
Proceedings of the 14th International Conference on Finite-State Methods and Natural Language Processing, pages 18–26
Dresden, Germany, September 23-25, 2019. c©2019 Association for Computational Linguistics

18

On the Compression of Lexicon Transducers

Marco Cognetta, Cyril Allauzen, Michael Riley
{cognetta,allauzen,riley}@google.com

Google

Abstract

In finite-state language processing pipelines,
a lexicon is often a key component. It needs
to be comprehensive to ensure accuracy, re-
ducing out-of-vocabulary misses. However, in
memory-constrained environments (e.g., mo-
bile phones), the size of the component au-
tomata must be kept small. Indeed, a delicate
balance between comprehensiveness, speed,
and memory must be struck to conform to de-
vice requirements while providing a good user
experience.

In this paper, we describe a compression
scheme for lexicons when represented as
finite-state transducers. We efficiently encode
the graph of the transducer while storing tran-
sition labels separately. The graph encoding
scheme is based on the LOUDS (Level Or-
der Unary Degree Sequence) tree representa-
tion, which has constant time tree traversal for
queries while being information-theoretically
optimal in space. We find that our encoding
is near the theoretical lower bound for such
graphs and substantially outperforms more tra-
ditional representations in space while remain-
ing competitive in latency benchmarks.

1 Introduction

Modern finite-state language processing pipelines
often consist of several finite-state transducers in
composition. For example, a virtual keyboard
pipeline, used for decoding on mobile devices,
can consist of a context dependency transducer
C, a lexicon L, and an n-gram language model
G (Ouyang et al., 2017). A bikey C transducer
is used to encode context in gesture decoding,
the lexicon transducer L maps from a character
string to the corresponding word ID, and the lan-
guage model G gives the a priori probability of a
word sequence. A similar decomposition is often
used in speech recognition decoding (Mohri et al.,
1996).

These models are then composed as

C ◦ L ◦G.

The application of this combined model to an
input character string outputs the corresponding
word string and probability. Unfortunately, in
order to be accurate, these models may need to
be large. This problem is aggravated when the
composition is performed statically since the state
space grows with the product of the input automata
sizes. In practice, on-the-fly composition is of-
ten used to save space (Mohri et al., 1996; Hori
et al., 2004; Caseiro and Trancoso, 2006). Addi-
tionally, it is of practical importance to have com-
pact and efficient finite-state language model com-
ponent representations.

There are a variety of compression schemes
available for automata (Daciuk, 2000). These
range from general compression algorithms,
which do not depend on a specific underlying
structure (Daciuk and van Noord, 2001; Daciuk
and Weiss, 2011; Mohri et al., 2015) to schemes
that try to heavily exploit specific structural
properties of the inputs (Watanabe et al., 2009;
Sorensen and Allauzen, 2011). Another important
consideration is whether the automata can be de-
compressed just for a queried portion or need to
be more fully decompressed. Generic compres-
sion algorithms often have relatively good com-
pression ratios over a wide class of machines, but
they sacrifice speed and space in use since they
often do not admit such selective decompression.
In contrast, structurally-specific compression al-
gorithms can have an attractive balance between
the compression ratio and query performance, but
are limited to precise subclasses of machines. In
real-time production systems, the latter method of-
ten proves more desirable since a user should not
have to wait long or waste space when a query is
answered.

19

Among the transducers mentioned above, the
context-dependency transducer C can be rep-
resented implicitly (in code) and structurally-
specific compression algorithms for the n-gram
language model G have previously been devel-
oped (Sorensen and Allauzen, 2011). This leads
us to investigate the compression of the lexicon L.

This paper is organized as follows. Section 2
introduces the formal algebraic structures and no-
tation that we will use. Section 3 describes differ-
ent representations for these algebraic structures.
In Section 4, we formally define a lexicon and ex-
plore its possible representations. Section 5 devel-
ops an information-theoretic bound on the num-
ber of bits needed to encode a lexicon, Section 6
presents our encoding, and Section 7 presents ex-
periments on the quality of that encoding. Finally,
we offer concluding remarks in Section 8.

2 Preliminaries

2.1 Graphs and Trees
A directed graph (or digraph) G = (V,A) has a
finite set of nodes (or vertices) V and a finite set of
directed arcs (or edges) A ⊆ V × V . An arc a =
(p[a], n[a]) spans from a source node p[a] to a des-
tination node n[a]. A path π is a non-empty list of
consecutive arcs a1, a2, . . . , an where p[ai+1] =
n[ai]. We write p[π] = p[a1], n[π] = n[an]. A
cycle is a path π with p[π] = n[π]. A digraph
is acyclic if it has no cycles. The out-degree of a
node v ∈ V is |{w ∈ V | (v, w) ∈ A}| and the
in-degree is |{w ∈ V | (w, v) ∈ A}|.

We distinguish several specific digraph cases:

• An out-tree (V,A, i) is an acyclic digraph for
which the in-degree of every node is 1 except
for the distinguished root node i ∈ V , which
has in-degree 0. The nodes with out-degree 0
are called leaves.

• An in-tree (V,A, f) is an acyclic digraph for
which the out-degree of every node is 1 ex-
cept for the distinguished root node f ∈ V ,
which has out-degree 0. The nodes with in-
degree 0 are called leaves.

• A directed bipartite digraph (V1∪V2, A) par-
titions the nodes into two disjoint sets V1 and
V2 with A ⊆ (V1 × V2) ∪ (V2 × V1).

2.2 Finite-State Transducers
A finite-state transducer T = (Σ,Γ, Q,E, i, F)
has a finite input alphabet Σ, a finite output al-

phabet Γ, a finite set of states Q, a finite set of
transitions E ⊆ Q× (Σ ∪ {ε})× Γ∗ ×Q, an ini-
tial state i and a final set of states F ⊆ Q. The
symbol ε represents the empty string. A transition
e = (p[e], i[e], o[e], n[e]) ∈ E represents a move
from the source state p[e] to the destination state
n[e] with the input label i[e] and output label o[e].
Associated with any transducer is a directed graph
G(T) = (Q,A) where A = {(q, q′) ∈ Q × Q :
(q, x, y, q′) ∈ E}. Thus, there is a 1:1 correspon-
dence between states and nodes but there may be
multiple transitions, with different labelings, that
correspond to the same digraph arc. In that case,
we say the transition is a digraph multiarc.

A path π = e1, . . . , en, a cycle, p[π] and n[π]
are analogously defined to digraphs and define
i[π] = i[e1] . . . i[en] and o[π] = o[e1] . . . o[en].
P (q, q′) denotes the set of all paths in T from state
q to q′. We extend this to sets in the obvious way:
P (q,R) denotes the set of all paths from state q to
q′ ∈ R and so forth. A path π is successful if it is
in P (i, F) and in that case the transducer is said to
accept the input string i[π] and output o[π].

A finite-state transducer is subsequential if it is
input deterministic, that is, no two outgoing tran-
sitions at the same state share the same input label,
and the destination state of any epsilon transition
is a final state with no outgoing transitions.

3 Representations

3.1 Graph and Tree Representations

Basic Graph and Tree Representation. A simple
digraph representation uses adjacency lists: de-
note the nodes V by integers from 1 to N , let
a be an array indexed by the node number, and
let a[q] = (q1, . . . , qn) be a list of the nodes
{qj ∈ V : (q, qj) ∈ A}. An in-tree and out-tree
can use this representation where a distinguished
integer such as 1 or |V | is used to denote the root.
A directed bipartite graph can also use this rep-
resentation where it may be convenient to number
the nodes in V1 from 1 to |V1| and V2 from |V1|+1
to |V |.

Compact Tree Representation. In the case of
trees, there is a particularly compact representa-
tion known as LOUDS (Level Order Unary De-
gree Sequence). We can quantify compactness as
follows.

For a finite set with M elements, we require at
least N = logM bits to uniquely encode each el-

20

ement. We call an encoding scheme succinct if it
takes at mostN+o(N) bits to encode any element
uniquely.

The LOUDS tree encoding is a succinct rep-
resentation of ordinal trees (where a node’s chil-
dren have a total ordering). Given an ordinal tree
of N nodes, it encodes it in 2N + 1 bits, while
the information-theoretic lower bound is 2N −
O(logN) (Jacobson, 1989). Moreover, O(1) time
parent-child traversals can be implemented using
o(N) extras bits of storage (Geary et al., 2004).

Let b be a bitstring where b[i] is the element
at index i when starting from 0. Then, we define
Rankx and Selectx, where x ∈ {0, 1}, as

Rankbx(n) = |{i | b[i] = x, 0 ≤ i < n}|
Selectbx(n) = the index of the n-th x in b.

These operations can be performed in constant
time using o(|b|) extra bits of space (Vigna, 2008).

The LOUDS encoding is then constructed as
follows. We start with the bitstring 10. Then,
from the root in breadth-first order, we append
1d0, where d is the number of children of the cur-
rent node. Here, we assume the graph is labeled
in breadth-first order. Then, a node n corresponds
to the n-th 1 in the bitstring (or, equivalently, the
(n + 1)-th 0). We can find the parent or first/last
child (if any) using a combination of Rank and
Select queries:

Parentb(n) = Rankb0(Selectb1(n))

FirstChildb(n) = Rankb1(Selectb0(n) + 1)

LastChildb(n) = Rankb1(Selectb0(n+ 1)− 1).

From these, we can retrieve the number of chil-
dren of a node, the i-th child, whether or not a
node is a leaf, and many other operations in a con-
stant number of queries (Geary et al., 2004; Del-
pratt et al., 2006). It is known that Select and Rank
can be performed in constant time in the length
of the bitstring by augmenting the bitstring with
o(N) additional bits of information (thus retain-
ing any succinctness properties) (Kim et al., 2005;
Vigna, 2008).

3.2 Transducer Representations
Basic Transducer Representation. A simple
transducer representation uses adjacency lists as
well, stored in an array a indexed by states that
are denoted by integers from 0 to |Q| − 1, The
value a[q] = ((i1, o1, q1), . . . , (in, on, qn)) is a list

of the elements of {(ij , oj , qj) ∈ Σ × Γ × Q :
(q, ij , oj , qj) ∈ E}. The initial state can be de-
noted by 0 and the final states can be stored sepa-
rately. We will call this representation AdjList
in our experiments where we use 32 bits for each
of the input label, output label, and destination
state of each transition.

Compact Transducer Representation. A more
compact transducer representation stores the |Q|
adjacency lists across 2 global arrays as follows.
First an array I, indexed by integers from 0 to |Q|,
holds the values I[q] =

∑
0≤i<q |a[q]|. Second

an array A, indexed by integers from 0 to |E| −
1, holds the concatenation of the adjacency lists
a[0] · · · a[|Q| − 1]. The adjacency list for a given
state q can be recovered from I and A as

a[q] =

I[q+1]−1⋃
i=I[q]

{A[i]}.

Observe that I stores a monotonic nondecreas-
ing sequence of integers, hence we encode us-
ing a differential coding approach similar to
PForDelta (Zukowski et al., 2006). We store A

using a variable-length encoding that ensures that
log |Q| + log |Σ| + log |Γ| bits are used per entry
in A on average. Final states are stored as super-
final transitions. We will call this representation
CmpAdjList in our experiments.

4 Lexicons

Lexicon Definition. We define a lexicon as a fi-
nite binary relation L ⊂ Σ+ × Γ that pairs non-
empty character strings from the finite alphabet Σ
to a word symbol in the finite alphabet Γ. This
terminology matches our keyboard application de-
scribed above. For the speech recognition applica-
tion, the Σ alphabet represents phonemes. We will
assume the relationL is functional and one-to-one.
In other words, each character string in the domain
of L maps to only one word (i.e., no homonyms)
and each word maps to only one character string
(i.e., unique spellings). This is natural for the key-
board application.1

Lexicon Representation While there are many
ways to represent a lexicon, we focus on using a
character-to-word finite-state transducer. An ad-
vantage of this approach is that we can use trans-

1For the speech application the alphabets may need to be
extended to eliminate any homophones and non-unique pro-
nunciations (Mohri et al., 1996).

21

0

8

b:bot

1
r:<epsilon>

13
b:base

16
b:based

2b:<epsilon>

5

o:<epsilon>11

o:robot

3e:<epsilon>

9a:<epsilon>

14a:<epsilon>

i:biased

17o:booted 15o:<epsilon>

4

t:<epsilon>

6s:<epsilon>

10s:<epsilon>

b:<epsilon>

b:rebase

b:rebased

12
b:reboot

t:<epsilon>

e:<epsilon>

7e:<epsilon>

o:<epsilon>

d:<epsilon>

Figure 1: A character-to-word lexicon transducer in canonical form. The dashed arcs are special bridge arcs.
Notice that removing the bridge arcs disconnects the graph while leaving two tree structures.

ducer determinization and minimization to put the
transducer into a minimal canonical form (possi-
ble since L is finite and thus has an acyclic trans-
ducer representation) (Mohri et al., 2002). Figure
1 gives an example of a character-to-word lexicon
transducer in this canonical form. Each word in a
canonical lexicon corresponds to exactly one suc-
cessful path (by subsequentiality) and every suc-
cessful path has exactly one transition with an non-
ε output label (by definition of a lexicon). Further,
there is only one final state (by acyclicity and min-
imality) which we will denote by f . What remains
is to store this representation compactly. We will
do so by storing the transducer graph and its labels
separately.

Given a minimal lexicon transducer T , we will
now show that we can decompose the graph G(T)
into three sub-graphs: a prefix graphGp(T), a suf-
fix graph Gs(T), and a bridge graph Gb(T). We
further show that Gp(T) is an out-tree, Gs(T) is
an in-tree, and Gb(T) is a directed bipartite graph.
We will use this decomposition in our stored rep-
resentation.

Formally, let G(T) = (Q,A) as defined above.
Then define Gp(T) = (Qp, Ap), Gs(T) =
(Qs, As), and Gb(T) = (Qb, Ab) as

Qp = {q ∈ Q : π ∈ P (i, q) ∧ o[π] = ε}
Qs = {q ∈ Q : π ∈ P (q, F) ∧ o[π] = ε}
Qb = {q ∈ Q : (q, q′) ∈ Ab ∨ (q′, q) ∈ Ab}
Ap = {(q, q′) ∈ A : q, q′ ∈ Qa}
As = {(q, q′) ∈ A : q, q′ ∈ Qs}
Ab = {(q, q′) ∈ A : (q, x, y, q′) ∈ E ∧ y 6= ε}.

In other words, the prefix graph corresponds to
transitions on paths in T before the output label,
the suffix graph to those after the output label, and
the bridge graph to those with the output label. It
is easy to see a transition in T corresponds to an
arc in exactly one of these sub-graphs. Further,Qp

and Qs partition Q.
The prefix graph is an out-tree rooted at i ∈ Qp.

Suppose there are two arcs entering some state q ∈
Qp. Then there must be two successful paths in
T that pass through q with the same word label,
which is a contradiction.

Similarly, the suffix graph is an in-tree rooted at
f ∈ Qs. For example, suppose there are two arcs
leaving some state q ∈ Qs. Then again there must
be two successful paths in T that pass through q
with the same word label, which is a contradiction.

Finally, the bridge graph is a directed bipartite
graph with arcs that span from Qp to Qs because
for any successful path in T the transition with a
non-ε output label is preceded by a subpath with
all ε output labels from the initial state i and fol-
lowed by a subpath with all ε output labels to the
final state f . Observe that only bridge arcs in Ab

can be multiarcs of G(T) since L is one-to-one.
Figure 1 shows this decomposition for our ex-

ample with the bridge arcs specially marked.

5 The Optimal Graph Encoding

Now that we have described the canonical form
of our lexicon transducer and its graph decom-
position, we can begin to devise a compression
scheme. We first wish to find the information-
theoretic bound on the number of bits required

22

to uniquely encode any lexicon graph. That is,
among all lexicon transducers with given prefix
out-tree and suffix in-tree sizes (and a given num-
ber of leaves in each) and k bridge arcs, how many
bits is sufficient to encode them so that they are all
pairwise distinguishable?

In this section, we let n and n` be the number of
nodes and leaves in the prefix out-tree and m and
m` be the same for the suffix in-tree.

The LOUDS tree encoding is optimal for all n
node ordinal trees up to lower order terms (Jacob-
son, 1989). This is because there are(

2n
n

)
n

ordinal trees on n nodes, and

log

(
2n
n

)
n

= 2n−O(log n).

This is compared to the 2n + 1 bits used by
LOUDS. However, when the number of leaves is
known, this bound can be reduced. There are(

n−2
n`−1

)(
n−1
n`−1

)
n`

ordinal trees with n nodes and n` leaves (Ya-
manaka et al., 2012).

We are left with the task of counting the number
of valid bridge graphs with k arcs. Each bridge
graph is uniquely defined by choosing a set of k
bridge arcs, i.e., a k element subset of Qp × Qs.
Every state in a minimal lexicon transducer must
belong to a successful path, hence every node in
its graph must belong to a path from the root of
Qp to the root of Qs. A leaf in Qp (resp. Qs)
belongs to such a path if and only if it is the origin
(resp. destination) of a bridge arc. Hence, a set
of k bridge arcs Ab ∈ Pk(Qp × Qs) is valid iff
for every leaf q there exists a bridge arc a ∈ Ab

such that q = p[a] or q = n[a]. Let Q`
p and Q`

s

be the set of leaves in the prefix and suffix graphs
respectively, and Q` = Q`

p ∪Q`
s.

Let Aq denote the set of sets of k bridge arcs
where the leaf q ∈ Q` is not part of an arc:

Aq =

{
Pk((Qp \ {q})×Qs) if q ∈ Q`

p,
Pk(Qp × (Qs \ {q})) otherwise.

A set of bridge arcs is valid if and only if it does
not belong to any of Aq. Hence, the number of
valid sets of bridge arcs is∣∣∣∣∣∣Pk(Qp ×Qs) \

⋃
q∈Q`

Aq

∣∣∣∣∣∣ =

(
nm

k

)
−

∣∣∣∣∣∣
⋃
q∈Q`

Aq

∣∣∣∣∣∣ .

We can now apply the inclusion-exclusion princi-
ple to compute the cardinality of the union in that
last term:∣∣∣∣∣∣

⋃
q∈Q`

Aq

∣∣∣∣∣∣ =
∑

∅6=X⊆Q`

(−1)|X|+1

∣∣∣∣∣ ⋂
x∈X
Ax

∣∣∣∣∣ .
Observe that, for a non-empty subset X of Q`,⋂

x∈X
Ax = Pk((Qp \X)× (Qs \X))

and the cardinality of that intersection is:∣∣∣∣∣ ⋂
x∈X
Ax

∣∣∣∣∣ =

(
(n− i)(m− j)

k

)
where i = |X ∩Qp| and j = |X ∩Qs|. Hence, the
cardinality of the intersection defined by a givenX
depends only on the number of leaves fromQp and
Qs in X . We can continue the inclusion-exclusion
computation using

∣∣∣∣∣∣
⋃

q∈Q`

Aq

∣∣∣∣∣∣ =
n∑̀
i=0

m∑̀
j=0

i+j>0

(−1)i+j+1
∑

X⊆Q`

|X∩Q`
p|=i

|X∩Q`
s|=j

∣∣∣∣∣ ⋂
x∈X

Ax

∣∣∣∣∣ =
n∑̀
i=0

m∑̀
j=0

i+j>0

(−1)i+j+1

(
n`

i

)(
m`

j

)(
(n− i)(m− j)

k

)
,

the last derivation following from∣∣∣∣{X ⊆ Q`

∣∣∣∣ i = |X ∩Qp|,
j = |X ∩Qs|

}∣∣∣∣ =
(
n`

i

)(
m`

j

)
.

We can now complete the computation of the
number of valid bridge graphs:(

mn

k

)
−

n∑̀
i=0

m∑̀
j=0

i+j>0

(−1)i+j+1(n`
i

)(
m`
j

)(
(n−i)(m−j)

k

)

=

n∑̀
i=0

m∑̀
j=0

(−1)i+j

(
n`

i

)(
m`

j

)(
(n− i)(m− j)

k

)
.

We are unaware of any asymptotic analysis of
this summation or a way to closely estimate its
logarithm. To compare it with our encoding, we
use a loose upper bound of

(
nm
k

)
and Stirling’s ap-

proximation to get

log

(
nm

k

)
≈ nm log nm− k log k

−(nm− k) log(nm− k).

23

Overall, the number of possible lexicon graphs
given n,m, k, n`, and m` can be found by mul-
tiplying the number of n (m) node, n` (m`) leaf
trees (

n−2
n`−1

)(
n−1
n`−1

)
n`

(
m−2
m`−1

)(
m−1
m`−1

)
m`

by the number of valid bridge graphs.
Finally, we note that by choosing any out-tree

as a prefix graph, any in-tree as a suffix graph, and
any valid bridge graph, we obtain a graph that is
a valid lexicon graph. A minimal lexicon trans-
ducer can be derived from that graph by labeling
each non-bridge arc with a unique input label (and
epsilon output) and each bridge arc with a unique
input and output label.2

6 Compact Lexicon Encoding

6.1 Encoding the Graph
We encode the prefix, suffix, and bridge graphs
separately. Encoding the prefix out-tree and suffix
in-tree using LOUDS leads to a natural numbering
of the nodes inQ: nodes inQp are numbered from
0 to n − 1 in BFS order and nodes in Qs from n
to |Q| − 1 in BFS order using the reverse of As,
{(q′, q) | (q, q′) ∈ As}, with 0 and n denoting
the roots of Qp and Qs, respectively. The LOUDS
representation of the prefix and suffix graphs con-
sists of two bitstrings, bp of length n+ 1 and bs of
length m+ 1, using 2(n+m+ 1) bits combined.

We represent the bridge graph using a compact
adjacency list approach. We use an array Ab in-
dexed from 0 to n − 1 holding the concatenation
of the bridge-arc adjacency lists of the prefix nodes
ab[0] · · · ab[n− 1]. We use a bitmap bb with n+ k
bits, one for each prefix node and bridge arc, to im-
plement an index into Ab as follows. The bitmap
bb is encoded by concatenating 1d0 for each pre-
fix node q, where3

d =
∣∣{q′ ∈ Qs | (q, q′) ∈ Ab}

∣∣ = |a[q]|.

We retrieve the number of bridge arcs originating
at a node q ∈ Qp by computing

Nb(q) = Selectbb0 (q)− Selectbb0 (q − 1),

2 Since a minimal transducer is labeled-pushed (Mohri,
2000), a bridge arc that is the only outgoing arc at a given
node must be a multiarc that becomes 2 (or more) transitions
with the same source and destination but with distinct input
and output labels.

3In the case where multiarcs are present, which is ex-
tremely rare in practice, their multiplicities are encoded by
using d = |{e ∈ E | p[e] = q ∧ (q, n[e]) ∈ Ab}|.

and the index in the dense array Ab to the position
where the adjacency list for q starts by

Ib(q) = Rankbb1 (Selectbb0 (q − 1)).

The variable-length encoding mentioned in Sec-
tion 3.2 is used to compress Ab in k logm bits,
since the k entries in Ab can take at most m val-
ues.

It is possible to reduce the bridge arc adjacency
list and multiplicity encoding to

min(n+ k logm,m+ k log n) + k + 1

bits by noting that the bridge arcs travel unidirec-
tionally from the prefix out-tree to suffix in-tree
so we can represent them in either the forward or
reverse direction, depending on which uses less
space. However, we choose not to do this as it
would incur an additional traversal time cost.

In total, our encoding uses

2(n+m+ 1) + n+ k + kdlogme

bits to store the graph. We note that this is asymp-
totically worse than the best possible from Section
5. Nevertheless, in Section 7, we show empiri-
cally that it performs substantially better than the
CmpAdjList format and is useful in practice.

6.2 Encoding the Labeling
We now encode the arc labels for each of the three
component graphs using four ancillary arrays.

The arrays Lp and Ls store the input labels for
each of the n−1 prefix arcs and m−1 suffix arcs.
For q ∈ Qp \ {0}, Lp[q − 1] holds the input label
for the unique incoming prefix arc to q. Likewise,
for q ∈ Qs \ n, Ls[q− n− 1] holds the input label
for the unique outgoing suffix arc to q. Recall that
arcs in the prefix out-tree or suffix in-tree always
have output label ε.

The arrays Lib and Lob store the input and output
label for each of the k bridge arcs, using the same
indexing as Ab: the bridge arc corresponding to the
j-th entry in Ab, has input label Lib[j], output label
Lob [j] and destination Ab[j].

Each of the arrays Lp, Ls, Lib, and Lob is com-
pressed using the same variable-length encoding
scheme as CmpAdjList. This allows us to di-
rectly compare the effect of encoding the graph
separately from the arc label data. Encoding fi-
nality is simple – only one node, the root of the
suffix in-tree, is final.

24

Prefix Bridge Arcs Suffix

1011000 1011010 10110011000

a

b

c

d

e

f

g

h

i

j

a b c d e f g h i j

0

1

2

3

4

5

6

7

Prefix LOUDS Tree Bridge Arc Bitmap Suffix LOUDS Tree

Figure 2: An example memory layout of our character-
to-word lexicon transducer. The arrows demonstrate
which nodes and arcs are encoded by which bits in the
bridge arc and LOUDS tree bitmaps.

An overview of the memory layout of our en-
coding is given in Figure 2. We discuss the prac-
tical space savings in Section 7. All together, we
call this representation the LOUDS lexicon format
in our experiments.

6.3 Traversing the Transducer
We traverse the transducer by constructing the
transitions originating at a given state q on de-
mand.

When q ∈ Qp, the set E[q] of outgoing transi-
tions in q can be decomposed as

E[q] = Ep[q] ∪ Eb[q]

where Ep[q] represents the transitions correspond-
ing to prefix arcs andEb[q] the ones corresponding
to bridge arcs. The first component can be com-
puted from the prefix LOUDS tree by

Ep[q] =

LastChildbp (q)⋃
q′=FirstChildbp (q)

{(q, Lp[q′ − 1], ε, q′)}

and the second component can be recovered from
the compact adjacency representation of the bridge
graph as

Eb[q] =

Ib(q)+Nb(q)−1⋃
j=Ib(q)

{(q, Lib[j], Lob [j], Ab[j])}.

When q ∈ Qs \ {n}, there is a single outgoing
transition in q that can be computed from the suffix

LOUDS tree as

(q, Ls[q − n− 1], ε, n+ Parentbs(q − n)).

Finally, when q = n, q is the root of the suffix
out-tree. There are no outgoing transitions in q but
q is final.

6.4 Closure
In practice, we often use a modified lexicon trans-
ducer representing its closure T+, which accepts
one or more words from the lexicon. For this, an
ε-labeled transition from the final state to the ini-
tial state can be added to the canonical transducer.4

7 Experiments

We compare our lexicon encoding to the two other
transducer representations in Section 3.2. We
measure the memory size of the resulting ma-
chines as well as their runtimes on a decoding
task. We prepare a set of lexicons using the
most common 500k words in the Google keyboard
(GBoard) Russian language model. We extract the
50k, 100k, . . . , 500k most frequent words to
create a total of 10 lexicons.

We first compare the space used by the
AdjList, the CmpAdjList, and the LOUDS
lexicon formats. The results are shown in Figure
3. The LOUDS lexicon outperforms the other two
formats in every case. On the 500k word lexicon,
it is 90.8% smaller than the AdjList format and
58.8% smaller than the CmpAdjList format.

Figure 4 shows the number of bits required to
encode the Russian lexicons using our encoding
and the upper bound of the optimal encoding. We
use the parameters from Table 1 along with the up-
per bound described in Section 5 and the number
of bits for our representation from Section 6. Our
graph encoding nearly matches the upper bound
approximation in all situations. For the 500k lex-
icon, the difference between our encoding and the
upper bound is less than 2%. In contrast, the stan-
dard adjacency list format graph requires ten times
more space across all test cases. We now con-
sider the performance of our encoding on a bench-
mark decoding task consisting of on-the-fly com-
position with an n-gram language model followed
by shortest path computation, which simulates a
typical pipeline in applications. For the language
model, we use a 244k state n-gram model trained

4In the keyboard example, this transition might instead be
labeled with the space symbol on input.

25

Words 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
Prefix Nodes 76207 148026 219494 292499 360911 429080 494766 558619 620429 670232
Suffix Nodes 7867 12548 15964 18187 20634 22454 23850 25059 25955 26977
Prefix Leaves 13402 26371 39300 52288 64894 77462 89881 102067 114228 124097
Suffix Leaves 1602 2560 3266 3732 4182 4512 4754 4989 5221 5421

Table 1: The size of the prefix out-tree and suffix in-tree as well as the number of leaves in each for all of the
Russian lexicons. Note that the number of bridge arcs is the same as the number of words.

AdjList

CmpAdjList

LOUDS

series

50,000 150,000 250,000 350,000 450,000

words

0

5,000

10,000

15,000

20,000

25,000

K
B

Figure 3: The amount of disk space required by each of
the FST formats on our Russian language lexicon test
set.

on Russian language data. Figure 5 shows the
speed of this benchmark for each of the lexicon
formats. At its worst, the LOUDS format was ∼
20% slower than the CmpAdjList format. How-
ever, for the 500k word case, the difference be-
tween the LOUDS format and the CmpAdjList
format was only 8.6%. In these experiments, no
pre-processing (transition sorting, caching, etc.)
of the transducers was done so that the raw ac-
cess time for each format could be measured more
accurately.

8 Conclusion

In this paper, we described a compact encoding for
character-to-word lexicon transducers in canonical
minimal form. The transducer graph is decom-
posed into simpler subgraphs, exploited in the en-
coding. The arc label data is encoded separately
using variable-length compression schemes. We
presented an information-theoretic lower bound
for the graph encoding and compare the encoding
to an asymptotic upper bound approximation.

Our encoding is compared to two alternative
formats – adjacency lists with and without vari-
able length compression. Ours is more than 58%
smaller while being only ∼9% slower in tests on
a decoding benchmark. Furthermore, this encod-

Optimal

Ours

series

50,000 150,000 250,000 350,000 450,000

words

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

K
B

Figure 4: The theoretical number of bits required to
encode the graphs of the Russian lexicons. We compare
our encoding’s exact space requirements with the upper
bound as discussed in Section 5.

AdjList

CmpAdjList

LOUDS

series

50,000 150,000 250,000 350,000 450,000

words

0

1

2

3

4

5

6

7

8

9

10

11

s
e
c
o
n
d
s

Figure 5: The time for the decoding task with a 244k
state n-gram model. The average over 50 trials is given.

ing is very close to the information-theoretic upper
bound on all the test cases.

References
Diamantino Caseiro and Isabel Trancoso. 2006. A spe-

cialized on-the-fly algorithm for lexicon and lan-
guage model composition. IEEE Trans. Audio,
Speech & Language Processing, 14(4):1281–1291.

Jan Daciuk. 2000. Experiments with automata com-
pression. In Implementation and Application of Au-
tomata, 5th International Conference, CIAA 2000,

https://doi.org/10.1109/TSA.2005.860838
https://doi.org/10.1109/TSA.2005.860838
https://doi.org/10.1109/TSA.2005.860838
https://doi.org/10.1007/3-540-44674-5_8
https://doi.org/10.1007/3-540-44674-5_8

26

London, Ontario, Canada, July 24-25, 2000, Re-
vised Papers, pages 105–112.

Jan Daciuk and Gertjan van Noord. 2001. Finite au-
tomata for compact representation of language mod-
els in NLP. In Implementation and Application
of Automata, 6th International Conference, CIAA
2001, Pretoria, South Africa, July 23-25, 2001, Re-
vised Papers, pages 65–73.

Jan Daciuk and Dawid Weiss. 2011. Smaller represen-
tation of finite state automata. In Implementation
and Application of Automata - 16th International
Conference, CIAA 2011, Blois, France, July 13-16,
2011. Proceedings, pages 118–129.

O’Neil Delpratt, Naila Rahman, and Rajeev Raman.
2006. Engineering the LOUDS succinct tree rep-
resentation. In Experimental Algorithms, 5th In-
ternational Workshop, WEA 2006, Cala Galdana,
Menorca, Spain, May 24-27, 2006, Proceedings,
pages 134–145.

Richard F. Geary, Rajeev Raman, and Venkatesh Ra-
man. 2004. Succinct ordinal trees with level-
ancestor queries. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2004, New Orleans, Louisiana, USA,
January 11-14, 2004, pages 1–10.

Takaaki Hori, Chiori Hori, and Yasuhiro Minami. 2004.
Fast on-the-fly composition for weighted finite-state
transducers in 1.8 million-word vocabulary contin-
uous speech recognition. In INTERSPEECH 2004
- ICSLP, 8th International Conference on Spoken
Language Processing, Jeju Island, Korea, October
4-8, 2004.

Guy Jacobson. 1989. Space-efficient static trees and
graphs. In 30th Annual Symposium on Foundations
of Computer Science, Research Triangle Park, North
Carolina, USA, 30 October - 1 November 1989,
pages 549–554.

Dong Kyue Kim, Joong Chae Na, Ji Eun Kim, and
Kunsoo Park. 2005. Efficient implementation of
rank and select functions for succinct representation.
In Experimental and Efficient Algorithms, 4th In-
ternationalWorkshop, WEA 2005, Santorini Island,
Greece, May 10-13, 2005, Proceedings, pages 315–
327.

Mehryar Mohri. 2000. Minimization algorithms for
sequential transducers. Theoretical Computer Sci-
ence, 234:177–201.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 1996. Weighted automata in text and speech
processing. In ECAI 96, 12th European Conference
on Artificial Intelligence, Workshop on Extended Fi-
nite State Models of Language. John Wiley & Sons.

Mehryar Mohri, Michael Riley, and Ananda Theertha
Suresh. 2015. Automata and graph compression.
In IEEE International Symposium on Information
Theory, ISIT 2015, Hong Kong, China, June 14-19,
2015, pages 2989–2993.

Tom Ouyang, David Rybach, Françoise Beaufays,
and Michael Riley. 2017. Mobile keyboard in-
put decoding with finite-state transducers. CoRR,
abs/1704.03987.

Jeffrey Sorensen and Cyril Allauzen. 2011. Unary data
structures for language models. In INTERSPEECH
2011, 12th Annual Conference of the International
Speech Communication Association, Florence, Italy,
August 27-31, 2011, pages 1425–1428.

Sebastiano Vigna. 2008. Broadword implementation
of rank/select queries. In Experimental Algorithms,
7th International Workshop, WEA 2008, Province-
town, MA, USA, May 30-June 1, 2008, Proceedings,
pages 154–168.

Taro Watanabe, Hajime Tsukada, and Hideki Isozaki.
2009. A succinct n-gram language model. In ACL
2009, Proceedings of the 47th Annual Meeting of the
Association for Computational Linguistics and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, 2-7 August 2009,
Singapore, Short Papers, pages 341–344.

Katsuhisa Yamanaka, Yota Otachi, and Shin-Ichi
Nakano. 2012. Efficient enumeration of ordered
trees with k leaves. Theor. Comput. Sci., 442:22–27.

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter
Boncz. 2006. Super-scalar ram-cpu cache compres-
sion. In Proceedings of the 22nd International Con-
ference on Data Engineering, ICDE 2006. IEEE.

https://doi.org/10.1007/3-540-36390-4_6
https://doi.org/10.1007/3-540-36390-4_6
https://doi.org/10.1007/3-540-36390-4_6
https://doi.org/10.1007/978-3-642-22256-6_12
https://doi.org/10.1007/978-3-642-22256-6_12
https://doi.org/10.1007/11764298_12
https://doi.org/10.1007/11764298_12
http://dl.acm.org/citation.cfm?id=982792.982794
http://dl.acm.org/citation.cfm?id=982792.982794
http://www.isca-speech.org/archive/interspeech_2004/i04_0289.html
http://www.isca-speech.org/archive/interspeech_2004/i04_0289.html
http://www.isca-speech.org/archive/interspeech_2004/i04_0289.html
https://doi.org/10.1007/11427186_28
https://doi.org/10.1007/11427186_28
https://doi.org/10.1109/ISIT.2015.7283005
http://arxiv.org/abs/1704.03987
http://arxiv.org/abs/1704.03987
http://www.isca-speech.org/archive/interspeech_2011/i11_1425.html
http://www.isca-speech.org/archive/interspeech_2011/i11_1425.html
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-540-68552-4_12
http://www.aclweb.org/anthology/P09-2086
https://doi.org/10.1016/j.tcs.2011.01.017
https://doi.org/10.1016/j.tcs.2011.01.017

