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Abstract

In clinical assessment of people with aphasia,
impairment in the ability to recall and pro-
duce words for objects (anomia) is assessed
using a confrontation naming task, where a tar-
get stimulus is viewed and a corresponding la-
bel is spoken by the participant. Vector space
word embedding models have had inital re-
sults in assessing semantic similarity of target-
production pairs in order to automate scoring
of this task; however, the resulting models are
also highly dependent upon training parame-
ters. To select an optimal family of models,
we fit a beta regression model to the distribu-
tion of performance metrics on a set of 2,880
grid search models and evaluate the resultant
first- and second-order effects to explore how
parameterization affects model performance.
Comparing to SimLex-999, we show that clin-
ical data can be used in an evaluation task
with comparable optimal parameter settings as
standard NLP evaluation datasets.

1 Introduction
In clinical assessment of people with aphasia,
impairment in the ability to recall and produce
words for objects (anomia) is assessed using a
confrontation naming task, where a target stim-
ulus is viewed and a corresponding label is spo-
ken by the participant. Semantic impairment is
measured by a clinician’s rating of semantic simi-
larity between the target-production pairs, and in-
volves a defined similarity criteria involving syn-
onymy, association, and hypernymy. Research
into word embedding models has shown that dif-
ferent window parameterization settings capture
different semantic relations of association/related-
ness vs synonymy, functional properties vs top-
icality, and word embedding models have been
adapted to synonymy, association, and hypernymy
(Hill et al., 2015; Levy et al., 2015; Levy and
Goldberg, 2015; Lison and Kutuzov, 2017). A

central question in NLP research is how to use ex-
trinsic evaluation to measure what semantic rela-
tions are encoded by a model. In this paper, we
engage in the interdiscplinary question of how se-
mantic relations can be modeled in a clinical do-
main, and present an application of word embed-
ding models for assessing semantic impairment.

The Philadelphia Naming Test (PNT) imple-
ments one such naming task that was developed
for psycholinguistic and clinical research; the
scoring of this test involves a large taxonomy of
coding responses based on phonological and se-
mantic similarity of the response to the target ob-
ject (Roach et al., 1996). The taxonomy is moti-
vated by Dell’s two-step model of aphasia, where
anomia results from a disruption in accessing both
the phonological representation as well as seman-
tic properties of the object (Dell, 1986).

PNT scoring is time-intensive due to the high
number of items, and there have been successful
attempts to both shorten the number of items on
the test via computer adaptive assessment (Hula
et al., 2015) as well as automate the scoring of the
PNT via automated classification of paraphasias
to facilitate the use of the PNT as a tool in clin-
ical practice (Fergadiotis et al., 2016). Our work
is part of a broader goal to develop an end-to-end
automation of the PNT, from presentation of target
items to an individual error profile.

In this paper, we present results of a classifica-
tion task that identifies semantic paraphasias (er-
rors) on the PNT, using a word embedding model
to measure semantic similiarity of a production to
the target item. Fergadiotis et al. (2016) showed
that word embeddings can be successfully ap-
plied to classification of semantic paraphasias in
the context of the PNT, and our paper builds on
this baseline work by exploring (i) the nature of
semantic similarity that their optimal model en-
codes; (ii) the relationship between the evaluation
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synonym TOILET→ “commode”
category coordinate BANANA→ “apple”
superordinate APPLE→ “fruit”
subordinate FLOWER→ “rose”
associated BENCH→ “park”
diminutive DOG→ “doggie”

Table 1: PNT Semantic Error Relations

metric, a large database of PNT target-production
pairs, and the distribution of similarity scores in an
optimal model.

We present results of parameter optimization
tasks and post-hoc analysis of the resulting vec-
tor space in optimal and non-optimal models for
the downstream application of classifying seman-
tic paraphasias on the PNT, using a novel applica-
tion of the beta regression model to evaluate grid
search parameters. We then compare the evalu-
ation metric of psycholinguistic aphasic data with
SimLex-999, a standard NLP evaluation tasks with
measured controls for synonymy and association,
and explore best practices for adapting models to
psycholinguistic, clinical environments.

2 Optimizing for confrontation naming

2.1 Using Clinical Data for Model Evaluation

Canonical word embedding tasks strive to model
semantic relations that are similar to those used
in the definition of PNT semantic errors such as
synonymy and association (e.g. Hill et al. (2015);
Levy et al. (2015)), and thus should be well suited
for the classification of semantic errors in the PNT.
Conventional scoring of the PNT defines a criteria
for semantic errors that involves a real word noun
production that is in one of six semantic relations
with the target word; see Table 1 (Roach et al.,
1996).

The PNT consists of 175 items, represented
by a set of black-and-white images, and were
selected based on a series of controls, involv-
ing varying word frequency based on Francis and
Kučera (1982), word length (1 to 4 syllables),
and high name performance by control partici-
pants (Roach et al., 1996). Items in the PNT come
from several semantic categories, and avoid land-
marks or other recognizable individuals (Mirman
et al., 2010). The Moss Aphasia Psycholinguistic
Project Database (MAPPD) contains transcribed
responses from over 300 administrations of the
PNT, and is often used in aphasiological research;
in this work, we use a subsample of 152 admin-

istrations selected on the basis of clinical char-
acteristics. The 152 administrations of the PNT
are from 99 subjects from 1-195 months post on-
set of aphasia. Five different sub-types of aphasia
were present among the subjects (anomic, Broca,
conduction, transcortical sensory, and Wernicke).
Some subjects had multiple administrations of the
PNT at different months post onset; the range is
1-6 administrations per subject.

The frequency and length controls for targets on
the PNT, in addition to the semantic relations that
define paraphasic errors on the naming test, estab-
lish a paradigm for target-production word pairs
that is quite similar to the structure of certain ex-
ternal evaluation datasets developed for word em-
bedding models. For example, SimLex-999 (Hill
et al., 2015) is a benchmark dataset for assess-
ing semantic similarity that is based on human
ratings of word pairs on a scale of synonymy, as
opposed to association/relatedness. SimLex-999
balances word association strength using the USF
Free Association norms, samples from both asso-
ciated and unassociated word pairs, and controls
for features such as the concreteness and part-of-
speech of the word pairs. Additionally, the PNT
involves human evaluation of these semantic re-
lations – in this case, two trained clinicians –
with instructions that train evaluators to look for
specific dimensions of semantic similiarity when
evaluating whether a word pair is semantically
similar (the instructions are very similar to those
used by SimLex-999). Comparing results from
MAPPD, which depends on a clinician’s identifi-
cation of a word pair as semantically similar, with
results from SimLex-999 should establish whether
clinical data is a reliable evaluation metric for em-
bedding models.

2.2 Parameterization Affects Semantic Rela-
tions in Word Embedding Models

From the NLP literature, parameterization is one
consideration that has been shown to have a large
effect on the semantic information encoded in
word embedding models. In general, larger con-
text windows are associated with more topical
similarities, while smaller windows are expected
to produce more functional/syntactic similarities
(Goldberg, 2015). For Skipgram models, a smaller
window size is associated with increased perfor-
mance on SimLex-999, a word pair similiarity task
(Lison and Kutuzov, 2017), and qualitatively less
topicality (Levy and Goldberg, 2015). Addition-
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ally, there are more domain general considerations
when optimizing models to our downstream task.
It has been shown that there is an ideal parame-
ter setting for dimensionality of the resulting word
vectors that is neither too high nor too low (Lan-
dauer and Dumais, 1997; Yin and Shen, 2018).

3 Methods

The current study tests whether model architec-
ture, corpus preparation, and training parameters
influence the semantic content of the word em-
bedding model, as measured via the downstream
classification task of scoring paraphasic errors on
the PNT. We performed a grid search over these
sets of parameters, and we evaluate the resultant
models on both the PNT dataset as well as the
SimLex-999 dataset (Hill et al., 2015), to evaluate
and compare what patterns both evaluation meth-
ods find in the data. In doing this, we ask whether
the items and semantic similarity criteria of the
Philadelphia Naming Test are informative in the
context of evaluating parameter settings of word
embedding models.

3.1 Corpus Preparation Pipelines

Following the method described by Fergadiotis
et al. (2016), four versions of the English Gi-
gaword corpus (LDC2011T07) were prepared,1

with stemming and stopword/punctuation removal
as variables (see Table 2).2 Stemming was
done using NLTK’s implementation of the Porter
stemming algorithm (Porter, 1980; Bird et al.,
2009). Stopword removal used the NLTK list of
English-language stop words, notably including
can, which is a PNT item; punctuation was re-

1A reviewer suggests that multiple corpora could have
been included in the grid search, with which we wholeheart-
edly agree. Our preliminary experiments using pretrained
embedding models trained on different corpora (such as a
Wikipedia crawl), do not show large differences in perfor-
mance in terms of optimal parameter settings. We leave a
more detailed parameter search over different corpora to fu-
ture research, and do have reason to expect that corpus selec-
tion would be important for this task. With the embeddings
described in the present study, we observed word sense issues
for certain PNT items, such as head, which when trained on
newswire text obtains a dominant word sense for ruler/dic-
tator/chairperson rather than the body part; work aimed at
modeling and addressing issues of word sense is in progress.

2Note that the original paper by Fergadiotis et al. had used
a version of the Gigaword corpus that had been augmented
with additional conversational text; we elected to use the
standard “vanilla” version of Gigaword, for reasons of repro-
ducibility. An initial pilot study showed that the changes to
the corpus resulted in negligible differences in performance.

Parameter Levels
Corpus Preparation +Stemming, -Stemming
Corpus Preparation +Stopword Removal,

-Stopword Removal
Dimensionality 100, 200, 500, 750
Minimum Word Frequency 100, 250, 500, 750, 1000,

1500, 2000, 3000, 4000, 5000
Context Window Size 1, 2, 3, 4, 5, 10, 15, 20, 25

Table 2: Grid Search Variables

moved with stopwords.3

3.2 word2vec Training Parameters

At training time, three parameters were varied:
the size of the context window4, dimensionality of
word embedding vectors, and minimum word fre-
quency threshold (see Table 2). 1,440 CBOW and
1,440 Skipgram models were trained using Gen-
sim v3.4.0, using the four Gigaword corpora, vary-
ing the above-mentioned parameters. The default
word2vec training parameters were used for both
CBOW and Skipgram models, including a nega-
tive sampling rate of 5, a negative sampling expo-
nent of 0.75, cbow mean=1 (uses the mean rather
than the sum of context word vectors), 5 training
epochs, alpha = 0.025, a minimum learning rate
of .0001, and downsampling word frequency of
0.001.5

3.3 Evaluation Tasks

3.3.1 MAPPD Database of Philadelphia Nam-
ing Tests

We evaluated the word embedding model using
a semantic classification task for all trials in the
MAPPD database. To do this, we took the or-
thographic representation of the visual target item
and the produced response to the naming task to
be a target-production word pair in the embedding
model, and used cosine similarity scores as input
to the classifier to determine semantic similarity of

3For comparability with previous classification ex-
periments, the version of Gigaword with +Stemming,
+Stopword Removal was formatted with line breaks after
each one article. This may have had an effect on window
trimming at training time for this particular variable manip-
ulation. However, the limited second-order interaction of
stemming and stopword removal shows that this likely had
only a minor effect (see Section 4). Samples from the cor-
pora are in Appendix A.

4word2vec window is symmetrical on both sides of target
word; e.g. window n = 1 is [Word1 Target Word2].

5A future grid search parameter could include a compari-
son of word2vec output/decoding methods (hierarchical soft-
max vs. negative sampling), along with their various related
hyperparameter settings. We did not vary this in the current
study.
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target-production pairs in MAPPD. Cosine simi-
larity of the vectors for the target and production
were computed from each model on a transformed
scale of [0,1]; target/production pairs including an
OOV term were assigned a similarity score of 0.6

We then used these cosine similarity scores to
determine whether, for the purposes of PNT item
scoring, a subject’s production is sufficiently sim-
ilar to the target word to count as a semantic para-
phasia. Following the approach described by Fer-
gadiotis et al. (2016), we do this via threshold-
based classification: word pairs with cosine si-
miliary above a pre-identified threshold are clas-
sified as paraphasias with semantic relatedness,
and word pairs with cosine similiarity below the
threshold are classified as not semantically related.
This approach has the advantage of being easily
integrated into downstream classifiers in a way
that is interpretable as well as tunable (by raising
or lowering the threshold, we can trivially trade
off precision for recall). Furthermore, there exist
numerous well-understood methods for optimiz-
ing the operating point of the threshold classifier.
In this work, we calculated the optimal operating
point for a model to be that which maximized the
S1 score (the harmonic mean of sensitivity and
specificity) in the cosine similiarity space.

In this work, we compared the performance of
a large number of trained similarity models. To
compare models, we took the set of computed
similarity scores from each model and calculated
the Area Under the Curve for the Receiver Oper-
ating Characteristic (AUC for ROC; Hanley and
McNeil (1982)). We take AUC score as a broad,
threshold-independent evaluation of model perfor-
mance (Huang and Ling, 2005) and use this as a
criteria for selection of our optimal family of mod-
els.

The resulting distribution of AUC scores show
clear interactions over parameter settings. We
used beta regression (Ferrari and Cribari-Neto,
2004) to model the distribution of the AUC scores

6A reviewer of this work noted that OOVs could have
been treated as missing data for this task. The output of the
semantic classifier under consideration in this study is used
as a feature in a larger multinomial classifier, which also in-
volves identifying nonwords, such that in our larger error-
classification pipeline, nonwords are not assigned a similarity
score. In the present study we used a zero value rather than
a missing value, to avoid conflating nonwords with OOVs.
Additionally, we note that investigations of the resulting dis-
tribution of cosine similiarty scores shows a floor of .49, so
that OOVs with a zero score are fully distinguishable from
low-similarity word pairs in the MAPPD dataset.

from our grid search, and used the resulting coef-
ficients to find optimal settings for each parame-
ter. Beta regression is used for a response variable
that is bounded within the standard unit interval,
such as rates or proportions, and is appropriate to
use for data that are heteroskedastic and/or asym-
metric, as is the case with the distribution of AUC
scores resulting from our grid search over word
embedding models. It is typical to fit two beta
regression models, one for each of the two hy-
perparameters of the Beta distribution (mode and
dispersion) (Simas et al., 2010; Cribari-Neto and
Zeileis, 2010).

3.3.2 SimLex-999

Cosine similarity scores for all SimLex-999 word
pairs were computed for each of the 2,880 grid
search models, and Spearman’s rank correlation
coefficient was calculated to test the correlation of
any given models’ similarity scores with the hu-
man rating of similarity for synonymy. The re-
sulting models were compared by fitting a beta re-
gression model, scaling (ρ+ 1)/2 as the response
variable to fit the distribution of ρ to the unit inter-
val [0,1] which is required in beta regression (see
Ferrari and Cribari-Neto (2004)).

4 Results

4.1 MAPPD Grid Search

Coefficients from a beta regression model are re-
ported individually for each parameter (a table of
estimates is provided in Appendex B). Coefficients
represent the log-odds of an increase in AUC score
per unit change in that parameter. We take the
mean model as the main heuristic to evaluate how
each parameter moves the center of AUC distribu-
tion. Precision model coefficients are used to eval-
uate how each parameter changes the dispersion
of the data (positive coefficients indicate smaller
dispersion). In beta regression, the dispersion (or
precision) parameter φ increases as the variance of
the reponse variable decreases when the mean of
the response variable is fixed (response variable in
this case is the AUC score) (Ferrari and Cribari-
Neto, 2004).

4.1.1 Model Type

AUC scores move in the positive direction for
Skipgram models compared with CBOW models
(βSKIP = .067, p < .001; mean model), indicating
that Skipgram models outperform CBOW models
when other parameters are held constant. How-
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ever, the type of word embedding model interacts
with corpus preparation and window size, such
that the absolute highest performing model is a
CBOW model with parameters (+stemmed, +stop-
word removed, dimensions= 750, window size
n = 1, frequency threshold= 100). However,
Skipgram models show higher dispersion, espe-
cially with smaller window sizes.

4.1.2 Corpus Preparation

Stopword removal moves AUC scores in a positive
direction when other parameters are held constant
(βSTOPRM = .108, p < .001; mean model). A neg-
ative interaction with Skipgram models indicates
that stopword removal improves CBOW mod-
els more than Skipgram models (βSKIP X STOPRM =
−.060, p < .001; mean model); however, for both
types of models the AUC scores are still pulled
in the positive direction when stopwords are re-
moved. Stopword removal also decreases variance
in the data, though there are second-order effects
with all other parameters that subsequently show
increased variance.

Optimal settings for stemming varies by the
type of word embedding model. As a main effect,
stemming improves model performance (βSTEM =
.034, p < .001; mean model). However, the neg-
ative interaction with Skipgram models is signifi-
cantly large enough that the effect is reversed, and
stemming is contraindicated for Skipgram mod-
els (βSKIP X STEM = −0.078, p < .001; mean model)
when other parameters are held constant.

The mean model shows a non-significant ef-
fect for the interaction of stemming and stopword
removal (βSTEM X STOPRM = .004, p > .05; mean
model). See Appendix C for a heat map of per-
fomance broken down by corpus preparation.

4.1.3 Frequency Threshold

The frequency threshold has the largest effect on
the mean model, in the negative direction (βFT =
−0.191, p < .001), indicating that the small-
est frequency threshold is optimal for all models.
This interacts with stemming as well (βSTEM X FT =
0.079, p < .001); models trained on stemmed
Gigaword show less decrease in the mean AUC
score than the non-stemmed versions. As fre-
quency threshold decreases, dispersion increases;
this is mitigated via second-order effects with
Skipgram/CBOW, Stemming, and Stopword re-
moval.

4.1.4 Dimensionality

As dimensionality increases, so do corresponding
AUC scores (βDIM = 0.035, p < .001). Skipgram
models show even higher performance from large
dimensionality (βSKIP X DIM = 0.015, p < .001).

4.1.5 Window Size

Increasing window size shows a corresponding in-
crease in AUC scores (βWIN = .027, p < .001;
mean model), but second-order effects show that
this holds only for CBOW models. A negative
interaction of window size with Skipgram mod-
els is large enough that the effect is reversed, and
a larger window size is contraindicated for Skip-
gram models (βSKIP X WIN = −0.080, p < .001;
mean model).

While CBOW models generally perform bet-
ter with larger windows, there is one parameter
setting for window size that violates the general
trend. A heat map of the three parameters is given
in Figure 1, which shows that the highest AUC
scores occur in the smallest windows. The inverse
relationship in performance for CBOW and Skip-
gram models holds for a window size of [2, 25],
but does not when n=1 (see Section 5.2).

4.1.6 Summary

The optimal parameter selection is frequency
threshold=100 and dimensions=750 for all mod-
els. Skipgram models are optimal when the cor-
pus has been stopword removed and not stemmed,
with window size n = 1. CBOW models perform
well when the corpus is stemmed and stopword-
removed. While CBOW models generally show
top performance as window sizes increase, with
the exception that for window size n = 1 the
CBOW models perform highest.

4.2 SimLex-999

To evaluate models on the SimLex-999 dataset,
Spearman’s rank correlation coefficient (ρ) was
calculated for each model comparing the relation-
ship of model similarity scores and the human
similarity judgments. The mean correlation across
models, meanρ = .379 and rangeρ = (.262, .496),
is close to the state-of-the-art SimLex-999 score
reported for Skipgram word2vec models of .37.7

There is a significant moderate correlation of
AUC scores to Spearman’s ρ (R = .41, p < .001).

Following the same method for reporting AUC
scores, we report only the differences on param-

7https://fh295.github.io/simlex.html
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Figure 1: Heat Map of AUC scores for CBOW and
Skipgram models, by Dimensionality (facet), Window
Size, and Frequency Threshold

eterization effects for a beta regression model, fit
to scaled SimLex ρ scores (Pseudo-R2 = .874; a
table of estimates is included in Appendix B).

Frequency threshold has much less of an ef-
fect on the SimLex task than the clinical MAPPD
task. The beta regression model finds less of a
negative impact for frequency threshold (βFT =
−.028, p < .001) than in the MAPPD model. This
is due to out-of-vocabulary (OOV) counts, as these
are much lower proportionally in SimLex. OOVs
impact the MAPPD dataset at a higher rate partly
because there is a pool of 175 items that occur, and
at differing frequency thresholds some of these
items are excluded from training.

Stemming is dispreferred when looking at per-
formance on SimLex CBOW models, (βSTEM =
−.084, p < .001). There is an interaction be-
tween stemming and Skipgram models that shows
slight improvement in performance when Skip-
gram models are stemmed over CBOW models
(βSKIP X STEM = 0.028, p < .001), but still dispre-
ferred. This differs from the MAPPD results,

where stemming improves CBOW models.
Interestingly, window size still shows an inverse

relation for CBOW and Skipgram models, as in
the MAPPD task. Larger window sizes are opti-
mal for CBOW models; smaller window sizes are
optimal for Skipgram models. The same excep-
tion for n = 1 with CBOW models is apparent,
with the highest ρ in the smallest window size.

5 Discussion

5.1 Dimensionality, Frequency Threshold and
Corpus Preparation

Across all model types, models with high dimen-
sionality and low minimum frequency thresholds
proved optimal. Furthermore, stopword removal
also produced consistently optimal results, while
stemming was optimal for CBOW models but not
for Skipgram models.

Stemming proved to be a more complex pa-
rameter, and interacted with minimum frequency
threshold. Models with a higher frequency thresh-
old performed better with unstemmed training
data, whereas those with a lower threshold ben-
efited from stemming. This is intuitive, as stem-
ming a corpus will increase the token frequency
for observed words while reducing the number of
distinct types (e.g. cat and cats are stemmed to
the same form, cat) relative to the unstemmed ver-
sion of the corpus. In the unstemmed condition,
there will be more distinct token types whose fre-
quency falls below any given minimum frequency
threshold, which will result in proportionally more
words being removed from the final model’s vo-
cabulary than would be the case in the stemmed
condition. A greater amount of information is
therefore removed prior to training, along with an
increase in the out-of-vocabularly count when an-
alyzing the PNT data.8

5.2 Parameter Optimization: Model Type
and the Window n=1 Mystery

Window size affects how much linguistic context
is available during training time and the semantic
properties of resulting word vectors. We find con-
cordance in the literature that Skipgram outper-
forms CBOW on small window sizes for word pair
similarity tasks (Levy et al., 2015) and that Skip-
gram models show better SimLex performance for

8Looking at the resulting distribution of cosine similar-
ity scores for comparable high vs. low frequency shows that
the OOV count is much higher, while the distribution of non-
OOV scores remains similar.
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smaller windows (Lison and Kutuzov, 2017); our
results show that Skipgram models perform bet-
ter with smaller window sizes for both MAPPD
and on SimLex. However, we also find overall
that CBOW models show improved performance
over Skipgram models as window size grows to
25, which is a much larger window size than re-
ported in the literature on hyperparameter compar-
ison. A notable exception is that performance for
n = 1 shows high performance for CBOW models
across all parameter settings.

In addition to small context windows, we find
Skipgram models to be optimal on the non-
stemmed corpora, which decreases the token fre-
quency. Levy et al. (2015) observe that the
smoothing in Skipgram models may alleviate
PMI’s bias towards rare occurrences, improving
performance. However, it may still be the case
that Skipgram models perform better with a larger
variety of lower-frequency tokens overall, as in
the non-stemmed corpora. This, combined with
a small context window may increase the rarity
of word co-occurrences overall with a given target
and explain the interaction.

It remains a mystery why CBOW models show
high performance with both large windows and
the smallest window size n = 1. It may be the
case that the symmetric bi-gram context returns
the densest information context, only matched by
window sizes that are quite large. While there are
qualitative differences in the information captured
by the CBOW window sizes for some items (not
reported here due to space), it also appears that
the resulting vector space geometry for large and
small windows differs even for items where the list
of most similar words is very similar.

For example, jewelry shares 4/5 of the five most
similar words (pendant, earring, brooch, jewelry)
for the optimal n = 1 and n = 25 CBOW
model, but the range of cosine similarity scores
for the two lists of most similar words differs:
n = 1, (.60, .70) vs. n = 25, (.46, .54). However,
the optimal operating threshold for these models
is approximately the same: n = 1, S1 = .562;
n = 25, S1 = .578. Investigation of neigh-
borhood density with respect to the target words
across models trained with different window sizes
may result in a very different geometry of the re-
sulting embedding space. Word frequency can
bias the resulting vector space of word embedding
models (Gong et al., 2018), making direct compar-

ison of word vectors of high and low frequencies
problematic. Simple optimization based on oper-
ating threshold on the ROC may be insufficient for
overall optimization, and transformations of em-
bedding space based on neighborhood density and
word frequency an interesting vein of future work.

5.3 MAPPD and SimLex: Using Clinical
Datasets for Evaluation

Optimization over the SimLex dataset shows sim-
ilar parameter settings as MAPPD for dimension-
ality and window size. Skipgram models are
optimal, and a similar pattern of performance
across window sizes is observed for Skipgram
and CBOW models. Key differences in fre-
quency threshold are related to differences in out-
of-vocabulary items. Stemming is dispreferred
across the SimLex dataset, which differs from the
MAPPD CBOW models. As MAPPD utilizes
only a limited vocabulary of nouns, the stemmed
corpus might have a smaller effect than on the
more morphologically varied SimLex word pairs.

6 Conclusion

Using beta regression to explore how parame-
terization affects model performance, we show
that performance on MAPPD and SimLex-999
datasets depends on similar optimal parameters.
The implications, particularly for window size,
are that the semantic relations encoded in these
word pair datasets are comparable. However,
results also reveal the importance of further in-
vestigation into the geometry of resulting vector
spaces. Patterns of performance demonstrate that
the MAPPD dataset, based on a carefully con-
structed clinical assessment, is useful as an eval-
uation task for word embedding models and sheds
additional insight onto the sensitivity of training
parameter selection.
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A Samples from Gigaword Corpora
+Stemming, +Stopword Removal

TRIBUT POUR AROUND WORLD LATE
LABOUR PARTI LEADER JOHN SMITH
DIE EARLIER MASSIV HEART ATTACK
AGE WASHINGTON US STATE DEPART
ISSU STATEMENT REGRET UNTIM DEATH
SCOTTISH BARRIST PARLIAMENTARIAN
SMITH THROUGHOUT DISTINGUISH CA-
REER GOVERN OPPOSIT LEFT PROFOUND
IMPRESS HISTORI PARTI COUNTRI STATE
DEPART SPOKESMAN MICHAEL MC-
CURRI SAID SECRETARI STATE WARREN
CHRISTOPH EXTEND DEEPEST CONDOL
SMITH SMITH CHILDREN

+Stemming, −Stopword Removal

TRIBUT POUR IN FROM AROUND THE
WORLD *DAY* TO THE LATE LABOUR
PARTI LEADER JOHN SMITH , WHO DIE
EARLIER FROM A MASSIV HEART ATTACK
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AGE # .

IN WASHINGTON , THE US STATE DE-
PART ISSU A STATEMENT REGRET “ THE
UNTIM DEATH ” OF THE RAPIER-TONGU
SCOTTISH BARRIST AND PARLIAMENTAR-
IAN .

“ MR. SMITH , THROUGHOUT HIS DIS-
TINGUISH CAREER IN GOVERN AND IN
OPPOSIT , LEFT A PROFOUND IMPRESS
ON THE HISTORI OF HIS PARTI AND HIS
COUNTRI , ” STATE DEPART SPOKESMAN
MICHAEL MCCURRI SAID .

“ SECRETARI ( OF STATE WARREN )
CHRISTOPH EXTEND HIS DEEPEST CON-
DOL TO MRS. SMITH AND TO THE SMITH
CHILDREN . ”

−Stemming, +Stopword Removal

tributes poured around world late labour party
leader john smith died earlier massive heart attack
aged

washington us state department issued state-
ment regretting untimely death scottish barrister
parliamentarian

smith throughout distinguished career gov-
ernment opposition left profound impression
history party country state department spokesman
michael mccurry said

secretary state warren christopher extends
deepest condolences smith smith children

−Stemming, −Stopword Removal

tributes poured in from around the world *day* to
the late labour party leader john smith , who died
earlier from a massive heart attack aged # .

in washington , the us state department is-
sued a statement regretting “ the untimely death
” of the rapier-tongued scottish barrister and
parliamentarian .

“ mr. smith , throughout his distinguished
career in government and in opposition , left a
profound impression on the history of his party
and his country , ” state department spokesman
michael mccurry said .
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B Table of Estimates for Beta Regression Models

MAPPD SimLex-999
Mean Model Precision Model Mean Model

Parameter Coefficient SE Coefficient SE Coefficient SE
Intercept 1.617*** (0.006) 7.778*** (0.155) 0.692*** (0.004)
SKIP 0.067*** (0.006) -0.582*** (0.148) 0.129*** (0.004)
STEM 0.034*** (0.006) 0.119 (0.148) -0.084*** (0.004)
STOPRM 0.108*** (0.005) 0.364* (0.148) 0.105*** (0.004)
DIM 0.035*** (0.001) 0.056* (0.027) 0.027*** (0.001)
WIN 0.027*** (0.003) 0.098 (0.089) 0.020*** (0.002)
FREQTHRESH -0.191*** (0.002) -0.118** (0.046) -0.028*** (0.001)
SKIP x STEM -0.078*** (0.004) 0.053 (0.105) 0.028*** (0.003)
SKIP x STOPRM -0.060*** (0.004) -0.013 (0.105) -0.077*** (0.003)
SKIP x DIM 0.015*** (0.001) 0.035 (0.021) 0.003*** (0.001)
SKIP x WIN -0.080*** (0.002) -0.236*** (0.064) -0.067*** (0.002)
SKIP x FREQTHRESH 0.003* (0.001) 0.109*** (0.033) 0.005*** (0.001)
STEM x STOPRM 0.004 (0.004) -0.274** (0.105) -0.017*** (0.003)
STEM x DIM -0.002** (0.001) -0.015 (0.021) 0.001 (0.001)
STEM x WIN 0.006* (0.002) -0.014 (0.064) -0.003* (0.002)
STEM x FREQTHRESH 0.079*** (0.001) 0.162*** (0.033) 0.013*** (0.001)
STOPRM x DIM -0.006*** (0.001) -0.062** (0.021) -0.002*** (0.001)
STOPRM x WIN -0.016*** (0.002) -0.164* (0.064) -0.020*** (0.002)
STOPRM x FREQTHRESH 0.000 (0.001) 0.118*** (0.033) 0.001 (0.001)
DIM x WIN -0.002*** (0.000) 0.055*** (0.013) -0.002*** (0.000)
DIM x FREQTHRESH -0.004*** (0.000) -0.029*** (0.006) -0.000 (0.000)
WIN x FREQTHRESH 0.004*** (0.001) -0.027 (0.020) 0.004*** (0.001)
Pseudo-R2 0.965 0.874
N 2880 2880

Table 3: Table of Estimates for Beta Regression for Mean (µ) and Precision (φ). ‘x’ denotes second-order effects.
∗p < .05/ ∗ ∗p < .01/ ∗ ∗ ∗ p < .001
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C MAPPD Grid Search Results, by Corpus Preparation Type

Figure 2: Heat Map of AUC scores for CBOW and Skipgram models, by Corpus Preparation Type (plot), Dimen-
sionality (facet), Window Size, and Frequency Threshold


