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Abstract

Predicting the construct-relevant difficulty of
Multiple-Choice Questions (MCQs) has the
potential to reduce cost while maintaining the
quality of high-stakes exams. In this paper,
we propose a method for estimating the dif-
ficulty of MCQs from a high-stakes medical
exam, where all questions were deliberately
written to a common reading level. To accom-
plish this, we extract a large number of linguis-
tic features and embedding types, as well as
features quantifying the difficulty of the items
for an automatic question-answering system.
The results show that the proposed approach
outperforms various baselines with a statisti-
cally significant difference. Best results were
achieved when using the full feature set, where
embeddings had the highest predictive power,
followed by linguistic features. An ablation
study of the various types of linguistic features
suggested that information from all levels of
linguistic processing contributes to predicting
item difficulty, with features related to seman-
tic ambiguity and the psycholinguistic proper-
ties of words having a slightly higher impor-
tance. Owing to its generic nature, the pre-
sented approach has the potential to generalize
over other exams containing MCQs.

1 Introduction

For many years, approaches from Natural Lan-
guage Processing (NLP) have been applied to esti-
mating reading difficulty, but relatively fewer at-
tempts have been made to measure conceptual
difficulty or question difficulty beyond linguistic
complexity. In addition to expanding the hori-
zons of NLP research, estimating the construct-
relevant difficulty of test questions has a high prac-
tical value because ensuring that exam questions
are appropriately difficult is both one of the most
important and one of the most costly tasks within
the testing industry. For example, test questions

that are too easy or too difficult are less able to
distinguish between different levels of examinee
ability (or between examinee ability and a defined
cut-score of some kind – e.g., pass/fail). This is es-
pecially important when scores are used to make
consequential decisions such as those for licen-
sure, certification, college admission, and other
high-stakes applications1. To address these issues,
we propose a method for predicting the difficulty
of multiple choice questions (MCQs) from a high-
stakes medical licensure exam, where questions
of varying difficulty may not necessarily vary in
terms of reading levels.

Owing to the criticality of obtaining difficulty
estimates for items (exam questions) prior to their
use for scoring, current best practices require
newly-developed items to be pretested. Pretest-
ing typically involves administering new items to
a representative sample of examinees (usually be-
tween a few hundred and a few thousand), and
then using their responses to estimate various sta-
tistical characteristics. Ideally, pretest data are
collected by embedding new items within a stan-
dard live exam, although sometimes special data
collection efforts may also be needed. Based on
the responses, items that are answered correctly
by a proportion of examinees below or above cer-
tain thresholds (i.e. items that are too easy or too
difficult for almost all examinees) are discarded.
While necessary, this procedure has a high finan-
cial and administrative cost, in addition to the time
required to obtain the data from a sufficiently large
sample of examinees.

Here, we propose an approach for estimating
the difficulty of expert-level MCQs, where the

1Examples of well-known high-stakes exams include
the TOEFL (Test of English as a Foreign Language)
(https://www.ets.org/toefl), the SAT (Scholastic Assessment
Test) (https://collegereadiness.collegeboard.org/sat), and the
USMLE (United States Medical Licensing Examination)
(https://www.usmle.org/).
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A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to undergo
chemotherapy. Six days after treatment is started, she develops a temperature of 38C (100.4F).
Physical examination shows no other abnormalities. Laboratory studies show a leukocyte count of
100/mm3 (5% segmented neutrophils and 95% lymphocytes).
Which of the following is the most appropriate pharmacotherapy to increase this patient’s
leukocyte count?
(A) Darbepoetin
(B) Dexamethasone
(C) Filgrastim
(D) Interferon alfa
(E) Interleukin-2 (IL-2)
(F) Leucovorin

Table 1: An example of a practice item

gold standard of item difficulty is defined through
large-scale pretesting and is based on the re-
sponses of hundreds of highly-motivated exami-
nees. Being able to automatically predict item dif-
ficulty from item text has the potential to save sig-
nificant resources by eliminating or reducing the
need to pretest the items. These savings are of
even greater importance in the context of some au-
tomatic item generation strategies, which can pro-
duce tens of thousands of items with no feasible
way to pretest them or identify which items are
most likely to succeed. Furthermore, understand-
ing what makes an item difficult other than manip-
ulating its reading difficulty has the potential to aid
the item-writing process and improve the quality
of the exam. Last but not least, automatic diffi-
culty prediction is relevant to automatic item gen-
eration as an evaluation measure of the quality of
the produced output.

Contributions i) We develop and test the pre-
dictive power of a large number of different types
of features (e.g. embeddings and linguistic fea-
tures), including innovative metrics that measure
the difficulty of MCQs for an automatic question-
answering system. The latter produced empirical
evidence on whether parallels exist between ques-
tion difficulty for humans and machines. ii) The
results outperform a number of baselines, show-
ing that the proposed approach measures a no-
tion of difficulty that goes beyond linguistic com-
plexity. iii) We analyze the most common errors
produced by the models, as well as the most im-
portant features, providing insight into the effects
that various item characteristics have on the suc-
cess of predicting item difficulty. iv) Owing to the

generic nature of the features, the presented ap-
proach is potentially generalizable to other MCQ-
based exams. We make our code available2 at:
https://bit.ly/2EaTFNN.

2 Related Work

The vast majority of previous work on difficulty
prediction has been concerned with estimating
readability (Flesch, 1948; Dubay, 2004; Kintsch
and Vipond, 2014; François and Miltsakaki, 2012;
McNamara et al., 2014; Yaneva et al., 2017). Vari-
ous complexity-related features have been devel-
oped in readability research (see Dubay (2004)
and Kintsch and Vipond (2014) for a review),
starting from ones utilising surface lexical fea-
tures (e.g. Flesch (1948)) to NLP-enhanced mod-
els (François and Miltsakaki, 2012) and features
aimed at capturing cohesion (McNamara et al.,
2014).

There have also been attempts to estimate the
difficulty of questions for humans. This has been
mostly done within the realm of language learn-
ing, where the difficulty of reading comprehension
questions is strongly related to their associated
text passages (Huang et al., 2017; Beinborn et al.,
2015; Loukina et al., 2016). Another area where
question-difficulty prediction is discussed is the
area of automatic question generation, as a form
of evaluation of the output (Alsubait et al., 2013;
Ha and Yaneva, 2018). In many cases such evalua-
tion is conducted through some form of automatic
measure of difficulty (e.g., the semantic similarity
between the question and answer options as in (Ha

2The questions cannot be made available because of test
security.

https://bit.ly/2EaTFNN
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and Yaneva, 2018)) rather than through extensive
evaluation with humans. Past research has also fo-
cused on estimating the difficulty of open-ended
questions in community question-answering plat-
forms (Wang et al., 2014; Liu et al., 2013); how-
ever, these questions were generic in nature and
did not require expert knowledge. Other studies
use taxonomies representing knowledge dimen-
sions and cognitive processes involved in the com-
pletion of a test task to predict the difficulty of
short-answer questions (Padó, 2017) and identify
skills required to answer school science questions
(Nadeem and Ostendorf, 2017). We build upon
previous work by implementing a large number of
complexity-related features, as well as testing var-
ious prediction models (Section 4).

While relevant in a broad sense, the above
works are not directly comparable to the current
task. Unlike community question answering, the
questions used in this study were developed by
experts and require the application of highly spe-
cialized knowledge. Reading exams, where com-
prehension difficulty is highly associated with text
complexity, are also different from our medical
MCQs, which are deliberately written to a com-
mon reading level (see Section 3). Therefore, the
models needed to capture difficulty in this context
that goes beyond linguistic complexity.

3 Data

Data comprises 12,038 MCQs from the Clinical
Knowledge component of the United States Medi-
cal Licensing Examination R©. An example of a test
item is shown in Table 1. The part describing the
case is referred to as the stem, the correct answer
option is called the key and the incorrect answer
options are known as distractors. The majority of
the items in the data set used here had five or six
answer options.

Item writing All items tested medical knowl-
edge and were designed to emulate real-life sce-
narios wherein examinees must first identify the
relevant findings and then, based on these findings,
make a diagnosis or take a clinical action. Items
were written by experienced item-writers follow-
ing a set of guidelines. These guidelines stipulated
that the writers adhere to a standard structure and
avoid excessive verbosity, “window dressing” (ex-
traneous material not needed to answer the item),
“red herrings” (information designed to mislead
the test-taker), overly long or complicated stems

or options, and grammatical cues (e.g., correct an-
swers that are longer, more specific, or more com-
plete than the other options; or the inclusion of the
same word or phrase in both the stem and the cor-
rect answer). Item writers had to ensure that the
produced items did not have flaws related to vari-
ous aspects of validity. For example, flaws related
to irrelevant difficulty include: Stems or options
are overly long or complicated, Numeric data not
stated consistently and Language or structure of
the options is not homogeneous. Flaws related to
“testwiseness” are: Grammatical cues; The cor-
rect answer is longer, more specific, or more com-
plete than the other options; and A word or phrase
is included both in the stem and in the correct an-
swer. Finally, stylistic rules concerning preferred
usage of terms, formatting, abbreviations, conven-
tions, drug names, and alphabetization of option
sets were also enforced. The goal of standardizing
items in this manner is to produce items that vary
in difficulty and discriminating power due only
to differences in the medical content they assess.
This practice, while sensible, makes modeling dif-
ficulty very challenging.

Item administration The questions in our data
set were pretested by embedding them within live
exams. In practice, the response data collected
during pretesting is used to filter out items that
are misleading, too easy, or too difficult based
on various criteria. Only those items satisfying
these criteria are eligible for use during scoring on
subsequent test forms. The current set of items
contains pretest data administered for four stan-
dard annual cycles between 2012 and 2015. The
questions were embedded within a standard nine-
hour exam and test-takers had no way of know-
ing which items were used for scoring and which
were being pretested. Examinees were medical
students from accredited3 US and Canadian med-
ical schools taking the exam for the first time as
part of a multistep examination sequence required
for medical licensure in the US.

Determining item difficulty On average, each
item was answered by 328 examinees (SD =
67.17). The difficulty of an item is defined by the
proportion of its responses that are correct, which
is commonly referred to in the educational-testing
literature as its P-value4. The P-value is calculated

3Accredited by the Liaison Committee on Medical Edu-
cation (LCME).

4We adopt this convention here but care should be taken
not to confuse this usage with a p-value indicating statistical
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Figure 1: Distribution of the P-value variable

in the following way:

Pi =

∑N
n=1 Un

N
,

where Pi is the p-value for item i, Un is the 0-1
score (correct-incorrect) on item i earned by exam-
inee n , and N is the total number of examinees in
the sample. As an example, a P-value of .3 means
that the item was answered correctly by 30% of
the examinees. The distribution of P-values for the
data set is presented in Figure 1.

4 Features

A number of features were modeled for P-value
prediction and can be roughly divided into three
classes. First, we extract embeddings, which have
been found to have predictive power in many dif-
ferent applications. The second class of features
included more than one hundred linguistic charac-
teristics, which account for differences in the way
the items are written. Finally, a third class of fea-
tures were based on the difficulty an item posed
to an automated question-answering system un-
der the working hypothesis that this system diffi-
culty had a positive relationship with the difficulty
an item poses to human respondents. Information
about each type of feature is presented below. Ad-
ditional details can be found in the available code.

4.1 Embeddings
We experiment with two types of embeddings:
Word2Vec (300 dimensions) (Mikolov et al.,

significance.

2013) and ELMo (1,024 dimensions) (Peters et al.,
2018). The embeddings were generated using
approximately 22,000,000 MEDLINE abstracts,5,
which were found to outperform other versions
of the embeddings extracted from generic cor-
pora (Google News Corpus6 for Word2Vec and 1B
Word (Chelba et al., 2013) for ELMo). Embed-
dings were aggregated at item level using mean
pooling, where an average item embedding is gen-
erated from the embeddings of all words.

4.2 Linguistic features

This class of features includes the following sub-
categories.

Lexical Features Previous research has found
surface lexical features to be very informative in
predicting text readability (Dubay, 2004). Lexical
features in our experiments include counts, inci-
dence scores and ratios for ContentWord, Noun,
Verb, Adjective, and Adverb; Numeral Count;
Type-Token Ratio; Average Word Length In Sylla-
bles; and Complex Word Count (> 3 syllables).

Syntactic Features: These were implemented
using information from the Stanford NLP Parser
(Manning et al., 2014) and include: Average Sen-
tence Length (words); Average Depth Of Tree;
Negation Count; Negation In Stem; Negation
In the Lead-In Question; NP Count; NP Count
With Embedding (the number of noun phrases de-
rived by counting all the noun phrases present in
an item, including embedded NPs); Average NP
Length; PP and VP Count; Proportion Passive
VPs; Agentless Passive Count; Average Number
of Words Before Main Verb; and Relative Clauses
and Conditional Clauses Count.

Semantic Ambiguity Features: This subcat-
egory concerns the semantic ambiguity of word
concepts according to WordNet (WN), as well as
medical concepts according to the UMLS (Uni-
fied Medical Language System) Meta-thesaurus
(Schuyler et al., 1993). The features include Pol-
ysemic Word Index; Average Number of Senses
of: Content Words, Nouns, Verbs, Adjectives, Ad-
verbs; Average Distance To WN Root for: Nouns,
Verbs, Nouns and Verbs; Total No Of UMLS Con-
cepts; Average No Of UMLS Concepts; and Aver-
age No Of Competing Concepts Per Term (average
number of UMLS concepts that each medical term
can refer to).

5https://www.nlm.nih.gov/bsd/medline.html
6https://news.google.com
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Readability Formulae: Flesch Reading Ease
(Flesch, 1948); Flesch Kincaid Grade Level (Kin-
caid et al., 1975); Automated Readability Index
(ARI) (Senter and Smith, 1967); Gunning Fog in-
dex (Gunning, 1952); Coleman-Liau (Coleman,
1965); and SMOG index (McLaughlin, 1969).

Cognitively-Motivated Features: These are
calculated based on information from the MRC
Psycholinguistic Database (Coltheart, 1981),
which contains cognitive measures based on
human ratings for a total of 98,538 words. These
features include Imagability, which indicates the
ease with which a mental image of a word is
constructed; Familiarity of the word for an adult;
Concreteness; Age Of Acquisition; and finally
Meaningfulness Ratio Colorado and Meaning-
fulness Ratio Paivio. The meaningfulness rating
assigned to a word indicates the extent to which
the word is associated with other words.

Word Frequency Features: These include Av-
erage Word Frequency, as well as threshold fre-
quencies such as words not included in the most
frequent words on the BNC frequency list (Not In
First 2000/ 3000/ 4000 or 5000 Count).

Text Cohesion Features: These include counts
of All Connectives, as well as Additive, Temporal,
and Causal Connectives, and Referential Pronoun
Count.

4.3 Information Retrieval (IR) features

The working hypothesis behind this group of fea-
tures is that there is a positive correlation be-
tween the difficulty of questions for humans and
for machines. To quantify machine-difficulty, we
develop features based on information retrieval
that capture how difficult it is for an automatic
question-answering (QA) system to answer the
items correctly. This was accomplished following
the approaches to QA presented in Clark and Et-
zioni (2016).

First, we use Lucene7 with its default options to
index the abstracts of medical articles contained
in the MEDLINE8 database. Then for each test
item we build several queries, corresponding to the
stem and one answer option. We use three dif-
ferent settings: i) All words, ii) Nouns only, and
iii) Nouns, Verbs, and Adjectives (NVA). We then
get the top 5 MEDLINE documents returned by
Lucene as a result of each query and calculate the

7https://lucene.apache.org/
8https://www.nlm.nih.gov/bsd/medline.html

r RMSE
Random Forests 0.24 23.15
Linear Regression 0.17 25.65
SVM 0.17 25.41
Gaussian Processes 0.2 23.87
Dense NN (3 layers) 0.16 25.85

Table 2: Results for algorithm selection (validation set)

sum of the retrieval scores. These scores represent
the content of the IR features (Stem Only, Stem +
Correct Answer, and Stem + Options, where for
each of these configurations we have a different
feature for All words, Nouns only, and NVA.). The
scores reflect how difficult it is for a QA system to
choose the correct answer. Specifically, if the IR
scores of Stem + Correct Answer are much higher
than those of Stem + Options, then the QA sys-
tem is more confident in its answer choice and the
item is deemed relatively easy. This information
can then be used to predict item difficulty.

5 Experiments

In this section we present our experiments on pre-
dicting the P-value.

First, we randomly divide the full data set into
training (60%), validation (20%) and test (20%)
sets for the purpose of evaluating a number of dif-
ferent algorithms9 on the validation set. This was
done using all features. The most notable results
on algorithm selection are presented in Table 2. As
can be seen from the table, the best results are ob-
tained using the Random Forests (RF) algorithm
(Breiman, 2001), which was selected for use in
subsequent experiments.

5.1 Baselines
Five baselines were computed to evaluate model
performance. The first baseline is the output of the
ZeroR algorithm, which simply assigns the mean
of the P-value variable in the training set as a pre-
diction for every instance. Each of the four re-
maining baselines was based on a common feature
known to be a strong predictor of reading diffi-
culty: Word Count, Average Sentence Length, Av-
erage Word Length in Syllables, and the Flesch
Reading Ease10 formula (Flesch, 1948). These

9Parameters for the Neural Network algorithm: 3 dense
layers of size 100, activation function: RELU, loss function:
MSE, weight initialization Xavier and learning rate = 0.001.
Trained for 500 epochs with early stopping after 10 epochs
with no improvement.

10While readability formulae are used as features in the
models and their predictive power is assessed, it is acknowl-
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simple baselines allow us to assess whether the
difficulty of the items in our data set can be re-
liably predicted using heuristics such as “longer
items are more difficult” or “items using longer
words and sentences are more difficult”. The per-
formances of the baselines as single features in
an RF model (except ZeroR, which is an algo-
rithm of its own) are presented in Table 3. In
terms of Root Mean Squared Error (RMSE), the
strongest baseline was ZeroR, with Average Word
Length in Syllables producing somewhat similar
results. All other baselines performed worse than
ZeroR, showing that item length (Word Count), as
well as Average Sentence Length and especially
Flesch readability, are rather weak predictors of
item difficulty for our data. These results provide
an empirical evidence in support of the claim that
easy and difficult items do not differ in terms of
surface readability, commonly measured through
word and sentence length.

5.2 P-value Prediction

We use various combinations of the features pre-
sented in Section 4 as input to an RF model to
predict P-value. The results are presented in Ta-
ble 4. As can be seen from the table, using the
full feature set performs best and is a statisti-
cally significant improvement over the strongest
baseline (ZeroR) with an RMSE reduction of ap-
proximately one point (Training set (10-fold CV):
p = 7.684e−10 with 95% Confidence Intervals
(CI) from 10,000 bootstrap replicates: -0.9170, -
0.4749. Test set: p = 2.20e−16 with 95% CI from
10,000 bootstrap replicates: -1.423, -0.952).

In terms of individual feature groups, Linguis-
tic, W2V, and ELMo achieved comparable per-
formance (RMSE ≈ 22.6 for Test Set). The IR
features performed notably worse, (RMSE = 23.4
for Test set), which is also the only result that
does not outperform the ZeroR baseline (p = 0.08,
95% CI: -0.5336, 0.0401). For reference, the next
“worst” result is obtained by combining the IR and
Linguistic features (RMSE = 22.63); nevertheless,
this is a significant improvement over ZeroR (p =
5.517e−14 with 95% CI: -1.279, -0.756). Combin-
ing the Linguistic, W2V and ELMo features leads
to a slight improvement in performance over their
individual use, indicating that the signals captured

edged that the various formulae were validated on different
types of texts than the MCQs in our data. Therefore, their
performance is expected to be lower compared to applications
which use the intended types of materials.

by the different feature groups do not overlap en-
tirely.

5.3 Error Analysis
Analysis of the 500 test-set items with largest error
residuals between predicted and actual values (the
bottom 20% of the test-set predictions) revealed
that the largest errors occur for items with very low
P-values (µ = 32, SD = 13.39, min = 0, max = 62).
This was expected given the skewness of the P-
value variable towards the high end of the scale.
These items (P-value < 62) account for 34.5% of
the full data. Therefore, one possible explanation
for these large errors is the fact that these items are
underrepresented as training examples.

As a follow-up study, we looked into items with
P-values under .20, which account for only 4.5%
of the full data. These items are considered to be
either highly misleading and/or very difficult, as
test-takers systematically chose incorrect answer
options and performed worse than chance (the ma-
jority of items had five or six answer options). Ex-
cluding this small percentage of items from the
training and test sets resulted in substantial im-
provements in RMSE (20.04 after excluding the
items compared to 22.45 before excluding them),
and outperformed ZeroR again a similar margin
(20.98). This result shows that the success of the
proposed approach would be higher for test sam-
ples with fewer extremely difficult or misleading
items. It is acknowledged, however, that which
items are too difficult or misleading can rarely be
known a priori.

5.4 Feature Importance
Understanding the contributions of individual fea-
ture classes from the Linguistic set is useful for in-
terpreting the models, as well as for informing fu-
ture item-writing guidelines. To address this, we
perform an ablation study where we remove one
feature class at a time from the model using all
Linguistic features.

As shown in Table 5, the removal of individ-
ual classes does not lead to dramatic changes in
RMSE, suggesting that the predictive power of the
Linguistic model is not dependent on a particu-
lar feature type (e.g. lexical, syntactic, seman-
tic, etc). Nevertheless, removal of the Semantic
Ambiguity and the Cognitively-motivated features
led to a slightly lower performance for both cross-
validation on the training set and for the test set.
Indeed, a correlation analysis between individual
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Training set (10-fold CV) Test set
r MAE RMSE r MAE RMSE

ZeroR -0.02 19.9 24.09 0 19.67 23.65
Word Count 0.01 20.13 24.5 0.05 19.81 23.87
Av. Sent. Length -0.006 20.76 25.52 0.04 20.2 24.58
Av. Word Length 0.05 19.89 24.14 0.07 19.6 23.63
Flesch Reading Ease 0.02 22.05 27.53 -0.01 22.27 27.61

Table 3: Baseline results using 10-fold cross validation on the training set and evaluating the models on the test set
(r = correlation coefficient, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error).

Training set (10-fold CV) Test set
r MAE RMSE r MAE RMSE

All 0.27 18.88 23.15 0.32 18.53 22.45
Linguistic 0.26 19 23.22 0.29 18.73 22.62
IR 0.17 19.58 23.91 0.18 19.28 23.4
W2V 0.27 18.94 23.18 0.3 18.61 22.58
ELMo 0.27 18.95 23.18 0.29 18.77 22.64
Ling + IR 0.26 19.04 23.25 0.29 18.75 22.63
Ling + ELMo 0.27 19.08 23.19 0.3 18.79 22.61
Ling + W2Vec 0.28 18.9 23.14 0.31 18.65 22.54
IR + W2V 0.27 18.94 23.18 0.3 18.67 22.56
IR + ELMo 0.26 18.95 23.26 0.31 18.53 22.55
W2V + ELMo 0.28 18.84 23.13 0.32 18.51 22.5
IR + W2V + ELMo 0.27 18.88 23.18 0.3 18.56 22.56
IR + Ling + W2V 0.289 18.9 23.11 0.31 18.6 22.52
IR + Ling + ELMO 0.27 19 23.2 0.327 18.64 22.48

Table 4: Results for the training (10-fold CV) and test sets for various feature combinations.

CV RMSE Test RMSE
All Linguistic 23.22 22.62
Without Lexical 23.3 22.49
Without Syntactic 23.23 22.66
Without Sem. ambiguity 23.31 22.89
Without Readability 23.22 22.59
Without Word Frequency 23.27 22.63
Without Cognitive 23.3 22.74
Without Cohesion 23.29 22.51

Table 5: Changes in RMSE after removing individual
feature classes

features and the P-value variable reveals that the
top three features with highest correlations are
Age of Acquisition (-.11), Familiarity (.1038) and
Referential Pronoun Incidence (.1035). Since the
texts are domain-specific and contain a great deal
of medical terminology, it is likely that the Age
of Acquisition and Familiarity indices reflect the
use of terms, however, further analysis is needed
to confirm this.

6 Discussion

The experiments presented in the previous sec-
tion provided empirical evidence that the difficulty
of expert-level11 multiple-choice questions can be

11Requiring expert knowledge as opposed to general
knowledge

predicted with accuracy significantly higher than
various baselines. It was shown that simple met-
rics of complexity such as item length or aver-
age word and sentence length performed poorer
than the ZeroR baseline, indicating that the dif-
ficulty of the items could not be predicted using
surface readability measures. Best results were
achieved when combining all types of available
features (Linguistic, IR, Word2Vec, and ELMo),
which showed a statistically significant improve-
ment over the baselines. In terms of individual fea-
ture classes, the IR features performed poorly and
were outperformed by the Linguistic, Word2Vec,
and ELMo features – with the latter two being the
strongest classes of predictors. Nevertheless, the
fact that the combination of all the feature classes
performed best supports the idea that the signals
from the different feature groups did not overlap
entirely and instead complemented each other. To
understand whether the way the items were writ-
ten had an effect on difficulty prediction and to
gain insight into how item-writing could be im-
proved, we analyzed the performance of the dif-
ferent types of Linguistic features. It was shown
that the strength of the predictions were not due to
a single linguistic feature; however, the strongest
predictors were features related to semantic am-
biguity and cognitively-motivated features (espe-
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cially Age of Acquisition and Familiarity). Errors
were largest for items at the lower end of the P-
value scale, potentially because these items were
underrepresented as training examples. Further
experiments are needed to corroborate this.

In terms of generalizability, the presented ap-
proach is not test-specific and can therefore be ap-
plied to other exams containing MCQs. The re-
sults are, however, highly dependent on the popu-
lation of test-takers. In fact, predicting the P-value
in our particular case was arguably more chal-
lenging than for other exams owing to the homo-
geneity of the test-taker population. The majority
of items were answered correctly by the majority
of examinees because the test-takers were highly-
able and highly-motivated medical students, who
had already passed many other competitive high-
stakes exams, including those for medical school
admission. All else being equal, the expectation
is that the performance of these models would im-
prove for exams administered to, for example, ex-
aminees from K-12, where the ability of the test-
takers has a higher variance and the distribution of
P-values is less-skewed. However, all else is not
equal and K-12 exams have substantially differ-
ent test questions, the effects of which is unknown.
Further research is needed here.

The presented approach is a first step toward
predicting item difficulty and, therefore, there are
a number of avenues for future work that could
lead to better results. One of these relates to hav-
ing separate embeddings for the stem and answer
options as opposed to item-level embeddings. An-
other interesting approach would be to divide the
items by content category (e.g. psychiatric, car-
diac, etc). Content categories are not used as fea-
tures in the current approach because there was no
practical value in learning that, say, cardiac items
are more difficult than psychiatric ones. However,
it might be worthwhile to build content-specific
models that predict item difficulty within-category
(e.g., what are the relative item difficulties within
the pool of psychiatric items). Finally, the per-
formance of the IR features could be improved
if the information is extracted from corpora that
are more relevant (such as textbooks and examinee
study materials) as opposed to medical abstracts.

The results presented in this paper have both
practical and theoretical importance. Being able to
predict the P-value of an MCQ reduces the cost of
pretesting while maintaining exam quality. From

a theoretical perspective, assessing difficulty be-
yond readability is an exciting new frontier that
has implications for language understanding and
cognition. Last but not least, such an applica-
tion could also potentially be useful for assess-
ing the performance of question-answering sys-
tems by predicting the difficulty of the questions
for humans.

7 Conclusion

The paper presented an approach for predict-
ing the construct-relevant difficulty of multiple-
choice questions for a high-stakes medical licen-
sure exam. Three classes of feature were devel-
oped: linguistic features, embeddings (ELMo and
Word2Vec), and features quantifying the difficulty
of items for an automatic question-answering sys-
tem (IR features). A model using the full feature
set outperformed five different baselines (ZeroR,
Word Count, Average Sentence Length, Average
Word Length in Syllables, and the Flesch Read-
ing Ease formula) with a statistically significant
reduction of RMSE of approximately one point.
Embeddings had the highest predictive power, fol-
lowed by linguistic features, while the IR features
were ranked least useful. Largest errors occurred
for very difficult items, possibly due to the skew-
ness of the data distribution towards items with a
higher proportion of correct responses. Amongst
the linguistic features, all classes contributed
to predicting item difficulty, with the semantic-
ambiguity and cognitively-motivated features hav-
ing a slightly higher predictive power.

These results indicate the usefulness of NLP
for predicting the difficulty of MCQs. While
this study is an early attempt toward the goal of
automatic difficulty prediction for MCQs, it has
both theoretical and practical importance in that it
goes beyond predicting linguistic complexity and
in that it has the potential to reduce cost in the test-
ing industry. Next steps include the application of
the approach to other exam content administered
to a different population of examinees, as well as
various improvements in the methodology.
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