
Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, pages 32–41,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Distributed representation and estimation of WFST-based n-gram models

Cyril Allauzen, Michael Riley and Brian Roark
Google, Inc.

{allauzen,riley,roark}@google.com

Abstract

We present methods for partitioning a
weighted finite-state transducer (WFST)
representation of an n-gram language
model into multiple blocks or shards, each
of which is a stand-alone WFST n-gram
model in its own right, allowing process-
ing with existing algorithms. After in-
dependent estimation, including normal-
ization, smoothing and pruning on each
shard, the shards can be reassembled into a
single WFST that is identical to the model
that would have resulted from estimation
without sharding. We then present an ap-
proach that uses data partitions in conjunc-
tion with WFST sharding to estimate mod-
els on orders-of-magnitude more data than
would have otherwise been feasible with
a single process. We present some num-
bers on shard characteristics when large
models are trained from a very large data
set. Functionality to support distributed
n-gram modeling has been added to the
open-source OpenGrm library.

1 Introduction

Training n-gram language models on ever in-
creasing amounts of text continues to yield large
model improvements for tasks as diverse as ma-
chine translation (MT), automatic speech recogni-
tion (ASR) and mobile text entry. One approach
to scaling n-gram model estimation to peta-byte
scale data sources and beyond, is to distribute
the storage, processing and serving of n-grams
(Heafield, 2011). In some scenarios – most no-
tably ASR – a very common approach is to heav-
ily prune models trained on large resources, and
then pre-compose the resulting model off-line with
other models (e.g., a pronunciation lexicon) in or-
der to optimize the model for use at time of first-
pass decoding (Mohri et al., 2002). Among other

things, this approach can impact the choice of
smoothing for the first-pass model (Chelba et al.,
2010), and the resulting model is generally stored
as a weighted finite-state transducer (WFST) in or-
der to take advantage of known operations such as
determinization, minimization and weight pushing
(Allauzen et al., 2007; Allauzen et al., 2009; Al-
lauzen and Riley, 2013). Even though the result-
ing model in such scenarios is generally of mod-
est size, there is a benefit to training on very large
samples, since model pruning generally aims to
minimize the KL divergence from the unpruned
model (Stolcke, 1998).

Storing such a large n-gram model in a single
WFST prior to model pruning is not feasible in
many situations. For example, speech recognition
first pass models may be trained as a mixture of
models from many domains, each of which are
trained on billions or tens of billions of sentences
(Sak et al., 2013). Even with modest count thresh-
olding, the size of such models before entropy-
based pruning would be on the order of tens of
billions of n-grams.

Storing this model in the WFST n-gram format
of the OpenGrm library (Roark et al., 2012) allo-
cates an arc for every n-gram (other than end-of-
string n-grams) and a state for every n-gram prefix.
Even using very efficient specialized n-gram rep-
resentations (Sorensen and Allauzen, 2011), a sin-
gle FST representing this model would require on
the order of 400GB of storage, making it difficult
to access and process on a single processor.

In this paper, we present methods for the dis-
tributed representation and processing of large
WFST-based n-gram language models by parti-
tioning them into multiple blocks or shards. Our
sharding approach meets two key desiderata: 1)
each sub-model shard is a stand-alone “canonical
format” WFST-based model in its own right, pro-
viding correct probabilities for a particular subset
of the n-grams from the full model; and 2) once n-
gram counts have been sharded, downstream pro-

32

ϵ

...

 the

ϵ

ϵ
the

 end xyz

 xyz ϵ
 end

ϵ

 end

x

x

ϵ

<S> the

 end
<S>

end

 the
 the

 xyz

...

Figure 1: Schematic of canonical WFST n-gram format,
unweighted for simplicity. Each state shows the history it
encodes for convenience (they are actually unlabeled). Final
states are denoted with double circle.

cessing such as model normalization, smoothing
and pruning, can occur on each shard indepen-
dently. Methods, utilities and convenience scripts
have been added to the OpenGrm NGram library1

to permit distributed processing. In addition to
presenting design principles and algorithms in this
paper, we will also outline the relevant library
functionality.

2 Canonical WFST n-gram format

We take as our starting point the standard ‘canon-
ical’ WFST n-gram model format from Open-
Grm, which is presented in Roark et al. (2012)
and at ngram.opengrm.org, but which we summa-
rize briefly here. Standard n-gram language mod-
els can be presented in the following well-known
backoff formulation:

P(w | h) =
{

P̂(w | h) if c(hw) > 0
α(h) P(w | h′) otherwise

(1)

where w is the word (or symbol) being predicted
based on the previous history h, and h′ is the
longest proper suffix of h (or ε if h is a single
word/symbol). The backoff weight α(h) ensures
that this is a proper probability distribution over
symbols in the vocabulary, and is easily calculated
based on the estimates P̂ for observed n-grams.
Note that interpolated n-gram models also fit this
formulation, if pre-interpolated.

Figure 1 presents a schematic of the WFST n-
gram model format that we describe here. The
WFST format represents n-gram histories h as
states2, and words w following h as arcs leaving

1ngram.opengrm.org
2For convenience, we will refer to states as encoding (or

representing) a history h – or even just call the state h –
though there is no labeling of states, just arcs.

the state that encodes h. There is exactly one uni-
gram state (labeled with ε in Figure 1), which rep-
resents the empty history. For every state h in the
model other than the unigram state, there is a spe-
cial backoff arc, labeled with ε, with destination
state h′, the backoff state of h. For an n-gram
hw, the arc labeled with w leaving history state
h will have as destination the state hw if hw is a
proper prefix of another n-gram in the model; oth-
erwise the destination will be h′w. The start state
of the model WFST represents the start-of-string
history (typically denoted <S>), and the end-of-
string (</S>) probability is encoded in state final
costs. Neither of these symbols labels any arcs in
the model, hence they are not required to be part of
the explicit vocabulary of the model. Costs in the
model are generally represented as negative log
counts or probabilities, and the backoff arc cost
from state h is -log α(h).

With the exception of the start and unigram
states, every state h in the model is the destina-
tion state of an n-gram transition originating from
a prefix history, which we will term an ‘ascend-
ing’ n-gram transition. If h = w1 . . . wk is a
state in the model (k > 0 and if k = 1 then
w1 6= <S>), then there also exists a state in the
model h̄ = w1 . . . wk−1 and a transition from h̄
to h labeled with wk. We will call a sequence
of such ascending n-gram transitions an ascend-
ing path, and every state in the model (other than
unigram and start) can be reached via a single as-
cending path from either the unigram state or the
start state. This plus the backoff arcs make the
model fully connected.

3 Sharding count n-gram WFSTs

3.1 Model partitioning

Our principal interest in breaking (or sharding)
this WFST representation into smaller parts lies in
enabling model estimation for very large training
sets by allowing each shard to be processed (nor-
malized, smoothed and pruned) as independently
as possible. Further, we would like to simply use
existing algorithms for each of these stages on the
model shards. To that end, all of the arcs leaving a
particular state must be included in the same shard,
hence our sharding function is for states in the au-
tomaton, and arcs go with their state of origin. We
shard the n-gram WFST model into a collection of
n-gram WFSTs by partitioning the histories into
intervals on a colexicographic ordering defined be-
low. The model’s symbol table maps from sym-

33

bols in the model to unique indices that label the
arcs in the WFST. We use indices from this sym-
bol table to define a total order <V on our vocab-
ulary augmented with start-of-string token which
is assigned index 0.3 We then define the colexi-
cographic (or reverse lexicographic) order < over
V ∗ recursively on the length of the sequences as
follow. For all x, y 6= ε, we have ε < x and

x < y iff
{
x|x| <V y|y| or,
x|x| = y|y| and x̄ < ȳ

(2)

where x̄ denotes the longest prefix of x distinct
from x itself. The colexicographic interval [x, y)
then denotes the set of sequences z such that x ≤
z < y.

For example, assuming symbol indices the=1
and end=2, the colexicographic ordering of the
states in Figure 1 is:

Colex. State histories
Order (as words) (as indices)

0 ε ε
1 <S> 0
2 the 1
3 <S> the 0 1
4 end 2
5 the end 1 2

If we want, say, 4 shards of this model (at least,
the visible part in the schematic in Figure 1), we
can partition the state histories in 4 intervals; for
example:

{[ε, 1), [1, 2), [2, 1 2), [1 2, 3)} =
{{ε, 0}, {1, 0 1}, {2}, {1 2}}.

By convention, we write the interval [x, y) as
x1 . . . xl : y1 . . . ym. Thus, the above partition
would be written as:4

0 : 1
1 : 2
2 : 1 2

1 2 : 3

While this partitions the states into subsets, it re-
mains to turn these subsets into stand-alone, con-
nected WFSTs with the correct topology to al-
low for direct use of existing language model es-
timation algorithms on each shard independently.
For this to be the case, we need to: (1) be

3Not to be confused with the convention that ε has index
0 in FST symbol tables.

4We omit the empty history ε from the interval specifica-
tion since it is always assigned to the first interval.

ϵ
ϵ

ϵ
the

 xyz
 xyz

 end

ϵ

 end

x

x

ϵ

<S> the

 end

end

 the

 xyz

Figure 2: Schematic of a completed shard of the model in
Figure 1. The state corresponding to the history ‘the end’ is
the only state strictly in-context for this shard.

able to reach each state via the correct ascending
path from the start or unigram state, with correct
counts/probabilities; (2) have backoff states of all
in-shard states, along with their arcs, for calculat-
ing backoff costs; and (3) correctly assign all arc
destinations within each new WFST.

3.2 Model completion

Given a set of states to include in a context shard,
the shard model must be ‘completed’ to include
all of the requisite states and arcs needed to con-
form to the canonical n-gram topology. We step
through each of the key requirements in turn. We
refer to those states that fall within the context in-
terval as ‘strictly in-context’. Figure 2 shows a
schematic of the shard model that results for the
context 1 2 : 3, which we will refer to when
illustrating particular requirements. Only the state
corresponding to ‘the end’ is strictly in-context for
this particular shard. All states that are suffixes
of strictly in-context states are also referred to as
in-context (though not strictly so), since they are
needed for proper normalization – i.e., calculation
of α(h) in the recursive n-gram model definition
in equation 1. Hence, the state corresponding to
‘end’ in Figure 2 is in-context and is included in
the shard, as is the unigram state.

The start state and all states and transitions on
ascending paths from the start and unigram states
to in-context states must be included, so that states
that are in-context can be reached from the start
state. Thus, the state corresponding to ‘the’ in Fig-
ure 2 must be included, along with its arc labeled
with ‘end’, since they are on the ascending path to
‘the end’, which is strictly in-context.

For every state in the model, the backoff arc
should allow transition to the correct backoff state.
Finally, for all arcs (labeled with w) leaving states
h that have been included in the shard model, their

34

destination must be the longest suffix of hw that
has been included as a state in the shard model.
The arcs labeled with ‘xyz’ in Figure 2 all point
to the unigram state, since no states representing
histories ending in ‘xyz’ are in the shard model.

For the small schematic example in Figures 1
and 2, there is not much savings from sharding af-
ter completing the shard model: only one state and
four arcs from the observed part of the model in
Figure 1 were omitted in the schematic in Figure 2.
And it is clear from the construction that there will
be some redundancy between shards in the states
and arcs included when the shard model is com-
pleted. But for large models, each shard will be a
small fraction of the total model. Note that there
is a tradeoff between the number of shards and the
amount of redundancy across shards.

Another way to view the shard model in Fig-
ure 2 relative to the full model in Figure 1 is as a
pruned model, where the arcs and states that were
pruned are precisely those that are not needed
within that particular shard. This perspective is
useful when discussing distributed training in the
next section.

4 Distributed training of n-gram models

When presenting model sharding in the previous
section, we had access to the specific states in the
model schematic, and defined the contexts accord-
ingly. When training a model from data at the
scale that requires distributed processing, the full
model does not exist to inspect and partition. In-
stead, we must derive the context sharding in some
fashion prior to training the model. We will thus
break this section into two parts: first, deriving
context intervals for model sharding; then estimat-
ing models given context intervals.

4.1 Deriving context intervals

Given a large corpus, there are a couple of ways
to approach efficient calculation of effective con-
text intervals. Effective in this case is balanced,
i.e., one would like each sharded model to be of
roughly the same size, so that the time for model
estimation is roughly commensurate across shards
and lagging shards are avoided.

The first approach is to build a smaller footprint
model than the desired model, which would take
a fraction of the time to train, then derive the con-
texts from that model. For example, if one wanted
to train a 5-gram model from a billion word cor-
pus, then one may derive context intervals based

on trigram model trained by sampling one out of
every hundred sentences from the corpus. Given
that more compact model, it is relatively straight-
forward to examine the storage required for each
state and choose a balanced partition accordingly.
At higher orders and with the full sample, the size
of each shard may ultimately differ, but we have
found that estimating relative shard sizes based on
lower-order sampled models is effective at provid-
ing functional context intervals. See section 5 for
specific OpenGrm NGram library functionality re-
lated to context interval estimation.

Another method for deriving context intervals
is to accumulate the set of n-grams into a large
collection, sort it by history in the same colexico-
graphic order as is used to define the context in-
tervals, and then take quantiles from that sorted
collection. This can lead to more balanced shards
than the previous method, though efficient meth-
ods for distributed quantile extraction from collec-
tions of that sort is beyond the scope of this paper.

4.2 Estimating models given context intervals

Given a definition of k context intervals C1 . . . Ck,
we can train sharded models on very large data sets
as follows:

1. Partition data into m data shards D1 . . . Dm

2. For each data shard Di

(a) Count the n-grams from Di and build
full WFST n-gram representation Ti

(b) Split Ti into k shard models Ti1 . . . Tik

3. For each context interval Cj , merge counts
T·j from all data shards: Fj = Mergem

i=1(Tij)

4. Perform these global operations on collection
F1 . . . Fk to prepare for model estimation:
(a) Transfer correct counts as needed across

shards (see Section 4.2.4 below).
(b) Derive resources such as count-of-

counts by aggregating across shards.

5. Normalize, smooth, prune each Fj as needed:
Mj = MakeModel(Fj)

6. Merge model shards: M = Mergek
j=1(Mj)

We now go through each of these 6 stages one by
one in the following sub-sections.

4.2.1 Partition data
Given a large text corpus, this simply involves
placing each string into one of m separate collec-
tions, preferably of roughly equal size.

35

4.2.2 Count and split data shards
For each data shard Di, perform n-gram counting
exactly as one would in a non-distributed scenario.
(See Section 5 for specific commands within the
OpenGrm NGram library.) This results in an n-
gram count WFST Ti for each data shard. Us-
ing the context interval specifications C1 . . . Ck

we then split Ti into k shard models. Because we
have the full model Ti, we can determine exactly
which states and arcs need to be preserved for each
context interval, and prune the rest away.

4.2.3 Merge sharded models
For each context interval Cj , there will be a shard
model Tij for every data shard Di. Standard
count merging will yield the correct counts for all
in-context n-grams and the correct overall model
topology, i.e., every state and arc that is required
will be there. However, n-grams that are not in-
context may not have the correct count, since they
may have occurred in a data shard but were not in-
cluded in the context shard due to the absence of
any in-context n-grams for which it is a prefix.

To illustrate this point, consider a scenario with
just two data shards, D1 and D2, and a context
shardCj that only includes the n-gram history ‘foo
bar baz’ strictly in-context. Suppose ‘foo bar’ oc-
curs 10 times inD1 and also 10 times inD2, while
‘foo bar baz’ occurs 3 times in D1 but doesn’t oc-
cur at all in D2. Recall that states and ascending
arcs that are not in-context are only included in
the shard model as required to ascend to the in-
context states. In the absence of ‘foo bar baz’ in
T2j , the n-gram arc and state corresponding to ‘foo
bar’ will not be included in that shard, despite hav-
ing occurred 10 times in D2. When the counts in
T1j and T2j are merged, ‘foo bar’ will be included
in the merger, but will only have counts coming
from T1j . Hence, rather than the correct count of
20, that n-gram will just have a count of 10. The
correct count of ‘foo bar’ is only guaranteed to be
found in the shard for which it is in-context.

To get the correct counts in every shard that
needs them, we must perform a transfer opera-
tion to pass correct counts from shards where n-
grams are strictly in-context to shards where they
are needed as prefixes of other n-grams.

4.2.4 Global operations on the collection
Transfer: As mentioned above, count merging of
sharded count WFSTs across data shards yields
correct counts for in-context states, as well as the
correct WFST topology – i.e., all needed n-grams

are included – but is not guaranteed to have the
correct counts of n-grams that are not in-context.
For each shard Fi, however, we know which n-
grams we need to get the correct count for, and
can easily calculate the context shard that these n-
grams fall into. Using that information, a transfer
of correct counts is effected via the following three
stages:

1. For each shard Fi, for each Fj (j 6=i), prune
Fi to only those n-grams that are strictly in-
context for context Cj , and send the resulting
Fij to shard Fj to give correct counts.

2. For every shard Fj , provide correct counts for
each incoming F·j requiring them and return
to the appropriate shard Fi.

3. For every shard Fi, update counts from in-
coming Fi·.

Only needed n-grams are processed in this trans-
fer algorithm, which we will term the “standard”
transfer algorithm in the experimental results. Let
Qi be the set of states for shard Fi. Each state
is an n-gram of length less than n (where n is
the order of the model) that must have its cor-
rect count requested from the shard where it is
strictly in context. This leads to a complexity of
O(n

∑k
i=1 |Qi|).

An alternative, which we will term the “by-
order” transfer algorithm, performs transfer of a
more restricted set of n-grams in multiple phases,
which occur in ascending n-gram order. Note that,
when transfer of correct counts for a particular n-
gram is requested, the correct counts for all pre-
fixes of that n-gram can also be collected at the
same time at no extra cost, provided the prefix
counts are correct in the shard where we request
them, even though the prefixes may or may not be
in-context. By processing in ascending n-gram or-
der, we can guarantee that the prefixes of requested
n-grams have already been updated to the correct
counts. If we can update the counts of n-gram
prefixes, we can defer the transfer of an out-of-
context n-gram’s count until an update is required.
The correct count of an out-of-context n-gram of
order n is thus only requested if one of the fol-
lowing two conditions hold: (1) its count may be
requested by another context shard from the cur-
rent context shard during the transfer phase of or-
der n+1; or (2) its count would not be transferred
at some order greater than n, hence must be trans-
ferred now to be correct at the end of transfer. The
former condition holds if the n-gram arc has an
origin state that is out-of-context and a destination

36

state that is strictly in-context. The latter condi-
tion holds if the n-gram arc’s origin state is out-of-
context, its destination state is in-context (though
not strictly in-context), and the n-gram is not a pre-
fix of any in-context state. We will call an n-gram
of order n that meets either of those conditions
“needed at order n”. Then, for each order n from
1 to the highest order in the model, transfer is car-
ried out by replacing step number 1 in the standard
transfer algorithm above with the following:

1. For each shard Fi, for each Fj (j 6=i), prune
Fi to only those n-grams that are strictly in-
context for context Cj , and are needed at or-
der n, along with all prefixes of such n-grams.
If the resulting Fij is non-empty, send it to
shard Fj to give correct counts.

The rest of transfer at order n proceeds as be-
fore. In this algorithm, a shard requests an n-gram
only if the destination state of its corresponding
n-gram arc is in-context. This leads to a complex-
ity inO(n

∑k
i=1 |Qc

i |) whereQc
i denotes the set of

states in shard Fi corresponding to in-context his-
tories for that shard. This is a complexity reduc-
tion from the standard transfer algorithm above,
since |Qi|/n < |Qc

i | < |Qi|.
Counts-of-counts: Deriving counts-of-count his-
tograms is key for certain smoothing methods
such as Katz (1987). Each shard Fi can pro-
duce a histogram from only those n-grams that
are strictly in-context, then the histograms can
be aggregated straightforwardly across shards to
produce a global histogram, since each n-gram is
strictly in-context in only one shard.

4.2.5 Process count shards
Given the correct counts in each of the count
shards Fi, we can proceed to use existing, stan-
dard n-gram processing algorithms to normalize,
smooth and prune each of the models indepen-
dently. These algorithms are linear in the size
of the model being processed. With some minor
exceptions, existing WFST-based language mod-
eling algorithms, such as those in the OpenGrm
NGram library, can be applied to each shard in-
dependently. We mention two such exceptions
in turn, both impacting the correct application of
model pruning algorithms after the model shard
has been normalized and smoothed.

First, whereas common smoothing algorithms
such as Katz (1987) and absolute discounting
(Ney et al., 1994) will properly discount and nor-
malize all n-grams in the model shard, Witten-
Bell smoothing (Witten and Bell, 1991) will yield

correct smoothed probabilities for in-context n-
grams, but for n-grams not in-context in the cur-
rent shard, the smoothed probabilities will not be
guaranteed to be correctly estimated. This is be-
cause Witten-Bell smoothing is defined in terms
of the number of words that have been observed
following a particular history, which in the WFST
encoding of the n-gram model is represented by
the number of arcs (other than the backoff arc)
leaving the history state (plus one if the state is
final). While for any in-context state h, all of the
arcs leaving the state will be present, some of the
other n-gram states that were included to create
the model topology – notably the states along the
ascending path to in-context states – will not typ-
ically have all of the arcs that they have in their
own shard. Hence the denominator in Witten-Bell
smoothing (the count of the state plus the number
of words observed following the history) cannot be
calculated locally, and the direct application of the
algorithm will end up with mis-estimated n-gram
probabilities along the ascending paths.

If no pruning is done, then only the in-context
probabilities matter, and merging can take place
with no issues (see the next section 4.2.6).

Pruning algorithms, however, such as relative
entropy pruning (Stolcke, 1998), typically use the
joint n-gram probability – P(hw) – when calcu-
lating the scores that are used to decide whether
to prune the n-gram or not. This joint probability
is calculated by taking the product of all ascend-
ing path conditional probabilities. If the ascend-
ing path probabilities are wrong, these scores will
also be wrong, and pruning will proceed in error.
For Katz and absolute discounting, the ascend-
ing probabilities are correct when calculated on
the shard independently of the other shards (when
given counts-of-counts); but Witten Bell will not
be immediately ready for pruning.

To get correct pruning for a sharded Witten-
Bell model, another round of the transfer algo-
rithm outlined in Section 4.2.4 is required, to re-
trieve the correct probabilities of ascending arcs in
each shard.

The second issue to note here arises when prun-
ing the model to have a particular number of de-
sired n-grams in the model. For example, in some
of the trials that we run in Section 6 we prune the
n-gram models to result in 100 million n-grams in
the final model. To establish a pruning threshold
that will result in a given total number of n-grams
across all shards, the shrinking score must be cal-

37

culated for every n-gram in the collection and then
these scores sorted to derive the right threshold.
This requires a process not unlike the counts-of-
counts aggregation presented in Section 4.2.4, yet
with a sorting of the collection rather than compi-
lation into a histogram.

Once all of the model shards have been normal-
ized, smoothed and pruned using standard WFST-
based n-gram algorithms, the shards can be re-
assembled to produce a single WFST.

4.2.6 Merge model shards
Merging the shard models into a single WFST n-
gram model is a straightforward special case of
general model merging, whereby two models are
merged into one. In general, model merging al-
gorithms of two WFST models with canonical n-
gram topology will: (a) result in a new model with
canonical n-gram topology; and (b) the n-gram
costs in the new model are some function of the
n-gram costs in the two models. If the models are
being linearly interpolated, then the n-gram proba-
bility will be calculated as λp1 + (1−λ)p2, where
pk comes from the kth model, and the n-gram cost
will be the negative log of that probability.5

To merge model shards M1 and M2, we must
know, for each state h, whether h is in-context for
M1 or M2. The n-gram cost in the merged model
is c2 if h is in-context for M2; and c1 otherwise,
where ck is the cost of the n-gram in Mk. If we
start with an arbitrary model shard and designate
that as M1, then we can merge each other shard
into the merged model in turn, and designate the
resulting merged model as M1 for a subsequent
merge. By the end of merging in every context, all
of the n-grams in the final model will have been
merged in, so they will all have received their cor-
rect probabilities. The resulting WFST will have
the same probabilities as it would if the model had
been trained in a single process.

5 OpenGrm distributed functionality

While most of these distributed functions will
likely be implemented in some kind of large, data-
parallel processing system6, such as MapReduce
(Dean and Ghemawat, 2008), these pipelines will
rely upon core OpenGrm NGram library functions
to count, make, prune and merge models. The

5Backoff arc costs can then be calculated in closed form.
6We have implemented an end-to-end pipeline, which

makes use of the OpenGrm NGram library, in Flume (Cham-
bers et al., 2010). Results in Section 6 were generated with
this pipeline.

OpenGrm NGram library now includes some dis-
tributed functionality, along with a convenience
script to illustrate the sort of approach we have de-
scribed in this paper.

Recall that the basic approach involves shard-
ing the data, counting n-grams on each data shard
separately, and then splitting the counts from each
data shard into context shards. Two command-
line utilities in OpenGrm provide functionality for
(1) defining context shards; and (2) splitting an n-
gram WFST based on given context shards. One
method described in Section 4.1 for deriving con-
text shards is to train a smaller model (e.g., lower
order and/or sampled from the full target training
scenario) and then derive balanced context shards
from that smaller model. For example, if we want
to train a 5-gram model on 1B words of text, we
might count7 trigrams from every 100th sentence,
yielding the n-gram count WFST 3g.fst. Then
the command line binary ngramcontext can make
use of the sampled counts to derive a balanced
sharding of the requested size:
ngramcontext --contexts=10 3g.fst >ctx.txt

The resulting text file (ctx.txt) will look
something like this:

0 : 18
18 : 307 35

307 35 : 70
70 : 147
...

as discussed in Section 3.1. Given these con-
text definitions, we can now use ngramsplit to
partition full count WFSTs derived from partic-
ular data shards. For example, suppose that
we counted 5-grams from data shard k, yielding
DS-k.5g-counts.fst. Then we can produce 10
count shards as follows:
ngramsplit --contexts=ctx.txt --complete \
DS-k.5g-counts.fst DS-k.5g-counts

which would result in 10 count shard WFSTs
DS-k.5g-counts.0000i for 0 ≤ i < 10. The
--complete flag ensures that all required n-
grams are included in the shard, not just those
strictly in-context. Once this has been done
for all data shards, the counts for each context
shard can be merged across the data shards, i.e.,
ngrammerge using the count merge method on
DS-*.5g-counts.0000i for all i.

As discussed in Section 4.2.4, once we have the
merged counts for each model shard, we must per-
form a transfer of the correct counts. This involves

7See Roark et al. (2012) for details on n-gram counting in
the OpenGrm library.

38

n-grams time (hours) to pct. in- largest to
Corpus target preproc. make, model context smallest
(words; sents) order total per shard + count prune + shards ngrams shard ratio
Billion word 3 238M 4M 1.5 1.2 59 56.0 1.20
benchmark (BWB) 40M 1.6 1.6 5 84.8 1.07
(769M; 30.3M) 5 1.14B 4M 4.1 2.0 285 36.8 2.07

40M 4.7 3.5 28 50.5 1.26
Search queries (SQ) 5 16.6B 4M 23.4 8.9 5090 38.8 1.93
(70B; 13.2B) 40M 10.2 7.1 502 64.4 1.77

Table 1: Sharding characteristics and time to estimate under different training scenarios. As noted in Section 6, times are not
comparable if n-gram order or size of corpus are different, and times should be interpreted as a relatively coarse measure of
work. The last two columns (100*in-context/total n-ngrams and the ratio of sizes in ngrams) indicate shard redundancy.

splitting again and using the command line binary
ngramtransfer twice: once to extract the correct
counts from the correct shards; and once to return
the extracted counts to the shards requesting them.
We refer the reader to Section 4.2.4 for high level
detail, and the convenience script ngram.sh in the
OpenGrm NGram library for specifics.

Several new functions have been added via
options to existing command line binaries in
the OpenGrm NGram library. For example,
ngramcount can now produce counts of counts
(--method=count of counts) and produce them
only for a specified context shard. Further,
ngrammerge has a context merge method, which
uses a derived class of OpenGrm’s NGramMerge
class to correctly reassemble count or language
model sharded WFSTs into a single WFST. See
the script ngram.sh in the OpenGrm NGram li-
brary for details.

In the next section, we provide some data on
the characteristics of n-gram models of different
orders and sizes when they are trained via shard-
ing.

6 Shard size versus redundancy

As stated earlier, we use Flume (Chambers et al.,
2010) in C++ to distribute our OpenGrm NGram
model training. This system is not currently pub-
licly available, but within it we use methods gen-
erally very similar to what is available in Open-
Grm, just pipelined together in a different way.
One difference between the Flume version and
ngram.sh is the method for deriving contexts,
which in Flume is based on efficient quantiles ex-
tracted from the set of n-grams. While this is
also a sampling method for deriving the contexts,
the ordering constraints of quantiles do often lead
to better (though not perfect) estimates of bal-
anced shards. Additionally, the Flume system that
was used to generate these numbers uses a smart

distributed processing framework, which allocates
processors based on estimated size of the process.
This impacts the interpretability of timing results,
as noted below.

Table 1 presents some characteristics of lan-
guage model training under several conditions
which demonstrate some of the tradeoffs in dis-
tributing the model in slightly different ways.
From the Billion Word Benchmark (BWB) cor-
pus (Chelba et al., 2014), we train trigram and 5-
gram language models with different parameteri-
zations for determining the model sharding. We
also report results on a proprietary 70 billion word
collection of search queries (SQ), also with differ-
ent sharding parameterizations. For the BWB tri-
als, no symbol or n-gram frequency cutoffs were
used, but for the search queries, as part of the pre-
processing and counting, we selected the 4 mil-
lion most common words from the collection to
include in the vocabulary (all others mapped to
an out-of-vocabulary token) and limited 4-grams
and 5-grams to those occurring at least twice or
4 times, respectively. All trigram models were
pruned to 50 million n-grams prior to shard merg-
ing (reassembling into a single WFST), and 5-
gram models were pruned to 100 million n-grams.
For these trials, the standard transfer algorithm in
Section 4.2.4 was used. Run times are averaged
over five independent runs.

Note that, due to the smart distributed process-
ing framework, the times are not comparable if n-
gram order or size of corpus are different. Further,
due to distributed processing with resource con-
tention, etc., the times should be interpreted as a
coarse measure of work. That said, we note that in
the largest scenario, parameterizing for relatively
small shards (4M n-grams in-context per shard)
yields over 5000 shards, which results in extra
time in transfer (hence higher count times) and in
final merging of the contexts (hence higher make,

39

target trans. time (hours) to count
per by before trans.

Task shard order trans. to end total
BWB 4M N 2.4 1.7 4.1

Y 2.1 3.5 5.5
40M N 2.6 2.1 4.7

Y 3.1 5.9 9.0
SQ 4M N 4.7 18.7 23.4

Y 4.5 7.6 12.1
40M N 5.7 4.4 10.2

Y 5.9 6.7 12.6

Table 2: Counting time broken down between stages occur-
ring before transfer and those occurring from transfer to the
end of counting, using either the original transfer algorithm
or transferring by order.

prune, etc. times). With larger shard sizes (and
hence fewer shards), the percentage of n-grams in
each shard that are in-context (rather than ascend-
ing or backoff n-grams) is higher, and the size of
the largest shard (in terms of total n-grams in the
shard, both in-context and not) is much closer in
size to the smallest shard, leading to better load
balancing. Smaller shards, however, will gener-
ally distribute more effectively for many of the es-
timation tasks, leading to some speedups relative
to fewer, larger shards.

Table 2 presents counting times for the 5-gram
trials using both the standard transfer algorithm
reported in Table 1 and the alternate “by order”
transfer algorithm outlined in Section 4.2.4. The
times are broken down into the part of counting
before transfer and the part including transfer un-
til the end. From these we can see that in scenar-
ios with a very large number of shards – e.g., SQ
with 4M target per shard, which yields more than
5000 shards – the “by order” transfer algorithm is
much faster than the standard algorithm, leading
to a factor of 2 speedup overall. However, increas-
ing the target number of n-grams per shard, thus
yielding fewer shards, is overall a more effective
way to speedup processing. For much larger train-
ing scenarios, when even 40M n-grams per shard
would yield a large number of shards, one would
expect this alternative transfer algorithm to be use-
ful. Otherwise, the additional overhead of the ad-
ditional stages simply adds to the processing time.

7 Related work

Brants et al. (2007) presented work on distributed
language model training that has been very influ-
ential. In that work, n-grams were sharded based

on a hash function of the first words of the n-gram,
so that prefix n-grams, which carry normalization
counts, end up in the same shard as those requir-
ing the normalization. Because suffix n-grams do
not end up in the same shard, smoothing methods
that need access to backoff histories, such as Katz,
require additional processing.

In contrast, our sharding is on the suffix of
the history, which ensures that all n-grams with
the same history fall together, and very often the
backoff histories also fall in the same shard with-
out having to be added. Since normalization val-
ues can be derived by summing the counts of
all n-grams with the same history, the prefix is
not strictly speaking required for normalization,
though, as described in Section 3.2, we do add
them when ‘completing’ a model shard to canoni-
cal WFST n-gram format.

Sharding with individual n-grams as the unit
rather than working with the more complex WFST
topologies does have its benefits, particularly
when it comes to relatively easy balancing of
shards. The primary benefit of using WFSTs
in such a distributed setting lies in making use
of WFST functionality, such as modeling with
expected frequencies derived from word lattices
(Kuznetsov et al., 2016). Additionally, sharding
on the suffix of the history does allow for scaling
to much longer n-gram histories, such as would
arise in character language modeling. If we train
a 15-gram character language model from stan-
dard English corpora, then a significant number of
those n-grams will begin with the space charac-
ter, so creating a shard from a two character pre-
fix may lead to extremely unbalanced sharding. In
contrast, intervals of histories allow for balance
even in such an extreme setting.

8 Summary and Future Directions

We have presented methods for distributing the es-
timation of WFST-based n-gram language models.
We presented a model sharding approach that al-
lows for much of the model estimation to be car-
ried out on shards independently. We presented
some pipeline algorithms that yield models identi-
cal with what would be trained on a single proces-
sor, and provided some data on what the resulting
sharding looks like in real processing scenarios.
We intend to create a full open-source distributed
setup that makes use of the building blocks out-
lined here.

40

References
Cyril Allauzen and Michael Riley. 2013. Pre-

initialized composition for large-vocabulary speech
recognition. In Proceedings of Interspeech, pages
666–670.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Implementation and Application of Au-
tomata, pages 11–23. Springer.

Cyril Allauzen, Michael Riley, and Johan Schalkwyk.
2009. A generalized composition algorithm for
weighted finite-state transducers. In Proceedings of
Interspeech, pages 1203–1206.

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J
Och, and Jeffrey Dean. 2007. Large language mod-
els in machine translation. In Proceedings of the
Joint Conference on Empirical Methods in Natural
Language Processing (EMNLP) and Computational
Natural Language Learning (CoNLL).

Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R Henry, Robert Bradshaw,
and Nathan Weizenbaum. 2010. Flumejava: easy,
efficient data-parallel pipelines. In ACM Sigplan
Notices, volume 45-6, pages 363–375.

Ciprian Chelba, Thorsten Brants, Will Neveitt, and
Peng Xu. 2010. Study on interaction between en-
tropy pruning and Kneser-Ney smoothing. In Pro-
ceedings of Interspeech, pages 2422–2425.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
Proceedings of Interspeech, pages 2635–2639.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapre-
duce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguis-
tics.

Slava M. Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35(3):400–401.

Vitaly Kuznetsov, Hank Liao, Mehryar Mohri, Michael
Riley, and Brian Roark. 2016. Learning n-gram lan-
guage models from uncertain data. In Proceedings
of Interspeech (to appear).

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modeling. Computer Speech and Lan-
guage, 8:1–38.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar soft-
ware libraries. In Proceedings of the ACL 2012 Sys-
tem Demonstrations, pages 61–66.

Hasim Sak, Yun-hsuan Sung, Françoise Beaufays, and
Cyril Allauzen. 2013. Written-domain language
modeling for automatic speech recognition. In Pro-
ceedings of Interspeech, pages 675–679.

Jeffrey Sorensen and Cyril Allauzen. 2011. Unary data
structures for language models. In Proceedings of
Interspeech, pages 1425–1428.

Andreas Stolcke. 1998. Entropy-based pruning of
backoff language models. In Proceedings of the
DARPA Broadcast News Transcription and Under-
standing Workshop, pages 270–274.

Ian H. Witten and Timothy C. Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–
1094.

41

