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Abstract

Generative adversarial networks (GANs) have
shown considerable success, especially in the
realistic generation of images. In this work,
we apply similar techniques for the generation
of text. We propose a novel approach to han-
dle the discrete nature of text, during training,
using word embeddings. Our method is ag-
nostic to vocabulary size and achieves compet-
itive results relative to methods with various
discrete gradient estimators.

1 Introduction

Natural Language Generation (NLG) is often re-
garded as one of the most challenging tasks in
computation (Murty and Kabadi, 1987). It in-
volves training a model to do language genera-
tion for a series of abstract concepts, represented
either in some logical form or as a knowledge
base. Goodfellow introduced generative adver-
sarial networks (GANs) (Goodfellow et al., 2014)
as a method of generating synthetic, continuous
data with realistic attributes. The model includes a
discriminator network (D), responsible for distin-
guishing between the real and the generated sam-
ples, and a generator network (G), responsible for
generating realistic samples with the goal of fool-
ing the D. This setup leads to a minimax game
where we maximize the value function with re-
spect toD, and minimize it with respect toG. The
ideal optimal solution is the complete replication
of the real distributions of data by the generated
distribution.

GANs, in this original setup, often suffer from
the problem of mode collapse - where the G man-
ages to find a few modes of data that resem-
ble real data, using them consistently to fool the
D. Workarounds for this include updating the
loss function to incorporate an element of multi-
diversity. An optimal D would provide G with

the information to improve, however, if at the cur-
rent stage of training it is not doing that yet, the
gradient of G vanishes. Additionally, with this
loss function, there is no correlation between the
metric and the generation quality, and the most
common workaround is to generate targets across
epochs and then measure the generation quality,
which can be an expensive process.

W-GAN (Arjovsky et al., 2017) rectifies these
issues with its updated loss. Wasserstein distance
is the minimum cost of transporting mass in con-
verting data from distribution Pr to Pg. This loss
forces the GAN to perform in a min-max, rather
than a max-min, a desirable behavior as stated in
(Goodfellow, 2016), potentially mitigating mode-
collapse problems. The loss function is given by:

Lcritic = min
G

max
D∈D

(Ex∼pr(x)[D(x)]

−Ex̃∼pg(x)[D(x̃)])
(1)

where D is the set of 1-Lipschitz functions and
Pg is the model distribution implicitly defined by
x̃ = G(z), z ∼ p(z). A differentiable function is
1-Lipschtiz iff it has gradients with norm at most
1 everywhere. Under an optimal D minimizing
the value function with respect to the generator pa-
rameters minimizes theW(pr, pg), whereW is the
Wasserstein distance, as discussed in (Vallender,
1974). To enforce the Lipschitz constraint, the au-
thors propose clipping the weights of the gradient
within a compact space [−c, c].

(Gulrajani et al., 2017) show that even though
this setup leads to more stable training compared
to the original GAN loss function, the architec-
ture suffers from exploding and vanishing gradient
problems. They introduce the concept of gradient
penalty as an alternative way to enforce the Lip-
schitz constraint, by penalizing the gradient norm
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directly in the loss. The loss function is given by:

L = Lcritic+λEx̂∼p(x̂)[(||∇x̂D(x̂)||2−1)2] (2)

where x̂ are random samples drawn from Px,
and Lcritic is the loss defined in Equation 1.

Empirical results of GANs over the past year or
so have been impressive. GANs have gotten state-
of-the-art image-generation results on datasets like
ImageNet (Brock et al., 2018) and LSUN (Rad-
ford et al., 2015). Such GANs are fully differen-
tiable and allow for back-propagation of gradients
fromD through the samples generated by G. How-
ever, if the data is discrete, as, in the case of text,
the gradient cannot be propagated back from D
to G, without some approximation. Workarounds
to this problem include techniques from reinforce-
ment learning (RL), such as policy gradients to
choose a discrete entity and reparameterization to
represent the discrete quantity in terms of an ap-
proximated continuous function (Williams, 1992;
Jang et al., 2016).

1.1 Techniques for GANs for text

SeqGAN (Yu et al., 2017) uses policy gradient
techniques from RL to approximate gradient from
discrete G outputs, and applied MC rollouts dur-
ing training to obtain a loss signal for each word in
the corpus. MaliGAN (Che et al., 2017) rescales
the reward to control for the vanishing gradient
problem faced by SeqGAN. RankGAN (Lin et al.,
2017) replaces D with an adversarial ranker and
minimizes pair-wise ranking loss to get better con-
vergence, however, is more expensive than other
methods due to the extra sampling from the orig-
inal data. (Kusner and Hernández-Lobato, 2016)
used the Gumbel-softmax approximation of the
discrete one-hot encoded output of the G, and
showed that the model learns rules of a context-
free grammar from training samples. (Rajeswar
et al., 2017), the state of the art in 2017, forced the
GAN to operate on continuous quantities by ap-
proximating the one-hot output tokens with a soft-
max distribution layer at the end of theG network.

MaskGAN (Fedus et al., 2018) uses policy
gradient with REINFORCE estimator (Williams,
1992) to train the model to predict a word based
on its context, and show that for the specific
blank-filling task, their model outperforms maxi-
mum likelihood model using the perplexity met-
ric. LeakGAN (Guo et al., 2018) allows for long

sentence generation by leaking high-level infor-
mation from D to G, and generates a latent rep-
resentation from the features of the already gen-
erated words, to aid in the next word generation.
TextGAN (Zhang et al., 2017) adds an element of
diversity to the original GAN loss by employing
the Maximum Mean Discrepancy objective to al-
leviate mode collapse.

In the latter half of 2018, (Zhu et al., 2018) in-
troduced Texygen, a benchmarking platform for
natural language generation, while introducing
standard metrics apt for this task. (Lu et al., 2018)
surveys all these new methods along with other
baselines, and documents model performance on
standard corpus like EMNLP2017 WMT News1

and Image COCO2.

2 Motivation

2.1 Problems with the Softmax Function

The final layer of nearly all existing language gen-
eration models is the softmax function. It is usu-
ally the slowest to compute, leaves a large memory
footprint and can lead to significant speedups if re-
placed by approximate continuous outputs (Kumar
and Tsvetkov, 2018). Given this bottleneck, mod-
els usually limit the vocabulary size to a few thou-
sand and use an unknown token (unk) for the rare
words. Any change in the allowed vocabulary size
also means that the researcher needs to modify the
existing model architecture.

Our work breaks this bottleneck by having our
G produce a sequence (or stack) of continuous dis-
tributed word vectors, with n dimensions, where
n << V and V is the vocabulary size. The ex-
pectation is that the model will output words in a
semantic space, that is produced words would ei-
ther be correct or close synonyms (Mikolov et al.,
2013; Kumar and Tsvetkov, 2018), while having a
smaller memory footprint and faster training and
inference procedures.

2.2 GAN2vec

In this work, we propose GAN2vec - GANs
that generate real-valued word2vec-like vectors
(as opposed to discrete one-hot encoded outputs).
While this work mainly focuses specifically on
word2vec-based representation, it can be eas-
ily extended to other embedding techniques like
GloVe and fastText.

1http://www.statmt.org/wmt17/
2http://cocodataset.org/

http://www.statmt.org/wmt17/
http://cocodataset.org/
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Expecting a neural network to generate text is,
intuitively, expecting it to learn all the nuances of
natural language, including the rules of grammar,
context, coherent sentences, and so on. Word2vec
has shown to capture parts of these subtleties by
capturing the inherent semantic meaning of the
words, and this is shown by the empirical results
in the original paper (Mikolov et al., 2013) and
with theoretical justifications by (Ethayarajh et al.,
2018). GAN2vec breaks the problem of genera-
tion down into two steps, the first is the word2vec
mapping, with the following network expected to
address the other aspects of sentence generation.
It also allows the model designers to swap out
word2vec for a different type of word represen-
tation that is best suited for the specific language
task at hand.

As a manifestation of the similar-context words
getting grouped in word embedding space - we ex-
pect GAN2vec to have synonymic variety in the
generation of sentences. Generating real-valued
word vectors also allows the G architecture to
be vocabulary-agnostic, as modifying the training
data would involve just re-training the word em-
bedding with more data. While this would involve
re-training the weights of the GAN network, the
initial architectural choices could remain consis-
tent through this process. Finally, as discussed
in Section 2.1, we expect a speed-up and smaller
memory footprint by adapting this approach.

All the significant advances in the adaptation of
GANs since its introduction in 2016, has been fo-
cused in the field of images. We have got to the
point, where sometimes GAN architectures have
managed to generate images even better than real
images, as in the case of BigGAN (Brock et al.,
2018). While there have been breakthroughs in
working with text too, the rate of improvement is
no-where close to the success we have had with
images. GAN2vec attempts to bridge this gap by
providing a framework to swap out image repre-
sentations with word2vec representations.

3 The Architecture

Random normal noise is used as an input to the G
which generates a sequence of word2vec vectors.
We train the word2vec model on a real text corpus
and generate a stack word vector sequences from
the model. The generated and the real samples
are then sent to D, to identify as real or synthetic.
The generated word vectors are converted to text at

regular intervals during training and during infer-
ence for human interpretation. A nearest-neighbor
approach based on cosine similarity is used to find
the closest word to the generated embedding in the
vector space.

4 The Algorithm

The complete GAN2vec flow is presented in Al-
gorithm 1.

Algorithm 1 GAN2vec Framework
1: Train a word2vec model, e, on the train corpus

2: Transform text to a stack of word2vec vectors
using e

3: Pre-train D for t iterations on real data
4: for k iterations do
5: Send minibatch of real data to D
6: G(z) = Sample random normal z and feed

to G
7: Send minibatch of G generated data, G(z),

to D
8: Update D using gradient descent
9: Update G using gradient ascent

10: end for
11: G(z) = Sample random normal z and feed to

G
12: wgenerated = argmin

w
{d(ê, e(w))}, for every

ê in G(z) and every w in the corpus

4.1 Conditional GAN2vec

We modify GAN2vec to measure the adaptabil-
ity of GAN2vec to conditions provided a priori,
as seen in (Mirza and Osindero, 2014). This
change can include many kinds of conditions like
positive/negative, question/statement or demen-
tia/controls, allowing for the ability to analyze ex-
amples from various classes on the fly during in-
ference. Both the G (and D) architectures get
passed the condition at hand as an input, and the
goal of G now is to generate a realistic sample
given the specific condition.

5 Environmental Setup

All the experiments are run using Pytorch (Paszke
et al., 2017). Word2vec training is done using the
gensim library (Řehůřek and Sojka, 2010). Unless
specified otherwise, we use the default parameters
for all the components of these libraries, and all
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Figure 1: Structure of the GAN2vec model. Random normal noise is given as input to the generator networkG. The
discriminator network D is responsible for determining whether a sample originated from G or from the training
set. At inference time, we use a nearest-neighbor approach to convert the output from G into human-readable text.

our models are trained for 100 epochs. The word
embedding dimensions are set to 64. The learning
rate for the ADAM optimizers for D and G are
set to 0.0001, with the exponential decay rates for
the first and second moments set to 0.5 and 0.999
respectively.

All our Ds take the word2vec-transformed vec-
tors as an input and apply two 2-D convolutions,
followed by a fully connected layer to return a
single value. The dimensions of the second 2-D
convolution are the only things varied to address
the different input dimensions. Similarly, our Gs
take a random normal noise of size 100 and trans-
form it to the desired output by passing it through
a fully-connected layer, and two 2-D fractionally-
strided convolution layers. Again, the dimensions
of the second fractionally-strided convolution are
the only variables to obtain different output dimen-
sions.

Normalizing word vectors after training them
has no significant effect on the performance of
GAN2vec, and all the results that we present do
not carry out this step. Keeping in punctuation
helped improve performance, as expected, and
none of the experiments filter them out.

To facilitate stable GAN training, we make
the following modifications, covered by (Chintala
et al., 2016), by running a few preliminary tests on

a smaller sample of our dataset:

• Use LeakyRELU instead of RELU

• Send generated and real mini-batches to D in
separate batches

• Use label smoothing by setting the target la-
bels to 0.9 and 0.1 instead of 1 and 0 for real
and fake samples respectively (for most of
our experiments).

6 Metrics

6.1 BLEU

BLEU (Papineni et al., 2002) originated as a
way to measure the quality of machine transla-
tion given certain ground truth. Many text gen-
eration papers use this as a metric to compare the
quality of the generated samples to the target cor-
pus. A higher n-gram coverage will yield a higher
BLEU score, with the score reaching a 100% if
all the generated n-grams are present in the cor-
pus. The two potential flaws with this metric are:
1) It does not take into account the diversity of
the text generation, this leads to a situation where
a mode-collapsing G that produces the same one
sentence from the corpus gets a score of 100%. 2)
It penalizes the generation of grammatically co-
herent sentences with novel n-grams, just because
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they are absent from the original corpus. Despite
these problems, we use BLEU to be consistent
with other GANs for text papers. We also present
generated samples for the sake of qualitative eval-
uation by the reader.

6.2 Self-BLEU
Self-BLEU is introduced as a metric to measure
the diversity of the generated sentences. It does
a corpus-level BLEU on a set of generated sen-
tences, and reports the average BLEU as a metric
for a given model. A lower self-BLEU implies a
higher diversity in the generated sentences, and ac-
cordingly a lower chance that the model has mode
collapsed.

It is not clear from (Zhu et al., 2018)’s work
on how many sentences Texygen generates to cal-
culate Self-BLEU. For purposes of GAN2vec’s
results, we produce 1000 sentences, and for ev-
ery sentence do a corpus-level BLEU on remain-
ing 999 sentences. Our results report the average
BLEU across all the outputs.

7 Chinese Poetry Dataset

The Chinese Poetry dataset, introduced by (Zhang
and Lapata, 2014) presents simple 4-line poems in
Chinese with a length of 5 or 7 tokens (henceforth
referred to Poem 5 and Poem 7 respectively). Fol-
lowing previous work by (Rajeswar et al., 2017)
and (Yu et al., 2017), we treat every line as a sep-
arate data point. We modify the Poem 5 dataset to
add start and end of tokens, to ensure the model
captures (at least) that pattern through the corpus
(given our lack of Chinese knowledge). This setup
allows us to use identical architectures for both the
Poem 5 and Poem 7 datasets. We also modify the
GAN2vec loss function with the objective in Eq.
2, and report the results below.

Rajeswar
et al.

GAN2vec GAN2vec
(wGAN)

Poem
5

– (train) 37.90% (train) 53.5% (train)

87.80%
(test)

22.50% (test) 25.78% (test)

Poem
7

– (train) 30.14% (train) 66.45% (train)

65.60%
(test)

10.20% (test) 22.07% (test)

Table 1: Chinese Poetry BLEU-2 scores.

The better performance of the GAN2vec model
with the wGAN objective is in-line with the im-

age results in Gulrajani et al. (2017)’s work. We
were not able to replicate (Rajeswar et al., 2017)’s
model on the Chinese Poetry dataset to get the re-
ported results on the test set. This conclusion is
in-line with our expectation of lower performance
on the test set, given the small overlap in the bi-
gram coverage between the provided train and test
sets. (Lu et al., 2018) also point out that this work
is unreliable, and that their replicated model suf-
fered from severe mode-collapse. On 1000 gener-
ated sentences of the Poem-5 dataset, our model
has a self BLEU-2 of 66.08% and self BLEU-3 of
35.29%, thereby showing that our model does not
mode collapse.

8 CMU-SE Dataset

CMU-SE3 is a pre-processed collections of sim-
ple English sentences, consisting of 44,016 sen-
tences and a vocabulary of 3,122-word types. For
purposes of our experiments here, we limit the
number of sentences to 7, chosen empirically to
capture a significant share of the examples. For
the sake of simplicity in these experiments, for
the real corpus, sentences with fewer than seven
words are ignored, and those with more than seven
words are cut-off at the seventh word.

Table 1 presents sentences generated by the
original GAN2vec model. Appendix A.2 includes
additional examples. While this is a small sub-
set of randomly sampled examples, on a relatively
simple dataset, the text quality appears competi-
tive to the work of (Rajeswar et al., 2017) on this
corpus.

Rajeswar et al. (2017)
<s> will you have two moment ? </s>
<s> how is the another headache ? </s>
<s> what s in the friday food ? ? </s>
<s> i d like to fax a newspaper . </s>
GAN2vec
<s> i dropped my camera . </s>
<s> i ’d like to transfer it
<s> i ’ll take that car ,
<s> prepare whisky and coffee , please

Table 2: Example sentences generated by the origi-
nal GAN2vec. We report example sentences from Ra-
jeswar et al. (2017) and from our GAN2vec model on
CMU-SE.

3https://github.com/clab/sp2016.
11-731/tree/master/hw4/data

https://github.com/clab/sp2016.11-731/tree/master/hw4/data
https://github.com/clab/sp2016.11-731/tree/master/hw4/data
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8.1 Conditional GAN2vec

We split the CMU-SE dataset into questions and
sentences, checking for the presence of a question
mark. We modify the original GAN2vec, as seen
in Section A.1, to now include these labels. Our
conditional GANs learn to generate mainly coher-
ent sentences on the CMU-SE dataset, as seen in
Table 3.

Figure 2: The minimax loss of D and G, with increasing
iterations for the GAN2vec model (top) and the condi-
tional GAN2vec (bottom).

Figure 2 shows the loss graphs for our
GAN2vec and conditional GAN2vec trained for
∼300 epochs. As seen above, the conditional
GAN2vec model generates relatively atypical sen-
tences. This is supported by the second loss curve
in Figure 2. The G loss follows a progression sim-
ilar to the normal GAN2vec case, but the loss is
about 16% more through the 100 epochs.

8.2 Hyperparameter Variation Study

We study the effects of different initial hyperpa-
rameters for GAN2vec by reporting the results in
Table 4. All the experiments were run ten times,
and we report the best scores for every config-
uration. It must be noted that for conditional
GAN2vec training for this experiment, we ran-
domly sample points from the CMU-SE corpus to
enforce a 50-50 split across the two labels (ques-
tion and sentence).

The overall performance of most of the models
is respectable, with all models generating gram-

matically coherent sentences. GAN2vec with
wGAN objective outperforms original GAN2vec,
and is inline with the results of (Gulrajani et al.,
2017) and our results in Section 7. Sense2vec does
not have a significant improvement over the orig-
inal word2vec representations. In agreement with
(Goodfellow, 2016), providing labels in the condi-
tional variant leads to better performance.

8.3 Word2vec cosine similarity

Figure 3: Cosine similarities of the first, third, fourth,
and seventh words to the closest words from sen-
tences generated by GAN2vec trained on the CMU-SE
dataset.

During training, we map our generated
word2vec vectors to the closest words in the
embedding space and measure the point-wise
cosine similarity of the generated vector and the
closest neighbour’s vector. Figure 3 shows these
scores for the first, third, fourth and seventh word
of the 7-word generated sentences on the CMU-
SE dataset for about 300 epochs. The model
immediately learns that it needs to start a sentence
with <s> and gets a cosine similarity of around
1. For the other words in that sentence, the model
tends to get better at generating word vectors that
are close to their real-valued counterparts of the
nearest neighbours. It seems as if the words close
to the start of the sentence follow this trend more
strongly (as seen with words 1 and 3) and it is
relatively weaker for the last word of the sentence.

9 Coco Image Captions Dataset

The Coco Dataset is used to train and generate
synthetic data as a common dataset for all the
best-performing models over the last two years.
In Texygen, the authors set the sentence length to
20. They train an oracle that generates 20,000 sen-
tences, with one half used as the training set and
the rest as the test set. All the models in this bench-
mark are trained for 180 epochs.
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Questions Sentences
<s> can i get you want him <s> i bring your sweet inexpensive beer
<s> where ’s the hotel ? <s> they will stop your ship at
<s> what is the fare ? </s> <s> i had a pocket . </s>
<s> could you buy the timetable ? <s> it ’s ten at detroit western

Table 3: Examples of sentences generated by the conditional GAN. We report examples of sentences with our
model conditioned on sentence type, i.e., question or sentence.

Architecture Conditional Vector Type Loss function BLEU-2 BLEU-3
R.1 No Sense2vec Original 0.743 0.41
R.1 No Sense2vec wgan 0.7933 0.4728
R.1 No Word2Vec wgan 0.74 0.43
C.1 Yes word2vec Original (Real) 0.717 0.412
C.1 Yes word2vec Original 0.743 0.4927
C.1 Yes word2vec wgan 0.7995 0.5168
C.1 Yes word2vec wgan 0.821 0.51
C.2 Yes word2vec wgan 0.8053 0.499

Table 4: Performance of different models on the CMU-SE train dataset. R.1 is the original GAN2vec, C.1 is R.1
modified with addition of labels, C.2 adds batch normalization on the CNN layer of G. Original (Real) sets the
real label to 0.9, the rest use 1.
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Figure 4: Distribution of sentence lengths in the Coco
dataset. Most of the captions have less than 20 words,
the cut-off set by Texygen.

Figure 4 shows the distribution of the sen-
tence lengths in this corpus. For purposes of
studying the effects of longer training sentences
on GAN2vec, we set the sentence lengths to 7,
10 and 20 (with the respective models labeled
as GAN2vec-7, GAN2vec-10, GAN2vec-20 go-
ing forward). Any sentence longer than the pre-
defined sentence length is cut off to include only
the initial words. Sentences shorter than this
length are padded with an end of sentence char-
acter to fill up the remaining words (we use a
comma (,) for purposes of our experiments as all
the sentences in the corpus end with either a full
stop or a word). We tokenize the sentences us-

ing NLTK’s word tokenizer4 which uses regular
expressions to tokenize text as in the Penn Tree-
bank corpus5. We also report the results of a naive
split at space approach for the GAN2vec-20 ar-
chitecture (GAN2vec-20-a), to compare different
ways of tokenizing the corpus. We only use the
objective from Equation 2, given its superior per-
formance to original GAN2vec, as seen in the pre-
vious sections.

The results are summarized in the tables below:

Model BLEU-2 BLEU-3
LeakGAN 0.926 0.816
SeqGAN 0.917 0.747
MLE 0.731 0.497
TextGAN 0.65 0.645
GAN2vec-7 0.548 0.271
GAN2vec-10 0.641 0.342
GAN2vec-20-a 0.618 0.294
GAN2vec-20 0.661 0.335

Table 5: Model BLEU scores on Train Set of the Coco
Dataset (higher is better).

On the train set (Table 5), GAN2vec mod-
els have BLEU-2 scores comparable to its SOTA

4https://www.nltk.org/api/nltk.
tokenize.html#nltk.tokenize.word_
tokenize

5https://catalog.ldc.upenn.edu/docs/
LDC95T7/cl93.html

https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.word_tokenize
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.word_tokenize
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.word_tokenize
https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html
https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html
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counterparts, with the GAN2vec-20 model having
better bigram coverage that TextGAN. The BLEU-
3 scores, even though commendable, do not match
up as well, possibly signaling that our models
cannot keep coherence through longer sentences.
The increase in the cut-off sentence length, sur-
prisingly, does not degrade performance. As ex-
pected, a trained word tokenizer outperforms its
space-split counterpart. The performance of the
GAN2vec models on the test set (Table 6) follows
the same trends as that on the train set.

Model BLEU-2 BLEU-3
LeakGAN 0.746 0.816
SeqGAN 0.745 0.53
MLE 0.731 0.497
TextGAN 0.593 0.645
GAN2vec-7 0.429 0.196
GAN2vec-10 0.527 0.245
GAN2vec-20-a 0.484 0.206
GAN2vec-20 0.551 0.232

Table 6: Model BLEU scores on Test Set of the Coco
Dataset (higher is better).

Model BLEU-2 BLEU-3
LeakGAN 0.966 0.913
SeqGAN 0.95 0.84
MLE 0.916 0.769
TextGAN 0.942 0.931
GAN2vec-7 0.537 0.254
GAN2vec-10 0.657 0.394
GAN2vec-20-a 0.709 0.394
GAN2vec-20 0.762 0.518

Table 7: Self BLEU scores of the models trained on the
Coco dataset (lower is better).

Table 7 reports the self-BLEU scores, and all
the GAN2vec models significantly outperform the
SOTA models, including MLE. This implies that
GAN2vec leads to more diverse sentence genera-
tions and is less susceptible to mode collapse.

10 Discussions

Overall, GAN2vec can generate grammatically
coherent sentences, with a good bi-gram and tri-
gram coverage from the chosen corpus. BLEU
does not reward the generation of semantically
and syntactically correct sentences if the associ-
ated n-grams are not present in the corpus, and

coming up with a new standard evaluation met-
ric is part of on-going work. GAN2vec seems to
have comparable, if not better, performance com-
pared to Rajeswar et al. (2017)’s work on two
distinct datasets. It depicts the ability to capture
the critical nuances when trained on a conditional
corpus. While GAN2vec performs slightly worse
than most of the SOTA models using the Texygen
benchmark, it can generate a wide variety of sen-
tences, possibly given the inherent nature of word
vectors, and is less susceptible to mode collapse
compared to each of the models. GAN2vec pro-
vides a simple framework, with almost no over-
head, to transfer state of the art GAN research in
computer vision to natural language generation.

We observe that the performance of GAN2vec
gets better with an increase in the cut-off length
of the sentences. This improvement could be
because of extra training points for the model.
The drop from BLEU-2 to BLEU-3 scores is
more extreme than the other SOTA models, in-
dicating that GAN2vec may lack the ability to
generate long coherent sentences. This behav-
ior could be a manifestation of the chosen D and
G architectures, specifically the filter dimensions
of the convolution neural networks. Exploration
of other structures, including RNN-based models
with their ability to remember long term depen-
dencies, might be good alternatives to these initial
architecture choices. Throughout all the models in
the Texygen benchmark, there seems to be a mild
negative correlation between diversity and perfor-
mance. GAN2vec in its original setup leans more
towards the generation of new and diverse sen-
tences, and modification of its loss function could
allow for tilting the model more towards accurate
NLG.

11 Conclusion

While various research has extended GANs to op-
erate on discrete data, most approaches have ap-
proximated the gradient in order to keep the model
end-to-end differentiable. We instead explore a
different approach, and work in the continuous do-
main using word embedding representations. The
performance of our model is encouraging in terms
of BLEU scores, and the outputs suggest that it
is successfully utilizing the semantic information
encoded in the word vectors to produce new, co-
herent and diverse sentences.
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A CMU-SE

A.1 Conditional Architecture
While designing GAN2vec to support conditional
labels, as presented in Mirza and Osindero (2014),
we used the architecture in Figure 5 for our G. The
label is sent as an input to both the fully connected
and the de-convolution neural layers. The same
change is followed while updating D to support
document labels.

Fully Connected

Deconvolution Layers

Generator

Input to Discriminator

Random Noise Label

Figure 5: Generator Architecture for Conditional
GAN2vec.

A.2 Examples of Generated Sentences
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Table 8: Sentences Generated with GAN2vec on CMU-SE

Generated Sentences

<s> can you have a home </s>
<s> i ’d like to leave the
<s> this is the baggage . </s>
<s> i ’d like a driver ?
<s> do you draw well . </s>
<s> i ’d like to transfer it
<s> please explain it <unk>. </s>
<s> can i book a table .
<s> i ’ll take that car ,
<s> would i like a stay ?
<s> will you check it . </s>
<s> do you find it ? </s>
<s> i want some lovely cream .
<s> could you recommend a hotel with
<s> can you get this one in
<s> where ’s the petrol station ?
<s> what ’s the problem ? </s>
<s> i have a hangover dark .
<s> i come on the monday .
<s> i appreciate having a sushi .
<s> the bus is busy , please
<s> i dropped my camera . </s>
<s> i want to wash something .
<s> it ’s too great for <unk>
<s> i have a driver in the
<s> it is delicious and <unk><unk>
<s> please leave your luggage . .
<s> i had alcohol wow , </s>
<s> it is very true . </s>
<s> where ’s the hotel ? </s>
<s> will you see the cat ? </s>
<s> where is this bus ? </s>
<s> how was the spirits airline warranty
<s> i would n’t sunburn you
<s> prepare whisky and coffee , please


