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Abstract

We present a distributional approach to the
problem of inducing parameters for un-
seen words in probabilistic parsers. Our
KNN-based algorithm uses distributional
similarity over an unlabelled corpus to
match unseen words to the most similar
seen words, and can induce parameters
for those unseen words without retrain-
ing the parser. We apply this to domain
adaptation for three different parsers that
employ fine-grained syntactic categories,
which allows us to focus on modifying the
lexicon, while leaving the structure of the
parser itself intact. We demonstrate up-
lifts for dependency recovery of 2%-6%
on novel vocabulary in biomedical text.

1 Introduction

Parsing is an important component in many NLP
applications. Shallower analyses may allow the
discovery of local relations, but to handle the full
complexity of speech and text requires knowledge
of the hierarchical structures that parsers are de-
signed to uncover. This is particularly true of long
range dependencies such as that between activities
and decreased in the specific synthetic activities
of electrophoretically purified myosin heavy chain
decreased. Such dependencies have proven to be
useful features in many text mining and knowl-
edge extraction applications, for example identify-
ing biomarkers in the biomedical literature (Seoud
and Mabrouk, 2013) or extracting family history
from clinical text (Lewis et al., 2011).

Correctly identifying the dependencies within a
string of words is generally based on finding the
most probable structure over them, and this in turn
requires knowing what sort of relations each word
is likely to enter into. Unfortunately, gold standard
training data, annotated with these syntactic rela-
tions, is generally in short supply. The vocabulary

for which we have explicitly seen examples of the
type of dependencies each word supports is there-
fore typically small and performance on real data
is often degraded in handling out-of-vocabulary
items.

Although the Penn Treebank has been a vital
tool in the development and evaluation of pars-
ing technology, providing a standard dataset for
comparison of parsers, practical application of
these techniques usually requires adaptation to
new domains. Rimell and Clark (2009), for ex-
ample, examine the adaptation of a WSJ-trained
CCG parser to the biomedical domain. The diver-
gence between these two domains, news and biol-
ogy, is manifest in terms of both vocabulary and
also stylistic differences in the prevalence of var-
ious syntactic structures. For example, biomedi-
cal writing eschews personal pronouns and toler-
ates long sequences of noun modifiers, whereas
the style of news articles tends to reverse these
preferences. Rimell and Clark’s (2009) approach
to adapting to these differences is based on retrain-
ing elements of the model using biomedical texts
which have been hand-tagged with gold-standard
tags. While this is undoubtedly effective, achiev-
ing an overall improvement of F-score of over 5%,
it requires a considerable commitment of skilled
resources to manually annotate a substantial cor-
pus with the linguistically correct tags.

Here, we consider a distributional approach to
domain adaptation using the information about
syntactic structure that is implicit in raw text.
We estimate parameters for unseen words using
a KNN approach that matches them to the near-
est seen words and averages over their parameters.
We explore a number of different approaches to
measuring distributional similarity and find that
vectors based on counts of occurrence within
ngram contexts give the best results. Bag-of-word
approaches and neural embeddings, which have
worked well for semantic tasks, do not appear to
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capture the information about syntactic similarity
that this task requires.

Our use of ngram contexts is inspired by psy-
cholinguistic research into the acquisition of syn-
tactic categories. Cartwright and Brent (1997),
for example, consider how children might use a
word’s distribution across a range of templates,
such as 〈the XXX is good〉, to infer its syntactic
properties. They show, in simulations, that such
distributional information can be used to infer
syntactic categories from child-directed speech.
Mintz (2003) analyses distributions over a simpler
type of template, which he calls a frequent frame,
consisting of a pair of common lexical items flank-
ing a word of interest, e.g. 〈you XXX it〉 or
〈the XXX is〉. In addition to showing how such
distributional information can be used to induce
categories, he also discusses the evidence that
adults and children are sensitive to these frames.
Redington et al. (1998) consider even simpler
contexts, based simply on bigram colocations, e.g.
〈the XXX〉. Pinker (Pinker, 1987), on the other
hand, has long contested the possibility of using
such distributional information to acquire valid
grammatical categories, and proposes instead that
grammatical categories are bootstrapped using se-
mantic knowledge.

While the patterns and templates described
above can be used to characterise a word’s be-
haviour in terms of concrete occurrences in spe-
cific contexts, neural networks have recently be-
come popular as a means to create more abstract
representations. In this case, as the network adapts
to the data, representations are learned that em-
bed discrete inputs in a continuous space defined
by its internal states. Researchers have been inter-
ested in the nature of such internal representations
for some time (e.g., Small et al., 1995; Joanisse
and Seidenberg, 1999). However, it has now be-
come practical to induce such embeddings from
large quantities of text and employ them in lin-
guistic applications. For example, Tsuboi (2014)
and Collobert et al. (2011) apply neural represen-
tations to POS tagging, and this suggests that at
least some useful information about the syntax of
unseen words might be gained from this source.

While POS tags can provide a coarse-grained
description of words’ syntactic behaviour, accu-
rate parsing typically requires finer-grained de-
tail. We can distinguish between two approaches,
which may be combined, to specifying this addi-

tional level of detail. The first approach simply
makes use of finer-grained syntactic categories, ei-
ther instead of or in addition to POS tags (Steed-
man, 2000; Klein and Manning, 2003b; Petrov et
al., 2006). These categories can then determine
the missing information about the dependencies a
word will take part in, such as whether a verb is
intransitive or whether it takes prepositional argu-
ments. The second approach instead increases the
granularity of the production rules, by condition-
ing the probabilities on the heads of the phrases
involved (Charniak, 2001; Collins, 2003). In this
way, words are associated with probabilities for
the structure of phrases that they head, determin-
ing, for example, the types of object that a verb
phrase expands into.

Although the two approaches are compatible, a
significant difference makes the former more con-
ducive to our purposes. Enhancing the granular-
ity of the syntactic categories results in a much
richer lexicon containing more information about
how words behave syntactically. In principle, this
should lead to an enlargement of the lexicon hav-
ing a greater impact on performance by itself.
In the latter approach, of lexicalising the produc-
tion rules, expanding the vocabulary of the parser
may be much more complicated, requiring mod-
ifications throughout the model. In contrast our
approach simply adds new entries to the lexicon
without the need to retrain the parser. In fact, our
approach does not even require full sentences and
can be applied to an unlabelled corpus of ngram
counts.

Our KNN approach and the three parsers we
modify are described in Sections 2 and 3 respec-
tively. We then use a biomedical dependency re-
covery task, specified in Section 4, to evaluate the
performance of the modified parsers, as reported
in Section 5.

2 Approach

Our approach is based on the assumption that
words with similar syntactic properties should
have similar distributional characteristics. We
evaluate both neural embeddings and also raw
context frequencies as the basis for measuring
distributional similarity. These context vectors
have components which correspond to occur-
rences within a corpus of raw biomedical text
and we employ both SENNA (Collobert et al.,
2011) and Skip-gram (Mikolov et al., 2013) em-
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beddings. In all cases, we induce parameters for
unseen words by averaging the parameters from
the k nearest neighbours seen in the training data.

2.1 Context Vectors
Distributional similarity is here based on compar-
ing vectors that are constructed from raw context
counts. We considered two approaches to defining
these contexts: ngrams and bags-of-word (BOW).

The ngram approach counts occurrences in
2gram, 3gram and 4gram contexts that are in-
tended to emphasise syntactic - as opposed to se-
mantic - characteristics, following the structure of
templates and frames proposed by e.g. Cartwright
and Brent (1997), Mintz (2003) and Redington et
al. (1998). Thus our 2gram contexts have two
forms that distinguish occurrence on the left from
occurrence on the right: 〈left token XXX〉
and 〈XXX right token〉. The 3gram con-
texts are equivalent to Mintz’s (2003) frequent
frames: 〈left token XXX right token〉. And
the 4gram contexts extend this frame to the right,
mimicking the form of templates described by
Brent (1991) and Cartwright and Brent (1997):
〈left token XXX right token1 right token2〉.

The BOW approach ignores the sequential in-
formation contained in the ngram contexts and re-
lies instead on counts of individual words that oc-
cur anywhere in 5 word-windows each side of a
target word.

In each case, we built distributional vectors us-
ing the most common of these contexts, with vec-
tor components based on a ratio of probabilities.

vi =
p(ci|wt)
p(ci)

=
freqi,t · freqtotal
freqi · freqt (1)

where ci is the ith context, wt is the target word,
freqi,t is the count of the number of times wt oc-
curs in context ci, freqi is the overall count of the
number of times context ci occurs with all words,
freqt is the overall count for wt in all contexts
and freqtotal is the total count for all words in all
contexts. Target words with freqt < 10 were dis-
carded as containing too little useful information.

The distance between two vectors, u and v, was
measured in terms of the city block metric:

dist(u, v) =
∑
i

|ui − vi| (2)

This appeared to work more effectively on
sparse vectors than the more usual cosine metric.

We built these representations on a corpus of 1.2
billion words of titles and abstracts from the Med-
line database.

2.2 SENNA

Collobert et al. (2011) trained a neural net
language model on a snapshot of the English
Wikipedia (≈ 631M words) and published the fea-
ture vectors1 induced for each word in the first
hidden layer of the network. They showed that
these embeddings are useful in enhancing the per-
formance of a number of tasks, including POS tag-
ging and semantic role labelling. Using these rep-
resentations as features, Bansal et al. (2014) ob-
tained improvements in dependency recovery in
the MST Parser (McDonald and Pereira, 2006).

Andreas and Klein (2014) also used these em-
beddings on a number of tasks, including an at-
tempt to expand the vocabulary of the Berkeley
Parser by matching unseen words to the nearest
word already in the lexicon. However, instead
of inducing parameters for the new vocabulary
they simply replaced unseen words with their seen
matches in the input. Unfortunately they did not
find a reliable benefit from this approach.

Like the context vectors described above, the
SENNA representations were derived from large
quantities of raw text and reflect the distributional
behaviour of words in that data. However, un-
like our context vectors, which have components
derived from explicit distributional contexts, the
components of their neural embeddings are ab-
stract dimensions whose values derive from the
optimization of a particular mathematical model.
In this case the form of this model was based
on distinguishing between real 11-word phrases
drawn from the unlabelled corpus and an incorrect
phrase which had the central word replaced with
a randomly chosen item. The model tries to max-
imise the difference between these two phrases in
terms of scores which are a nonlinear function of
the vectors representing the words they contain.

Training involved stochastic gradient ascent op-
timisation of an objective function based on a
ranking criterion for the two phrase scores, and re-
sulted in each word within a 100,000 word vocab-
ulary being assigned a vector representation. The
published embeddings are of dimension 50 and we
measured the similarity of these vectors in terms
of the cosine measure:

1http://ronan.collobert.com/senna/
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dist(u, v) =
u · v
|u||v| (3)

2.3 Skip-gram
Like the SENNA model, the Skip-gram model
(Mikolov et al., 2013) is trained to differentiate
between the correct central word of a phrase and a
random replacement, which they refer to as nega-
tive sampling. Unlike SENNA, however, the Skip-
gram model tries to make this prediction using
only a single one of the surrounding words at a
time and ignores the ordering of those words, i.e.
taking a bag-of-words approach to context.

The published 300-dimensional vectors2 were
trained on 100B words of Google News text using
stochastic gradient ascent, and cover a vocabulary
of 3M words. We also retrained the same 300-
dimensional model on our 1.2 billion word unla-
belled biomedical corpus, giving a vocabulary of
around 1M words. In both cases, we measured
similarity using the cosine metric, Equation 3.

2.4 KNN Parameter Induction
Our approach to inducing parser parameters for
unseen words is a form of k-nearest-neighbor in-
duction.3 Specifically, we constructed parame-
ters for unseen words by finding the most similar
words in the lexicon, using the distributional mea-
sures described above, and then averaging over
their existing parameters in the parsing model. We
did this for each parser, varying the dimensions
of the context vectors, and the number of nearest
neighbours to find the optimal model. To ensure
that the parameters that we average over are well-
estimated and reliable, we only consider words
that appear more than a hundred times in the Penn
Treebank when finding the nearest neighbours.

3 The Parsers

We extend the vocabulary of three parsers, all of
which make use of fine-grained lexical categories.

2https://code.google.com/p/word2vec/
3We also evaluated Support Vector Regression as a means

of inducing parameters, but we found it to be less effective.
Although the characteristics of SVMs do in general make
them powerful modelling tools, this particular task required
us to use one SVM model for every parameter type to be in-
duced (e.g. ≈ 400 CCG categories). In fact, the requirement
to optimise the C and gamma hyper-parameters resulted in
evaluation of about 100 models per parameter (e.g. ≈ 40,000
models). In contrast, the KNN approach induces all the pa-
rameters in one single model, producing a much more con-
strained problem, which probably contributes to its superior
generalisation in this case.

The first of these parsers induces sub-categories
beneath the level of POS-tags during training
while the other two require hand-annotation of the
categories in the training data. In all cases, we
modify the parser merely by inserting new items,
along with their tag parameters, into the lexicon
while leaving the rule probabilities in the rest of
the parser unchanged. Sections 3.1, 3.2 and 3.3
outline these parsers, focusing particularly on the
contents of the lexicon which our methods modify
as decribed in Section 2.

3.1 The Berkeley Parser

While an unlexicalized parser that uses syntactic
categories based solely on the symbols found in
the Penn Treebank will generally perform poorly,
a number of results show that refining these cat-
egories can substantially improve performance.
Klein and Manning (2003b), for example, show
that the performance of an unlexicalised model
can be substantially improved by splitting the ex-
isting symbols down into finer categories. Their
subcategorizations were developed by hand based
on linguistic intuitions and a careful error analy-
sis. The Berkeley Parser4 (Petrov et al., 2006), in
contrast, is based on a method for automatically
finding useful subcategorizations during training
by splitting and merging the original nodes.

The model is an unlexicalized generative PCFG,
but the granularity of the terminal and non-
terminal categories found in training give it a
much greater sensitivity to the syntactic behaviour
of words and phrases than is possible using stan-
dard POS tags. The lexicon specifies each word’s
association to the terminal categories, and the rest
of the parser is entirely unlexicalized. Parsing is
complicated by the large number of syntactic cate-
gories which threaten to make standard techniques
infeasible, due to the size of the search space and
also even just the amount of memory required to
hold the chart. However, the hierarchical structure
resulting from the split-merge process enables a
form of coarse to fine pruning that makes the prob-
lem tractable (Petrov and Klein, 2007). Training
is based on the EM algorithm along with 6 cy-
cles of splitting each symbol into two and remerg-
ing the 50% of sub-symbols carrying the least in-
formation. Output from the Berkeley Parser con-
sists of trees labelled with the original Penn Tree-
bank symbols, and we use the EnglishGrammat-

4https://code.google.com/p/berkeleyparser/
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icalStructure class from the Stanford Parser5 to
convert the trees to Stanford-style dependencies.
Out-of-vocabulary items are handled by a process
that uses orthography and sentence position to es-
timate probabilities for unseen words.

Expanding the lexicon of this model using our
KNN method is complicated by the fact that it
is generative, so that inserting new vocabulary
with non-zero probabilities requires adjusting the
probabilities of everything else in the lexicon to
maintain normalization. Since the parser uses a
cutoff of a word count of 100 or lower to de-
termine whether word given tag probabilities are
smoothed, we assigned all new vocabulary a count
of 101, and partitioned this count according to the
induced tag and sub-tag probabilities. In fact, our
attempts to use KNN to induce probabilities over
the sub-categories below the level of POS tags
were fruitless, producing worse results than the
original model in all experiments. Thus, we re-
sorted to using the KNN approach to induce POS
level probabilities and then basing the lower level
probabilities on a 50-50 interpolation of a general
profile for each POS tag and the probabilities as-
signed by the OOV process.

3.2 C&C

Whereas the Berkeley Parser automatically in-
duces a set of fine-grained categories during train-
ing in an attempt to maximize parsing perfor-
mance, the categories of CCG (Steedman, 2000)
have been linguistically designed to represent the
dependencies that words will support. In particu-
lar, they have a close correspondence to the func-
tional types of lambda calculus representations.
So, for example, an intransitive verb has the CCG
category S\NP , which can be interpreted as iden-
tifying this as a syntactic structure that takes a
noun phrase to its left (represented by \NP ) to
produce a sentence (represented by S). In other
words, it is a function from entities of type NP
to type S. In comparison, a transitive verb has
the type (S\NP )/NP , which describes structure
that takes a noun phrase to its right (/NP ) to pro-
duce a structure equivalent to an intranstive verb
(S\NP ), which is itself a category looking for
an NP to its left to produce a sentence. Thus,
the transitive verb category is a function from two
NP s - one to the right and one to the left - to an
entity of type S.

5http://nlp.stanford.edu/software/lex-parser.shtml

The C&C parser6 (Curran et al., 2007) is a
discriminative parser, which has been trained on
CCGbank (Hockenmaier and Steedman, 2007), a
translation of the Penn Treebank into the CCG for-
malism. Roughly, the parser can be split into three
modules: a POS-tagger, a super-tagger and the
parser itself. The POS-tagger assigns fixed POS
tags to the text to be parsed, based on a window
of five words centred on the word to be tagged.
The super-tagger takes these POS tags and words
as input and, using the same five token window,
passes CCG tags to the parser. The parser in turn
tries to build a derivation from the CCG tags it has
been given, but can request a re-analysis from the
super-tagger if this fails.

Each module uses a log-linear model to predict
which structures, ω, are most likely given the in-
put, S:

p(ω|S) =
e
∑

i λifi(ω)

ZS
(4)

where the fi are a set of features, the λi are feature
weights and ZS is a normalising constant.

Here we only consider modifying the POS-
tagger and super-taggers, and then only to intro-
duce weights connecting a new lexical item with
its corresponding tag. Both taggers make use of
many additional features, for example features re-
lating to the dependency of a tag on the two words
to either side. However, these additional feature
weights do not seem to be effectively estimated by
the approach we consider here. Instead, we focus
on estimating the feature weights that correspond
to the likelihood of a given word taking a particu-
lar tag.

3.3 EasyCCG

EasyCCG7 (Lewis and Steedman, 2014) is another
CCG-based parser that also relies on a log-linear
model, as described by Equation 4, but only within
what is essentially its super-tagger. POS-tagging
is avoided as it represents a bottle-neck within the
C&C parser, with wrongly assigned POS tags be-
ing difficult to recover from. Similarly, the prob-
abilistic model of parse trees is discarded, and in-
stead an A* parser (Klein and Manning, 2003a) is
used to search for the valid CCG derivation that
maximises the probabilities of the categories as-
signed to words in the input. The effectiveness of

6http://svn.ask.it.usyd.edu.au/trac/candc
7http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
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this approach depends both on the constraints im-
posed on derivations by the CCG formalism and
also on the performance of the super-tagger, with
the latter aspect being reliant on the features cho-
sen for this model.

Whereas the features used by the C&C parser
are structures that are explicitly present in the
training data, such as a particular sequence of tags
or a CCG rule that involves particular head and
dependent words, EasyCCG uses low-dimensional
word vectors as features, alongside more tra-
ditional features such as capitalisation and 2-
character suffixes. The CCG category of an input
token is then predicted by a log-linear classifier
using the features in a 7-word window surround-
ing it. The word vectors are initialised using the
50-dimensional embeddings induced by Turian
(2010) on 37 million words of newswire text, and
are further optimised during training on CCGbank.
The use of these word vectors allows EasyCCG
to generalise well to out-of-domain data, both be-
cause embeddings are available for a wider vo-
cabulary than is found in CCGbank and also be-
cause the low dimensionality of the vectors coun-
ters some of the problems of sparsity.

4 Evaluation

We measure the performance of our parsers in
terms of the ability to recover dependencies from
biomedical text. Dependency recovery is not only
a useful component in processing both clinical text
(Lewis et al., 2011; Sohn et al., 2012) and biomed-
ical literature (Seoud and Mabrouk, 2013; Cohen
and Elhadad, 2012; Miyao et al., 2008; Poon and
Vanderwende, 2010; Qian and Zhou, 2012), it also
provides an evaluation metric that is independent
of the particular syntactic formalism employed in
the parser.

BioInfer (Pyysalo et al., 2007b) is a corpus of
about 35,000 words from PUBMED abstracts, an-
notated with grammatical relations using a slight
modification of the Stanford dependencies scheme
(de Marneffe et al., 2006). Our models were tuned
on a development set of 600 sentences and then
evaluated on the remaining 500 sentence test set,
using the same split as Pyysalo et al. (2007a)
and Rimmel and Clark (2009). The vocabulary
in these sentences diverges considerably from that
found in the WSJ, with about 27% of the tokens
being unseen. Of the ≈ 3, 000 unseen word types
found in BioInfer, 92% occur in the unlabelled

Parser Type D k F-Score

Berkeley

original - - 70.67
2gram 200 10 71.37
3gram 50 10 70.55
4gram 2000 5 69.76
BOW 50 5 70.12
SG-bio 300 5 68.44
SENNA 50 10 70.49
SG-news 300 16 70.41

C&C

original - - 76.39
2gram 200 4 77.52
3gram 500 3 77.82
4gram 2000 3 77.61
BOW 50 5 75.95
SG-bio 300 3 76.26
SENNA 50 10 77.02
SG-news 300 1 76.64

EasyCCG

original - - 78.23
2gram 100 7 79.16
3gram 1000 7 78.78
4gram 10000 3 79.02
BOW 10 20 78.11
SG-bio 300 18 76.80
SENNA 50 20 78.65
SG-news 300 10 78.01

Table 1: F-scores for recovery of dependencies on
the BioInfer development set for the best perform-
ing D and k for each type of KNN model.

Medline corpus that we use to induce distribu-
tional representations, and over 80% are assigned
parameters by the KNN method. In contrast, only
about 700 of those unseen words are present in the
SENNA vocabulary, all of which are assigned pa-
rameters.

5 Results

Table 1 compares the performance of the Berke-
ley, C&C and EasyCCG parsers on the BioInfer
development set, after KNN adaptation using var-
ious forms of distributional similarity. The results
for each parser are grouped together with the first
line in each of these groups giving the baseline
F-score achieved on the BioInfer development set
before expanding the vocabulary. Each subsequent
line then corresponds to the best model found for
each type of representation, with columns con-
taining D, the number of dimensions in the distri-
butional vectors, k, the number of nearest neigh-
bours, and lastly the F-Score.
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The types of distributional representation used
in the KNN algorithm are subdivided into those
constructed on our Medline titles and abstracts
and those trained by their authors on other data
sources before being made publicly available.
The former group consist of the ngram contexts
(2gram, 3gram and 4gram), the bag-of-words con-
texts (BOW) and the retrained Skip-gram model
(SG-bio). The downloaded Skip-gram (SG-news)
and SENNA (SENNA) vectors make up the latter
group.

Looking first at the differences between these
approaches to constructing distributional repre-
sentations, it is reasonably clear that within each
parser the worst performing models tend to be
those based on bag-of-words contexts (BOW, SG-
news and SG-bio). Of the neural embedding mod-
els, SENNA gets the best performance, which
we attribute to its preservation of sequential order
in handling context. Surprisingly, the Skip-gram
model retrained on biomedical data (SG-bio) fared
worse than the original (SG-news), due probably
in large part to the fact that the original training
data was almost 100 times larger than our 1.2B
word corpus. The ngram contexts achieved the
best F-Scores fairly consistently for all parsers,
vindicating our appeal to the psycholinguistic re-
search of Cartwright and Brent (1997), Mintz
(2003) and Redington et al. (1998).

Turning now to each parser individually, the
baseline performance of the Berkeley Parser
proved difficult to exceed, with only the 2gram
distributional contexts giving any improvement.
The best model used the 200 most frequent bi-
grams as contexts and averaged over 10 nearest
neighbours to achieve an uplift of only 0.7% in
F-Score. All other types of model resulted in the
Berkeley Parser’s performance degrading. For the
C&C parser, in contrast, most types of represen-
tation, except SG-bio and BOW, achieved an up-
lift. The best model used the 500 most frequent
3gram contexts, and 3 nearest neighbours to in-
fer parameters for unseen words, improving the
F-Score by 1.43%. In comparison, the EasyCCG
models achieve higher F-Scores but show smaller
uplifts. Here, the best model is based on 2grams,
using only 100 such contexts, but requiring 7 near-
est neighbours to raise the F-Score by 0.93%.

The results of applying these best performing
models to the BioInfer test set are given in Table
2. We evaluate performance on both the set of all

F-score
Parser Model All Unseen

Berkeley
original 69.85 52.78
enhanced 70.17 55.98

C&C
original 75.56 63.84
enhanced 77.69 70.28

EasyCCG
original 77.19 71.44
enhanced 78.31 74.15

Table 2: F-scores for recovery of dependencies for
the original models and the best performing KNN
enhanced models on the BioInfer test set.

dependencies and also the subset of dependencies
involving unseen words only. All parsers show an
uplift on both measures, with C&C achieving the
greatest gains: 2.13% over the whole test set and
6.44% on unseen words. The other parsers obtain
smaller uplifts of around 3% on the unseen words
but these OOV improvements are nonetheless sig-
nificant at p < 0.01 on a bootstrap test (Efron and
Tibshirani, 1993) for all parsers. The improve-
ments over the whole test set are diluted by com-
parison, although still positive.

6 Discussion

We have demonstrated a KNN algorithm to esti-
mate parameters for new lexical items that pro-
duces improvements in F-score of up to 6% in
the recovery of dependencies in biomedical text.
These improvements were obtained without hav-
ing to retrain the parsers, based simply on distri-
butional representations constructed on unlabelled
corpora. In fact, since the context vectors compre-
hensively outperformed the neural embeddings,
our approach achieved these gains without hav-
ing to induce a clustering or other model over the
unlabelled corpora and required only counts for
ngrams containing the seen and unseen words. In
principle, this method could be applied on the fly,
as and when the parser encounters new vocabu-
lary. The success of this ngram based approach is
also consistent with psycholinguistic research into
syntactic acquisition (Cartwright and Brent, 1997;
Mintz, 2003; Redington et al., 1998)

We were able to assign parameters to over 80%
of the unseen word types. This introduction of pa-
rameters for new word types into the lexicon was
the only modification made to the parsers, with
the remainder of the models being left unchanged.
When combined with methods that could adapt the
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existing model parameters to the statistics of the
new domain, such as self-training (e.g., Deoskar
et al., 2014), we expect further improvements to
be achievable.

Nonetheless, there were substantial variations
in the strength of the improvement attained, with
the weak performance of the Berkeley Parser be-
ing a notable disappointment. Several differences
could be invoked to explain this shortfall. Firstly,
the Berkeley Parser has a strong OOV process, and
it may just be difficult to beat the estimates it pro-
duces, without seeing gold standard data. Sec-
ondly, it is a generative rather than a discrimina-
tive model, and this complicates the process of
modifying the lexicon with questions of how much
probability mass to give to unseen words and how
to renormalise the lexicon afterwards. Thirdly,
rather than representing a single coherent type of
linguistic information, the categories induced by
the splitting and merging process are just simply
the results of whatever splits happened to give the
most improvement during training. An example of
a subcategory within DT might differentiate defi-
niteness from indefiniteness, while a subcategory
in NNP might separate personal names from place
names. The inhomogeneity in the type of infor-
mation encoded in these subcategories probably
contributed to our being unable to find distribu-
tional information which could be used to induce
useful probabilities for them. Consequently, our
KNN parameter induction worked only at the level
of POS tags for this parser and was therefore less
predictive. Andreas and Klein (2014) also strug-
gled to obtain performance improvements for the
Berkeley Parser using a distributional matching
method. Their problems were also compounded
by using SENNA vectors, which we found to give
weaker benefits than the ngram context approach.

Our method has certain aspects in common with
other approaches to domain adaptation. For exam-
ple, Koo et al. (2008) train a dependency parser
on features deriving from distributional clusters,
with two words having similar cluster features if
they have similar bigram distributions. Thus, these
clusters engender a form of distributional similar-
ity comparable to that used in our KNN algorithm.

KNN algorithms are also commonly used
in Graph-Based Semi-Supervised Learning ap-
proaches (Das and Petrov, 2011; Altun et al.,
2006; Subramanya et al., 2010), with the k-
nearest-neighbour sets determining the edges that

structure the graph. POS tags are then propagated
through the graph from labelled to unlabelled data.
Although similarity in these cases is commonly
being assessed between token sequences, as op-
posed to word types, the features used are similar
to the ngram templates used here and the bigram
distributions used by Koo et al. (2008).

A major difference in our approach is that it
does not require retraining the parser or construct-
ing a full model on the unlabelled data. We simply
copy parameters from words in the existing lex-
icon to unseen words, based on a distributional
measure of similarity. Moreover, we don’t need
to see the entire unlabelled corpus. Instead, we
can estimate parameters for an unseen word based
simply on a set of ngrams centered on it, along
with the corresponding ngrams for the existing
lexicon.

A reasonable direction for future work would
be to develop the way we select the contexts on
which our distributional representations are based.
In particular, it would make sense to exploit the
approach of Brent (1991) and Manning (1993) in
which these contexts have an a priori linguistic as-
sociation with particular syntactic frames, as op-
posed to a merely empirical association deriving
from a k-nearest-neighbour model.
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