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Abstract

The issue of privacy has always been a concern when clinical texts are used for research pur-
poses. Personal health information (PHI) (such as name and identification number) needs to be
removed so that patients cannot be identified. Manual anonymization is not feasible due to the
large number of clinical texts to be anonymized. In this paper, we tackle the task of anonymizing
clinical texts written in sentence fragments and which frequently contain symbols, abbreviations,
and misspelled words. Our clinical texts therefore differ from those in the i2b2 shared tasks
which are in prose form with complete sentences. Our clinical texts are also part of a structured
database which contains patient name and identification number in structured fields. As such,
we formulate our anonymization task as spelling variant detection, exploiting patients’ personal
information in the structured fields to detect their spelling variants in clinical texts. We success-
fully anonymized clinical texts consisting of more than 200 million words, using minimum edit
distance and regular expression patterns.

1 Introduction

Clinical discharge summaries are an essential source of information to facilitate medical research. How-
ever, they contain patients’ personal health information (PHI) which, if disclosed, would compromise
patients’ privacy. Various techniques have been applied to create de-identification systems and they
have performed well (Uzuner et al., 2007). These de-identifier systems utilize either machine learning
approaches such as support vector machines (Uzuner et al., 2008), conditional random fields (Wellner
et al., 2007), and decision trees (Szarvas et al., 2007), or rule-based approaches with pattern matching
(Douglass et al., 2004).

In this paper, we tackle the task of anonymizing clinical discharge summaries written in English from
the National University Hospital in Singapore. Our work is novel in the following aspects: (1) Our
clinical discharge summaries are written in sentence fragments and they frequently contain symbols, ab-
breviations, and misspelled words, unlike the clinical texts in the i2b2 shared tasks which are in prose
form with complete sentences. (2) We treat anonymization as a spelling variant detection task, by ex-
ploiting patient health information stored in structured fields. (3) We have applied our anonymization
algorithm on actual hospital discharge summaries containing more than 200 million words. Manual
evaluation on a sample test set shows that our algorithm achieves very high recall.

2 Task Description

The corpus of hospital discharge summaries used in this paper is obtained from the National University
Hospital, spanning a period of ten years. The patients in these discharge summaries came from a variety
of countries with varied names from different races and cultures. In all, there are about 570,000 discharge
summaries with a total size of more than 700MB. Each discharge summary has an average of 400 word
tokens. Given a discharge summary, the anonymization task is to remove patients’ PHI which includes
the following items: names of patients; identification numbers; telephone, fax, and pager numbers;

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

99



geographical locations; dates; and names of doctors and hospitals. It is highly improbable that a patient
can be identified without the personal information listed above. Any PHI detected will be replaced by
an appropriate surrogate, e.g., a patient name will be replaced by PNAME, a patient identification number
will be replaced by PID, etc.

As mentioned earlier, our discharge summaries are written in sentence fragments and organized in
bullet points. They frequently contain symbols, abbreviations, and misspelled words. As such, our
discharge summaries are significantly different from those in the i2b2 shared tasks in 2006 (Uzuner et
al., 2007) and 2014 (Stubbs et al., 2015), which are in prose form with complete sentences. Samples of
discharge summaries from our corpus and from the i2b2 shared task in 2006 are given below.

This 68 year old female had rheumatic
fever in the past , and has had
chronic atrial fibrillation .

She has had progressive heart failure
and an evaluation demonstrated
worsening mitral stenosis with
severe pulmonary hypertension .

Because of her deteriorating status ,
she underwent prior cardiac
catheterization , which confirmed
severe mitral stenosis with
secondary tricuspid valve
regurgitation due to pulmonary
hypertension .

She was referred for valve surgery .
She had undergone a previous nasal

arterial embolization for treatment
of recurrent epistaxis .

She had a partial gastrectomy in 1972 .
Her MEDICATIONS ON ADMISSION included

Coumadin , digoxin , 0.125 , qD ,
Lasix , 40 , q.i.d. , and Vanceril
inhaler .

A sample discharge summary snippet from the
i2b2 de-identification challenge in 2006.

33/Chinese/M
PMHX:
- anemia
- previously on iron supplement
- nil OGD done

Currently c/o:
epigastric pain 1500H
nil nasuea / vomiting
nil fever noted
nil dysuria / hematuria
no changes in bowel movement
no LOW/LOA
no chest pain or SOB

O/E on admission:
Pt alert, attentive
CVS: PR 78/min, Bp 120/70 S1S2 no

murmurs, TWC 14 UC10 - nad
soft abdo, normoactivew BS. direct and

rebound tenderness RIF. nil guarding
. nil rebound

Imperssion: Acute appendicitis
Pt was sent for op

A sample discharge summary snippet from our
hospital.

In our discharge summary snippet above, the words nasuea and Imperssion are misspelled words.
Pt, PMHX, LOW, and LOA are abbreviations for patient, past medical history, loss of weight, and loss of
appetite respectively. As such, our discharge summaries pose additional challenges to anonymization
and to subsequent processing by downstream natural language processing modules like part-of-speech
tagging, coreference resolution, etc.

In addition, our hospital discharge summaries are part of a structured database which contains patients’
PHI such as names, identification numbers, phone numbers, etc. in structured fields. As such, we
exploit the meta-data in these structured fields and formulate our anonymization task as spelling variant
detection. That is, the objective of our anonymization task is to find spelling variants of patient names
and other PHI items and replace them with appropriate anonymized surrogates. This is in contrast to the
i2b2 shared tasks, where external structured information is not utilized. Since hospitals are required to
keep track of patients’ PHI in addition to their discharge summaries, admission notes, etc, one can expect
structured PHI items of a patient to be available in a real-world setting when processing the discharge
summary of a patient. As such, the anonymization task that we address is a more realistic one.

3 Anonymization Algorithm

Our anonymization algorithm uses regular expression matching and the minimum edit distance algorithm
to identify spelling variants, assuming that patients’ PHI stored in the structured database is correct.
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3.1 Patient Name

Patient name is the most important personal information present in a discharge summary. Even a mis-
spelled patient name may be used to trace and identify a patient. A patient’s full name associated with
a discharge summary is first taken from the structured field in the database. The full name is first split
into individual name tokens. Each word in a discharge summary is compared against each name token
of the patient. The minimum edit distance algorithm (Wagner and Fischer, 1974) is used to compute the
minimum edit distance between a name token n from the structured field and a candidate word w in the
discharge summary. We set the insertion, deletion, and replacement cost to 1. The edit distance ratio R
is computed as d

min(|n|,|w|) , where d is the minimum edit distance of n and w. Since a longer name has a
higher probability of being misspelled than a shorter one, we use R to take into account the length of a
string. If R is less than a specified threshold, the current candidate word w will be taken as the patient’s
name, and will be anonymized and replaced by a surrogate. We set the threshold to be 0.33.

A person’s name is often preceded by an honorific (a title prefixing a person’s name). As such, we
replace the word after an honorific by a surrogate. The list of honorifics used in our anonymization
algorithm is as follows: mr, mrs, miss, ms, madam, mdm, lady, sir, col, dr,
doctor, a/prof, e/prof, professor, prof, general, gen, senator, sen.
By detecting the honorifics, our anonymization algorithm is able to detect names that might otherwise
be missed by the minimum edit distance algorithm.

3.2 Identification Number and Contact Number

To detect a patient’s identification number and contact numbers, we make use of regular expressions
that capture the generic formats of patients’ identification numbers and contact numbers. The format of
patient identification numbers in our hospital consists of fixed numbers of letters and digits arranged in
a fixed order, which can be readily detected by a regular expression. Similarly, the format of contact
numbers consists of digits interspersed with space or dash (“-”) characters, which again can be readily
detected by a regular expression.

3.3 Date

Anonymization of dates is challenging because there are many possible date formats. Days can be written
in single or double-digit. Months can be written in single-digit, double-digit, short name (e.g., Jan), or
long name (e.g., January). Years can be written in double-digit or four-digit. The delimiters allowed
between day, month, and year include dash (-), comma (,), slash (/), colon (:), and white space (space
and tab). Therefore we have created regular expressions for all possible combinations of the date format
to cover all possibilities: day/month/year, month/day/year, year/day/month, year/month/day, day/month,
month/day, year/month, and month/year.

3.4 Doctor’s Name, Hospital’s Name, and Geographical Location

Most doctors’ names are handled by patient name anonymization above due to the common occurrences
of “dr” or “prof” preceding a doctor’s name. In addition, we obtain a list of names of doctors, hospitals,
and geographical locations in Singapore. For each entry in the list, we check if it is present in a discharge
summary and replace it by a surrogate if found.

4 Evaluation

One key advantage of our anonymization algorithm that relies on regular expression matching and the
minimum edit distance algorithm is that manual annotation of training data is not required, unlike in a
machine learning approach. To evaluate the performance of our anonymization algorithm, 100 discharge
summaries were randomly selected as the test set. The accuracy of our anonymization algorithm is
reported in Table 1.

1Patients’ identification numbers and contact numbers
2Names of doctors, hospitals, and geographical locations
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Patient name ID num1 Date Other names2 Overall
Recall 100 100 100 93.14 97.35
Precision 85.94 100 66.03 76.71 72.67
F1-score 92.44 100 79.50 84.13 83.22
PHI count 110 29 418 350 907

Table 1: Token-level evaluation of our anonymization algorithm (in %).

Our anonymization algorithm has achieved good performance. In particular, it achieves 100% recall
on anonymizing patients’ names, identification numbers, and contact numbers. We favor recall over
precision, since it is highly critical that personal information of patients be completely anonymized, at
the cost of some false positives. The anonymization algorithm fails to detect some other names, such
as doctors’ names which are not present in the given list of doctors’ names. Most of the false positives
are contributed by some common names of doctors, and how time duration is written in the discharge
summaries. To illustrate, consider the following sentence fragment: vomiting 2/7, LOW 1/12.
2/7 is falsely detected as a date (meaning 2 days). 1/12 is falsely detected as a date (meaning 1 month).
LOW is falsely detected as a doctor’s name, because LOW is a common family name in Singapore.

Our anonymization algorithm runs efficiently. It anonymizes 7 discharge summaries per second, and
takes 21.7 hours to anonymize the whole corpus of discharge summaries consisting of more than 200
million words on a PC with 3.4 GHz processor in a single thread.

We have also attempted to use a machine learning approach, in particular a maximum entropy classi-
fier, to carry out anonymization. The classifier uses the edit distance ratio as the main feature, and other
additional features such as part-of-speech tags, named entity tags, binary features about the presence of a
preceding honorific and whether the current word is an English word. However, preliminary experiments
indicate that the maximum entropy classifier does not outperform our current anonymization algorithm
of regular expression matching and the minimum edit distance algorithm. As such, we adopt our current
algorithm which is simpler and requires no annotated training data.

There were several prior systems which focused on the detection or removal of certain types of PHI
such as patient names (Taira et al., 2002), or both patient and doctor names (Thomas et al., 2002).
However, they did not exploit knowledge of external structured information like patient names or other
PHI to be removed. There were also several studies that used patients’ structured fields to perform
de-identification using regular expressions and lexical look-up tables (Neamatullah et al., 2008), string
similarity algorithm to detect typographical errors (Friedlin and McDonald, 2008), and a combination of
rule-based and machine learning approaches for de-identification (Ferrández et al., 2013). However, the
performance of these systems cannot be directly compared to ours because of different test data.

5 Conclusion

In this paper, we tackle the task of anonymizing discharge summaries written in sentence fragments and
which frequently contain symbols, abbreviations, and misspelled words. Our discharge summaries are
therefore substantially different from the discharge summaries dealt with in the i2b2 shared tasks. We
also exploit PHI of patients present in structured database fields and present a novel approach that treats
anonymization as spelling variant detection. Our anonymization algorithm effectively and efficiently
anonymizes more than 200 million words of actual hospital discharge summaries, achieving a very high
recall.
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