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Abstract

This paper presents cross-lingual models
for dependency parsing using the first re-
lease of the universal dependencies data set.
We systematically compare annotation pro-
jection with monolingual baseline models
and study the effect of predicted PoS labels
in evaluation. Our results reveal the strong
impact of tagging accuracy especially with
models trained on noisy projected data sets.
This paper quantifies the differences that
can be observed when replacing gold stan-
dard labels and our results should influence
application developers that rely on cross-
lingual models that are not tested in realis-
tic scenarios.

1 Introduction

Cross-lingual parsing has received considerable at-
tention in recent years. The demand for robust NLP
tools in many languages makes it necessary to port
existing tools and resources to new languages in
order to support low-resource languages without
starting their development from scratch. Depen-
dency parsing is one of the popular tasks in the
NLP community (Kiibler et al., 2009) that also
found its way into commercial products and appli-
cations. Statistical parsing relies on annotated data
sets, so-called treebanks. Several freely available
data sets exist but still they only cover a small frac-
tion of the linguistic variety in the world (Buchholz
and Marsi, 2006; Nivre et al., 2007). Transferring
linguistic information across languages is one ap-
proach to add support for new languages. There
are basically two types of transfer that have been
proposed in the literature: data transfer approaches
and model transfer approaches. The former empha-
sizes the projection of data sets to new languages
and it usually relies on parallel data sets and word
alignment (Hwa et al., 2005; Tiedemann, 2014).

Recently, machine translation was also introduced
as yet another alternative to data transfer (Tiede-
mann et al., 2014). In model transfer, one tries to
port existing parsers to new languages by (i) rely-
ing on universal features (McDonald et al., 2013;
McDonald et al., 2011a; Naseem et al., 2012) and
(ii) by adapting model parameters to the target lan-
guage (Tackstrom et al., 2013). Universal features
may refer to coarse part-of-speech sets that rep-
resent common word classes (Petrov et al., 2012)
and may also include language-set-specific features
such as cross-lingual word clusters (Tadckstrom et
al., 2012) or bilingual word embeddings (Xiao and
Guo, 2014). Target language adaptation can be
done using external linguistic resources such as
prior knowledge about language families or lexical
databases or any other existing tool for the target
language.

This paper is focused on data transfer methods
and especially annotation projection techniques
that have been proposed in the related literature.
There is an on-going effort on harmonized depen-
dency annotations that makes it possible to transfer
syntactic information across languages and to com-
pare projected annotation and cross-lingual mod-
els even including labeled structures. The contri-
butions of this paper include the presentation of
monolingual and cross-lingual baseline models for
the recently published universal dependencies data
sets (UD; release 1.0)! and a detailed discussion of
the impact of PoS labels. We systematically com-
pare results on standard test sets with gold labels
with corresponding experiments that rely on pre-
dicted labels, which reflects the typical real-world
scenario.

Let us first look at baseline models before start-
ing our discussion of cross-lingual approaches.
In all our experiments, we apply the Mate tools
(Bohnet, 2010; Bohnet and Kuhn, 2012) for train-
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ing dependency parsers and we use standard set-
tings throughout the paper.

2 Baseline Models

Universal Dependencies is a project that develops
cross-linguistically consistent treebank annotation
for many languages. The goal is to facilitate cross-
lingual learning, multilingual parser development
and typological research from a syntactic perspec-
tive. The annotation scheme is derived from the uni-
versal Stanford dependencies (De Marneffe et al.,
2006), the Google universal part-of-speech (PoS)
tags (Petrov et al., 2012) and the Interset interlin-
gua for morphological tagsets (Zeman and Resnik,
2008). The aim of the project is to provide a uni-
versal inventory of categories and consistent an-
notation guidelines for similar syntactic construc-
tions across languages. In contrast to previous at-
tempts to create universal dependency treebanks,
the project explicitly allows language-specific ex-
tensions when necessary. Current efforts involve
the conversion of existing treebanks to the UD an-
notation scheme. The first release includes ten lan-
guages: Czech, German, English, Spanish, Finnish,
French, Irish, Italian, Swedish and Hungarian. We
will use ISO 639-1 language codes throughout the
paper (cs, de, en, es, fi, fr, ga, it, sv and hu).

UD comes with separate data sets for training,
development and testing. In our experiments, we
use the provided training data subsets for inducing
parser models and test their quality on the sepa-
rate test sets included in UD. The data sizes vary
quite a lot and the amount of language-specific in-
formation is different from language to language
(see Table 1. Some languages include detailed mor-
phological information (such as Czech, Finnish
or Hungarian) whereas other languages only use
coarse PoS labels besides the raw text. Some tree-
banks include lemmas and enhanced PoS tag sets
that include some morpho-syntactic features. We
will list models trained on those features under the
common label “morphology” below.

The data format is a revised CoNLL-X format
which is called CoNLL-U. Several extensions have
been added to allow language-specific representa-
tions and special constructions. For example, de-
pendency relations may include language-specific
subtypes (separated by “:” from the main type)
and multiword tokens can be represented by both,
the surface form (that might be a contraction of
multiple words) and a tokenized version. For multi-
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word units, special indexing schemes are proposed
that take care of the different versions.?> For our
purposes, we remove all language-specific exten-
sions of dependency relations and special forms
and rely entirely on the tokenized version of each
treebank with the standard setup that is conform
to the CoNLL-X format (even in the monolingual
experiments). In version 1.0, language-specific re-
lation types and CoNLL-U-specific constructions
are very rare and, therefore, our simplification does
not alter the data a lot.

language | size lemma morph. | LAS UAS LACC
CS 60k X X 85.74 90.04 91.99
DE 14k 79.39 84.38 90.28
EN 13k (X) |85.70 87.76 93.29
ES 14k 84.05 86.77 92.90
FI 12k X X 84.51 86.51 93.53
FR 15k 81.03 84.39 91.02
GA 07k X 72.73 78.75 84.74
HU 1k X X 83.19 85.28 92.73
IT 9% X X 89.58 91.86 95.92
Y 4k X 82.66 85.66 91.06

Table 1: Baseline models for all languages included
in release 1.0 of the universal dependencies data
set. Results on the given test sets in labeled accu-
racy (LAS), unlabeled accuracy (UAS) and label
accuracy (LACC).

After our small modifications, we are able to run
standard tools for statistical parser induction and
we use the Mate tools as mentioned earlier to obtain
state-of-the-art models in our experiments. Table 1
summarizes the results of our baseline models in
terms of labeled and unlabeled attachment scores as
well as label accuracy. All models are trained with
the complete information available in the given
treebanks, i.e. including morphological informa-
tion and lemmatized tokens if given in the data
set. For morphologically rich languages such as
Finnish or Hungarian these features are very impor-
tant to obtain high parsing accuracies as we will
see later on. In the following, we look at the impact
of various labels and compare also the difference
between gold annotation and predicted features in
monolingual parsing performance.

3 Gold versus Predicted Labels

Parsing accuracy is often measured on test sets
that include manually verified annotation of essen-
tial features such as PoS labels and morphological

2See http://universaldependencies.github.io/docs/format.html
for more details.



LAS/ACCURACY ‘ CS DE EN ES FI FR GA HU IT SV

gold PoS & morphology 85.74 — 85.70 — 84.51 — 72773  83.19 89.58 82.66
gold coarse PoS 80.75 79.39 84.81 84.05 74.62 81.03 7139 7339 8825 81.02
delexicalized & gold PoS 7036 7129 76.04 7547 5954 7419 6697 66.57 79.07 66.95
coarse PoS tagger (accuracy) 98.28 93.19 9489 95.13 9569 9599 9197 94.69 97.63 96.79
morph. tagger (accuracy) 93.47 — 94.80 — 94.53 — 9192 91.06 97.50 95.26
predicted PoS & morphology | 82.67 — 81.36 — 80.59 — 66.74 75.78 87.16 78.76
predicted coarse PoS 7941 7439 8033 80.16 7025 7873 6593 68.04 8508 76.42
delexicalized & predicted PoS | 62.44 61.82 6740 69.03 49.79 68.60 5533 5890 7292 6199

Table 2: The impact of morphology and PoS labels: Comparing gold labels with predicted labels.

properties. However, this setup is not very realistic
because perfect annotation is typically not avail-
able in real-world settings in which raw text needs
to be processed. In this section, we look at the
impact of label accuracy and compare gold feature
annotation with predicted one. Table 2 summarizes
the results in terms of labeled attachment scores.

The top three rows in Table 2 refer to models
tested with gold annotation. The first one corre-
sponds to the baseline models presented in the pre-
vious section. If we leave out morphological in-
formation, we achieve the performance shown in
the second row. German, Spanish and French tree-
banks include only the coarse universal PoS tags.
English includes a slightly more fine-grained PoS
set besides the universal tag set leading to a mod-
est improvement when this feature is used. Czech,
Finnish, Hungarian and Italian contain lemmas and
morphological information. Irish include lemmas
as well but no explicit morphology and Swedish
has morphological tags but no lemmas. The impact
of these extra features is as expected and mostly
pronounced in Finnish and Hungarian with a drop
of roughly 10 points in LAS when leaving them out.
Czech also drops with about 5 points without mor-
phology whereas Italian and Swedish do not seem
to suffer much from the loss of information. The
third row shows the results of delexicalized parsers.
In those models, we only use the coarse universal
PoS labels to train parsing models that can be ap-
plied to any of the other languages as one simple
possibility of cross-lingual model transfer. As we
can see, this drastic reduction leads to significant
drops in attachment scores for all languages but
especially for the ones that are rich in morphology
and more flexible in word order.

In order to contrast these results with predicted
features, we also trained taggers that provide auto-
matic labels for PoS and morphology. We apply
Marmot (Miiller and Schiitze, 2015), an efficient

implementation for training sequence labelers that
include rich morphological tag sets. The tagger
performance is shown in the middle of the table.

The three rows at the bottom of Table 2 list the re-
sults of our parsing experiments. The first of them
refers to the baseline model when applied to test
sets with predicted coarse PoS labels and morphol-
ogy (if it exists in the original treebank we train
on). We can see that we loose 2-4 points in LAS
with Irish and Hungarian being a bit stronger ef-
fected (showing 5-7 points drop in LAS). Irish and
Hungarian treebanks are, however, very small and
we cannot expect high tagging accuracies for those
languages especially with the rich morphological
tag set in Hungarian. In general, the performance
is quite a good achievement especially considering
the languages that require rich morphological in-
formation such as Finnish and Czech and this is
due to the high quality of the taggers we apply. As
expected, we can observe significant drops again
when taking out morphology. The effect is simi-
lar to the results with gold labels when looking at
absolute LAS differences.

The final row represents the LAS for delexical-
ized models when tested against data sets with pre-
dicted PoS labels. Here, we can see significant
drops compared to the gold standard results that
are much more severe than we have seen with the
lexicalized counterparts. This is not surprising, of
course, as these models entirely rely on these PoS
tags. However, the accuracy of the taggers is quite
high and it is important to stress this effect when
talking about cross-lingual parsing approaches. In
the next section, we will investigate this result in
more detail with respect to cross-lingual models.

4 Cross-Lingual Delexicalized Models

The previous section presented delexicalized mod-
els when tested on the same language they are
trained on. The primary goal of these models is,
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target (test) language ——

LAS Cs DE EN ES FI
CS 4890 4378 43.82 42.18
DE | 47.27 47.80 53.63 3345
EN | 4427 54.27 60.94 38.52
ES 4840 52.59 50.10 32.80
FI 4375 38.31 4036 30.14
FR 43.63 53.04 5255 6642 31.44
GA | 2323 32,10 2852 4561 16.19
HU | 31.83 3842 29.77 31.17 36.68
IT 4738 49.68 47.65 6496 33.03
Y% 41.20 5048 47.16 5193 36.46

FR GA HU IT SV
40.70 30.28 32.18 43.93 40.09
51.60 37.63 39.41 53.63 46.14
60.53 3931 34.06 61.88 50.76
6540 43.84 3446 69.54 46.79
28.54 20.15 3739 2749 3797

41.82 3453 69.62 4498
43.69 18.24 5021 2741
3094  17.59 3042 25.86
64.87 4342 34.39 45.65
51.07 37.76 40.48 55.65

Table 3: Delexicalized models tested with gold PoS labels across languages.

A LAS CS DE EN ES FI FR GA HU IT SV
CS 930 -7.73  -10.27 -7.17 -8.53 -8.85 -436 -10.59 -4.05
DE -6.69 -6.22 -7.28 -6.62 -5.18 -1.77  -8.22 -5.26  -5.09
EN -3.94 -5.93 -8.42  -5.37 -6.27 -6.99 -2.87 -7.96 -4.87
ES -3.99 -7.05 -5.46 -4.58 -5.59 -7.28 -4.63 -4.86 -2.31
FI -2.47 -1.72 -3.94 -3.80 -1.70 -5.39  -5.68 -1.59  -2.28
FR -4.24 -7.62 524 -7.68 -4.95 -9.50 -4.73 -7.61 -3.51
GA -2.15 -2.38 -1.42 -6.91 -2.25 -3.57 -3.12 -7.13  -3.01
HU -2.81 -529 -3.14 -2.50 -5.63 -1.64 -2.41 -2.05 -1.62
IT -8.81 -7.15  -6.19 -6.98 -5.33 -5.84 -8.61 -8.08 -3.98
3% -2.64 -10.18 -6.13 -14.78 -3.12 -13.11 -10.83 -6.68 -14.09

Table 4: LAS differences of delexicalized models tested with predicted PoS labels across languages

compared to gold PoS labels (shown in Table 3).

however, to be applied to other languages with the
same universal features they are trained on. Fig-
ure 1 illustrates the general idea behind delexical-
ized parsing across languages and Table 3 lists the
LAS’s of applying our models across languages
with the UD data set.

label 2

label | label 3

AN

(I delexicalize (2) train | gelexicalized
"~ posl pos2  pos3  pos4 — Parser
(3) parse
pos2  posl pos3 pos4
trgl  trg2 trg3  trg4

label | label 3

label 2

Figure 1: Delexicalized models applied across lan-
guages.

The results show that delexicalized models are
quite robust across languages, at least for closely
related languages like Spanish and Italian, but also
for some languages from different language sub-
families such as English and French. The situation
is, of course, much worse for distant languages
and small training data sets such as Irish models
applied to Finnish or Hungarian. Those models are
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essentially useless. Nevertheless, we can see the
positive effect of universal annotation and harmo-
nized annotation guidelines.

However, as argued earlier, we need to evaluate
the performance of such models in real-world sce-
narios which require automatic annotation of PoS
labels. Therefore, we used the same tagger models
from the previous section to annotate the test sets
in each language and parsed those data sets with
our delexicalized models across languages. The
LAS difference to the gold standard evaluation are
listed in Table 4.

With these experiments, we can basically con-
firm the findings on monolingual parsing, namely
that the performance drops significantly with pre-
dicted PoS labels. However, there is quite a varia-
tion among the language pairs. Models that have
been quite bad to start with are in general less ef-
fected by the noise of the tagger. LAS reductions
up to 14 points are certainly very serious and most
models go down to way below 50% LAS. Note that
we still rely on PoS taggers that are actually trained
on manually verified data sets with over 90% accu-
racy which we cannot necessarily assume to find
for low resource languages.

In the next section, we will look at annotation
projection as another alternative for cross-lingual



NOUN DET NOUN
Wiederaufnahme der  Sitzungsperiode
Resumption of “the DUMMY session
NOUN DUMMY  DUMMY DET NOUN

oot

oot

NOUN DET NOUN
Wiederaufnahme  der  Sitzungsperiode
Resumption of ‘the session
NOUN DUMMY DET NOUN
@

Figure 2: Reduced number of dummy labels in annotation projection as suggested by Tiedemann (2014)
(bottom) compared to DCA of Hwa et al. (2005) (top).

parsing using the same setup.

5 Anneotation Projection

In annotation projection, we rely on sentence
aligned parallel corpora, so-called bitexts. The
common setup is that source language data is
parsed with a monolingually trained parser and the
automatic annotation is then transfered to the target
language by mapping labels through word align-
ment to corresponding target language sentences.
The process is illustrated in Figure 3.

(1 parse lexicalized
label 2
ﬁ"}\ / Parser

pos| pos2  pos3  pos4
srcl  src2 src3  src4

Annotation projection abel 1

word-aligned bitext | | (2) project

trgl trg2 trgd3  trg4
pos2 pos| pos3 pos4

label | label 3
lexicalized 4”3];&/
Parser label 2

Figure 3: An illustration of annotation projection
for cross-lingual dependency parsing.

There are several issues that need to be considered
in this approach. First of all, we rely on noisy anno-
tation of the source language which is usually done
on out-of-domain data depending on the availability
of parallel corpora. Secondly, we require accurate
word alignments which are, however, often rather
noisy when created automatically especially for
non-literal human translations. Finally, we need to
define heuristics to treat ambiguous alignments that
cannot support one-to-one annotation projection.
In our setup, we follow the suggested strategies
of Tiedemann (2014), which are based on the pro-
jection heuristics proposed by Hwa et al. (2005).
The data set that we use is a subset of the parallel

Europarl corpus (version 7) which is a widely ac-
cepted data set primarily used in statistical machine
translation (Koehn, 2005). We use a sample of
40,000 sentences for each language pair and anno-
tate the data with our monolingual source language
parsers presented in section 2. For the alignment,
we use the symmetrized word alignments that are
provided from OPUS (Tiedemann, 2012) that are
created with standard statistical alignment tools
such as Giza++ (Och and Ney, 2003) and Moses
(Koehn et al., 2007). Our projection heuristics fol-
low the direct correspondence assumption (DCA)
algorithm of Hwa et al. (2005) but also apply the
extensions proposed by Tiedemann (2014) that re-
duce the number of empty nodes and dummy labels.
Figure 2 illustrates the effect of these extensions.

Applying the annotation projection strategy, we
obtain the parsing results shown in Table 5. For
each language pair, we use the same procedure
and the same amount of data taken from Europarl
(40,000 sentences).>

From the results, we can see that we beat the
delexicalized models by a large margin. Some of
the language pairs achieve LAS of above 70 which
is quite a remarkable result. However, good results
are in general only possible for closely related lan-
guages such as Spanish, Italian and French whereas
more distant languages struggle more (see, for ex-
ample Czech and Hungarian). For the latter, there
is also a strong influence of the rich morphology
which is not well supported by the projected in-
formation (we only project universal PoS tags and
cross-lingually harmonized dependency relations).
The results in Table 5 reflect the scores on gold

3Unfortunately, we have to leave out Irish as there is no
data available in the same collection. The original treebank is,
however, so small that the results are not very reliable for this
language anyway.
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LAS CS DE EN ES
cs 50.20 4796 49.17
DE | 55.08 5596  63.49
EN | 5770 63.31 65.07
ES | 59.95 60.17 54.02
FI 54.67 47.06 45.69 4237
FR | 58.65 63.75 58.14 69.33
HU | 46.58 4879 41.07 4897
IT 56.80 5692 52.03 65.76
sv | 51.71 5637 5046 59.06

FI FR HU IT SV
49.58 46.48 3934 4924 46.38
46.90 6522 4870 6540 5294
48.86 67.48 49.14 68.69 54.01
48.57 66.18 50.09 70.40 50.05

40.56 41.72 43.06 44.03
48.61 50.39 70.22  52.56
40.08 48.23 51.64 38.87
46.39 6488 4642 51.16
4451 6039 46.86 65.15

Table 5: Cross-lingual parsing with projected annotation (dependency relations and coarse PoS tags).

Evaluation with gold PoS labels.

CS DE EN ES FI FR HU 1T SV
Cs -4.55 -2.04 -2.34 -2.48 -2.18 -3.71 -1.83 -1.87
DE |-0.71 -2.05 -2.18 -2.51 -1.74 -2.53 -2.15 -2.09
EN [-0.65 -4.43 -2.45 -2.59 -0.92 -2.57 -2.12 -2.18
ES [-1.02 -4.07 -2.08 -2.22 -1.18 -2.79 -1.75 -2.40
FI [-0.54 -3.83 -1.61 -1.73 -3.41 -1.72 -1.85
FR [-0.84 -4.01 -2.21 -3.15 -2.70 -3.05 -1.95 -2.14
HU [-0.49 -2.63 -1.15 -1.61 -1.90 -1.67 -1.60 -1.39
IT |-0.77 -3.89 -1.96 -2.45 -3.40 -1.62 -3.78 -1.88
SV [-0.65 -3.53 -1.92 -1.63 -1.98 -2.12 -3.74 -1.43

-1.41

CS DE EN ES FI FR HU IT MY
-20.13 -14.71 -12.38 -12.73 -14.07 -14.50 -17.94 -6.37
-15.20 -13.23 -10.34 -13.89 -9.25 -15.53 -9.97 -2.28
-14.60 -14.53 -8.38 -10.85 -8.08 -11.75 -6.50 -0.63
-16.81 -13.12 -10.53 -9.29 -7.22 -17.39 -6.78 -0.96
-24.09 -23.01 -16.81 -18.87 -16.05 -16.55 -20.57 -8.55
-16.13 -12.29 -11.12 -7.52 -11.55 -17.51 =579 -1.14
-19.68 -22.76 -15.85 -22.15 -12.61 -20.71 -23.70 -12.15
-17.03 -13.20 -10.18 -9.78 -11.99 -8.37 -15.48 -3.93
-12.08 -10.17 -3.56 -7.00 -6.71 -6.71 -20.73 -10.13

Table 6: Cross-lingual parsing with predicted PoS labels with PoS tagger models trained on verified
target language treebanks (left table) and models trained on projected treebanks (right table). Differences
in LAS compared to the results with gold PoS labels from Table 5.

standard data and the same question as before ap-
plies here: What is the drop in performance when
replacing gold PoS labels with predicted ones? The
answer is in Table 6 (left part). Using automatic
annotation leads to substantial drops for most lan-
guage pairs as expected. However, we can see that
the lexicalized models trained through annotation
projection are much more robust than the delexi-
calized transfer models presented earlier. With the
drop of up to 3 LAS we are still rather close to the
performance on gold annotation.

CS DE EN ES FI FR HU 1T SV
cs 70.49 67.59 71.64 79.23 71.47 67.87 72.85 80.96
DE | 79.29 74.77 81.36 74.68 83.22 75.06 84.65 80.24
EN | 79.22 82.24 83.04 75.08 83.49 76.81 86.97 81.52
ES |79.47 80.03 75.58 75.33 87.86 76.04 90.41 81.58
FI |72.13 62.76 63.03 57.17 58.57 64.76 57.29 69.82
FR | 80.99 82.10 76.92 88.26 76.36 76.00 92.41 82.87
HU | 70.08 66.48 63.64 66.24 69.45 68.04 67.83 69.43
IT |79.80 80.77 75.14 86.50 75.27 87.37 74.82 80.80
Sv |81.25 77.84 74.85 83.39 77.07 83.34 67.97 83.80

Table 7: Coarse PoS tagger accuracy on test sets
from the universal dependencies data set with mod-
els trained on projected bitexts.

The experimental results in Table 6 rely on the
availability of taggers trained on verified target lan-
guage annotations. Low resource language may
not even have resources for this purpose and, there-

fore, it is interesting to know if we can even learn
PoS taggers from the projected data sets as well.
In the following setup, we trained models on the
projected data for each language pair to test this sce-
nario. Note that we had to remove all dummy labels
and tokens that may appear in the projected data.
This procedure certainly corrupts the training data
even further and the PoS tagging quality is effected
by this noise (see Table 7). Applying cross-lingual
parsers trained on the same projected data results in
the scores shown in the right part of Table 6. Here,
we can see that the models are seriously effected
by the low quality provided by the projected PoS
taggers. The LAS drops dramatically making any
of these models completely useless. This result is,
unfortunately, not very encouraging and shows the
limitations of direct projection techniques and the
importance of proper linguistic knowledge in the
target language. Note that we did not spend any
time on optimizing projection techniques of PoS
annotation but we expect similar drops even with
slightly improved cross-lingual methods.

6 Treebank Translation

The possibility of translating treebanks as another
strategy for cross-lingual parsing has been pro-
posed by Tiedemann et al. (2014). They apply
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LAS CS DE EN ES
cs 50.37 45.84 49.81
DE | 55.06 55.89 64.88
EN | 52.47 6198 67.20
ES | 60.40 57.69 54.62
FI 49.56 4298 46.50 36.11
FR | 5735 6133 58.12 71.15
HU | 39.89 4272 3851 43.16
IT 58.20 55.60 5326 68.74
Sv | 4789 55.07 52.86 59.80

FI FR HU IT SV
4736 4472 36.66 49.53 46.24
4229 6395 46.68 66.17 51.76
4451 6750 4158 69.28 56.16
42.60 68.67 3035 7239 51.51

3539 39.19 3722 4145
42.60 40.33  72.84 51.58
39.93 3991 41.74  34.26
4195 68.19 39.74 50.62
4223 60.64 4198 66.19

Table 8: Cross-lingual parsing with translated treebanks; evaluated with gold PoS labels.

CS DE EN ES FI FR HU IT SV
Cs -4.14 -1.72 -1.74 -2.45 -0.90 -3.38 -1.72 -2.42
DE |-0.73 -1.88 -2.54 -1.82 -1.46 -2.53 -2.22 -2.21
EN [-0.48 -4.41 -2.72 -2.85 -0.95 -1.84 -2.00 -2.77
Es |-1.03 -3.51 -2.25 -2.60 -1.22 -1.87 -2.36 -2.31
FI [-0.51 -4.37 -1.99 -1.66 -0.99 -2.68 -1.74 -1.84
FR |-0.98 -3.87 -2.25 -3.45 -2.25 -1.69 -2.11 -1.88
HU|-0.46 -2.73 -1.56 -2.09 -2.39 -0.58 -1.47 -1.57
IT |-0.90 -3.76 -2.55 -2.64 -2.58 -1.81 -2.19
Sv|-0.50 -3.51 -2.13 -2.39 -2.27 -1.68

-2.20
-2.42 -1.88

CS DE EN ES FI FR HU IT SV
-17.74 -11.71 -9.79 -8.65 -10.65 -10.68 -13.23 -4.38
-10.57 -11.25 -11.58 -10.28 -8.55 -11.96 -10.26 -1.46
-13.68 -14.60 -11.02 -8.15 -9.75 -13.54 -10.03 -0.63
-1491 -11.15 -9.76 -7.86 -6.03 -8.88 -5.62 -2.37
-14.57 -1592 -14.78 -9.25 -10.88 -12.33 -10.28 -2.15
-14.23 -10.50 -8.72 -7.38 -6.79 -14.27 -4.60 -2.35
-15.29 -15.67 -14.99 -17.35 -13.51 -16.14 -16.19 -9.48
-14.21 -12.07 -8.73 -6.92 -8.24 -547 -14.24 -2.04
-7.62 9775 -444 -854 -6.86 -8.80 -19.30 -10.01

Table 9: Cross-lingual parsing with translated treebanks and predicted PoS labels with PoS tagger models
trained on verified target language treebanks (left table) and models trained on projected treebanks (right
table). Differences in LAS compared to the results with gold PoS labels from Table 8.

phrase-based statistical machine translation to the
universal dependency treebank (McDonald et al.,
2013) and obtain encouraging results. We use a
similar setup but apply it to the UD data set test-
ing the approach on a wider range of languages.
We follow the general ideas of Tiedemann (2014)
and the projection heuristics described there. Our
translation models apply a standard setup of a
phrase-based SMT framework using the default
training pipeline implemented in Moses as well
as the Moses decoder with standard settings for
translating the raw data sets. We consequently use
Europarl data only for all models including lan-
guage models and translation models. For tuning,
we apply 10,000 sentences from a disjoint corpus
of movie subtitles taken from OPUS (Tiedemann,
2012). We deliberately use these out-of-domain
data sets to tune model parameters in order to avoid
domain overfitting. A mixed-domain set would cer-
tainly have been even better for this purpose but we
have to leave a closer investigation of this effect on
treebank translation quality to future work. Similar
to the projection approach, we have to drop Irish
as there is no training data in Europarl for creating
our SMT models.

Translating treebanks can be seen as creating
synthetic parallel corpora and the same projection
heuristics can be used again to transfer annotation

to the target language. The advantage of the ap-
proach is that the source language annotation is
given and manually verified and that the word align-
ment is an integral part of statistical machine trans-
lation. The general concept of treebank translation
is illustrated in Figure 4.

label 2

posl pos2  pos3  pos4
srcl  src2 src3  src4

() translatel >< | | l (2) project
trgl  trg2 trg3 trg4

pos2 posl pos3 pos4

Tabel | label 3
lexicalized 4 trairx_/
Parser label 2

Figure 4: Translating treebanks to project syntactic
information.

Treebank translation

Applying this approach to the UD data results in
the outcome summarized in Table 8. With these
experiments, we can confirm the basic findings of
related work, i.e. that treebank translation is a valu-
able alternative to annotation projection on existing
parallel data with comparable results and some ad-
vantages in certain cases. In general, we can see
that more distant languages are worse again mostly
due to the lower quality of the basic translation
model for those languages.
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Similar to the previous approaches, we now test
our models with predicted PoS labels. The left part
in Table 9 lists the LAS differences when replacing
gold annotation with automatic tags. Similar to
the annotation projection approach, we can observe
drops of around 2 LAS with up to over 4 LAS in
some cases. This shows again, that the lexicalized
models are much more robust than delexicalized
ones and should be preferred when applied in real-
world applications.

CS DE EN ES FI FR  HU IT SV
(e 72.17 68.80 73.81 80.28 73.72 72.02 77.36 83.27
DE | 82.97 77.80 82.65 73.28 84.05 77.23 86.20 81.54

EN | 78.84 83.69
ES | 82.17 82.56 78.36
FI |78.25 67.09 66.70 60.67
FR | 82.02 82.76 78.46 89.23 77.76
HU | 71.74 67.62 63.44 6598 69.35 66.20
IT | 83.06 81.57 78.50 89.81 76.49 91.80 75.65
SV |84.62 78.53 75.98 83.97 76.80 83.66 68.74 84.20

83.88 77.21 84.60 74.15 87.04 84.66
76.47 90.66 71.95 92.31 83.00
61.05 70.80 60.06 72.11
75.27 93.52 83.00
68.20 67.97
83.13

Table 10: Coarse PoS tagger accuracy on test sets
from the universal dependencies data set with mod-
els trained on translated treebanks.

Finally, we also look at tagger models trained on
projected treebanks as well (see Table 10). The
parsing results on data sets that have been annotated
with those taggers are shown on the right-hand side
in Table 9. Not surprisingly, we observe significant
drops again in LAS and, similar to annotation pro-
jection, all models are seriously damaged by the
noisy annotation. Nevertheless, the difference is
relatively smaller in most cases when compared to
the annotation projection approach. This points to
the advantage of treebank translation that makes
annotation projection more straightforward due to
the tendency of producing rather literal translations
that are more straightforward to align than human
translations. Surprising is especially the perfor-
mance of the cross-lingual models from German,
English and Italian to Swedish which perform bet-
ter with projected PoS taggers than with monolin-
gually trained ones. This is certainly unexpected
and deserves some additional analyses. Overall,
the results are still very mixed and further studies
are necessary to investigate the projection quality
depending on the cross-lingual parsing approach in
more detail.

7 Discussion

Our results illustrate the strong impact of PoS la-
bel accuracy on dependency parsing. Our projec-
tion techniques are indeed very simple and naive.

The performance of the taggers drops significantly
when training models on small and noisy data
sets such as the projected and translated treebanks.
There are techniques that improve cross-lingual
PoS tagging using a combination of projection
and unsupervised learning (Das and Petrov, 2011).
These techniques certainly lead to better parsing
performance as shown by McDonald et al. (2011b).
Another alternative would be to use the recently
proposed models for joint word alignment and an-
notation projection (Ostling, 2015). A thorough
comparison with those techniques is beyond the
scope of this paper but would also not contribute to
the point we would like to make here. Furthermore,
looking at the actual scores that we achieve with
our directly projected models (see Tables 7 and 10),
we can see that the PoS models seem to perform
reasonably well with many of them close or above
80% accuracy, which is on par with the advanced
models presented by Das and Petrov (2011).

In any case, the main conclusion from our ex-
periments is that reliable PoS tagging is essential
for the purpose of dependency parsing especially
across languages. To further stress this outcome,
we can look at the correlation between PoS tagging
accuracy and labeled attachment scores. Figure 5
plots the scores we obtain with our naive direct pro-
jection techniques. The graph clearly shows a very
strong correlation between both evaluation metrics
on our data sets.

95 T T T T T T T T T
90 | "projected = 0.918 .
85 L Mtranslated = 0-900 i
oy
g 80 -
5
3 75} g
o [ ]
S 70 ., .
65 |- .
58 o]
60 - ; s o  projected
oo} e franslated
55 1 1 1 1 1 1 1 1 1
20 25 30 35 40 45 50 55 60 65 70

labeled attachment score (LAS)

Figure 5: Correlation between PoS tagger accuracy
and cross-lingual parsing performance.

Another interesting question is whether the abso-
Iute drops we observe in labeled attachment scores
are also directly related to the PoS tagging perfor-
mance. For this, we plot the difference between
LAS on test sets with gold PoS labels and test sets
with predicted labels in comparison to the PoS tag-
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ger performance used for the latter (Figure 6). As
we can see, even in this case we can measure a sig-
nificant (negative) correlation which is, however,
not as strong as the overall correlation between PoS
tagging and LAS.

95 T ° T T T T T
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difference in labeled attachment score (A LAS)

Figure 6: Correlation between PoS tagger accuracy
and the drop in cross-lingual parsing performance.

Looking at these outcomes, it seems wise to in-
vest some effort in improving PoS tagging perfor-
mance before blindly trusting any cross-lingual ap-
proach to statistical dependency parsing. Hybrid
approaches that rely on lexical information, unsu-
pervised learning and annotation projection might
be a good strategy for this purpose. Another useful
framework could be active learning in which reli-
able annotation can be created for the induction of
robust parser models. We will leave these ideas to
future work.
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Figure 7: Correlation between translation perfor-
mance (measured in BLEU) and cross-lingual pars-
ing performance.

Finally, we can also have a look at the correlation
between translation performance and cross-lingual
parsing. Figure 7 plots the BLEU scores that we
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obtain on an out-of-domain test set (from the same
subtitle corpus we used for tuning) for the phrase-
based models that we have trained on Europarl
data compared to the labeled attachment scores we
achieve with the corresponding models trained on
translated treebanks. The figure illustrates a strong
correlation between the two metrics even though
the results need to be taken with a grain of salt due
to the domain mismatch between treebank data and
SMT test data, and due to instabilities of BLEU
as a general measure of translation performance.
Interesting to see is that we obtain competitive re-
sults with the translation approach when compared
to annotation projection even though the transla-
tion performance is really poor in terms of BLEU.
Note, however, that the BLEU scores are in general
very low due to the significant domain mismatch
between training data and test data in the SMT
setup.

8 Conclusions

This paper presents a systematic comparison of
cross-lingual parsing based on delexicalization, an-
notation projection and treebank translation on data
with harmonized annotation from the universal de-
pendencies project. The main contributions of the
paper are the presentations of cross-lingual pars-
ing baselines for this new data set and a detailed
discussion about the impact of predicted PoS la-
bels and morphological information. With our em-
pirical results, we demonstrate the importance of
reliable features, which becomes apparent when
testing models trained on noisy naively projected
data. Our results also reveal the serious shortcom-
ings of delexicalization in connection with cross-
lingual parsing. Future work includes further in-
vestigations of improved annotation projection of
morphosyntactic information and the use of multi-
ple languages and prior knowledge about linguistic
properties to improve the overall results of cross-
lingual dependency parsing. The use of abstract
cross-lingual word representations and other target
language adaptations for improved model transfer
are other ideas that we would like to explore. We
would also like to emphasize truly under-resourced
languages in further experiments that would require
new data sets and manual evaluation. In connec-
tion with this we also need to focus on improved
models for distant languages that exhibit signifi-
cant differences in their syntax. Our experiments
presented in this paper reveal already that the ex-



isting approaches to cross-lingual parsing have se-
vere shortcomings for languages from different lan-
guage families. However, we are optimistic that
new techniques with stronger target language adap-
tation and improved transfer mechanisms will be
able to support even those cases. In order to show
this, we will look at downstream applications that
can demonstrate the utility of cross-lingual parsing
in other areas of NLP and end-user systems.
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