Freebase (Bollacker
et al. (2008)) is a testament to their success.

We also propose question-answering as a concrete example of the use of such KGs and a
way of measuring the effectiveness of the system. Various online question-answering fora such as
Quora6 and quizzes serve as a motivation. We particularly choose the two epics of India, namely,
mahābhārata and rāmāyaṇa, categorized as itihāsa in saṃskṛta literature, and questions on
human relationships within them, as examples for our framework due to their popularity and ease
of establishment of the ground truth. We also work with bhāvaprakāśa nighaṇṭu to highlight
the usage for technical texts.

The framework brings to the fore multiple challenges. First, the state of the art of natural
language processing in Indian languages, unfortunately, is not as advanced as that in English or
some other European languages. Indian languages, and in particular saṃskṛta, are morphologi-
cally richer. Therefore, tasks such as lemmatization and parts-of-speech tagging are harder and
more error-prone in these languages. Second, some technical texts use their own jargon where
certain words may be used in a specific meaning. For example, aṣṭādhyāyī, a work on saṃskṛta
grammar by pāṇini uses specific combinations of grammatical cases (vibhakti) to denote which
action is to be performed.7 Third, names in saṃskṛta are meaningful words and, therefore,
identifying named entities is particularly hard. An extremely interesting example in rāmāyaṇa
is janaka (जनक), which means “father” in general, but is also the name of a prominent charac-
ter. Fourth, synonyms are often used to refer to the same person. In many cases, higher-order
grammar rules are required to parse the meaning of a word and understand that it is a synonym.
For example, it is not mentioned anywhere in the rāmāyaṇa text that dāśarathī is the son of
daśaratha and, hence, synonymous to rāma. However, saṃskṛta grammar rules make it obvious
to someone who understands the language. Unfortunately, automatic language processing tools
are incapable of using such higher-order rules at present.

Nair and Kulkarni (2010) have proposed a model for extracting implicit knowledge from ama­
rakośa and storing it in a structured manner, and have constructed a tool for answering queries
using this knowledge. Kulkarni et al. (2010) have built a Sanskrit WordNet8 by expanding the

2https://en.wikipedia.org/wiki/Graph_database
3https://en.wikipedia.org/wiki/Graph_database#Labeled-property_graph
4https://docs.janusgraph.org/latest/gremlin.html
5https://www.w3.org/TR/rdf-sparql-query/
6https://www.quora.com
7The presence of nominative (prathamā), genitive (ṣaṣṭhī) and locative (saptamī) cases in the same sentence

might not convey any special meaning in a normal text, but, in aṣṭādhyāyī, it specifies a process to be followed
to transform words, e.g., rule 6.1.77 from aṣṭādhyāyī (iko yaṇaci, इको यणिच) contains words ikaḥ (ṣaṣṭhī), yaṇ
(prathamā), aci (saptamī), which is to be interpreted as “an इक ् letter which is followed by an अच ् letter is
converted to a corresponding यण ्letter”.

8http://www.cfilt.iitb.ac.in/wordnet/webswn/english_version.php



Hindi WordNet. A production grammar for human relationships in saṃskṛta was proposed in
Bhargava and Lambek (1992). It works for solitary words and cannot be directly used for text.
Automatic translation tools, if available, can also be used where the entire text is translated to
English and the KG is built from the translated text. However, we could not find any such tools.
Although Sanskrit-English dictionaries9 provide a word-level translation of selected words from
saṃskṛta to English, word-level translation often does not produce meaningful or grammatically
correct text. We, thus, decided to use only the text as available in saṃskṛta. In future, we will
explore the use of such tools and methods.

The rest of the paper is organized as follows. In Section 2, we explain the generic framework
of the question-answering system. There exist some excellent tools for saṃskṛta that aid us
in the analysis. For other cases, we build our own heuristic rule-based systems. In Section 3,
we describe the automatic construction of the knowledge graph while the details of the various
modules of the system are described in Section 4. Since bhāvaprakāśa nighaṇṭu is a technical
text, we highlight its specialized processing in Section 5. In Section 6, we analyse the results of
our experiments. Finally, in Section 7, we discuss the lessons learnt and future directions.

2 Proposed Framework
2.1 Knowledge Graphs (KG)
Knowledge graphs (KG) model real-world entities as nodes. Relationships among the entities are
modelled as (directed) edges. For example, in a KG about human relationships in mahābhārata,
arjuna and abhimanyu are nodes. They are connected by a directed edge from arjuna to
abhimanyu labelled by the relationship “has-son” (putra).

In English, there have been several efforts in automated KG construction, notable among
them being YAGO, DBpedia, Freebase, etc. Suchanek et al. (2007) built the YAGO ontology
by crawling the Wikipedia and uniting it with WordNet using a combination of both rule-based
as well as heuristic methods. Auer et al. (2007) built DBpedia that extracts knowledge present
in a structured form on Wikipedia by template detection using pattern matching coupled with
post-processing for quality improvement. Bollacker et al. (2008) designed Freebase, a database
of tuples that is created, edited and maintained in a collaborative manner. Unfortunately,
however, none of the above techniques are applicable for automatically building knowledge
graphs in saṃskṛta.

Processing of text for YAGO depends on many IR/NLP tools that are available only in
English and a handful of other languages, mostly European. The state of the art of these tools
in saṃskṛta is still not standardized and may not be directly useful. Sanskrit Wikipedia10 also
is not as resourceful as its counterpart in English. Hence, the amount of structured information
available there is minuscule compared to the vast saṃskṛta literature that is developed over
several millennia. Thus, a system such as DBpedia is not possible. A collaborative effort
such as Freebase is also ruled out due to a paucity of active saṃskṛta users adept in digital
technologies. To the best of our knowledge, there is no work that directly builds a knowledge
graph from saṃskṛta texts.

2.2 Triplets
A common way of encoding the relationship information is in the form of semantic triplets.
A triplet has the structure [subject, predicate, object] which indicates that the entity
subject has the relationship predicate with the entity object. Hence, the fact that arjuna
has a son abhimanyu is encoded as the triplet [arjuna, has-son (putra), abhimanyu] ([अज ुर्न, पतु,
अिभमय]ु).

The KG is built automatically by extracting such triplets from the text. We target KGs on
specific types of relationships, namely, human relationships for epics, and synonymous relation-

9https://www.sanskrit-lexicon.uni-koeln.de/
10https://sa.wikipedia.org/wiki



ships in nighaṇṭu. One of the foremost jobs, therefore, is to identify the relationship words.
This is a corpus-independent set and depends only on the language. However, since the text is
free-flowing (except in technical texts where there is a structure) and almost always written in
poetry in the form of śloka, even when a relationship word is identified, the subject and object
words may be anywhere around it (both before and after). śloka (लोक) is a semantic unit in
saṃskṛta and is equivalent to a verse. Sometimes, one or both of these entities may not be
even in the same śloka. Hence, a context window around the relationship word must be defined
and searched for the relevant entities. Specifying the length of such a context window is not
easy; if it is too short, relationships may be missed, while if it is too long, too many spurious
relationships may be inferred. Even identifying the śloka boundaries may not always be trivial.
Fortunately, however, these boundaries are clearly marked in the texts that we have worked on.

The details of how such triplets are extracted are explained in Section 3. The knowledge
graph is maintained in an RDF format as a set of all such extracted triplets.

2.3 Questions
The next important task in the pipeline is to parse the natural language question. Since the
question is also in saṃskṛta, we adopt similar processing as the text to extract triplets. In this
work, we assume only factoid based questions such as “Who is the son of arjuna?” (अज ुर्नय पतुः
कः?) The triplet extracted from the above question will be [arjuna, has-son, X] ([अज ुर्न, पतु, िकम]्).

Since saṃskṛta is quite free with word ordering, the above question may be asked in different
manners, such as अज ुर्नय पतुः कः? or कः अज ुर्नय पतुः? or अज ुर्नय कः पतुः? All of these should yield
the same triplet [अज ुर्न, पतु, िकम]्.

The inverse question may also be asked: “Who is the father of abhimanyu?” (कःअिभमयोः िपता?)
The above can be answered only if it is known that the inverse of “has-father” is the relationship
“has-son”. This, again, is a property of the language and must be explicitly mentioned.

Hence, we maintain a map of such inverse relationship rules. Note that it is not always one-to-
one. For example, “has-mother” is also the inverse of “has-son”, and “has-father” is the inverse
of “has-daughter” as well. Gender information, therefore, becomes important.

We augment the initially built knowledge graph by adding appropriate inverse relationship
edges. It is ensured that an inferred inverse relationship does not contradict a directly inferred
relationship from the text. The details are in Section 3.4.

Even though the questions are simple and short, they may contain multiple triplets. For
example, a question पाण्डोः पाः भाता कः? may be asked by someone who does not know what
the relation brother-of-wife is called in saṃskṛta. This question contains two relationships, पनी
and भाता. The triplet form of these relationships would be [पाण्डु, पनी, िकम]् corresponding to the
subquestion ‘Who was the wife of pāṇḍu?’ and [पनी, भाता, िकम]् corresponding to the subquestion
‘Who was the brother of wife (of pāṇḍu)?’. All of these must be extracted correctly.

Further, they must be linked properly. In the example above, we must ensure that the object
of the first triplet is the subject of the second triplet, that is, the correct triplets are [पाण्डु, पनी, X]
and [X, भाता, िकम]्. Here, a variable is used to denote the person that satisfies both the triplets.

Once these are correctly linked, a SPARQL query pattern is formed. The SPARQL query
equivalent for the above question is

SELECT ?A
WHERE {

:पाण्डु :पनी ?X .
?X :भातृ ?A .

}
This is finally directly queried against the KG, and the answer is returned. Section 4 describes
in detail the intricacies of the different steps of the question-answering system.

Figure 1 describes the overall framework. The final accuracy of the system is dependent on
each of the modules of the architecture. For example, if the extracting triplets component is



Text Question

Analyze

Query	TripletsRelation
Triplets

Knowledge
Graph

Answer

Enhance
Triplets

Enhance
Triplets

Query	Pattern

Extract	Triplets

Figure 1: Overall framework of the system.

very erroneous, then neither the KG information is captured correctly, nor is the intention of the
question understood. The overall error is a cascading effect of the errors in each of the individual
components. Thus, for a successful system, each component must be reasonably accurate.

3 Construction of Knowledge Graph

In this section, we describe in detail the automated construction of knowledge graph (KG).
The input consists of saṃskṛta text (in digital Unicode format) of an entire work (such as
mahābhārata, bhāvaprakāśa nighaṇṭu, etc.) and the type of relationships intended (e.g., human
relationships, synonymous words, etc.). The output is a set of triplets in the form [subject,
predicate, object] where the predicate is of the relationship type intended and subject and
object are entities. If [a, R, b] is an output triplet, then it implies that object b is relation R
of subject a.

3.1 Pre-Processing of Text
saṃskṛta is a morphologically rich language. A single word root, called prātipadika (पाितपिदक),
can yield many forms depending on the case, gender and number. Similarly, a single verb root,
called dhātu (धात)ु, can lead to many forms as well depending on the tense, person and number.
In addition, various prefixes (upasarga, उपसग र्) and suffixes (pratyaya, पयय) get affixed to these
forms to generate thousands of other forms.

Further, words are very often joined together to form compound words using either pronun-
ciation rules through a process called sandhi (सिध) or semantic rules through a process called
samāsa (समास). Often, both are invoked together, and a series of words are joined together to
form one big compound word.

Splitting these compound words into their base words is a highly complicated procedure
and may not always be unambiguous. For this step, we make use of the Sanskrit Sandhi and



Compound Splitter, a tool11 by Hellwig and Nehrdich (2018). For example, if the input text is
कणा र्ज ुर्नयोः को शेठः the output is कणर्­अज ुर्नयोः कः शेठः.

The next task is to semantically analyze the form of the word. Again, we use a third-
party analyser tool, The Sanskrit Reader Companion12 from The Sanskrit Heritage Platform by
Goyal et al. (2012). This tool outputs the case (vibhakti, िवभित), number (vacana, वचन) and
gender (liṅga, िलग) for each word. The tool uses various abbreviations13 to convey the linguistic
information.

For the running example, the analysis yields
कणर् [‘voc.’, ‘sg.’, ‘m.’]
अज ुर्न [‘loc.’, ‘du.’, ‘m.’]
िकम ् [‘nom.’, ‘sg.’, ‘m.’]
शेठ [‘nom.’, ‘sg.’, ‘m.’]

Here, ‘nom.’, ‘loc.’ and ‘voc.’ are abbreviations used to denote nominative case (पथमा), locative
case (सतमी) and vocative case (सबोधन) respectively. Similarly, ‘sg.’ and ‘du.’ indicate singular
and dual number (एकवचन and िववचन). While ‘m.’ denotes the masculine gender (प ुिंलग).

The word शेठ gets correctly analysed: it is in the nominative case, is in singular number, and
masculine gender. However, the other words require some more adjustments. For example, the
word अज ुर्न is shown to be in dual number. This is output since the original compound word
consisted of two persons. However, now that they are separated, it should no longer be in dual
number, but adjusted to be in singular number. Similarly, the case analysis for कणर् is wrongly
output to be vocative. The reason for this again is the fact that the original structure of the
compound word was lost. We adjust the case of previous words in a compound word by adopting
the case of the last word in the compound word. Thus, the case for कणर् is changed to locative,
since that is the case for अज ुर्न .

3.2 Identifying Relationship Words
Given a particular relationship type, the set of words pertaining to it is corpus-independent and
is a property of the language. For example, if human relationships are targeted, in saṃskṛta,
the (roots of the) relevant words are pitṛ (father, िपत)ृ, mātṛ (mother, मात)ृ, putra (son, पतु), putrī
(daughter, पतुी), pati (husband, पित), patnī (wife, पनी), etc. Of course, these words can appear in
various forms. More importantly, their synonyms can also appear. For example, all the words
दुिहत,ृ तनया, आमजा mean पतुी.

While these can be learned, since the set is mostly fixed, we have employed a key-value based
approach where we have listed many of such relationship words along with their synonyms.
For each such group of synonyms, there is a canonical word (e.g., पतुी for the group of words
indicating daughter) that is used in the KG.

The identification of a relationship word is simply a match from this entire set of words.

3.3 Identification of Triplets
Once a relationship word is identified, it forms the predicate of a triplet. The next task, therefore,
is to identify the subject and object corresponding to it.

It is expected that the subject and object entities will not be too far off from the predicate
word. To bound the sphere of influence or context, we use śloka (लोक) boundaries. Each śloka
considered as a semantic unit and is akin to a verse. Fortunately, for the texts we have used,
the śloka boundaries are clearly marked. In this work, we restrict the context to be one śloka
before and after the one where the predicate is found, i.e., a total of 3 śloka.

Since subjects and objects are entities, they generally occur as nouns in a language. The
analyser tool (The Sanskrit Reader Companion) described earlier marks the parts-of-speech tags

11https://github.com/OliverHellwig/sanskrit/tree/master/papers/2018emnlp
12https://sanskrit.inria.fr/DICO/reader.fr.html
13All the abbreviations used by the tool are listed at https://sanskrit.inria.fr/abrevs.pdf.



of words. It, however, does not distinguish between nouns, pronouns and adjectives. Since
there is a fixed set of pronouns for saṃskṛta, we use that set to correct some of the nouns.
We, however, fail to distinguish the adjectives from the nouns in a satisfactory and consistent
manner. This is a major future work.

Within the nouns (and adjectives), we look for those that are in the genitive case (षठी िवभित).
The genitive case pertains to the ṣaṣṭhī vibhakti (genitive case) and denotes sambandha (सबध).
The word sambandha in saṃskṛta literally means relationship and, therefore, a noun exhibiting
genitive case is the most likely candidate for a subject. For example, the अज ुर्नय पतुः अिभमयःु
आसीत m्eans abhimanyu was son of arjuna. Here, ‘of arjuna’ is expressed by the genitive case of
the word (अज ुर्न), i.e., अज ुर्नय. Hence, all such nouns in the genitive case are marked as subjects.

The relationship word or the predicate can be in different cases, numbers and gender, though.
Since the object follows the predicate, according to saṃskṛta grammar, it must be in the same
case, number and gender as the predicate. We use this rule to extract objects. To be precise,
an object is a noun that exhibits the same case, number and gender as the predicate word. In
the sentence अज ुर्नय पतुः अिभमयःु आसीत ्, word पतुः is the predicate word and the word अिभमयःु is
the object and both of these words are in the nominative case (पथमा िवभित).

We insert all such extracted triplets in the KG. We assume that if an entity appears multiple
times, it refers to the same person. The above assumption is almost always correct barring some
exceptional cases.14

3.4 Enhancement of Relationships
As explained earlier (in Section 2), just the base relationships may not always be enough to
answer a question. If the triplet [arjuna, has-son, abhimanyu] ([अज ुर्न, पतु, अिभमय]ु) is stored,
the question “Who is the father of abhimanyu?” (कः अिभमयोः िपता?) cannot be answered, even
though the information is present.

To be able to answer such queries, we have enhanced the KG with inverse relationships. For
example, the inverse of “has-father” is “has-son”. This, again, is a property of the language and
are explicitly stored.

As discussed earlier, the inverse relationships are not always one-to-one. For example, “has-
mother” is also the inverse of “has-son”, and “has-father” is the inverse of “has-daughter” as
well. Hence, we use the gender information of the subject and the object to disambiguate.

The complication does not end here. Imagine a question “Who is maternal uncle of Nakula?”
(नकुलय मातलुः कः). This information may not be directly stored in the KG. The relationship
मातलु is a composition of मातृ and भात.ृ These components [नकुल, मात,ृ मादी] and [मादी, भात,ृ शय]
may be present in the KG. Again, the situation is that the KG contains the information but
cannot answer the question.

To solve this, derived relations could be broken into their component base parts. Thus,
“has-maternal uncle” is stored as “has-mother” and “has-brother” with an additional (possibly
unnamed) node in between. In particular, from the triplet [नकुल, मातलु, शय], two more triplets
[नकुल, मात,ृ X] and [X, भात,ृ शय] could be generated. If there is already such a node X, it could
be used; otherwise, a new node could be created. However, addition of such dummy nodes has
not been explored in this work.

We achieve the same result by handling this issue at the time of querying. This is discussed
in Section 4.2. We maintain a list of relationships and their possible derivations from base
relationships. Once more this mapping is rarely one-to-one. For example, “brother-of” can be
composed of “son-of-father” and “son-of-mother”. Also, the gender must be taken care of.

A particularly interesting case is “has-ancestor” and “has-descendant”. These are recursive
relationships, and the depth of recursion can be anything, i.e., a ‘father’ is an ancestor, so is an
‘ancestor-of-father’, and so on. We do not handle these cases in the current work.

14karṇa was the son of kuntī, and one of the kaurava was also named karṇa.



4 Question-Answering

We now describe one application, that of question-answering. We assume that the questions
are asked directly in saṃskṛta and are about factoids, i.e., about a single piece of information.
We also assume that the questions are only about the relationships that the knowledge graph
encodes. If not, the question is ignored, since clearly the KG is incapable of answering it.
Further, the questions are assumed to be short and consist of a single sentence only.

The question is first pre-processed in the same manner as the text (Section 3.1). To be
more precise, compound words are split using Sanskrit Sandhi and Compound Splitter a tool
by Hellwig and Nehrdich (2018), the component words are analysed using The Sanskrit Reader
Companion from The Sanskrit Heritage Site, and relationship words and nouns are identified.
Next, triplets are extracted.

4.1 Identifying Triplets
A blank triplet is initialized. The question words are scanned one by one. For each word, it is
determined if it can be a subject word, a predicate word or an object word. If the word is a
noun in genitive case but is not a relationship word, then it is likely to be a subject word. The
relationship words directly give the predicates. The object word is generally in the nominative
case. For example, consider the question अज ुर्नय पतुः कः? (“Who is the son of arjuna?”). Since
अज ुर्न is in genitive case, it is the subject. The word पतु is the predicate. The object is िकम ्. The
triplet formed, therefore, is [अज ुर्न, पतु, िकम]्.

Once a triplet is filled up, another new triplet is initialized. This is necessary since there may
be chain questions of the form अज ुर्नय पतुय पतुः कः? The triplets generated from this are [अज ुर्न,
पतु, X] and [X, पतु, िकम]्.

The process goes on till all the words in the question are processed.
At the end of this phase, the triplets thus formed are called query triplets.

4.2 Enhancing Triplets
Each query triplet is next enhanced to a set of triplets, called the enhanced triplet set. The
rules for enhancing the relationship of a query triplet is the same as that used in processing the
KG triplets. In particular, each complex relation is broken into its constituent parts and new
triplets are created using the aforementioned mapping of relationships to its constituents.

Suppose, a predicate (i.e., relation) R can be decomposed to two base predicates R1 and R2.
Then, if a query triplet is of the form [A, R, B], then two triplets of the form [A, R1, X]
and [X, R2, B] are generated. Note that {[A, R, B]} and {[A, R1, X], [X, R2, B]} are
equivalent expressions and either of them can return the correct answer from the KG. However,
since it is not known which information is stored in the KG, both are used.

Thus, each query triplet QTi is replaced by its enhanced triplet set ETi = {QTi}∪ IT j
i where

IT j
i is a set of triplets inferred from QTi, as shown in the example below.
For the question अज ुर्नय मातलुय िपता कः, we first obtain the triplets {[अज ुर्न, मातलु, X], [X, िपत,ृ

िकम]्}. These triplets are then enhanced by appropriately splitting the relationship मातलु using
the rule मातलु = मातृ + भात.ृ Here, QT = [अज ुर्न, मातलु, X] and IT = {[अज ुर्न, मात,ृ Y], [Y, भात,ृ X]}. As
a result, we get two triplet sequences for this question, {[अज ुर्न, मात,ृ Y], [Y, भात,ृ X], [X, िपत,ृ िकम]्}
and {[अज ुर्न, मातलु, X], [X, िपत,ृ िकम]्}.

4.3 Query Pattern
If the question contains only one query triplet, then members of its enhanced triplet set form
the alternate query patterns. Suppose, however, the question contains n query triplets with
their corresponding n enhanced triplet sets ET1, ET2, · · · , ETn. The Cartesian product of the
elements of these sets form the alternate query patterns. Thus, if there are 2 enhanced sets with
2 and 3 elements in them, the total number of alternate query patterns is 2× 3 = 6.



Each of these alternate query patterns are posed to the KG and answer triplets are returned.
The correct field of the answer triplet is returned as the factoid answer.

We have not encountered a case where alternate query patterns return different answers. If,
however, such a situation arises, a further disambiguation step (possibly using majority voting,
etc.) is required.

5 Technical Texts
We have chosen a technical text bhāvaprakāśa which is one of the important texts from
āyurveda. bhāvaprakāśa nighaṇṭu is a glossary chapter from this text, which contains detailed
information about the medicinal properties of various plants, animals and minerals written in
a śloka format. There are 23 adhyāya in this chapter. Being a technical text, bhāvaprakāśa
nighaṇṭu has more structure than rāmāyaṇa or mahābhārata.

5.1 Structure
The text bhāvaprakāśa nighaṇṭu loosely adheres to the following structure.

• Substances (dravya, दय) with similar properties or from the same class occur in the same
chapter. For example, all the flowers are in one chapter, all the metals are in another
chapter.

• Each chapter consists of various blocks (sets of consecutive śloka), where each block speaks
about one substance.

• Each block generally has the following internal components:

– Synonyms of the concerned substance
– Where that substance can be found
– Properties of the substance. e.g., colour, smell, texture, composition and other medic-

inal properties
– Differences between the different varieties of the substance

While the blocks are structured to some extent, the following deviations exist.

• The length of each block is not fixed.

• The number of synonyms of each substance are not fixed.

• The order of the components of the block varies from substance to substance to a certain
extent.

• Some of the internal components may, at times, be absent such as the varieties of a sub-
stance.

Importantly, the separation between two consecutive blocks is not marked in the text.
These points of deviation from the pattern act as hurdles in the process of understanding

and exploiting the structure of a text to extract information. Understanding the structure of
a text can be a challenging task. We have taken the help of domain experts15 to form our
understanding of the structure described above.

Properties (guṇa, गणु) are of the form (name, value). A property value can be directly
attached to a substance, or it can be attached through a property-name. For example, a
substance is “red”, or, a substance has colour “red”.

Relationships of interest can be of a number of types. Some of them are: (substance-1,
is-synonym-of, substance-2), (substance, property-name, property-value), (substance,

15We acknowledge Dr. Sai Susarla, Dean at Maharshi Veda Vyas MIT School of Vedic Sciences, Pune, India,
and his team for sharing their expertise with us.



Words
adhyāya 1 adhyāya 2 All adhyāya
(च, 127) (च, 56) (च, 946)
(तद,् 85) (ितत, 39) (तद,् 786)
(िकम ्, 55) (लघ,ु 37) (िपत, 461)
(कफ, 53) (कफ, 31) (कफ, 438)
(उण, 47) (त,ु 24) (त,ु 394)
(िपत, 45) (िकम ्, 24) (लघ,ु 321)
(त,ु 39) (तद,् 22) (वा, 278)
(तथा, 35) (िवष, 22) (अिप, 268)
(अिप, 34) (उण, 21) (िकम ्, 266)
(ितत, 34) (हृत ्, 20) (गरुु, 254)

Nouns
adhyāya 1 adhyāya 2 All adhyāya
(कफ, 53) (ितत, 39) (िपत, 461)
(उण, 47) (कफ, 31) (कफ, 438)
(िपत, 45) (िवष, 22) (गरुु, 254)
(ितत, 34) (उण, 21) (उण, 240)
(वात, 32) (िपत, 19) (ितत, 237)
(शलू, 29) (कुठ, 18) (वात, 204)
(कुठ, 28) (अस, 18) (मतृ, 194)
(कास, 25) (मतृ, 17) (कुठ, 177)
(कटु, 25) (कण्डु, 16) (गणु, 160)
(वास, 24) (कटु, 16) (लघ,ु 160)

Table 1: Top-10 most frequent words, nouns and their frequencies from bhāvaprakāśa nighaṇṭu.

Counts Words, Nouns, Properties, Non-Properties, Special Words, Pronouns,
Verbs, Case-i Nouns (i = 1, . . . , 8), Number-j Nouns (j = singular,
dual, plural)

Ratio to Words Nouns, Properties, Non-Properties, Special Words
Ratio to Nouns Properties, Non-Properties, Special Words, Case-i Nouns (i = 1, . . . , 8),

Number-j Nouns (j = singular, dual, plural)
Other Ratios Properties to Non-Properties, Non-Properties to Properties, Special

Words to Properties, Special Words to Non-Properties

Table 2: Features of a śloka.

has-property, property-value), (substance, found-at, location).
When a property is directly attached to a substance, we assume the relationship to be
has-property.

We have currently focused our efforts on a single relationship in the bhāvaprakāśa nighaṇṭu,
namely, is-synonym-of. In other words, the triplets that we are interested in are of the form
(substance-1, is-synonym-of, substance-2). Since the predicate is same for all triplets, we
choose to get rid of it and think of the problem as simply finding pairs of synonyms.

This task is subdivided into two tasks, (1) finding śloka that contain the synonyms, and (2)
given such a śloka, finding pairs of synonyms from it.

5.2 Property Words
The corpus is initially pre-processed in a similar manner as described in Section 3.1. However,
a next layer of processing is done to extract more information.

The set of properties is a relatively small set of words. The names and values of these properties
together are called property words. Since the property words recur heavily in every block that
describes a substance, they are expected to have much higher frequencies than the names of
substances. We test this hypothesis by performing a frequency analysis of the top words and
nouns in the entire text.

Table 1 lists the top-10 most frequent words and nouns along with their frequencies. Notice
that most frequent words also contain stopwords like च, तद ् etc., while the list of nouns indicates
that the standard property words such as वात, िपत, कफ have a high frequency. Following this
empirical evidence, we choose the top-50 most frequent nouns as “properties”. The substances
are chosen from the rest of the nouns.



5.3 Synonym śloka Identification
Generally, the different synonyms of a substance are listed in a single śloka at the beginning of
a block. A set {n1, n2, . . . nk} of nouns is called a synonym-group if every ni is a synonym of
every other nj . Any such (ni, nj) pair is called a synonym-pair. A śloka that gives information
about a synonym-group or synonym-pairs is referred to as a synonym śloka. The first task is to
identify instances of such synonym śloka.

To identify a synonym śloka automatically, we use various linguistic features of a śloka and
then use them in a classifier. We create a 42-dimensional feature vector per śloka. Table 2 enlists
all the features used. The features are based on counts and their ratios. Some of the notable
features include number of nouns, pronouns and verbs, number of property words present in a
śloka, ratios of property words to total number of words, number of words in each case (िवभित),
and so on. The category “specials” contains adverbs, conjunctions and prepositions.

Once each śloka is converted into a 42-dimensional feature vector, various classifiers and
ensemble methods are used to classify into a synonym śloka or otherwise.

5.4 Identifying Synonymous Nouns
Once a synonym śloka is identified, the next task is to identify the synonyms from it. Given a
synonym śloka, we first exclude all the property words from it. We next consider the list of all
the nouns in the śloka: {n1, n2, . . . , nk}.

We call a pair of nouns (ni, nj) a synonym pair if both ni and nj have the same case (िवभित)
as well as the same number (वचन). We do not use the gender (िलग) information since there are
examples of synonymous substance names that belong to different genders. For example, चय
(neuter), चियका (feminine) and ऊषणा (feminine) form a synonym group.

6 Experiments and Results

In this section, we present our experiments and discuss the results. The code is written in
Python3. All experiments are done on Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz system with
16 GB RAM running Ubuntu 16.04.6 OS. RDF is used for storing the knowledge graph, and
querying is done using SPARQL querying language. Python library RDFlib is used for working
with RDF and SPARQL.

6.1 Datasets
We have worked with texts containing two types of relationships:

1. Human Relationships: The two well-known epics of ancient India, rāmāyaṇa and mahāb­
hārata, contain numerous characters and relationships among them. We have, thus, used
them as datasets for human relationships.

2. Synonymous Relationships of Substances: āyurveda, the traditional Indian system of
medicine, has a rich source of information about medicinal plants and substances. We con-
sidered bhāvaprakāśa nighaṇṭu, a glossary chapter of the āyurveda text bhāvaprakāśa as
the dataset. It enlists numerous medicinal plants and substances along with their properties
and inter-relationships. In this work, we only consider the relationship “is-synonym-of”.

Table 3 shows the statistics about the datasets considered.

6.2 Knowledge Graph from rāmāyaṇa and mahābhārata
Table 4 shows the various statistics about the knowledge graphs constructed from the datasets
rāmāyaṇa and mahābhārata.

While pre-processing the text requires a large amount of time, the other steps are significantly
faster. The querying times are in microseconds.



Dataset rāmāyaṇa mahābhārata bhāvaprakāśa nighaṇṭu

Type Classical Classical Technical
Chapters 7 (kāṇḍa) 18 (parvan) 23 (adhyāya)
Documents 606 2,327 23
śloka 23,934 81,603 4,244
Words (total) 2,69,603 17,49,709 31,532
Words (unique) 16,083 55,366 5,976
Nouns (total) 1,52,878 6,36,781 19,689
Nouns (unique) 9,553 20,545 3,684

Table 3: Statistics of the various datasets used.

rāmāyaṇa mahābhārata

Time taken
Preprocessing ∼ 3.5 days ∼ 13 days
Triplet Extraction 14.18 sec 57.19 sec
Triplet Enhancement 0.40 sec 2.05 sec

Before enhancement
Entities (Nodes) 1,711 3,552
Triplets (Edges) 6,155 18,936
Type of Relations 24 25

After enhancement
Entities (Nodes) 1,711 3,552
Triplets (Edges) 16,367 48,395
Type of Relations 27 27

Table 4: Statistics of the knowledge graphs for the human relationships.

6.2.1 Questions
To evaluate the performance of the question-answering system, we collected 35 questions from
rāmāyaṇa and 45 questions from mahābhārata from 12 different users, with each user contribut-
ing between 5-10 questions.

6.2.2 Performance
We evaluate the performance of the system for three tasks.

• QParse refers to the query parsing task. If the query pattern is correctly formed from the
natural language question, we count it as a success; otherwise, it is a failure.

• QCond is the conditional question answering task subject to correct query formation. A
success is counted only if the answer to the question is completely correct.

• QAll is the overall question answering task.

Table 5 demonstrates the performance of our system on the collected questions. The query
parsing task is fairly accurate. However, the accuracy of question-answering has a lot of scope
for improvement. We next analyze some of the reasons for failure.

6.3 Analysis of Wrong Answers
We analyze the wrong answers in two phases: parsing errors and answering errors.



Text Task Total Found Correct Precision Recall F1

QParse 35 33 27 0.82 0.77 0.79
rāmāyaṇa QCond 27 19 09 0.47 0.33 0.39

QAll 35 20 10 0.50 0.29 0.37

QParse 45 45 41 0.91 0.91 0.91
mahābhārata QCond 41 36 22 0.61 0.54 0.57

QAll 45 40 23 0.58 0.51 0.54

QParse 80 78 68 0.87 0.85 0.86
Combined QCond 60 55 31 0.56 0.46 0.50

QAll 80 60 33 0.55 0.41 0.47

Table 5: Performance of the question-answering tasks.

6.3.1 Parsing Errors
Following are some examples of queries that got incorrectly parsed.

• गाधाया र्ः पतुाणाम न्ामािन कािन → [गाधारी, पतु, िकम]्
The question expects all the names of sons of gāndhārī गाधारी but the parsed query only
asks for the name of ‘a son’ of गाधारी. This error originates from the fact that we have not
considered the number (वचन) of the relationship word while parsing the question. Strictly
speaking, however, the question is not a simple factoid question. Nevertheless, number
(वचन) can be considered, and all triplets that satisfy the criteria can be returned.

• कणा र्ज ुर्नयोः कः सबधः → [िकम ्, िकम ्, सबध]
There are patterns in the question set that are not handled by our algorithm. For example,
the algorithm did not handle the way of asking the relationship between two people using
the word सबध and, thus, results in a triplet that does not make sense. If the same question
was phrased as कणर्ः अज ुर्नय कः, our algorithm would be able to parse the question to give
[अज ुर्न, िकम ्, कण र्]. Questions like कणर्ः अज ुर्नय कः, अज ुर्नय कणर्ः कः, अज ुर्नय कः कणर्ः and कणर्ः कः
अज ुर्नय also get parsed correctly to [अज ुर्न, िकम ्, कण र्].

• िववाहः अज ुर्नय अभवत क्या सह → [अज ुर्न, िकम ्, िववाह]
The question parsing algorithm, while tolerant to some extent, is not fully robust to free
word order. An occurrence of िववाह word needs to be followed by the instrumental case
(ततृीया) word, followed by सह for it to be parsed correctly. Thus, if the question is changed
to अज ुर्नय िववाहः कया सह अभवत ्, it will get parsed correctly to yield [अज ुर्न, पनी, िकम]्.

6.3.2 Answering Errors
Out of the queries that correctly get parsed, following are the queries which we cannot find the
answer due to the inability of performing path queries.

• ऊिम र्ला दशरथय का → [दशरथ, िकम ्, ऊिम र्ला]
This question would have got answered only if there is a direct edge between दशरथ and
ऊिम र्ला. If there is no direct edge, but an edge between दशरथ and लमण exists along with the
edge between लमण and ऊिम र्ला, then this answer should have been found. Our inability to
pose it as a graph path searching query is the cause of this failure.

• हनमुतः िपता कः → [हनमुत ्, िपत,ृ िकम]्
We correctly parse this question and there exists a triplet [मारुित, िपत,ृ पवन]. However, as
the information that मारुित is another name of हनमुत ्is not present in the knowledge graph,
resulting in the failure to answer this question.



śloka sandhi­samāsa split

अिनलय िशवा भाया र् तयाः पतुो मनोजवः। अिनलय िशवा भाया र् तयाः पतुः मनोजवः।
अिवज्ञातगितचवै वौ पतुाविनलय त॥ु२५॥ अिवज्ञात­गितः­च­एव वौ पतुौ=­अिनलय त॥ु२५॥
पयषूय िवदुः पतुमिृषं नानाऽथ दवेलम।् पयषूय िवदुः पतुम­्ऋिषम न्ाना­अथ दवेलम।्
वौ पतुौ दवेलयािप क्षमावतौ मनीिषणौ। वौ पतुौ दवेलय­अिप क्षमावतौ मनीिषणौ।
बहृपतेत ु भिगनी वरी बमवािदनी॥२६॥ बहृपतःे­त ु भिगनी वर­ी बम­वािदनी॥२६॥
योगिसधा जगृकमसता िवचचार ह। योग­िसधाः जगत­्कृम­्असता िवचचार ह।
पभासय त ु भाया र् सा वसनूामटमय ह॥२७॥ पभासय त ु भाया र् सा वसनूाम­्अटमय ह॥२७॥

Table 6: śloka 25, 26, 27 from adhyāya 67 of ādi parvan in mahābhārata.

• परुोः कः वशंजः यय पतुः अज ुर्नः → [परुु, वशंज, िकम]्, [यद,् पतु, अज ुर्न]
Again, despite getting correctly parsed, since we cannot follow the “has-son” relationship
arbitrary number of times, this query cannot be answered.

6.3.3 Correct Answers despite Wrong Parsing
Interestingly, there are cases when despite the query being parsed incorrectly, the correct answer
exists in the result set. The following examples highlight two such cases.

• रावणय किनठतमः भाता कः → [रावण, भात,ृ िकम]्
The triplet is incorrectly formed, since we did not capture the information किनठतमः
(youngest). However, the correct answer, िवभीषण, being a brother of रावण, is captured in the
result set. The question is, thus, deemed to be answered correctly.

• भीमय अगजः कः आसीत ्→ [भीम, भात,ृ िकम]्
Similar to the previous question, we classify the formed triplet as incorrect, for missing the
quality ‘elder’. However, answers found do contain the correct answers यिुधिठर and कणर्.

6.4 Analysis of Errors in KG Triplets
We now take a look at in-depth analysis of some incorrect triplets retrieved by our method and
investigate the reasons behind the failure. For this purpose, we consider a small extract from
the corpus and follow the entire pipeline of forming the triplets.

Table 6 gives an extract containing three śloka (25, 26 and 27) from adhyāya 67 of the ādi
parvan in mahābhārata. Table 7, Table 8 and Table 9 contain the detailed analysis of these
śloka as well as a classification of the errors in the analysis.

6.4.1 Types of Errors
We now discuss the possible errors, as exemplified in the analysis tables 7, 8 and 9.

• AnalysisError:
This is an error in the analysis obtained from The Sanskrit Heritage Parser. For example,
the word भाया र् in śloka 25 is analysed as a form of भािर instead of a form of भाया र्. Thus, the
prātipadika identified is wrong. This also results in the other analysis details such as case,
gender and number, being wrong. It should be noted that words can be analyzed differently
in different contexts. For example, the word भाया र्, if analyzed standalone as a word, can get
analyzed correctly; however, in the current context, it results in an erroneous analysis.16

• OversplitError:
This is an error in the sandhi and samāsa splitter, where a word that should not have been
split is split. For example, in śloka 26, वरी is wrongly oversplit as वर and ी, and बमवािदनी

16Erroneous analysis of भाया र्: https://sanskrit.inria.fr/cgi-bin/SKT/sktreader.cgi?lex=SH&st=t&us=f&
cp=t&text=anilasya+zivaa+bhaaryaa+tasyaa.h+putra.h+manojava.h&t=VH&mode=p



Word Root Analysis Is-Noun Is-Verb Error

अिनलय अिनल [‘g.’, ‘sg.’, ‘m.’] True False
िशवा िशव [‘nom.’, ‘sg.’, ‘f.’] True False
भाया र् भािर [‘i.’, ‘sg.’, ‘f.’] True False AnalysisError
तयाः तद ् [‘g.’, ‘sg.’, ‘f.’] False False
पतुः पतु [‘nom.’, ‘sg.’, ‘m.’] True False
मनो जवः मनोजव [‘nom.’, ‘sg.’, ‘m.’] True False Corrected
अिवज्ञा अिवज्ञ [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
आत अत ् [‘pft.’, ‘ac.’, ‘pl.’, ‘2’] False True OversplitError
गितः गित [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
च च [‘conj.’] False False
एव एव [‘prep.’] False False
वौ व [‘acc.’, ‘du.’, ‘m.’] True False
पतुौ पतु [‘acc.’, ‘du.’, ‘m.’] True False
अिनलय अिनल [‘g.’, ‘sg.’, ‘m.’] True False
त ु त ु [‘conj.’] False False

Table 7: Analysis of śloka 25.

as बम and वािदन ्. Sometimes a word is erroneously oversplit by the analyser as well. Again,
in śloka 26, for example, वािदन ्is erroneously split as वा and आिदन ्.

• SandhiSamaasaError:
There can be error in analyzing the correct sandhi and samāsa in a word. In other words,
when a word is broken, the constituent words can be erroneous. For example, in śloka 27,
योगिसधा जगत ्is split as योग, िसधाः and जगत ्, where योगिसधा, in addition to being oversplit, is
also changed into plural form.

6.4.2 Extracting Triplets
After obtaining the analysis, when we proceed to extract triplets as mentioned, we tried using
4 different filters for extracting triplets. In every filter, the case of the subject word must be
sixth (षठी) and the gender of the object word must match with the gender of the predicate word.
Filters differ in the allowed positions of subject and object words relative to the predicate word
as well whether the number (वचन) of the object is matched or not.

Table 10 describe the different filters. Filter 1 is the superset of other filters and Filter 2 is
the superset of Filter 3 and Filter 4.

Through empirical evidence, we found that Filter 2, although being stricter than Filter 1, still
captures roughly the same number of triplets while reducing the errors. Filter 3 and Filter 4,
while exhibiting fewer mistakes, find fewer correct triplets as well. While we acknowledge that
such an analysis is required on a larger scale to decide among the filters, for our purposes, we
choose Filter 2 based on the empirical evidence, and proceed further.

6.4.3 Analysis of Incorrect Triplets
In this section, we take a look at some wrong triplets that were retrieved and the reasons behind
their retrieval.

• (पयषू, पतु, मनीिषन)्
śloka 26, listed in Table 6 contains two relationship words, पतुम a्nd पतुौ. The first one is used
in relation to दवेल who is the son of पयषू, and the triplet (पयषू, पतु, दवेल) is found correctly.
However, because of the presence of the second word पतुौ, which is actually used with दवेलय,
a wrong triplet (पयषू, पतु, मनीिषन)् is formed. Due to the same reason, (पयषू, पतु, क्षमावत)् is also



Word Root Analysis Is-Noun Is-Verb Error
पयषूय पयषू [‘g.’, ‘sg.’, ‘m.’] True False
िवदुः िवद ् [‘pft.’, ‘ac.’, ‘pl.’, ‘3’] False True
पतुम ् पतु [‘acc.’, ‘sg.’, ‘m.’] True False
ऋिषम ् ऋिष [‘acc.’, ‘sg.’, ‘m.’] True False
नाना नामन ् [‘adv.’] False False
अथ अथ [‘conj.’] False False
दवेलम ् दवेल [‘acc.’, ‘sg.’, ‘m.’] True False
वौ व [‘acc.’, ‘du.’, ‘m.’] True False
पतुौ पतु [‘acc.’, ‘du.’, ‘m.’] True False
दवेलय दवेल [‘g.’, ‘sg.’, ‘m.’] True False
अिप अिप [‘conj.’] False False
क्षमावतौ क्षमावत ् [‘acc.’, ‘du.’, ‘m.’] True False
मनीिषणौ मनीिषन ् [‘acc.’, ‘du.’, ‘m.’] True False
बहृपतःे बहृपित [‘g.’, ‘sg.’, ‘m.’] True False
त ु त ु [‘conj.’] False False
भिगनी भिगनी [‘nom.’, ‘sg.’, ‘f.’] True False
वर वर [‘voc.’, ‘sg.’, ‘m.’] True False OversplitError
ी ी [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
बम बमन ् [‘acc.’, ‘sg.’, ‘n.’] True False OversplitError
वा वा [‘conj.’] False False OversplitError
आिदनी आिदन ् [‘acc.’, ‘du.’, ‘n.’] True False OversplitError

Table 8: Analysis of śloka 26.

Word Root Analysis Is-Noun Is-Verb Error

योग योग [‘voc.’, ‘sg.’, ‘m.’] True False OversplitError,
AnalysisError

िसधाः िसध [‘acc.’, ‘pl.’, ‘f.’] True False OversplitError,
SandhiSamaasaError

जगत ् जगत ् [‘acc.’, ‘sg.’, ‘n.’] True False
कृम ् कृ [‘acc.’, ‘sg.’, ‘m.’] True False
असता असत [‘nom.’, ‘sg.’, ‘f.’] True False
िवचचार िव­चर ् [‘pft.’, ‘ac.’, ‘sg.’, ‘3’] False True
ह ह [‘part.’] False False
पभासय पभास [‘g.’, ‘sg.’, ‘m.’] True False
त ु त ु [‘conj.’] False False
भाया र् भाय र् [‘nom.’, ‘sg.’, ‘f.’] True False
सा तद ् [‘nom.’, ‘sg.’, ‘f.’] False False
वसनूाम ् वस ु [‘g.’, ‘pl.’, ‘m.’] True False
अटमय अटम [‘g.’, ‘sg.’, ‘m.’] True False
ह ह [‘part.’] False False

Table 9: Analysis of śloka 27.

found. Since the context for finding relationships covers the full śloka, when a single śloka
contain multiple relationships, such errors occur. If sentences were instead used, the error
could have been reduced. However, there do not exist clear sentence boundaries.



Filter Position of subject Position of object Number (वचन) of object
1 Either side of predicate Either side of predicate Does not matter
2 Either side of predicate Either side of predicate Must match predicate
3 Before predicate After predicate Must match predicate
4 After predicate Before predicate Must match predicate

Table 10: Filters for extracting triplets.

Scenario Training Set Testing Set
S1 First 20% of adhyāya 1 Rest 80% of adhyāya 1
S2 First 20% of adhyāya 2 Rest 80% of adhyāya 2
S3 adhyāya 1 adhyāya 2
S4 adhyāya 2 adhyāya 1

Table 11: Training and testing scenarios on bhāvaprakāśa nighaṇṭu.

• (बहृपित, भिगनी, ी)
As discussed in Section 6.4.1, the word वरी gets oversplit wrongly into वर and ी, and
the split words are analysed separately, resulting in the wrong triplet. Even if this split
did not occur, we would have got वरी as the object in this triplet. This is wrong since
this is actually an adjective used for the sister of बहृपित. Since we currently do not have
any mechanism of distinguishing between nouns and adjectives, it would have resulted in
incorrect triplets.

We next examine some triplets that should have been found but were not found and the
reasons behind their non-retrieval.

• (अिनल, पनी, िशवा)
The relationship word that occurs in śloka 25 in Table 6 is भाया र्, which suffers an Anal-
ysisError and is identified as ततृीया of भािर instead of पथमा of भाया र्. Due to the root word
(पाितपिदक) itself being misidentified, it is not recognized as a relationship word and thus,
does not satisfy the filtering criterion. Consequently, the triplet (अिनल, पनी, िशवा) is missed.

• (पभास, पनी, बमवािदनी)
In śloka 27, भाया र् of पभास is referred to with a pronoun सा, which is connected to a noun in
the previous śloka. To correctly identify the triplet (पभास, पनी, बमवािदनी), we would need a
mechanism to connect pronouns to their proper subjects. We do not handle this currently.

6.5 Synonym Identification from bhāvaprakāśa nighaṇṭu
Questions for the bhāvaprakāśa are implicit, as we are considering only the synonymous re-
lationship. Therefore, the evaluation is performed on the synonym groups and synonym pairs
identification. We created ground truth for the first two adhyāya of bhāvaprakāśa nighaṇṭu.
adhyāya 1 contains 261 śloka, while adhyāya 2 contains 131 śloka. For each of these śloka,
we first identified if it is a synonym śloka. If it is so, we next extracted the list of synonymous
words contained in it.

6.5.1 Classification
Using the feature vectors obtained for each śloka, we used various classifiers to classify each
śloka as a synonym śloka or otherwise. We tried four practical scenarios of training and testing
set choices as described in Table 11.



Scenario Train Size Test Size P P ′ TP Accuracy Precision Recall F1
S1 52 209 84 56 42 0.73 0.75 0.50 0.60
S2 26 105 44 43 31 0.76 0.72 0.71 0.71
S3 261 131 54 45 36 0.79 0.80 0.67 0.73
S4 131 261 90 99 66 0.78 0.67 0.73 0.70

Table 12: Performance of classifiers in identifying synonym śloka.

False Positives (9) False Negatives (18)

कामरूपोभवा कृणा नपैाली नीलवण र्यकु ् शीखण्डं चदनं न ी भद शीतलैपिण र्कः
काश्मीरी किपलछाया कतरूी ितिवधा मतृा ॥६॥ गधसारो मलजयतथा च यिुतच सः ॥११॥
मिहषाक्षो महानीलः कुमदुः पम इयिप भद मुतच गुा च तथा नागरमुतकः
िहरण्यः पचमो ज्ञयेो गगु्गलुोः पच जातयः ॥३३॥ मुतं कटु िहमं गािह ितंत दीपनपाचनम ॥्९३॥

Table 13: Examples of errors in classification (scenario S3).

The size of training sets were chosen to be smaller than those of test sets to resemble the
real-world scenario where the ground truth can be created for only a small portion of the text,
and predictions are needed to be made on the rest.

Table 12 shows the performance of the best classifier under various scenarios in identifying
the śloka containing synonyms.

Table 13 shows some examples of wrongly classified śloka for the best performing scenario S3.

6.5.2 Synonym Identification
We next evaluate the performance of finding synonymous pairs from a synonym śloka. Table 14
shows the performance in identifying groups of synonymous substances. We say that a group of
substances is covered even if a single pair in the group is identified. The result shows that even
this has a scope for improvement.

Table 15 shows an example of a synonym śloka where none of the pairs are extracted correctly.
The correct synonyms are चिका, चम र्ही, पशमुहेनकािरका, निदनी, कारवी, भदा, वासपुपा, सवुासरा. We find
the pairs (कािरका, हत)ृ, (कािरका, भद), (कािरका, सपुप), (निदन ्, रिव), (भद, हत)ृ, (भद, सपुप), (सपुप, हत)ृ, none
of which are correct. The reasons for the errors are shown in Table 16. Almost all the nouns
are analysed incorrectly, resulting in the group being completely missed.

In addition to the errors discussed in Section 6.4.1, an additional error occurs here, that of
TextError. This refers to an error in the text corpus that we are working with. In particular,
the original śloka contains the word चिका while the corpus we are working with, has that word
split as चि and का, which results in this word not being analysed correctly. After correcting
this error manually, we now obtain a valid pair (चिका, भदा), thus covering this group.

We next analyse the finer errors that occur when some members of a synonymous group are
identified correctly, but not all. Table 17 shows the performance.

Table 18 shows a synonym śloka from adhyāya 1 (हरीतयािदवग र्ः).
This śloka contains a total of 11 synonyms. We find pairs of synonyms involving 9 out of

Synonym śloka Groups present Groups found Group coverage
adhyāya 1 90 87 60 0.69
adhyāya 2 54 53 39 0.74

Table 14: Group coverage in synonym pair identification.



Synonym śloka sandhi­samāsa split

चि का चमर्ही च पशमुहेनकािरका। चि का चमर्ही च पशमुहेन­कािरका।
निदनी कारवी भदा वासपुपा सवुासरा ॥९६॥ निदनी कारवी भदा वासपुपा स­ुवासराः ॥९६॥

Table 15: śloka 96 from adhyāya 1 of bhāvaprakāśanighaṇṭu and its sandhi­samāsa split.

Word Root Analysis Is-Noun Is-Verb Error

चि चि [‘?’] False False TextError
का िकम ् [‘nom.’, ‘sg.’, ‘f.’] False False TextError
चमर् चम र्न ् [‘acc.’, ‘sg.’, ‘n.’] True False OversplitError
ही हतृ [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
च च [‘conj.’] False False
पशमुहेन पशमुहेन [‘voc.’, ‘sg.’, ‘n.’] True False OversplitError
कािरका कािरका [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
निदनी निदन ् [‘acc.’, ‘du.’, ‘n.’] True False AnalysisError
का िकम ् [‘nom.’, ‘sg.’, ‘f.’] False False OversplitError
रवी रिव [‘acc.’, ‘du.’, ‘m.’] True False OversplitError
भदा भद [‘nom.’, ‘sg.’, ‘f.’] True False
वा वा [‘conj.’] False False OversplitError
सपुपा सपुप [‘nom.’, ‘sg.’, ‘f.’] True False OversplitError
स ु स ु [‘?’] False False OversplitError
वासराः वासर [‘voc.’, ‘pl.’, ‘m.’] True False OversplitError

Table 16: Analysis of śloka 96.

these, synonym pairs involving 8 of which are correct. We show examples of some of the false
negatives and false positives among the pairs of synonyms identified.

• False Positive: (अमतृा, अवी)
The word अयथा is split wrongly as अवी and अथा, and are then analysed separately. This
results in both अमतृा and अवी being in the same case (पथमा) and same number (एकवचन), thus
getting wrongly marked as a synonymous pair.

• False Negative: (अभया, अमतृा)
The word अभया gets analysed as instrumental (ततृीया) case of अभा instead of nominative (पथमा)
case of अभया. This results in a case mismatch with अमतृा and the pair is not extracted as a
synonymous pair.

7 Conclusions and Future Work
In this paper, we have designed a framework to build a knowledge graph (KG) directly from
saṃskṛta texts, and use it for question-answering in saṃskṛta. Our framework has multiple
components and is based on rules and heuristics developed using the knowledge of grammar of
saṃskṛta language and structure of the text.

However, for almost all the components, the accuracy can be improved. Improvements on any
of these components by us or by others will make the system better. In future, we would like to
work on improving the modules in a systematic manner. The biggest source of improvement can
possibly come from a better word analyser. Usage of dictionaries, thesauri (such as amarakośa)
and Sanskrit WordNet will be explored to see if they can help in understanding the structure
of a word better. Crowd sourcing tools as well as human experts can also help refine some of



śloka Synonym śloka P P ′ TP Precision Recall F1
adhyāya 1 231 90 534 562 369 0.66 0.69 0.67
adhyāya 2 161 54 300 348 214 0.62 0.71 0.66

Table 17: Performance of finding synonym pairs.

Synonym śloka sandhi-samāsa split P P ′ TP

हरीतयभया पया कायथा पतूनाऽमतृा हरीतकी­अभया पया कायथा पतूना­अमतृा 11 9 8हमैवययथा चािप चतेकी शयेसी िशवाः ॥६॥ हमैवती­अयथा च­अिप चतेकी शयेसी िशवाः ॥६॥

Table 18: Example of wrong pairs from adhyāya 1 of bhāvaprakāśa nighaṇṭu.

the steps. We would also like to expand the question-answering framework to work with longer
questions that are not necessarily of the type factoid.

To conclude, we hope that this effort serves as a step towards the ultimate aim of automatically
building a full-fledged knowledge graph from a saṃskṛta corpus.

Acknowledgements
We thank Dr. Sai Susarla, Dean at Maharshi Veda Vyas MIT School of Vedic Sciences, Pune,
India, and his team, for sharing their expertise in āyurveda with us. We thank Shubhangi
Agarwal and Rujuta Pimprikar for the help in creating ground truth as well as providing valuable
feedback from time to time. We thank Dr. Kripabandhu Ghosh and Garima Gaur for the
discussions and valuable feedback. We thank our saṃskṛta teacher Pralay Manna for enabling
us in understanding the language better. We also thank the anonymous reviewers for their
comments and suggestions.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.

2007. DBpedia: A nucleus for a web of open data. In The Semantic Web, pages 722–735.

Mira Bhargava and Joachim Lambek. 1992. A production grammar for Sanskrit kinship terminology.
Theoretical Linguistics, 18(1):45–60.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A collab-
oratively created graph database for structuring human knowledge. In ACM SIGMOD International
Conference on Management of data, pages 1247–1250.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In 24th International Conference on Computational Linguistics
(COLING).

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recur-
rent and convolutional neural networks. In Conference on Empirical Methods in Natural Language
Processing, pages 2754–2763.

Malhar Kulkarni, Chaitali Dangarikar, Irawati Kulkarni, Abhishek Nanda, and Pushpak Bhattacharyya.
2010. Introducing Sanskrit WordNet. In 5th Global Wordnet Conference (GWC 2010), pages 287–294.

Ora Lassila, Ralph R Swick, et al. 1998. Resource Description Framework (RDF) model and syntax
specification.

Sivaja S Nair and Amba Kulkarni. 2010. The knowledge structure in Amarakośa. In International
Sanskrit Computational Linguistics Symposium, pages 173–189.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: A core of semantic knowledge.
In 16th International Conference on World Wide Web, pages 697–706.


