A Deterministic Dependency Parser with Dynamic Programming for
Sanskrit

Amba Kulkarni
Department of Sanskrit Studies
University of Hyderabad
apksh@uohyd.ernet.in

Abstract

We describe a Deterministic Dependency
Parser for Sanskrit. The parse is devel-
oped following a Depth First traversal of a
graph whose nodes represent morpholog-
ical analyses of the words in a sentence.
During the traversal, relations at each node
are checked for local compatibility, and fi-
nally for each full path, the relations on
the path are checked for global compatibil-
ity. Stacking of intermediate results guar-
antees dynamic programming. We also
describe an interface that displays multi-
ple parses compactly and facilitates users
to select the desired parse among vari-
ous possible solutions with a maximum of
n — 1 choices for a sentence with n words.

1 Introduction

Past decade has witnessed a lot of dynamism
and upsurge of activities in the field of Sanskrit
Computational Linguistics. Several computational
tools became available to the Sanskrit community
as a web service through the internet'. With the
availability of a wide coverage grammar for San-
skrit in the form of Astadhyayt, there was a nat-
ural tendency to follow the grammar based ap-
proach towards the development of these tools
(Huet, 2009; Kulkarni et al., 2010; Kulkarni and
Ramakrishnamacharyulu, 2013; Goyal and Huet,
2013). Nevertheless, there were also notable ef-
forts to use pure machine learning approaches for
building these tools with a small manually tagged
corpus as a boot-strap (Hellwig, 2009). At the
same time, a combination of the grammar based
approach supported by the statistical evidences to
push the most likely solution to the top were also
"http://sanskrit.uohyd.ernet.in/scl
http://tdil-dc.in/scl

http://sanskrit.inria.fr
http://kjc-fs-cluster.kjc.uni-heidelberg.de/dcs/index.php

157

followed (Kumar et al., 2010; Kulkarni and Ku-
mar, 2011).

Sanskrit being influenced by the oral tradition,
Sanskrit texts are typically written as a continu-
ous string of characters. Characters at the juncture
of word boundaries undergo euphonic changes
thereby merging the word boundaries. This makes
it challenging to split a given string into gram-
matically acceptable words before taking up the
task of parsing. The task of joining two words
is deterministic but splitting a string of charac-
ters into well-formed words is non-deterministic.
This non-determinism together with splits at more
than one places in a given string leads to expo-
nential possibilities. Huet (2002, 2009) proposed
a novel way of augmenting the nodes of a Finite
State Transducer with appropriate sandhi rules,
and achieved the segmentation in linear transi-
tions. He also developed a shallow parser using
the sub-categorisation frames, and the agreement
rules. This parser is useful to rule out the non-
solutions before proceeding for the full fledged
parsing. A purely statistical parser for Sanskrit
also exists (Hellwig, 2009).

The first full fledged parser for Sanskrit based
on Paninian Grammar formalism is described in
(Kulkarni et al., 2010). This parser is implemented
as a constraint solver. In this model, a word in a
sentence is represented as a node in a graph G,
and the relations between the words as directed la-
belled edges. The task of parsing a sentence is
modelled as finding a sub-graph 7" of G which is a
directed labelled Tree. The problem of parsing is
divided into three tasks:

1. The first task is to establish labelled edges
between the nodes. The information of ex-
pectancy and agreement is used to establish
these labelled edges.

2. Next a sub-graph T" of G is identified, such
that 71" is a directed Tree which satisfies the

Proceedings of the Second International Conference on Dependency Linguistics (DepLing 2013), pages 157-166,
Prague, August 27-30, 2013. (© 2013 Charles University in Prague, Matfyzpress, Prague, Czech Republic

following constraints.

e Every node can have at the most one in-
coming arrow.

e No two edges emerging from the same
node have the same label.

e There are no loops.

e The resulting Tree is projective, i.e. if
the nodes are arranged linearly accord-
ing to the word order, then no two links
cross each other.

e It is ensured that certain relations
which always occur in pairs e.g.
anuyogi-pratiyogi (relata-1 and relata-
2), kartrsamanadhikaranam-karta (pred-
icative adjective and subject®), etc. do
have their counter-relatum present in the
parse.

3. Finally in case there is more than one pos-
sible directed Tree, the solutions are priori-
tized.

The implementation of the parser is reported in
Kulkarni et al. (2010). The graph G is repre-
sented as a 5D matrix C' with a typical element
([, 7], R, [l,m]), where R is the relation from the
m!" analysis of the I*" word to the j*" analysis of
the 7" word. In order to prioritize the solutions,
every relation is assigned a weight. A simple Cost
function is defined as Cost =" w * |j — 4|, where
w 1is the weight of the relation between the nodes @
and j.

The main disadvantage of this approach is the
complexity. The size of the 5D matrix is IV *
M « K x N x M, where N is the total number of
words in a sentence, M is the maximum number
of morph analyses for a word in a given sentence
and K is the maximum number of distinct possi-
ble relations among the words in a given sentence.
Sanskrit words being overloaded with morpholog-
ical analysis, frequently occurring words tend to
have several analyses possible’. Similarly though
the average length of the sentences” is around 10,

2We roughly translate kartd as a subject. This is not a
faithful translation. Karta and other karaka relations represent
the semantic information which can be extracted purely from
the syntactic information available in the sentence.

3The word te has 16 possible analyses corresponding to its
inflectional analysis. If we take into account the derivational
information, the possibilities explode further.

“This figure is based on the SHMT corpus developed
by the SHMT consortium project sponsored by DeitY, India
(2008-12).

158

the sentences from literary texts tend to be longer
with more than 20 words.

Sanskrit grammar texts discuss various rela-
tions, among words, necessary to interpret the
meaning of a sentence. All these relations
were compiled and classified by Ramakrishna-
macharyulu (2009) and further they were inves-
tigated for their suitability for automatic pars-
ing. Out of around 90 relations listed there, only
those relations which one can predict based on
the syntactico-semantic information available in
a sentence are considered for automatic tagging
(Kulkarni and Ramakrishnamacharyulu, 2013).
There are around 35 of them. Thus R is one of
these 35.

As the number of words in a sentence increases,
or if a sentence has even a single word with con-
siderable number of morph analyses, the size of
the 5D matrix explodes, and the use of parser in
real time applications becomes impractical.

Second disadvantage of the above method is
that the constraints are applied globally to the ma-
trix. However, we notice that some of the con-
straints are local to a node. Separating the local
constraints from the global, and applying the lo-
cal constraints at an early stage to rule out non-
solutions should increase the efficiency of the sys-
tem.

The importance and advantage of Dependency
Parser over a constituency parser has been well
recognised by the computational linguistic com-
munity and we see Dependency parsers for variety
of languages such as English, Japanese, Swedish
to name a few. More than half a dozen parsers
exist for English alone that produce dependency
parse. The existence of Paninian grammar for San-
skrit is the strong motivation behind developing a
Dependency based parser for Sanskrit. The cur-
rent trend towards developing dependency parsers
is more towards following the data driven ap-
proaches over the grammar based. However, we
follow the grammar based approach. Some of the
factors that motivated the design of the parser and
choice of the approach are the following.

e Sanskrit does not have a tree bank of reason-
able size so that we can use data driven ap-
proaches for Sanskrit.

e Sanskrit has a free word order, and hence
the traditional POS taggers do not make
any sense. Unlike modern Indian lan-
guages which are relatively free word order,

and which have a fixed word order for the
adjective-substantive sequences, Sanskrit al-
lows even the adjectives and genitives to float
around in a sentence. This makes the usabil-
ity of POS tagger for Sanskrit doubtful.

e The existence of almost exhaustive grammar
for Sanskrit also demands from the users a
justification for the analysis in terms of gram-
mar rules.

We describe below a Deterministic Parsing algo-
rithm which applies the local constraints locally,
and also uses Dynamic Programming for efficient
parsing. This parser differs from the Determinis-
tic Dependency Parsers for English developed by
Yamada and Matsumoto (Yamada and Matsumoto,
2003) and Nivre (Nivre and Scholz, 2004) in three
major ways. These parsers for English use ei-
ther a bottom-up or a combination of bottom-up
and top-down algorithm. Our parser traverses the
sentence from left to right guided by the possible
paths among the nodes. Second major difference
is that these parsers use shift-reduce parsing, while
we check the relations for compatibility at each
node. The third major difference is that we fol-
low the grammar based approach while the above
parsers for English are data driven.

2 Left-Right Deterministic Parsing with
Dynamic Programming

Let G; = (N1, E4) be a graph, where NV is the set
of nodes corresponding to morphological analyses
of the words in a given sentence. FE is the set of all
directed weighted arcs (7, j,) such that i*" node
is related to j** node through a relation r. With
every relation r a weight w is associated, which
reflects the preferences of relations over the other.
The total number of nodes = > m;, where m; is
the number of possible morphological analyses of
the i*" word.

Since a node in N; corresponds to a morpho-
logical analysis of a word, and not to the word, the
constraint to choose only one analysis per word
needs an information about how many analyses
correspond to each word. This we specify through
the adjacency information. For each word we pro-
vide indices of the morphological analyses of the
word to the left as well as to the right. For the first
word, the index of the left word is marked as ‘S’
(the starting node), and for the last word, the index
of the right word is marked as ‘F’ (the final node).

159

| From(j) | To(i) | relation(r) |
2 4 karma (obj)
2 6 adhikarana (loc)
2 7 adhikarana (loc)
5 1 karta (subj)
5 3 karta (subj)
5 4 karma (obj)
6 4 karma (obj)
7 4 karma (obj)

Table 1: Possible Relations

This information of adjacency is represented as a
graph Gy = (Na, Es), where Ny = N U {S, F}
and Fj is the set of directed edges (4, j) such that
1 and 7 correspond to the morphological analyses
of adjacent words wy and wyg41. The direction of
the edge is from i to j.

2.1 An example

We illustrate with an example the information
content of the two graphs (G; and G2. Consider
the following sentence.

San: ramah vanam gacchati. @))]
gloss: Ram forest{acc.} goes.
Eng: Ram goes to the forest.

In this sentence, each of the two words ramah
(Ram) and vanam (forest) has two possible analy-
ses, while the word gacchati (goes) has 3 possible
analyses as shown below.

. ramah = rama {masc.} {sg.} {nom.}

.ramah =ra {pr.} {1p} {pl.}

. vanarh = vana {neu.} {sg.} {nom.}

. vanarh = vana {neu.} {sg.} {acc.}

. gacchati = gam {pr.} {3p.} {sg.}

. gacchati = gam {pr. part.} {masc.} {sg.} {loc.}
. gacchati = gam {pr. part.} {neu.} {sg.} {loc.}

~N Nk WD~

Thus, G has 7 nodes. Edges marking the rela-
tions are listed in Table 1. This is represented in
the form of a graph as shown in Figure 1. The in-
formation of adjacency is shown in Table 2 and as
a graph in Figure 2.

2.2 Local and Global constraints

A path P of a graph G is a sequence of edges
which connects the nodes from ‘S’ to ‘F’. For
example, S-1-3-5-F is a path in Figure 2.

Node no | node nos of | node nos of
left word right word

1 S 3,4

2 S 3,4

3 1,2 5,6,7

4 1,2 5,6,7

5 34 F

6 3,4 F

7 3,4 F

Table 2: Adjacency

Figure 1: Possible Relations

Figure 2: Adjacency and Possible paths

A relation (I,J, R) is locally incompatible
with a set of relations R = {(¢,4,7)|(¢,4,7) € E
of G1} under the following circumstances.

a. If for some (¢,7,7) € Eand j=J and r = R,
1 # I. This ensures that no two words satisfy the
same semantic role of a verb.

b. If for some (i, j,r) € E and i = I, either j # J
or 7 # R. This ensures that every word has at the
most one semantic role’.

A set of relations R = {(i,5,7)|(i,5,7) € E
of G1} is said to be locally compatible, if no
(I,J, R) € E is locally incompatible with the rest
of the relations in R.

A set of labelled edges R = {(4, 4,7)|(¢,4,7) €
E of G} is globally compatible provided the
following conditions are satisfied.

a. If the nodes of GG are arranged in an increasing
order of their index, then the links do not cross.

b. For certain relations » such as
kartrsamanadhikaranam (predicative adjec-
tive) there is a matching relation karta (subject).
c. The edges corresponding to the relations in R
do not form a loop.

A sub-graph T of GG is a parse if
a. The nodes in 7" correspond to some path of Gs.
This ensures that each node in 7" corresponds to a
distinct word, and every word in the sentence is
accounted for.
b. T is a Tree. This ensures that every word in a
sentence is related directly to some other word.
c. The set of relations corresponding to the edge
labels in T' are both locally as well as globally
compatible.

2.3 Parsing Algorithm

1. Starting from the node ‘S’ of the graph G4
explore various paths of Gy following the
Depth-First-Traversal strategy. The stack
keeps track of part of the paths visited so far.

2. Ateach node, refer to G for various relations
this node can have with other nodes. The
stack, in our case, in addition to the informa-
tion of paths visited so far, also keeps track of
compatible relations at various nodes on this
path.

SThis condition is applied to only a few relations such as
karta (agent), karana (instrument), etc.

3. For each of these relations

o If the relation is locally compatible with
the relations encountered on this path so
far, add this relation to the stack and
continue with the next node. The set
of relations, at any point of time on the
stack provides the current status of the
partial solution / Tree explored.

e If the relation is incompatible, declare
this path to be incompatible, and pro-
ceed with other path, leaving this path
further unexplored.

4. When you reach the node ‘F’, check the rela-
tions on this path for ‘global compatibility’.

5. Each globally compatible set of relations,
which is a sub-set of edges in G, forms a
Tree and hence is a possible solution.

6. For each possible solution, compute the
Cost = Y w * |j — i|, where w is the
weight associated with the relation between
the nodes corresponding the j** and i** word.

Traversing of the graph G2 from ‘S’ to ‘F’ is
equivalent to traversing the sentence from left to
right for various combinations of morphological
analyses. The parser is deterministic, and it is
guaranteed to terminate after [[m; paths are ex-
plored. At each node of G2, the number of com-
patibility checks is equal to the number of incom-
ing arrows at that node in graph G;. Stacking of
intermediate results ensures the dynamic program-
ming. A Cost function is used to prioritize the so-
lutions. Salient features of this algorithm are:

e We follow lattice programming to explore all
possible paths.

e The parser deals with one word at a time
starting from the first word. This is motivated
by an approach © in the Indian theories of ver-
bal cogniton and also confirms with Abney’s
(Abney, 1989) findings that the human oper-
ates this way.

e Since we do not want to miss any possible
parse, we use dynamic programming which
is upto 5 times faster than the conventional
beam search (Huang and Sagae, 2010).

83dyam padam vakyam

161

e Unlike the traditional based parsing which
are typically breadth first, we follow a depth
first strategy, stacking the intermediate re-
sults ensuring the effective dynamic pro-
gramming.

e At each node we use constraints to check
the compatibility of new relations with the
stacked one.

e The weights for each relation are determined
heuristically manually in the absence of any
manually tagged reasonable sized data. The
n-v relations expressing the karaka (case) re-
lations are given preferences over the non-
karaka relations.

2.4 Evaluation

Sanskrit Tree bank corpus is developed under
Government of India sponsored project ‘Develop-
ment of Sanskrit Computational Toolkit and San-
skrit Hindi Machine Translation system (2008-
2012)’. The corpus consists of around 3000 sen-
tences, a substantial part of it being modern short
stories. A small part of the corpus contains sen-
tences addressing various syntactic phenomena.
The complete tagged corpus is still being cross
checked for correctness. Hence the parser was
tested only on 1316 sentences. We have a hier-
archical tagset with 35 tags. Among these the sub-
classification of 4 types of location (adhikarana)
and 3 types of objects (karma) is collapsed into
one each resulting into a flat tagset of 30 tags.
Our parser produces all possible parses, ordered
on cost. The one with minimum cost is shown as
the first parse. For evaluation, we consider only
the first parse. The correctness of parses is judged
on several well established parameters.

e Relations with correct label and attachment
(LAS)
With 35 relations, the labelled attachments
were correct in 63.1% cases, while with 30
relations, the score was 67.4%.

e Relations with correct attachment (UAS)
If only attachments were considered, ignor-
ing the labels, 80.26% attachments matched
with the GOLD data.

e Sentences with matching dependency trees
(MDT)
This measure tells us in exactly how many
cases the first tree matches the manually

tagged tree. Out of 1316 sentences, the first
parse matched exactly in 569 (43.20%) sen-
tences with a tagset of 35 tags, while with 30
tags, the first parse matched in 647 (49.1%)
cases.

e Sentences with correct unlabelled depen-
dency trees (UDT)
Instead of complete tree match, now we
check only for the attachments, and not the
labels. Among 1316, the unlabelled depen-
dency trees matched in 870 (66.05%) cases.

e Sentences
(OWAS)
It was found that out of 1316 sentences,
285 (21.6%) sentences had only one wrong
labelled attachment. If this is rectified,
the performance of the system for correct
matches increases drastically.

with one wrong attachment

3 Compact Display of Multiple Solutions

Sanskrit being a classical language demands cer-
tain special features with respect to its computa-
tional tools. Being an old classical language, most
of the important texts in Sanskrit have been trans-
lated manually into several modern languages. So
naturally, machine translation takes a back seat for
Sanskrit. What a user needs is an access to the
original text with the help of various online lin-
guistic tools and resources so that he can him-
self interpret and understand the texts in origi-
nal. From this aspect, displaying only the first
parse does not serve the purpose. In fact, in more
than 50% of the cases, the first parse is wrong.
User might like to examine various possibilities
and choose his own interpretation. It is also pos-
sible that the text is ambiguous with two or more
readings, and user would like to go through each
of them. Displaying all the parse trees would not
serve any purpose, since the trees look almost sim-
ilar with either a change in one or two branches, or
with a change in the label.

In what follows we present a compact way of
presenting all the solutions. This is an adaptation
of the slim interface of Heritage segmenter (Huet
and Goyal, 2013).

Let T; = (N;, E;), where i = 1 to n be n parses
of a given sentence. Let N = UN,;, and ' = UE;.
The display consists of 3 rows. The top row lists
the words with their positions. The second row

162

consists of morphological analyses corresponding
to all the nodes in N. Analyses are written in n
columns corresponding to each word. The third
row consists of edges from E again displayed be-
low the corresponding word/node.

The user can now choose either a node from the
second row or an edge from the third row. Each
choice calls the compatibility checker to remove
the incompatible nodes and edges corresponding
to the user’s choice. Each choice results in the re-
duction of possible parses. At any point in time,
a user can choose to display the graphs of current
possible parses.

Here is an illustration of the interface. The
input sentence is an anvaya of a §loka from
Bhagvadgita (8" §loka from the 4" chapter). The
original §loka is
paritrandaya sadhinam vinasaya ca duskrtam

dharma-samsthapanarthaya sambhavami yuge
yuge. (Bh.G.4.8)

The anvaya, an input to the parser, is:

sadhiinam paritranaya duskrtam vinasaya

dharma-samsthapanaya’ ca yuge yuge samb-
havami.

Fig 3 shows the summary of parses as a compact
display®. The union of relations from all parses for
each word are shown. User can choose either the
correct morphological analysis or correct relation
corresponding to the node. When he chooses the
correct morphological analysis, all the relations in
the relations row that are incompatible with this
choice are removed from the display. Similarly, if
a user chooses a relation in the relation row, all the
relations that are incompatible with this relation,
and all the morphological analyses that are incom-
patible with this choice of a relation are removed
from the display. Thus, for example, the word
sadhinam has two morphological analyses in Fig
3. But, after selecting the appropriate analysis, in
Fig 4, we notice that the relations under this word
are also reduced. All those relations which has
sadhiinam as one of the relata are removed from
the display. Similarly, selecting the role of this
word as karma,2,2 (karma of the second analysis
of the second word), not only removes all other re-
lations below this word, but also removes the first

"The original word is dharma-samsthapanarthaya, which
we changed to dharma-samsthapanaya, since the former is
still not recognised by the morphological analyser.

8The display shows only first five columns.

Summary of Complete Parses

total filtered solutions = 556 of 26880

< Undo 2 556 filtered trees

sadhanam(1)

paritranaya(2)

duskrtam(3)

vinasaya(4)

dharma-samsthapanaya(s)

L5

sadhu{pum? {6:bahut
sadhu{napum? {6:bahu}

ik

N

. ¢ pari_trail {kia;train;bhvadihinapumy {4;eka}
pari trail {lyut;train;bhvadiht {napum} {d;eka

1. 2 duskrt {pum? {6;bahu

1. s wvindSa{pum} {4;eka

1. z dharma-samsthpana{napum} {4;eka

1 skatazl
2 /karta22
3 2kata2l 1. s tadarthyam,3,1
4 katazz 2
2. s tadarthvam;3.1
5. < kamazl 1. < samuccitamprayojanam,6,1
3, 7/ samuccitamprayojanam,6,1 o 1. v samuccitamprayojanam,6.l
6. < karma,2,2 iy o R 2. v tadarthyam,5,1 £ SBMUCCIAMPrayo/anam.g..
4, £ samuccitamprayojanam, 6,1 . 2. < prayojanam,.1
7. < karma2,l ” 1. v sasthisambandhah4l| 3. < prayojanam,s.l
5. v videsanam,5,1 3. prayojanam,2,1
8 Llama2.z 6. 7 videsanam,5,1 Fo bt 4. v prayojanam,2,2
2 .
9. # sasthisambandhah.2,1 - S 5. < prayojanam.2.2
10. sasthisambandhah,2,2 S Mmaa,
L . Zpray
11, v sasthisambandhah.2,1
12, < sastfisambandhah,2,2
13. 7 visesanam,3,1
Figure 3: compact display of solutions
Summary of Complete Parses
total filtered solutions = 556 of 26880
4 Undo 2 292 filtered trees
sadhanam(1) paritranaya(2) duskrtam(3) vinasayal4) dharma-samsthapanaya(s)
x 1. + pari_trail {ktatraif;bhvadihinapumt {4;ekat - i
1. ¢« sadhufpumt sibahur| P U (diokay | L Z-duskrt{pum}{€bahut| 1. ¢ vindSa{pum! {4eka} 1. ¢ dharma-samsthapana {napumt {4;eka}
R 1. v tadarthyam,3,1
1 Lkartaal 2. v tadarthyam3.1
2. v kanazz 1. ¢ samuccitamprayojanam,6.1 ;
3. samuccitamprayojanam,6,1 = 1. « samuccitamprayojanam,6,1
3, v karma2l 2. v1adarthyam;5.1
4. 4 samuccitamprayojanam,6,1 2 2. prayojanem,d,1
4. 4 karma2,2 2 1. ¢ sasthisambandhah.4,1|| 3. # prayojanam,s,1
e 5. « visesanam,5,1 3. ¢ prayojanam,2,1
5. ¢ sasthisambandhah2.l| > 0 = 4. # prayojanam2,.1 P e
6. v sasthisambandhah,2,2| O <-H2eS2Namo 5. prayojanam,2,2 + LPlavolanam.2.2
; 7. < prayojanam,8.1
7. vigesanam3l
8. « prayojanam.a.1
Figure 4: Selection of a morphological analysis
Summary of Complete Parses
total filtered solutions = 556 of 26880
 Undo 7 44 filtered trees
sadhinam(1) paritranaya(2) duskrtam(3) Vinasaya(d) dharma-samsthapanaya(s)
1. v sadhu{pum?{6:bahu} 1. ¢ pari_trail {lyut;train:bhvadiht {napumi{aeksl) 1. £ duskrt{puml{6:bahul 1. v vindéa{puml{d:eka} 1. v dharma-samsth3pana{napum}{4:ekal
1. v tadarthyam.3.1 1. ¥ samuccitamprayejanam,s. 1|
2. v samuccitamprayojanam,,1 2. v tadarthyam,5,1 £:-2 BAMUCHEAMpTaYoANAMIET.
£ samuecitamprayojanam, 6,1 ’ . « tadarthyam,5.1
1. karma,2,2 A 1. sasthisambandhah,4,1 2, v prayojanam,9,1
3. ¢ visesanam5.1 3. # prayojanams.1
3. 7 prayojanam,2.2
4, ¢ prayojanam.9.1 4

. # prayojanam,2,2

Figure 5: selection of a relation

Summary of Complete Parses

total filtered solutions = 556 of 26880

Undo ¥ _Unique parse tree v Save v Translate into hindi

sadhinam(1)

paritranaya(2)

duskrtam(3)

vinagayal4)

dharma-samsthapanayals)

1. v sadhu{pum}{6:bahu}

1. < pari_trail{lyut:train;bhvadih} {napum}{4;eka}

1. 7 duskrt{pum}{6:bahu}

1. ¢ vindsa{pumt{d:eka}

1. ¢ dharma-samsthapana{napum}{d:ekal|

1. v karma,2,2

1

v prayojanam,9,1

1. v sasthisambandhah,4.1|

1. prayojanam,9.1

1. « prayojanam,9,1

Figure 6: Unique solution

163

sam_bh{1 {kartari;lat;u;eka; parasmaipadi;bh{; bhvadih}(9) |

adhikaranam

yuga{napum?}
{7;eka}(8)

prayojanam

yuga{napum}
{7,eka}(7)

Parse: 48 of 556; Cost = 505 |

vinasa{pum}
{4;eka}(4)

asthisambandhah

duskrt{pum}
{6;bahu}(3)

ca{avya}(6)

Vipsa samuccitaprayocjanam \samuccitaprayojanam

dharma-samsthapana{napum?}
{4;eka}(5)

samuccitaprayocjanam

pari_trail {lyuttrain;bhvadih}
{napum}
{4;eka}(2)

sadhu{pum}
{6;bahu}(1)

Figure 7: Dependency Graph

morph analysis of the second word, and all the re-
lations having this analysis as one of the relata.
The result of this is shown in Fig 5. Finally when
we make all the choices, a unique parse is obtained
(see Fig 6). Clicking on the check sign of unique
parse, we get the rendering of the relations in the
form of a dependency graph (see Fig 7).

The parse of a sentence with n words has n — 1
edges corresponding to the relations. Hence one
can choose the correct parse from this compact
display in maximum n — 1 choices. This inter-
face thus can also be used for developing a tree
bank for Sanskrit semi-automatically. Due to the
limitations on space, we do not give the technical
details of this interface here.

4 Using Shallow Parser for pruning

Normally the parsers for positional languages like
English use a POS tagger to choose the morpho-
logical analysis in context before proceeding for
the parsing. This reduces the search space of the
parser substantially resulting in increase in the per-
formance metric.

In case of Sanskrit which is morphologically
rich and carries very little information in posi-
tion, the POS taggers based on the positional
information are of little value. On the other
hand a shallow parser such as one developed by
(Huet, 2007) makes sense. Because such a shal-
low parser, based on the agreement rules, sub-
categorisation of verbs into transitive and intran-
sitive, co-ordination information, and certain re-
strictions on grammatical constructions rules out
various possibilities and produces a sub-set of pos-
sible solutions. Thus it is desirable to use a shal-
low parser to filter out nonsensical combinations

164

of the solutions before proceeding to a full fledged
parsing. This shallow parser, in addition to resolv-
ing POS ambiguities, also does a little parsing to
aid the full fledged parser.

As an example, consider the sentence (1) above.
We have seen that there are 12 possible paths (Fig
2) for this sentence. The shallow parser produces
two splits.

1. First split

e 1. ramah = rama {masc.} {sg.} {nom.}

3. vanarn = vana {neu.} {sg.} {nom.}

4. vanarh = vana {neu.} {sg.} {acc.}
5. gacchati = gam {pr.} {3p.} {sg.}

This corresponds to 2 paths: S-1-3-5-F and
S-1-4-5-F (See Fig 8).

2. Second split

e 2. ramah = ra {present tense} {1 per.}
{pl-}

e 3. vanarh = vana {neu.} {sg.} {nom.}

e 4. vanarh = vana {neu.} {sg.} {acc.}

e 6. gacchati = gam {pr. part.} {masc.}

{sg.} {loc.}

e 7. gacchati = gam {pr. part.} {neu.}
{sg.} {loc.}

This corresponds to 4 paths viz. S-2-3-6-F,
S-2-3-7-F, S-2-4-6-F, and S-2-4-7-F (See Fig
8).

Figure 8: Partitioning of a graph

Thus the shallow parsing has reduced the num-
ber of paths from 12 to 6. Note that the POS am-
biguities in the words ramah and gacchati are re-
solved. But the case ambiguity in the word vanam
is not yet resolved.

5 Conclusion

The performance of the parser has confirmed our
intuition that application of local constraints at an
early stage improves the performance. The search
space is further reduced by the use of shallow
parser. Compact display is useful for a reader who
wants to understand the text in original. This dis-
play can also be used for developing Sanskrit Tree
bank semi-automatically. The algorithm described
above is tested on Sanskrit. However it is general
one and should work well for the modern Indian
languages as well.

References

Steven P Abney. 1989. A computational model of hu-
man parsing. Journal of Psycholinguistic Research,
18:129-144.

Vaman Shivaram Apte. 1885. The Student’s Guide to
Sanskrit Composition. A Treatise on Sanskrit Syn-
tax for Use of Schools and Colleges. Lokasamgraha
Press, Poona, India.

Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.
1995. Natural Language Processing. A Paninian
Perspective. Prentice-Hall of India, New Delhi.

Pawan Goyal and Gérard Huet. 2013. Completeness
analysis of a Sanskrit reader. In Proceedings, 5th In-

165

ternational Symposium on Sanskrit Computational
Linguistics. D. K. Printworld(P) Ltd.

Pawan Goyal, Vipul Arora, and Laxmidhar Behera.
2009. Analysis of Sanskrit text: Parsing and se-
mantic relations. In Gérard Huet, Amba Kulkarni,
and Peter Scharf, editors, Sanskrit Computational
Linguistics 1 & 2, pages 200-218. Springer-Verlag
LNAI 5402.

Oliver Hellwig. 2009. Extracting dependency trees
from Sanskrit texts. In Amba Kulkarni and Gérard
Huet, editors, Sanskrit Computational Linguistics 3,
pages 106-115. Springer-Verlag LNAI 5406.

L. Huang and K. Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In In Pro-
ceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics Uppsala, Swe-
den, July. Association for Computational Linguis-
tics, page 10771086.

Gerard Huet and Pawan Goyal. 2013. Design of a lean
interface for sanskrit corpus annotation. In personal
communication.

Gérard Huet, Amba Kulkarni, and Peter Scharf, edi-
tors. 2009. Sanskrit Computational Linguistics 1 &
2. Springer-Verlag LNAI 5402.

Gérard Huet. 2007. Shallow syntax analysis in San-
skrit guided by semantic nets constraints. In Pro-
ceedings of the 2006 International Workshop on Re-
search Issues in Digital Libraries, New York, NY,
USA. ACM.

Gérard Huet. 2009. Formal structure of Sanskrit
text: Requirements analysis for a mechanical San-
skrit processor. In Gérard Huet, Amba Kulkarni,
and Peter Scharf, editors, Sanskrit Computational
Linguistics 1 & 2. Springer-Verlag LNAI 5402.

S.D. Joshi, J.A.F. Roodbergen, and Bhandarkar Orien-
tal Research Institute. 1990. Patafijali’s Vyakarana-
Mahabhasya Sthanivadbhavahnika: introduction,
text, translation and notes. Number v. 1 in Research
Unit series. Bhandarkar Oriental Research Institute.

S.D. Joshi, J.A.F. Roodbergen, and Sahitya Akademr.
2004. The Astadhyayi of Panini with Translation
and Explanatory Notes. Number v. 11 in The
Astadhyay1 of Panini. Sahitya Akademi.

Amba Kulkarni and Gérard Huet, editors. 2009. San-
skrit Computational Linguistics 3. Springer-Verlag
LNAI 5406.

Amba Kulkarni and Anil Kumar. 2011. Statistical con-
stituency parser for Sanskrit compounds. In Pro-
ceedings of ICON 2011. Macmillan Advanced Re-
search Series, Macmillan Publishers India Ltd.

Amba Kulkarni and K. V. Ramakrishnamacharyulu.
2013. Parsing Sanskrit texts: Some relation spe-
cific issues. In Malhar Kulkarni, editor, Proceedings
of the 5th International Sanskrit Computational Lin-
guistics Symposium. D. K. Printworld(P) Ltd.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit
morphological analyser: Some issues. Indian Lin-
guistics, 70(1-4):169-177.

Amba Kulkarni, Sheetal Pokar, and Devanand Shukl.
2010. Designing a constraint based parser for San-
skrit.. In G N Jha, editor, Proceedings of the
4th International Sanskrit Computational Linguis-
tics Symposium. Springer-Verlag LNAI 6465.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010.
Sanskrit compound processor. In G N Jha, editor,
Proceedings of the 4th International Sanskrit Com-
putational Linguistics Symposium. Springer-Verlag
LNAI 6465.

J. Nivre and M. Scholz. 2004. Deterministic depen-
dency parsing of english text. In Proceedings of
COLING 2004, Geneva, Switzerland, 64-70.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines.
In Proceedings of IWPT, pages 195-206, Nancy,
France.

166

