
Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology, pages 34–38
Minneapolis, Minnesota, June 6, 2019. c©2019 Association for Computational Linguistics

34

CLaC at CLPsych 2019:
Fusion of Neural Features and Predicted Class Probabilities

for Suicide Risk Assessment Based on Online Posts

Elham Mohammadi, Hessam Amini and Leila Kosseim
Computational Linguistics at Concordia (CLaC) Lab

Department of Computer Science and Software Engineering
Concordia University, Montréal, Québec, Canada

first.last@concordia.ca

Abstract

This paper summarizes our participation to the
CLPsych 2019 shared task, under the name
CLaC. The goal of the shared task was to de-
tect and assess suicide risk based on a collec-
tion of online posts. For our participation, we
used an ensemble method which utilizes 8 neu-
ral sub-models to extract neural features and
predict class probabilities, which are then used
by an SVM classifier. Our team ranked first in
2 out of the 3 tasks (tasks A and C).

1 Introduction

The CLPsych 2019 shared task (Zirikly et al.,
2019) focuses on the prediction of a person’s de-
gree of suicide risk based on a collection of their
Reddit posts (Shing et al., 2018). It is a multi-class
classification task where a subject can be assigned
to one of the four categories of no (class a), low
(class b), moderate (class c), or severe risk (class
d), and consists of three different tasks:

Task A aims at suicide risk prediction based
solely on the posts written on the Suicide Watch
subreddit1.

Task B focuses on making the same prediction
by taking into account a person’s posts on Suicide
Watch, as well as their posts on other subreddits.

Task C has the goal of estimating suicide risk by
looking at a subject’s posts on different subreddits,
but excluding Suicide Watch.

The first two tasks are dedicated to assessing
risk; while Task C aims at screening. We partic-
ipated in all 3 tasks2 under the team name CLaC
and ranked first in tasks A and C.

2 System Overview

Our system is composed of 8 neural network sub-
models, each with a specific type of input word
embedding and hidden layer. The extracted neu-
ral features and softmax probabilities from all 8
neural networks are combined by a fusion com-
ponent and the resulting features are used in the
final SVM classifier. Figure 1 illustrates the over-
all architecture of the system. Each component is
explained in the following sections.

2.1 Word Embeddings
As shown in Figure 1, GloVe (Pennington et al.,
2014) and ELMo (Peters et al., 2018) have been
used as pretrained word embeddings. The 300d
GloVe word embedder has been pretrained on
840B tokens of web data from Common Crawl.
For ELMo, the original 1024d version, pretrained
on the 1 Billion Word Language Model Bench-
mark (Chelba et al., 2014) has been used.

2.2 Hidden Layers
Four different types of hidden layers have
been used: a Convolutional Neural Network
(CNN) (LeCun et al., 1999), a Bidirectional
vanilla Recurrent Neural Network (Bi-RNN), a
Bidirectional Long Short-term Memory network
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997),
and a Bidirectional Gated Recurrent Unit network
(Bi-GRU) (Cho et al., 2014).

2.3 Pooling
In order to create a vector representation for each
post, three different types of pooling were applied
to the output of the hidden layer. In the rest of the
paper, these will be referred to as AVG, MAX, and
ATTN.

1https://www.reddit.com/r/SuicideWatch
2This research was recognized as an IRB exempt by Con-

cordia University’s research ethics board.

https://www.reddit.com/r/SuicideWatch

35

Figure 1: Architecture of the Model. The number of arrows between components correspond to the number of
sub-models that move in that flow. The solid lines represent neural connections; while the dotted lines show the
flow of data without the existence of a neural connection. The bold arrow between the Fusion and SVM correspond
to the flow of data that exists only in the final model.

Task A Task B Task C
#HL #HN Pooling Max Post #HL #HN Pooling Max Post #HL #HN Pooling Max Post
/ #K / KH Type Length / #K / KH Type Length #K / KH Type Length

CNN–GloVe 2 300 MAX 400 2 200 AVG 400 2 100 MAX 400
CNN–ELMo 1 400 MAX 400 2 100 MAX 400 2 100 MAX 400
Bi-RNN–GloVe 2 64 MAX 400 2 32 ATTN 200 2 32 ATTN 200
Bi-RNN–ELMo 2 32 MAX 400 1 64 ATTN 200 1 64 ATTN 400
Bi-LSTM–GloVe 2 32 AVG 400 1 64 ATTN 200 2 32 ATTN 200
Bi-LSTM–ELMo 2 32 AVG 400 1 64 ATTN 200 1 64 ATTN 200
Bi-GRU–GloVe 2 64 MAX 400 2 32 ATTN 200 2 32 ATTN 400
Bi-GRU–ELMo 2 64 MAX 400 1 64 ATTN 200 1 64 ATTN 400

Table 1: Hyperparameters used for each sub-model. #HL: number of hidden layers, #HN: number of hidden nodes
in each layer, #K: number of kernels (for the CNNs), KH: kernel height (for the CNNs).

AVG pooling simply averages the output vectors
of the hidden layers. MAX pooling is applied on
the resulting vectors after applying Concatenated
Rectified Linear Unit (CReLU) on the output vec-
tors of the hidden layers (i.e. ReLU applied on the
concatenation of each output vector and its nega-
tive). ATTN is an attention mechanism (Bahdanau
et al., 2014) applied to the output vectors of the
hidden layers. While ATTN may not be considered
a pooling method, we do so in order to differenti-
ate between ATTN and the attention mechanism
presented in Section 2.4. Since ATTN’s function-
ing is similar to the attention mechanism used to
calculate the weighted average of the representa-
tions for a user’s posts, its mechanism will be ex-
plained in detail in Section 2.4.

2.4 The Attention Mechanism
It was hypothesized that all posts by a user do not
contribute equally to signal her/his mental state.
In order to take into account the posts of each user
based on their importance in detecting suicide risk,
an attention mechanism was used. This mecha-
nism automatically assigns weights to each post
from a user, then calculates the weighted average
of the representations of all the posts, and uses this
average as a representation of the user. Equation 1
shows how the output of the attention mechanism
is computed.

U =
N∑

i′=1

pi′ωi′ (1)

where pi′ stands for the representation of the i′-

36

Task A Task B Task C
of Neural
Features

174 80 925

SVM’s
Hyperparameter

kernel degree γ C
class

weight
kernel degree γ C

class
weight

kernel degree γ C
class

weight
Run 1 poly 1 auto 3.0 yes sigmoid – scale 0.8 no poly 3 scale 0.1 yes
Run 2 poly 4 scale 0.1 no poly 2 scale 0.5 yes sigmoid – scale 0.4 yes
Run 3 poly 1 auto 0.3 yes sigmoid – scale 0.2 no poly 2 scale 0.2 yes

Table 2: Hyperparameters used in the submitted runs. The column degree refers to the degree of the polynomial
kernels. The values of auto and scale for γ refer to when the parameter γ is set to 1/number-of-features and
1/(number-of-features×variance-of-features), respectively. The value of class weight indicates whether weights
proportional to the inverse of the number of samples from classes are applied to the parameter C.

th post by a user, ωi′ refers to the weight assigned
to the post, and U corresponds to the vector repre-
sentation for that specific user.

In order to calculate the corresponding weights
for the posts, a single n-to-1 fully connected layer
is first applied to the representation of each post,
where n corresponds to the size of the document
representation. The final weights are calculated by
applying a softmax to the concatenation of the re-
sults of applying the fully-connected layer on the
representations of all posts from a user. Equa-
tions 2 and 3 show how the weights are calculated:

νi = pi × w (2)

ω = Softmax([ν1, ν2, ν3, . . . , νN]) (3)

where w corresponds to the weights in the neu-
ral layer, and νi refers to the resulting scalar, after
feeding pi (the representation of the i-th post) to
the fully-connected layer.

As stated in Section 2.3, the overall mechanism
of ATTN is similar to the attention mechanism ap-
plied to a user’s posts. The only difference re-
sides in the level of their functioning: the attention
mechanism is applied to the post representations,
whereas ATTN is applied to the outputs of the hid-
den layer, at (multiple-)token-level.

2.5 The Sub-models’ Optimization
Technique

PyTorch (Paszke et al., 2017) was used to develop
and train the neural sub-models. At the end of each
sub-model, a fully-connected classification layer
was used, followed by a softmax activation func-
tion. Each sub-model was trained separately on
the training data and optimized using the valida-
tion data.

The Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 5×10−4 was used as the op-
timization technique. Cross-entropy was used as

the loss function, and in order to handle the imbal-
anced class distribution, weights were assigned to
each class proportional to the inverse of the num-
ber of samples in that class. Due to limitation
in computational resources, mini-batches with a
maximum size of 32 were applied at the post level
for each user.

2.6 The Fusion Component

The fusion component is responsible for creating
a final vector representation for each user from the
neural features and the predicted probability dis-
tributions over classes.

The neural features of the user representations
are the result of each sub-model’s attention com-
ponent. In the fusion components, these user rep-
resentations are first concatenated, and later, the
mutual information between each neural feature
and the final classes is calculated (using the Scikit-
learn library (Pedregosa et al., 2011)). A subset of
these features that have the highest mutual infor-
mation with the final classes are then selected as
the final neural features.

The fusion component also uses the predicted
probability distributions of the classes for each
user from the softmax output of all sub-models.
The final user representations are generated by
concatenating the neural features and the predicted
probability distributions from all sub-models, to
be fed to the SVM (see Figure 1).

2.7 The Support Vector Classifier

As shown in Figure 1, the final classifier is an
SVM (Cortes and Vapnik, 1995), which uses as
input the final user representations generated by
the fusion component. The SVM was trained on
the samples from the training data, and the valida-
tion dataset was used to find the best set of hyper-
parameters. We used the Scikit-learn library (Pe-
dregosa et al., 2011) for developing and training

37

Run #
Task A Task B Task C

macro flagged urgent macro flagged urgent macro flagged urgent
1 0.481 0.922 0.776 0.359 0.857 0.714 0.250 0.675 0.610
2 0.416 0.918 0.851 0.381 0.815 0.732 0.239 0.667 0.616
3 0.533 0.922 0.838 0.339 0.843 0.718 0.268 0.671 0.625

Table 3: F1 scores of each run on the shared task test dataset. The results from the primary runs (the ones considered
in the ranking) are highlighted in bold.

the SVM model. The final hyperparameters of the
SVM classifiers are presented in Section 2.8.

2.8 Final Submitted Models
Before training the model and its sub-models,
posts from 33% of the users in the training dataset
were randomly selected in a stratified fashion, in
order to be used for validation.

When feeding the posts to the sub-models, only
the first 200 or 400 tokens were used3, depending
on which limit yielded a better performance at val-
idation time, and the rest were disregarded.

The training process of each sub-model was
stopped when the performance on the validation
data was at its maximum (for each task, we used
the main evaluation metric for that specific task;
see Section 3). The validation data was also used
in order to find the best set of hyperparameters of
the models for each task.

The full model utilizes 8 different sub-models,
each one with a unique input word embedding
(GloVe or ELMo) and hidden layer type (CNN,
Bi-RNN, Bi-LSTM or Bi-GRU). Table 1 shows
the hyperparameters of the sub-models for each
task, where each sub-model is named by its type
of hidden layer and input word embedding.

For each task, we submitted three different runs:
Run 1 where the SVM classifier only uses the
neural features.
Run 2 where the SVM classifier only uses the
predicted probability of classes.
Run 3 where both the neural features and pre-
dicted probabilities are used by the SVM classi-
fier.

Table 2 summarizes the hyperparameters used
in each run.

3 Results and Discussion

Table 3 presents a summary of the results of the
three runs in each of the three tasks, based on three
evaluation metrics:

3The average size of posts across all tasks is ∼78 tokens.

macro: Macro-averaged F1 on classes a, b, c,
d for tasks A and B, and macro-averaged F1 on
classes b, c, d for task C. This was the official met-
ric for this shared task, on which we optimized our
systems.
flagged: F1 for flagged versus non-flagged,
where flagged includes classes b, c, d, and non-
flagged consists of class a.
urgent: F1 for urgent versus non-urgent, where
urgent includes classes c and d, and non-urgent
consists of classes a and b.

In tasks A and C, the highest macro-averaged
F1 was achieved by run 3, and for Task B, the
highest F1 was achieved by run 2. This shows the
effectiveness of using both the neural features and
the predicted probabilities for the final SVM clas-
sifier.

In all three tasks, the best flagged F1 was
achieved by run 1, showing that using only the
neural features leads to better performance when
distinguishing between no-risk users (class a) and
users that require attention (classes b, c, d).

4 Conclusion

In this paper, we proposed a model based on an
ensemble technique that uses a fusion of neural
features and predicted probability distribution over
classes from 8 neural sub-models, with an SVM as
a final classifier. Our first rank in tasks A and C of
CLPsych 2019 shared task shows that this tech-
nique can be useful in the task of suicide risk as-
sessment. Moreover, it was found that using both
neural features and predicted probability of classes
generally led to a better performance.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their comments on an earlier version
of this paper.

This work was financially supported by the Nat-
ural Sciences and Engineering Research Council
of Canada (NSERC).

38

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. Computing Research
Repository, arXiv:1409.0473.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for
measuring progress in statistical language model-
ing. In 15th Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH 2014), Singapore.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), pages
1724–1734, Doha, Qatar. Association for Computa-
tional Linguistics.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Computing Re-
search Repository, arXiv:1412.6980.

Yann LeCun, Patrick Haffner, Léon Bottou, and
Yoshua Bengio. 1999. Object recognition with
gradient-based learning. In Shape, contour and
grouping in computer vision, pages 319–345.
Springer.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS 2017 Autodiff Workshop, Long Beach, Cal-
ifornia, USA.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014), pages 1532–
1543, Doha, Qatar. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2018), pages
2227–2237, New Orleans, Louisiana, USA. Associ-
ation for Computational Linguistics.

Han-Chin Shing, Suraj Nair, Ayah Zirikly, Meir
Friedenberg, Hal Daumé III, and Philip Resnik.
2018. Expert, crowdsourced, and machine assess-
ment of suicide risk via online postings. In Proceed-
ings of the Fifth Workshop on Computational Lin-
guistics and Clinical Psychology: From Keyboard to
Clinic, pages 25–36, New Orleans, Louisiana, USA.
Association for Computational Linguistics.

Ayah Zirikly, Philip Resnik, Özlem Uzuner, and Kristy
Hollingshead. 2019. CLPsych 2019 shared task:
Predicting the degree of suicide risk in Reddit posts.
In Proceedings of the Sixth Workshop on Compu-
tational Linguistics and Clinical Psychology: From
Keyboard to Clinic, Minneapolis, Minnesota, USA.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
https://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
https://www.isca-speech.org/archive/interspeech_2014/i14_2635.html
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://openreview.net/pdf?id=BJJsrmfCZ
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W18-0603
https://doi.org/10.18653/v1/W18-0603

