
S Bandyopadhyay, D S Sharma and R Sangal. Proc. of the 14th Intl. Conference on Natural Language Processing, pages 56–64,
Kolkata, India. December 2017. c©2016 NLP Association of India (NLPAI)

An Exploration of Word Embedding Initialization
in Deep-Learning Tasks

Tom Kocmi and Ondřej Bojar
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Abstract

Word embeddings are the interface be-
tween the world of discrete units of text
processing and the continuous, differen-
tiable world of neural networks. In this
work, we examine various random and
pretrained initialization methods for em-
beddings used in deep networks and their
effect on the performance on four NLP
tasks with both recurrent and convolu-
tional architectures. We confirm that pre-
trained embeddings are a little better than
random initialization, especially consider-
ing the speed of learning. On the other
hand, we do not see any significant dif-
ference between various methods of ran-
dom initialization, as long as the variance
is kept reasonably low. High-variance ini-
tialization prevents the network to use the
space of embeddings and forces it to use
other free parameters to accomplish the
task. We support this hypothesis by ob-
serving the performance in learning lexical
relations and by the fact that the network
can learn to perform reasonably in its task
even with fixed random embeddings.

1 Introduction

Embeddings or lookup tables (Bengio et al., 2003)
are used for units of different granularity, from
characters (Lee et al., 2016) to subword units
(Sennrich et al., 2016; Wu et al., 2016) up to
words. In this paper, we focus solely on word
embeddings (embeddings attached to individual
token types in the text). In their highly dimen-
sional vector space, word embeddings are capa-
ble of representing many aspects of similarities be-
tween words: semantic relations or morphological
properties (Mikolov et al., 2013; Kocmi and Bojar,

2016) in one language or cross-lingually (Luong et
al., 2015).

Embeddings are trained for a task. In other
words, the vectors that embeddings assign to each
word type are almost never provided manually but
always discovered automatically in a neural net-
work trained to carry out a particular task. The
well known embeddings are those by Mikolov et
al. (2013), where the task is to predict the word
from its neighboring words (CBOW) or the neigh-
bors from the given word (Skip-gram). Trained
on a huge corpus, these “Word2Vec” embeddings
show an interesting correspondence between lexi-
cal relations and arithmetic operations in the vec-
tor space. The most famous example is the follow-
ing:

v(king)− v(man) + v(woman) ≈ v(queen)

In other words, adding the vectors associated with
the words ‘king’ and ‘woman’ while subtracting
‘man’ should be equal to the vector associated
with the word ‘queen’. We can also say that
the difference vectors v(king) − v(queen) and
v(man) − v(woman) are almost identical and de-
scribe the gender relationship.

Word2Vec is not trained with a goal of proper
representation of relationships, therefore the ab-
solute accuracy scores around 50% do not allow
to rely on these relation predictions. Still, it is a
rather interesting property observed empirically in
the learned space. Another extensive study of em-
bedding space has been conducted by Hill et al.
(2017).

Word2Vec embeddings as well as GloVe em-
beddings (Pennington et al., 2014) became very
popular and they were tested in many tasks, also
because for English they can be simply down-
loaded as pretrained on huge corpora. Word2Vec
was trained on 100 billion words Google News56



dataset1 and GloVe embeddings were trained on
6 billion words from the Wikipedia. Sometimes,
they are used as a fixed mapping for a better
robustness of the system (Kenter and De Rijke,
2015), but they are more often used to seed the em-
beddings in a system and they are further trained
in the particular end-to-end application (Collobert
et al., 2011; Lample et al., 2016).

In practice, random initialization of embeddings
is still more common than using pretrained embed-
dings and it should be noted that pretrained em-
beddings are not always better than random ini-
tialization (Dhingra et al., 2017).

We are not aware of any study of the effects of
various random embeddings initializations on the
training performance.

In the first part of the paper, we explore various
English word embeddings initializations in four
tasks: neural machine translation (denoted MT in
the following for short), language modeling (LM),
part-of-speech tagging (TAG) and lemmatization
(LEM), covering both common styles of neural ar-
chitectures: the recurrent and convolutional neural
networks, RNN and CNN, resp.

In the second part, we explore the obtained em-
beddings spaces in an attempt to better understand
the networks have learned about word relations.

2 Embeddings initialization

Given a vocabulary V of words, embeddings rep-
resent each word as a dense vector of size d (as
opposed to “one-hot” representation where each
word would be represented as a sparse vector of
size |V | with all zeros except for one element in-
dicating the given word). Formally, embeddings
are stored in a matrix E ∈ R|V |×d.

For a given word type w ∈ V , a row is se-
lected from E. Thus, E is often referred to as
word lookup table. The size of embeddings d is
often set between 100 and 1000 (Bahdanau et al.,
2014; Vaswani et al., 2017; Gehring et al., 2017).

2.1 Initialization methods

Many different methods can be used to initialize
the values in E at the beginning of neural network
training. We distinguish between randomly initial-
ized and pretrained embeddings, where the latter
can be further divided into embeddings pretrained

1See https://code.google.com/archive/p/
word2vec/.

on the same task and pretrained on a standard task
such as Word2Vec or GloVe.

Random initialization methods common in the
literature2 sample values either uniformly from a
fixed interval centered at zero or, more often, from
a zero-mean normal distribution with the standard
deviation varying from 0.001 to 10.

The parameters of the distribution can be set
empirically or calculated based on some assump-
tions about the training of the network. The sec-
ond approach has been done for various hidden
layer initializations (i.e. not the embedding layer).
E.g. Glorot and Bengio (2010) and He et al. (2015)
argue that sustaining variance of values thorough
the whole network leads to the best results and
define the parameters for initialization so that the
layer weights W have the same variance of output
as is the variance of the input.

Glorot and Bengio (2010) define the “Xavier”
initialization method. They suppose a linear neu-
ral network for which they derive weights initial-
ization as

W ∼ U
[
−

√
6√

ni + no
;

√
6√

ni + no

]
(1)

where ni is the size of the input and no is the size
of the output. The initialization for nonlinear net-
works using ReLu units has been derived similarly
by He et al. (2015) as

W ∼ N (0,
2

ni
) (2)

The same assumption of sustaining variance can-
not be applied to embeddings because there is no
input signal whose variance should be sustained
to the output. We nevertheless try these initializa-
tion as well, denoting them Xavier and He, respec-
tively.

2.2 Pretrained embeddings
Pretrained embeddings, as opposed to random ini-
tialization, could work better, because they already
contain some information about word relations.

To obtain pretrained embeddings, we can train
a randomly initialized model from the normal dis-
tribution with a standard deviation of 0.01, extract
embeddings from the final model and use them as
pretrained embeddings for the following trainings

2Aside from related NN task papers such as Bahdanau et
al. (2014) or Gehring et al. (2017), we also checked several
popular neural network frameworks (TensorFlow, Theano,
Torch, ...) to collect various initialization parameters.57



on the same task. Such embeddings contain infor-
mation useful for the task in question and we refer
to them as self-pretrain.

A more common approach is to download
some ready-made “generic” embeddings such as
Word2Vec and GloVe, whose are not directly
related to the final task but show to contain
many morpho-syntactic relations between words
(Mikolov et al., 2013; Kocmi and Bojar, 2016).
Those embeddings are trained on billions of
monolingual examples and can be easily reused in
most existing neural architectures.

3 Experimental setup

This section describes the neural models we use
for our four tasks and the training and testing
datasets.

3.1 Models description

For all our four tasks (MT, LM, TAG, and LEM),
we use Neural Monkey (Helcl and Libovický,
2017), an open-source neural machine translation
and general sequence-to-sequence learning system
built using the TensorFlow machine learning li-
brary.

All models use the same vocabulary of 50000
most frequent words from the training corpus.
And the size of embedding is set to 300, to
match the dimensionality of the available pre-
trained Word2Vec and GloVe embeddings.

All tasks are trained using the Adam (Kingma
and Ba, 2014) optimization algorithm.

We are using 4GB machine translation setup
(MT) as described in Bojar et al. (2017) with in-
creased encoder and decoder RNN sizes. The
setup is the encoder-decoder architecture with at-
tention mechanism as proposed by Bahdanau et
al. (2014). We use encoder RNN with 500 GRU
cells for each direction (forward and backward),
decoder RNN with 450 conditional GRU cells,
maximal length of 50 words and no dropout. We
evaluate the performance using BLEU (Papineni
et al., 2002). Because our aim is not to surpass
the state-of-the-art MT performance, we omit com-
mon extensions like beam search or ensembling.
Pretrained embeddings also prevent us from using
subword units (Sennrich et al., 2016) or a larger
embedding size, as customary in NMT. We exper-
iment only with English-to-Czech MT and when
using pretrained embeddings we modify only the
source-side (encoder) embeddings, because there

are no pretrained embeddings available for Czech.
The goal of the language model (LM) is to pre-

dict the next word based on the history of previous
words. Language modeling can be thus seen as
(neural) machine translation without the encoder
part: no source sentence is given to translate and
we only predict words conditioned on the previ-
ous word and the state computed from predicted
words. Therefore the parameters of the neural net-
work are the same as for the MT decoder. The only
difference is that we use dropout with keep prob-
ability of 0.7 (Srivastava et al., 2014). The gener-
ated sentence is evaluated as the perplexity against
the gold output words (English in our case).

The third task is the POS tagging (TAG). We
use our custom network architecture: The model
starts with a bidirectional encoder as in MT. For
each encoder state, a fully connected linear layer
then predicts a tag. The parameters are set to be
equal to the encoder in MT, the predicting layer
have a size equal to the number of tags. TAG is
evaluated by the accuracy of predicting the correct
POS tag.

The last task examined in this paper is the
lemmatization of words in a given sentence (LEM).
For this task we have decided to use the convolu-
tional neural network, which is second most used
architecture in neural language processing next to
the recurrent neural networks. We use the con-
volutional encoder as defined by Gehring et al.
(2017) and for each state of the encoder, we pre-
dict the lemma with a fully connected linear layer.
The parameters are identical to the cited work.
LEM is evaluated by a accuracy of predicting the
correct lemma.

When using pretrained Word2Vec and GloVe
embeddings, we face the problem of different vo-
cabularies not compatible with ours. Therefore for
words in our vocabulary not covered by the pre-
trained embeddings, we sample the embeddings
from the zero-mean normal distribution with a
standard deviation of 0.01.

3.2 Training and testing datasets

We use CzEng 1.6 (Bojar et al., 2016), a parallel
Czech-English corpus containing over 62.5 mil-
lion sentence pairs. This dataset already contains
automatic word lemmas and POS tags.3

3We are aware that training and evaluating a POS tag-
ger and lemmatizer on automatically annotated data is a little
questionable because the data may exhibit artificial regulari-
ties and cannot lead to the best performance, but we assume58



Initialization MT en-cs (25M) LM (25M) RNN TAG (3M) CNN LEM (3M)
N (0, 10) 6.93 BLEU 76.95 85.2 % 48.4 %
N (0, 1) 9.81 BLEU 61.36 87.9 % 94.4 %
N (0, 0.1) 11.77 BLEU 56.61 90.7 % 95.7 %
N (0, 0.01) 11.77 BLEU 56.37 90.8 % 95.9 %
N (0, 0.001) 11.88 BLEU 55.66 90.5 % 95.9 %
Zeros 11.65 BLEU 56.34 90.7 % 95.9 %
Ones 10.63 BLEU 62.04 90.2 % 95.7 %
He init. 11.74 BLEU 56.40 90.7 % 95.7 %
Xavier init. 11.67 BLEU 55.95 90.8 % 95.9 %
Word2Vec 12.37 BLEU 54.43 90.9 % 95.7 %
Word2Vec on trainset 11.74 BLEU 54.63 90.8 % 95.6 %
GloVe 11.90 BLEU 55.56 90.6 % 95.5 %
Self pretrain 12.61 BLEU 54.56 91.1 % 95.9 %

Table 1: Task performance with various embedding initializations. Except for LM, higher is better. The
best results for random (upper part) and pretrained (lower part) embedding initializations are in bold.

We use the newstest2016 dataset from
WMT 20164 as the testset for MT, LM and LEM.
The size of the testset is 2999 sentence pairs con-
taining 57 thousands Czech and 67 thousands En-
glish running words.

For TAG, we use manually annotated English
tags from PCEDT5 (Hajič et al., 2012). From
this dataset, we drop all sentences containing the
tag “-NONE-” which is not part of the standard
tags. This leads to the testset of 13060 sentences
of 228k running words.

4 Experiments

In this section, we experimentally evaluate em-
bedding initialization methods across four differ-
ent tasks and two architectures: the recurrent and
convolutional neural networks.

The experiments are performed on the NVidia
GeForce 1080 graphic card. Note that each run of
MT takes a week of training, LM takes a day and
a half and TAG and LEM need several hours each.
We run the training for one epoch and evaluate the
performance regularly throughout the training on
the described test set. For MT and LM, the epoch
amounts to 25M sentence pairs and for TAG and
LEM to 3M sentences. The epoch size is set em-
pirically so that the models already reach a sta-
ble level of performance and further improvement
does not increase the performance too much.

MT and LM exhibit performance fluctuation
throughout the training. Therefore, we average
the results over five consecutive evaluation scores

that this difference will have no effect on the comparison
of embeddings initializations and we prefer to use the same
training dataset for all our tasks.

4http://www.statmt.org/wmt16/translation-task.html
5https://ufal.mff.cuni.cz/pcedt2.0/en/index.html

spread across 500k training examples to avoid lo-
cal fluctuations. This can be seen as a simple
smoothing method.6

4.1 Final performance

In this section, we compare various initialization
methods based on the final performance reached
in the individual tasks. Intuitively, one would ex-
pect the best performance with self-pretrained em-
beddings, followed by Word2Vec and GloVe. The
random embeddings should perform worse.

Table 1 shows the influence of the embedding
initialization on various tasks and architectures.

The rows ones and zeros specify the initializa-
tion with a single fixed value.

The “Word2Vec on trainset” are pretrained em-
beddings which we created by running Gensim
(Řehůřek and Sojka, 2010) on our training set.
This setup serves as a baseline for the embeddings
pretrained on huge monolingual corpora and we
can notice a small loss in performance compared
to both Word2Vec and GloVe.

We can notice several interesting results. As
expected, the self-pretrained embeddings slightly
outperform pretrained Word2Vec and GloVe,
which are generally slightly better than random
initializations.

A more important finding is that there is gen-
erally no significant difference in the performance
between different random initialization methods,
except ones and setups with the standard deviation
of 1 and higher, all of which perform considerably
worse.

6See, e.g. http://www.itl.nist.gov/div898/
handbook/pmc/section4/pmc42.htm from Natrella
(2010) justifying the use of the simple average, provided that
the series has leveled off, which holds in our case.59
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Figure 1: Learning curves for language model-
ing. The testing perplexity is computed every
300k training examples. Label ”Remaining meth-
ods” represents all learning curves for the methods
from Table 1 not mentioned otherwise.

Any random initialization with standard devia-
tion smaller than 0.1 leads to similar results, in-
cluding even the zero initialization.7 We attempt
to explain this behavior in Section 5.

4.2 Learning speed
While we saw in Table 1 that most of the initial-
ization methods lead to a similar performance, the
course of the learning is slightly more varied. In
other words, different initializations need different
numbers of training steps to arrive at a particular
performance. This is illustrated in Figure 1 for LM.

To describe the situation concisely across the
tasks, we set a minimal score for each task and we
measure how many examples did the training need
to reach the score. We set the scores as follows:
MT needs to reach 10 BLEU points, LM needs to
reach the perplexity of 60, TAG needs to reach the
accuracy of 90% and LEM needs to reach the ac-
curacy of 94%.

We use a smoothing window as implemented in
TensorBoard with a weight of 0.6 to smooth the

7It could be seen as a surprise, that zero initialization
works at all. But since embeddings behave as weights for bias
values, they learn quickly from the random weights available
throughout the network.

Initialization MT en-cs LM TAG LEM
N (0, 1) 25.3M 37.3M 10.6M 2.7M
N (0, 0.1) 9.7M 13.5M 2.0M 1.8M
N (0, 0.01) 9.8M 12.0M 1.4M 1.2M
N (0, 0.001) 9.8M 12.0M 1.0M 0.5M
Zeros 9.4M 12.3M 1.0M 0.5M
Ones 18.9M 26.7M 2.9M 0.8M
He init. 9.5M 12.5M 1.0M 0.5M
Xavier init. 9.2M 12.3M 1.0M 0.5M
Word2Vec 6.9M 7.9M 0.7M 1.2M
GloVe 8.6M 11.4M 1.9M 1.3M
Self pretrain 5.2M 5.7M 0.2M 0.9M

Table 2: The number of training examples needed
to reach a desired score.

testing results throughout the learning. This way,
we avoid small fluctuations in training and our es-
timate when the desired value was reached is more
reliable.

The results are in Table 2. We can notice that
pretrained embeddings converge faster than the
randomly initialized ones on recurrent architecture
(MT, LM and TAG) but not on the convolutional ar-
chitecture (LEM).

Self-pretrained embeddings are generally much
better. Word2Vec also performs very well but
GloVe embeddings are worse than random initial-
izations for TAG.

5 Exploration of embeddings space

We saw above that pretrained embeddings are
slightly better than random initialization. We also
saw that the differences in performance are not
significant when initialized randomly with small
values.

In this section, we analyze how specific lex-
ical relations between words are represented in
the learned embeddings space. Moreover, based
on the observations from the previous section, we
propose a hypothesis about the failure of initial-
ization with big numbers (ones or high-variance
random initialization) and try to justify it.

The hypothesis is as follows:
The more variance the randomly initialized em-

beddings have, the more effort must the neural
network exerts to store information in the embed-
dings space. Above a certain effort threshold, it
becomes easier to store the information in the sub-
sequent hidden layers (at the expense of some ca-
pacity loss) and use the random embeddings more
or less as a strange “multi-hot” indexing mecha-
nism. And on the other hand, initialization with
a small variance or even all zeros leaves the neu-60



ral network free choice over the utilization of the
embedding space.

We support our hypothesis as follows.

• We examine the embedding space on the per-
formance in lexical relations between words,
If our hypothesis is plausible, low-variance
embeddings will perform better at represent-
ing these relations.

• We run an experiment with non-trainable
fixed random initialization to demonstrate the
ability of the neural network to overcome
broken embeddings and to learn the informa-
tion about words in its deeper hidden layers.

5.1 Lexical relations

Recent work on word embeddings (Vylomova et
al., 2016; Mikolov et al., 2013) has shown that
simple vector operations over the embeddings are
surprisingly effective at capturing various seman-
tic and morphosyntactic relations, despite lacking
explicit supervision in these respects.

The testset by Mikolov et al. (2013) contains
“questions” defined as v(X) − v(Y ) + v(A) ∼
v(B). The well-known example involves predict-
ing a vector for word ‘queen’ from the vector com-
bination of v(king) − v(man) + v(woman). This
example is a part of “semantic relations” in the test
set, called opposite-gender. The dataset contain
another 4 semantic relations and 9 morphosyn-
tactic relations such as pluralisation v(cars) −
v(car) + v(apple) ∼ v(apples).

Kocmi and Bojar (2016) revealed the sparsity
of the testset and presented extended testset. Both
testsets are compatible and we use them in combi-
nation.

Note that the performance on this test set is af-
fected by the vocabulary overlap between the test
set and the vocabulary of the embeddings; ques-
tions containing out-of-vocabulary words cannot
be evaluated. This is the main reason, why we
trained all tasks on the same training set and with
the same vocabulary, so that their performance in
lexical relations can be directly compared.

Another lexical relation benchmark is the word
similarity. The idea is that similar words such as
‘football’ and ‘soccer’ should have vectors close
together. There exist many datasets dealing with
word similarity. Faruqui and Dyer (2014) have
extracted words similarity pairs from 12 different

Initialization MT en-cs LM LEM
N (0, 10) 0.0; 0.3 0.0; 0.3 0.0; 0.3
N (0, 1) 0.0; 0.4 1.4; 3.5 0.0; 0.3
N (0, 0.1) 1.2; 23.5 5.5; 15.2 0.0; 0.8
N (0, 0.01) 2.0; 29.9 6.9; 19.4 0.1; 32.7
N (0, 0.001) 2.1; 31.4 6.7; 18.2 0.3; 33.3
Zeros 1.6; 29.5 6.0; 17.5 0.2; 31.1
Ones 0.5; 16.6 5.3; 9.3 0.1; 31.0
He init. 1.4; 28.9 7.7; 18.3 0.1; 32.6
Xavier init. 1.5; 29.5 7.4; 18.2 0.1; 32.7
Word2Vec on trainset* 22.3; 48.9
Word2Vec official* 81.3; 70.7
GloVe official* 12.3; 60.1

Table 3: The accuracy in percent on the (seman-
tic; morphosyntactic) questions. We do not re-
port TAG since its accuracy was less than 1% on
all questions. *For comparison, we present results
of Word2Vec trained on our training set and offi-
cial trained embeddings before applying them on
training of particular task.

Initialization MT en-cs LM TAG LEM
N (0, 10) 3.3 2.2 3.6 2.6
N (0, 1) 15.7 11.8 3.5 2.7
N (0, 0.1) 56.7 32.7 6.9 2.8
N (0, 0.01) 62.5 41.0 12.8 4.7
N (0, 0.001) 59.3 37.4 12.1 2.4
Zeros 57.9 37.4 12.8 3.5
Ones 34.0 19.3 11.4 4.3
He init. 58.2 37.4 12.3 4.2
Xavier init. 58.3 37.5 12.3 2.7

Table 4: Spearman’s correlation ρ on word simi-
larities. The results are multiplied by 100.

corpora and created an interface for testing the em-
beddings on the word similarity task.8

When evaluating the task, we calculate the sim-
ilarity between a given pair of words by the co-
sine similarity between their corresponding vector
representation. We then report Spearmans rank
correlation coefficient between the rankings pro-
duced by the embeddings against human rank-
ings. For convenience, we combine absolute val-
ues of Spearman’s correlations from all 12 Faruqui
and Dyer (2014) testsets together as an average
weighted by the number of words in the datasets.

The last type of relation we examine are the
nearest neighbors. We illustrate on the TAG task
how the embedding space is clustered when vari-
ous initializations are used. We employ the Prin-
cipal component analysis (PCA) to convert the
embedding space of |E| dimensions into two-
dimensional space.

Table 3 reflects several interesting properties
8http://wordvectors.org/61



Figure 2: A representation of words in the trained embeddings for TAG task projected by PCA. From left
to right it shows trained embeddings for N (0, 1), N (0, 0.1), N (0, 0.01), N (0, 0.001) and zeros. Note
that except of the first model all of them reached a similar performance on the TAG task.

about the embedding space. We see task-specific
behavior, e.g. TAG not learning any of the tested
relationships whatsoever or LM being the only task
that learned at least something of semantic rela-
tions.

The most interesting property is that when in-
creasing the variance of initial embedding, the
performance dramatically drops after some point.
LEM reveals this behavior the most: the network
initialized by normal distribution with standard
deviation of 0.1 does not learn any relations but
still performs comparably with other initialization
methods as presented in Table 1. We ran the
lemmatization experiments once again in order to
confirm that it is not only a training fluctuation.

This behavior suggests that the neural network
can work around broken embeddings and learn im-
portant features within other hidden layers instead
of embeddings.

A similar behavior can be traced also in the
word similarity evaluation in Table 4, where mod-
els are able to learn to solve their tasks and still
not learn any information about word similarities
in the embeddings.

Finally, when comparing the embedded space
of embeddings as trained by TAG in Figure 2, we
see a similar behavior. With lower variance in
embeddings initialization, the learned embeddings
are more clearly separated.

This suggests that when the neural network has
enough freedom over the embeddings space, it
uses it to store information about the relations be-
tween words.

5.2 Non-trainable embeddings

To conclude our hypothesis, we demonstrate the
flexibility of a neural network to learn despite a
broken embedding layer.

In this experiment, the embeddings are fixed

Initialization MT en-cs LM TAG LEM
N (0, 10) 7.28 BLEU 79.44 47.3 % 85.5 %
N (0, 1) 8.46 BLEU 78.68 87.1 % 94.0 %
N (0, 0.01) 6.84 BLEU 82.84 63.2 % 91.1 %
Word2Vec 8.71 BLEU 60.23 88.4 % 94.1 %

Table 5: The results of the experiment when
learned with non-trainable embeddings.

and the neural network cannot modify them during
the training process. Therefore, it needs to find a
way to learn the representation of words in other
hidden layers.

As in Section 4.1, we train models for 3M ex-
amples for TAG and LEM and for over 25M exam-
ples for MT and LM.

Table 5 confirms that the neural network is flex-
ible enough to partly overcome the problem with
fixed embeddings. For example, MT initialized
withN (0, 1) reaches the score of 8.46 BLEU with
fixed embeddings compared to 9.81 BLEU for the
same but not fixed (trainable) embeddings.

When embeddings are fixed at random values,
the effect is very similar to embeddings with high-
variance random initialization. The network can
distinguish the words through the crippled embed-
dings but has no way to improve them. It thus pro-
ceeds to learn in a similar fashion as with one-hot
representation.

6 Conclusion

In this paper, we compared several initializa-
tion methods of embeddings on four different
tasks, namely: machine translation (RNN), lan-
guage modeling (RNN), POS tagging (RNN) and
lemmatization (CNN).

The experiments indicate that pretrained em-
beddings converge faster than random initializa-
tion and that they reach a slightly better final per-
formance.62



The examined random initialization methods do
not lead to significant differences in the perfor-
mance as long as the initialization is within rea-
sonable variance (i.e. standard deviation smaller
than 0.1). Higher variance apparently prevents the
network to adapt the embeddings to its needs and
the network resorts to learning in its other free pa-
rameters. We support this explanation by showing
that the network is flexible enough to overcome
even non-trainable embeddings.

We also showed a somewhat unintuitive result
that when the neural network is presented with em-
beddings with a small variance or even all-zeros
embeddings, it utilizes the space and learns (to
some extent) relations between words in a way
similar to Word2Vec learning.
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monkey: An open-source tool for sequence learn-
ing. The Prague Bulletin of Mathematical Linguis-
tics, 107:5–17.

Felix Hill, Kyunghyun Cho, Sébastien Jean, and
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