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Abstract

We investigate how machine learning mod-
els, specifically ranking models, can be used
to select useful distractors for multiple choice
questions. Our proposed models can learn to
select distractors that resemble those in ac-
tual exam questions, which is different from
most existing unsupervised ontology-based
and similarity-based methods. We empiri-
cally study feature-based and neural net (NN)
based ranking models with experiments on
the recently released SciQ dataset and our
MCQL dataset. Experimental results show
that feature-based ensemble learning methods
(random forest and LambdaMART) outper-
form both the NN-based method and unsuper-
vised baselines. These two datasets can also be
used as benchmarks for distractor generation.

1 Introduction

Multiple choice questions (MCQs) are widely
used as an assessment of students’ knowledge and
skills. A MCQ consists of three elements: (i) stem,
the question sentence; (ii) key, the correct answer;
(iii) distractors, alternative answers used to dis-
tract students from the correct answer. Among
all methods for creating good MCQs, finding rea-
sonable distractors is crucial and usually the most
time-consuming. We here investigate automatic
distractor generation (DG), i.e., generating dis-
tractors given the stem and the key to the ques-
tion. We focus on the case where distractors are
not limited to single words and can be phrases and
sentences.

Rather than generate trivial wrong answers, the
goal of DG is to generate plausible false an-
swers - good distractors. Specifically, a “good”
distractor should be at least semantically related
to the key (Goodrich, 1977), grammatically cor-
rect given the stem, and consistent with the se-
mantic context of the stem. Taking these cri-

terion into consideration, most existing methods
for DG are based on various similarity measures.
These include WordNet-based metrics (Mitkov
and Ha, 2003), embedding-based similarities (Guo
et al., 2016; Kumar et al., 2015; Jiang and Lee,
2017), n-gram co-occurrence likelihood (Hill and
Simha, 2016), phonetic and morphological simi-
larities (Pino and Eskenazi, 2009), structural simi-
larities in an ontology (Stasaski and Hearst, 2017),
a thesaurus (Sumita et al., 2005), context simi-
larity (Pino et al., 2008), context-sensitive infer-
ence (Zesch and Melamud, 2014), and syntactic
similarity (Chen et al., 2006). Then distractors are
selected from a candidate distractor set based on
a weighted combination of similarities, where the
weights are determined by heuristics.

In contrast to the above-mentioned similarity-
based methods, we apply learning-based ranking
models to select distractors that resemble those in
actual exam MCQs. Specifically, we propose two
types of models for DG: feature-based and NN-
based models. Our models are able to take existing
heuristics as features and learn from these ques-
tions a function beyond a simple linear combina-
tion. Learning to generate distractors has been pre-
viously explored in a few studies. Given a blanked
question, Sakaguchi et al. (2013) use a discrimi-
native model to predict distractors and Liang et al.
(2017) apply generative adversarial nets. They
view DG as a multi-class classification problem
and use answers as output labels while we use
them as input. Other related work (Welbl et al.,
2017) uses a random forest. However, with the re-
ported binary classification metrics, the quality of
the top generated distractors is not quantitatively
evaluated. Here we conduct a more comprehen-
sive study on various learning models and devise
ranking evaluation metrics for DG.

Machine learning of a robust model usually
requires large-scale training data. However, to

284



the best of our knowledge, there is no bench-
mark dataset for DG, which makes it difficult
to directly compare methods. Prior methods
were evaluated on different question sets col-
lected from textbooks (Agarwal and Mannem,
2011), Wikipedia (Liang et al., 2017), ESL cor-
puses (Sakaguchi et al., 2013), etc. We propose
to evaluate DG methods with two datasets: the re-
cently released SciQ dataset (Welbl et al., 2017)
(13.7K MCQs) and the MCQL dataset (7.1K
MCQs) that we made. These two datasets can
be used as benchmarks for training and testing
DG models. Our experimental results show that
feature-based ensemble learning methods (random
forest and LambdaMART) outperform both the
NN-based method and unsupervised baselines for
DG.

2 Learning to Rank for Distractor
Generation

We solve DG as the following ranking problem:
Problem. Given a candidate distractor set D and
a MCQ datasetM = {(qi, ai, {di1, ..., dik})}Ni=1,
where qi is the question stem, ai is the key, Di =
{di1...dik} ⊆ D are the distractors associated with
qi and ai, find a point-wise ranking function r:
(qi, ai, d) → [0, 1] for d ∈ D, such that distrac-
tors in Di are ranked higher than those in D−Di.

This problem formulation is similar to “learning
to rank” (Liu et al., 2009) in information retrieval.
To learn the ranking function, we investigate two
types of models: feature-based models and NN-
based models.

2.1 Feature-based Models
2.1.1 Feature Description
Given a tuple (q, a, d), a feature-based model first
transforms it to a feature vector φ(q, a, d) ∈ Rd
with the function φ. We design the following fea-
tures for DG, resulting in a 26-dimension feature
vector:

• Emb Sim. Embedding similarity between q
and d and the similarity between a and d. We
use the average GloVe embedding (Penning-
ton et al., 2014) as the sentence embedding.
Embeddings have been shown to be effec-
tive for finding semantically similar distrac-
tors (Kumar et al., 2015; Guo et al., 2016).

• POS Sim. Jaccard similarity between a and
d’s POS tags. The intuition is that ditractors

might also be noun phrases if the key is a
noun phrase.

• ED. Edit distance between a and d. This mea-
sures the spelling similarity and is useful for
cases such as selecting “RNA” as a distractor
for “DNA”.

• Token Sim. Jaccard similarities between q
and d’s tokens, a and d’s tokens, and q and a’s
tokens. This feature is motivated by the ob-
servation that distractors might share tokens
with the key.

• Length. a and d’s character and token lengths
and the difference of lengths. This feature is
designed to explore whether distractors and
the key are similar in terms of lengths.

• Suffix. The absolute and relative length of a
and d’s longest common suffix. The key and
distractors often have common suffixes. For
example, “maltose”, “lactose”, and “suctose”
could be good distractors for “fructose”.

• Freq. Average word frequency in a and d.
Word frequency has been used as a proxy for
words’ difficulty levels (Coniam, 1997). This
feature is designed to select distractors with a
similar difficulty level as the key.

• Single. Singular/plural consistency of a and
d. This checks the consistency of singular vs.
plural usage, which will select grammatically
correct distractors given the stem.

• Num. Whether numbers appear in a and d.
This feature will cover cases where distrac-
tors and keys contain numbers, such as “90
degree”, “one year”, “2018”, etc.

• Wiki Sim. If a and d are Wikipedia en-
tities, we calculate their Wiki embedding
similarity. The embedding is trained us-
ing word2vec (Mikolov et al., 2013) on
Wikipedia data with each Wiki entity treated
as an individual token. This feature is a com-
plement to Emb Sim where sentence embed-
ding is a simple average of word embeddings.

2.1.2 Classifiers
We study the following three feature-based clas-
sifiers: (i) Logistic Regression: an efficient gen-
eralized linear classification model; (ii) Random
Forest (Breiman, 2001): an effective ensemble
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classification model; (iii) LambdaMART (Burges,
2010): a gradient boosted tree based learning-to-
rank model. To train these models, following pre-
vious notations, we use Di as positive examples
and sample fromD−Di to get negative examples.

2.2 NN-based Models
Based on the recently proposed method IR-
GAN (Wang et al., 2017), we propose an adver-
sarial training framework for DG. Our framework
consists of two components: a generator G and a
discriminatorD. G is a generative model that aims
to capture the conditional probability of generat-
ing distractors given stems and answers P (d|q, a).
D is a discriminative model that estimates the
probability that a distractor sample comes from the
real training data rather than G.

Assume that the discriminator is based on an ar-
bitrary scoring function fφ(d, q, a) ∈ R parame-
terized by φ, then the objective for D is to maxi-
mize the following log-likelihood:

max
φ

Ed∼Ptrue(d|q,a)[log(σ(fφ(d, q, a)))]

+ Ed∼Pθ(d|q,a)[log(1− σ(fφ(d, q, a)))] (1)

where σ is the sigmoid function. For the gen-
erator G, we choose another scoring function
fθ(d, q, a) ∈ R parameterized by θ, evaluate it on
every possible distractor di given a (q, a) pair, and
sample generated distractors based on the discrete
probability after applying softmax:

pθ(di|q, a) =
exp(τ · fθ(di, q, a))∑
j exp(τ · fθ(dj , q, a))

(2)

where τ is a temperature hyper-parameter.
In practice, since the total size of distractors is

large, it is very time-consuming to evaluate on ev-
ery possible di. Following the common practice
as in (Wang et al., 2017; Cai and Wang, 2018), we
uniformly sampleK candidate distractors for each
(q, a) pair and evaluate fθ on each di,∀i ∈ [1,K].
The objective for G is to “fool” D so that D mis-
classifies distractors generated by G as positive:

min
θ

Ed∼Pθ(d|q,a)[log(1− σ(fφ(d, q, a)))] (3)

The training procedure follows a two-player
minimax game, where D and G are alternatively
optimized towards their own objective.

The scoring function fφ and fθ can take arbi-
trary forms. IRGAN utilizes a convolutional neu-

Dataset |D| # MCQs # Train # Valid # Test Avg. # Dis

SciQ 22379 13679 11679 1000 1000 3
MCQL 16446 7116 5999 554 563 2.91

Table 1: Dataset Statistics.

ral network based model to obtain sentence em-
beddings and then calculates the cosine similari-
ties. However, such a method ignores the word-
level interactions, which is important for the DG
task. For example, if the stem asks “which physi-
cal unit”, good distractors should be units. There-
fore, we adopt the Decomposable Attention model
(DecompAtt) (Parikh et al., 2016) proposed for
Natural Language Inference to measure the simi-
larities between q and d. We also consider the sim-
ilarities between a and d. Since they are usually
short sequences, we simply use the cosine similar-
ity between summed word embeddings. As such,
the scoring function is defined as a linear combi-
nation of DecompAtt(d, q) and Cosine(d, a).

2.3 Cascaded Learning Framework

To make the ranking process more efficient and
effective, we propose a cascaded learning frame-
work, a multistage ensemble learning framework
that has been widely used for computer vision (Vi-
ola and Jones, 2001). We experiment with 2-
stage cascading, where the first stage ranker is a
simple model trained with part of the features in
Sec. 2.1.1 and the second stage ranker can be any
aforementioned ranking model. Such cascading
has two advantages: (i) The candidate size is sig-
nificantly reduced by the first stage ranker, which
allows the use of more expensive features and
complex models in the second stage; (ii) The sec-
ond stage ranker can learn from more challenging
negative examples since they are top predictions
from previous stage, which can make the learning
more effective.

3 Experiments

3.1 Datasets

We evaluate the proposed DG models on the fol-
lowing two datasets: (i) SciQ (Welbl et al., 2017):
crowdsourced 13.7K science MCQs covering bi-
ology, chemistry, earth science, and physics. The
questions span elementary level to college intro-
ductory level in the US. (ii) MCQL: 7.1K MCQs
crawled from the Web. Questions are about biol-
ogy, physics, and chemistry and at the Cambridge
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O level and college level.
For SciQ, we follow the original train/valid/test

splits. For MCQL, we randomly divide the dataset
into train/valid/test with an approximate ratio of
10:1:1. We convert the dataset to lowercase, filter
out the distractors such as “all of them”, “none of
them”, “both A and B”, and keep questions with
at least one distractor. We use all the keys and dis-
tractors in the dataset as candidate distractor set
D. Table 1 summarizes the statistics of the two
datasets after preprocessing. |D| is the number of
candidate distractors. # MCQs is the total num-
ber of MCQs. # Train/Valid/Test is the number of
questions in each split of the dataset. Avg. # Dis
is the average number of distractors per question.

3.2 Experiment Settings

We use Logistic Regression (LR) as the first stage
ranker. As for the second stage, we compare LR,
Random Forest (RF), LambdaMART (LM), and
the proposed NN-based model (NN). Specifically,
we set C to 1 for LR, use 500 trees for RF, and
500 rounds of boosting for LM. For first stage
training, the number of negative samples is set to
be equal to the number of distractors, which is
3 for most questions. And we sample 100 neg-
ative samples for second stage training. More
details can be found in the supplementary mate-
rial. In addition, we also study the following un-
supervised baselines that measure similarities be-
tween the key and distractors: (i) pointwise mutual
information (PMI) based on co-occurrences; (ii)
edit distance (ED), which measures the spelling
similarity; and (iii) GloVe embedding similarity
(Emb Sim). For evaluation, we report top re-
call (R@10), precision (P@1, P@3), mean aver-
age precision (MAP@10), normalized discounted
cumulative gain (NDCG@10), and mean recipro-
cal rank (MRR).

3.3 Experimental Results

First Stage Ranker The main goal of the first
stage ranker is to reduce the candidate size for the
later stage while achieving a relatively high re-
call. Figure 1 shows the Recall@K for the first
stage ranker on the two datasets. Validation set is
used for choosing topK predictions for later stage
training. We empirically set K to 2000 for SciQ
and 2500 for MCQL to get a recall of about 90%.

Distractor Ranking Results Table 2 lists the
ranking results for DG. From the table we observe
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Figure 1: Recall@K for the first stage ranker.

1st Stage
Ranker

2nd Stage
Ranker

R@10 P@1 P@3 MAP
@10

NDCG
@10

MRR

LR

PMI 11.0 2.1 3.1 3.6 6.8 8.8
ED 14.3 12.6 9.2 8.7 12.5 18.9
Emb Sim 19.3 9.3 9.0 9.6 14.2 17.5
LR 29.7 14.8 14.1 14.7 22.1 27.6
RF 44.1 36.8 27.0 28.4 38.0 49.2
LM 43.3 37.2 26.4 28.0 37.5 49.3
NN 24.6 11.7 11.7 11.6 23.1 25.7

RF — 41.4 31.2 23.7 25.0 34.4 44.0
LM — 39.1 26.5 22.6 22.9 31.8 40.4

(a) SciQ
1st Stage
Ranker

2nd Stage
Ranker

R@10 P@1 P@3 MAP
@10

NDCG
@10

MRR

LR

PMI 20.7 5.9 6.8 7.8 13.5 16.2
ED 32.1 34.6 23.6 23.7 30.5 42.8
Emb Sim 32.1 25.6 18.4 20.4 26.9 33.9
LR 42.9 29.3 24.5 26.6 35.1 42.2
RF 48.4 45.5 32.7 35.4 43.8 54.8
LM 49.4 42.8 31.5 34.5 43.4 53.6
NN 36.5 22.9 22.5 22.7 34.6 36.7

RF — 48.0 40.9 30.4 33.6 42.0 51.1
LM — 46.7 42.5 30.6 33.0 41.6 52.7

(b) MCQL

Table 2: Ranking results (%) for DG.

the following: (i) The proposed ranking mod-
els perform better than unsupervised similarity-
based methods (PMI, ED, and Emb Sim) most
of the time, which is expected since similarity-
based heuristics are used as features. (ii) Ensem-
ble models - RF and LM - have comparable perfor-
mance and are significantly better than other meth-
ods. These ensemble methods are more suitable
for capturing the nonlinear relation between the
proposed feature set and distractors. (iii) NN per-
forms worse than feature-based models. The main
reason is that NN is solely based on word embed-
dings. Although embedding similarity is the most
important feature, information provided by other
top features such as ED, Suffix, Freq is missing in
NN. Given the limited training examples (11.6K
for SciQ and 6K for MCQL), it is difficult to learn
a robust end-to-end NN-based model.
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# SciQ MCQL
1 Emb Sim (a, d) Emb Sim (a, d)
2 Freq d Token Sim (a, d)
3 Freq a ED
4 Wiki Sim Suffix
5 Emb Sim (q, d) Suffix / len(d)
6 Suffix Freq a
7 Suffix / len(d) Wiki Sim
8 Suffix / len(a) Freq d
9 Token Sim (a, d) Emb Sim (q, d)
10 ED Suffix / len(a)

Table 3: Top 10 important features.

Feature Analysis We conduct a feature analy-
sis to have more insights on the proposed feature
set. Feature importance is calculated by “mean de-
crease impurity” using RF. It is defined as the total
decrease in node impurity, weighted by the proba-
bility of reaching that node, averaged over all trees
of the ensemble. Table 3 lists the top 10 important
features for SciQ and MCQL datasets. We find
that: (i) the embedding similarity between a and
d is the most important feature, which shows em-
beddings are effective at capturing semantic rela-
tions between a and d. (ii) String similarities such
as Token Sim, ED, and Suffix are more important
in MCQL than those in SciQ. This is consistent
with the observation that ED has relatively good
performance as seen in Table 2b. (iii) The set of
top 10 features is the same for SciQ and MCQL,
regardless of order.

Effects of Cascaded Learning Since we choose
the top 2000 for SciQ and 2500 for MCQL from
first stage, the ranking candidate size is reduced by
91% for SciQ and 85% for MCQL, which makes
the second stage learning more efficient. To study
whether cascaded learning is effective, we exper-
iment with RF and LM without 2-stage learning,
as shown as the bottom two rows in Table 2. Here
we sample 100 negative samples for training mod-
els in order to make a fair comparison with other
methods using 2-stage learning. We can see that
the performance is better when cascaded learning
is applied.

4 Conclusion

We investigated DG as a ranking problem and
applied feature-based and NN-based supervised
ranking models to the task. Experiments with the
SciQ and the MCQL datasets empirically show
that ensemble learning models (random forest and
LambdaMART) outperform both the NN-based

method and unsupervised baselines. The MCQL
data is publicly available upon request. The two
datasets can be used as benchmarks for further DG
research. Future work will be to design a user in-
terface to implement the proposed models to help
teachers with DG and collect more user data for
model training.
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A Training and Implementation Details

Feature-based Models. We use the implemen-
tations of scikit-learn (Pedregosa et al., 2011) for
logistic regression and random forest experiments.
For LambdaMART experiments, we use the XG-
Boost library (Chen and Guestrin, 2016). For
both SCIQ and MCQL datasets we train with 500
rounds of boosting, step size shrinkage of 0.1,
maximum depth of 30, minimum child weight of
0.1 and minimum loss reduction of 1.0 for parti-
tion. For calculating Wiki Sim features, we use a
Wikipedia dump of Oct. 2016. Part of speech tags
are calculated with NLTK (Bird and Loper, 2004).

The logistic regression used for the first stage
ranker is based on features including: Emb Sim,
POS Sim, ED, Token Sim, Length, Suffix, and
Freq. Models for the second stage ranker is based
on all features described in Sec. 2.1.1.

NN-based Models. Our NN-based models are
implemented with TensorFlow (Abadi et al.,
2016). When training the generator, we first uni-
formly select K = 512 candidates and then sam-
ple 16 distractors according to Equation 2. The
temperature τ is set to 5. Our scoring functions are
based on Decomposable Attention Model (Parikh
et al., 2016). The word embeddings are initialized
using the pre-trained GloVe (Pennington et al.,
2014) (840B tokens), and the embedding size is
300. Our model is optimized using Adam algo-
rithm (Kingma and Ba, 2015) with a learning rate
of 1e-4 and a weight decay of 1e-6.

Since the sampling process in G is not differen-
tiable, the gradient-decent-based optimization in
the original GAN paper (Goodfellow et al., 2014)
is not directly applicable. To tackle this problem,
we use policy gradient based reinforcement learn-
ing as in IRGAN.
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