
Proceedings of the 14th European Workshop on Natural Language Generation, pages 20–29,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

User-Controlled, Robust Natural Language Generation from an Evolving
Knowledge Base

Eva Banik
Computational
Linguistics Ltd

London, UK
ebanik@comp-ling.com

Eric Kow
Computational
Linguistics Ltd

London, UK
kowey@comp-ling.com

Vinay Chaudhri∗
SRI International
Menlo Park, CA

chaudhri@ai.sri.com

Abstract

In this paper we describe a natural lan-
guage generation system which produces
complex sentences from a biology knowl-
edge base. The NLG system allows do-
main experts to discover errors in the
knowledge base and generates certain
parts of answers in response to users’
questions in an e-textbook application.
The system allows domain experts to cus-
tomise its lexical resources and to set pa-
rameters which influence syntactic con-
structions in generated sentences. The
system is capable of dealing with certain
types of incomplete inputs arising from a
knowledge base which is constantly edited
and includes a referring expression gen-
eration module which keeps track of dis-
course history. Our referring expression
module is available for download as the
open source Antfarm tool1.

1 Introduction

In this paper we describe a natural language gen-
eration system we have developed to interface
with a biology knowledge base. The knowledge
base (KB) encodes sentences from a biology text-
book, and the ultimate goal of our project is to
develop an intelligent textbook application which
can eventually answer students’ questions about
biology2 (Spaulding et al., 2011).

∗The work reported in this paper was supported by fund-
ing from Vulcan, Inc. We would also like to thank the mem-
bers of the Inquire Biology development team: Roger Cor-
man, Nikhil Dinesh, Debbie Frazier, Stijn Heymans, Sue Hi-
nojoza, David Margolies, Adam Overholtzer, Aaron Spauld-
ing, Ethan Stone, William Webb, Michael Wessel and Neil
Yorke-Smith.

1https://github.com/kowey/antfarm
2http://www.aaaivideos.org/2012/

inquire_intelligent_textbook/

The natural language generation module is part
of a larger system, which includes a question un-
derstanding module, question answering and rea-
soning algorithms, as well as an answer presenta-
tion module which produces pages with informa-
tion from the KB. We measure the progress and
consistency of encoding by asking “what is an X?”
type questions of the application and evaluate the
quality of answers. In response to these questions,
the system generates “glossary pages” of concepts,
which display all information about concept X in
the KB that are deemed relevant. The NLG mod-
ule is used for two purposes in our system: to
check the completeness and consistency of the KB
(instead of looking at complex graphs of the en-
coded knowledge, it is easier to detect errors in
natural language sentences), and to present parts
of answers in response to questions.

One goal of our project was to develop a tool
which empowers biology teachers to encode do-
main knowledge with little training in formal
knowledge representation. In the same spirit, we
aimed to develop an NLG system which allowed
domain experts to easily and intuitively customize
the generated sentences as much as possible, with-
out any training on the grammar or internal work-
ings of the system. This was necessary because
many domain-specific concepts in the KB are best
expressed by biology terminology and linguistic
constructions specific to the domain. We devel-
oped a utility which allows encoders to not only
associate lexical items with concepts in the KB but
also customise certain lexical parameters which
influence the structure of sentences generated to
describe events.

Another requirement was robustness: since the
knowledge base is constantly edited, the NLG sys-
tem had to be able to deal with missing lexical in-
formation, incomplete inputs, changing encoding
guidelines, and bugs in the KB as much as possi-
ble. The system also had to be flexible in the sense

20

Figure 1: Architecture of the AURA NLG system

that it had to be able to generate different versions
of the same output to suit specific contexts or types
of concepts in its input. Our system therefore gen-
erates all possible realizations for a given input,
and allows the answer presentation module to send
parameters to determine which output is returned
in a specific context.

After describing the architecture of the NLG
module in detail we explain how the system is able
to deal with unseen combination of event-to-entity
relations when describing events. We illustrate the
utility we developed to allow domain experts to
customize the system’s output by adding parame-
ters to lexical entries associated with concepts.

2 Related Work

Work on natural language generation from ontolo-
gies and knowledge bases tends to fall into two
groups. On the one hand, there are tools for ontol-
ogy verbalization which tend to handle a limited
number of relations, and where the goal of the sys-
tem is to help the work of knowledge engineers.
These systems produce template based outputs,
and the texts closely follow the structure of the
ontology (Wilcock, 2003; Galanis and Androut-

sopoulos, 2007). Some of these systems attempt
to minimize reliance on domain-specific linguistic
resources and attempt to detect words in the labels
of the ontology to use as lexical items (Mellish and
Sun, 2005). On the other hand there are NLG sys-
tems which take their input from complex knowl-
edge bases (Reiter et al., 2003; Paris, 1988) and
produce fluent texts geared towards users other
than knowledge engineers. These systems pro-
duce outputs tailored to the user or the context
and they are difficult for non-NLG-experts to cus-
tomize or port to a different domain. Our system
falls halfway between these two groups: like on-
tology verbalizers, we wanted to produce output
for all inputs, using ontology labels if necessary in
the absence of lexical entries. However, like so-
phisticated NLG systems, we also wanted to gen-
erate good quality output for inputs for which the
system had lexical resources, and we also wanted
to be able to tailor the generated output to the con-
text in which it is displayed. Our input was also
more expressive than the input of ontology verbal-
izers, because of the presence of cardinality con-
straints and co-references in our KB. Our work is
perhaps most closely related to the MIAKT sys-
tem which also allows domain experts to edit lex-
ical knowledge and schemas (Bontcheva, 2004;
Bontcheva and Wilks, 2004). Like MIAKT, we
also aimed to develop an NLG system which can
be easily maintained as the KB changes.

3 Architecture of the AURA NLG system

Our NLG system generates complex sentences
from the AURA knowledge base (Gunning et al.,
2010), which contains information from a college-
level biology textbook. AURA is a frame-based
KB which encodes events, the entities that partici-
pate in events, properties, and roles that the entities
play in an event (e.g., catalyst, reactant, messen-
ger, parent). The KB specifies relations between
these types, including event-to-entity, event-to-
event, event-to-property, entity-to-property. The
AURA KB is built on top of the CLIB ontology of
general concepts (Barker et al., 2001), which was
extended with biology-specific information. The
KB consists of a set of concept maps, which de-
scribe all the statements that are true about a con-
cept in our KB. The input to our NLG system is
a set of relations extracted from the KB either in
response to users’ questions or when generating
glossary pages that describe specific concepts in

21

detail. The generation pipeline consists of four
main stages: content selection, input conversion,
realisation and referring expression generation, as
illustrated in Fig1.

3.1 Content Selection

Question answering and reasoning algorithms that
return answers or other content in AURA are not
engineered to satisfy the purposes of natural lan-
guage generation. The output of these algorithms
can be best thought of as pointers to concepts in
the KB, which need to be described to provide an
answer to the user. In order for the answer to be
complete in a given context, the output of reason-
ing algorithms have to be extended with additional
relations, depending on the specific question that
was asked, and the context in which the answer
was found in the KB. The relations selected from
the KB also vary depending on the type of con-
cept that is being described (event, entity, role,
property). For example, a user might ask “What
is a catalyst?”. To answer this question, AURA
will retrieve entities from the KB (“role players”)
which play the role of catalyst in various events.
For example, it will find “adenylyl cyclase”, which
is defined in the KB as a universal catalyst, i.e.,
this information is encoded on the concept map of
Adenylyl cyclase and is regarded as a “universal
truth”. In this case, our content selection algorithm
will return a single plays triple, and the NLG sys-
tem will produce “Adenylyl cyclase is a catalyst’.’
Another entity that will be returned in response to
the question is “ribosomal RNA”. However, ribo-
somal RNA is a catalyst only in specific situations,
and therefore we need to give more detail on the
contexts in which it can play the role of a catalyst.
This includes the event in which ribosomal RNA
is a catalyst, and perhaps the larger process dur-
ing which this event occurs. Accordingly, content
selection here will return a number of relations (in-
cluding agent, object, subevent), and our NLG
system will produce:
“In translation elongation, ribosomal RNA is a
catalyst in the formation of a peptide bond by the
ribosomal RNA and a ribosome.“
Similarly, for “triose phosphate dehydrogenase”
we will produce
“In energy payoff phase of glycolysis, NAD plus is
converted by a triose phosphate dehydrogenase to
a hydrogen ion, an NADH and a PGAP. Here, the
triose phosphate dehydrogenase is a catalyst.“

For “cellulose synthase” the situation is slightly
different, because the event in which this entity
plays the role of catalyst is not part of a larger pro-
cess but the function of the entity. So we need
slightly different information to produce the cor-
rect sentence: “The function of cellulose synthase
is conversion of a chemical in a cell to cellulose.
Here, a cellulose synthase is a catalyst.”
The task of the AURA content selection module is
to determine what information to include for each
entity or event that was returned as the answer to
the question. We do this by retrieving sets of rela-
tions from the KB that match contextual patterns.
We also filter out relations which contain overly
generic classes (e.g., Tangible-Entity), and any du-
plication arising from the presence of inverse rela-
tions or inferences in the KB. The output of con-
tent selection is a structured bundle (Fig. 2), which
contains
(1) the relations that form the input to NLG
(2) information about concepts in the input: what
class(es) they belong to, cardinality constraints
(3) parameters influencing the style of output texts.

3.2 Input Conversion

The realisation phase in our system is carried out
by the GenI surface realizer (Kow, 2007), using
a Tree-Adjoining Grammar (Joshi and Schabes,
1997). The task of the input conversion module
is to interpret the structured bundles returned by
content selection, and to convert the information
to GenI’s input format. We parse the structured
bundles, perform semantic aggregation, interpret
parameters in bundles which influence the style of
the generated text, and convert triples to semantic
literals as required by GenI.

4 Handling Unseen Combinations of
Relations

As Fig 3 shows, a combination of event-to-entity
relations are associated with elementary trees in
the grammar to produce a full sentence. The do-
main of the relations associated with the same
tree is the event which specifies the main pred-
icate of the sentence and the range of the rela-
tions are entities that fill in the individual argu-
ment and modifier positions. Depending on the
event, different relations can be used to fill in the
subject and object positions, and verbs might de-
termine the prepositions needed to realize some of
the arguments. Ideally the mapping between sets

22

(TRIPLES-DATA
:TRIPLES

((|_Cell56531| |has-part| |_Ribosome56523|)
(|_Ribosome56523| |has-part| |_Active-Site56548|)
(|Enzyme-Synthesis17634| |base| |_Cell56531|)
(|Enzyme-Synthesis17634| |raw-material| |_Free-Energy56632|)
(|Enzyme-Synthesis17634| |raw-material| |_Monomer56578|)
(|Enzyme-Synthesis17634| |raw-material| |_Activation-Energy56580|)
(|Enzyme-Synthesis17634| |raw-material| |_Monomer56581|)
(|Enzyme-Synthesis17634| |raw-material| |_Amino-Acid56516|)
(|Enzyme-Synthesis17634| |result| |_Free-Energy56575|)
(|Enzyme-Synthesis17634| |result| |Protein-Enzyme17635|))

:CONSTRAINTS
((|Enzyme-Synthesis17634| |raw-material| (|at-least| 3 |Amino-Acid|)))

:INSTANCE-TYPES
((|_Ribosome56523| |instance-of| |Ribosome|)
(|_Active-Site56548| |instance-of| |Active-Site|)
(|_Cell56531| |instance-of| |Cell|)
(|_Free-Energy56632| |instance-of| |Free-Energy|)
(|_Monomer56578| |instance-of| |Monomer|)
(|_Activation-Energy56580| |instance-of| |Activation-Energy|)
(|_Monomer56581| |instance-of| |Monomer|)
(|_Amino-Acid56516| |instance-of| |Amino-Acid|)
(|_Free-Energy56575| |instance-of| |Free-Energy|)
(|Enzyme-Synthesis17634| |instance-of| |Enzyme-Synthesis|)
(|Protein-Enzyme17635| |instance-of| |Protein-Enzyme|)
(|Free-Energy| |subclasses| |Energy|)
(|Activation-Energy| |subclasses| |Energy|)
(|Free-Energy| |subclasses| |Energy|))

:CONTEXT NIL
:OUTPUT-PARAMETERS NIL)

A protein enzyme is synthesized in an active site of a ribosome of a cell using at least 3 amino acids and 2 monomers.
This process transforms activation energy and free-energy to another free-energy.

Enzyme synthesis – a protein enzyme is synthesized in an active site of a ribosome of a cell using at least 3 amino acids
and 2 monomers. This process transforms activation energy and free-energy to another free-energy.

Synthesis of a protein enzyme in an active site of a ribosome of a cell using at least 3 amino acids and 2 monomers. This
process transforms activation energy and free-energy to another free-energy.

Figure 2: An example input bundle and the three outputs generated by our system for this input

S

NP – S

RX[1]
agent

VP

V RX[2]
object

PP PP PP PP

P RX[3]
destination

P RX[4]
instrument

P RX[5]
origin

P RX[6]
path

S

S↓ S Punct

Punct N VP

this
process

V RX[7]

require
raw-material

RX

RX∗ P RX[8]

of
has-part

Figure 3: Tree selection

of event-to-entity relations and sentences would be
given based on encoding guidelines used to cre-
ate the knowledge base. However, the goal of
our project is to continuously expand the knowl-
edge base with more information, encoding new
types of events, and enriching existing events with
more detail as we go along (e.g., by specifying en-

ergy consumption and regulation mechanisms for
processes), therefore our encoding guidelines are
continuously revised. In order to produce output,
our realizer requires a generation lexicon, which
maps sets of relations onto elementary trees in the
grammar. Determining this mapping would re-
quire knowing the number of entities that can be

23

associated with each event type, and the relations
that can be used to express them. However, be-
cause our knowledge base is continuously chang-
ing, neither the number of entities linked to spe-
cific events, nor the types of relations used are
stable and therefore it was impossible to build
such a generation lexicon from the KB. Instead,
we adopted an approach where we detect “event
frames” in the input of the system, and automat-
ically create entries for them in the generation
lexicon, guessing sentence structure and ordering
based on the event participants. An event frame
is a set of event-to-entity relations which have the
same event in the domain of the relations, and par-
ticipating entities in the range. We currently dis-
tinguish between two types of event frames, de-
pending on the type of the entities in the range of
relations: participant frames (ranges are of type
Tangible-Entity) and energy frames (ranges are
type Energy). An example of a participant frame
and an energy frame extracted from the input il-
lustrated in section 4.2 is illustrated below:

Participant frame:
(Uptake07 path Plasma-membrane78)
(Uptake07 origin Extracellular-Side52)
(Uptake07 destination Cytoplasm39)
(Uptake07 agent Cell-Surface-Receptor79)
(Uptake07 instrument Coated-Vesicle49)
(Uptake07 object Cholesterol08)
Energy frame:
(Uptake07 raw-material Chemical-Energy70)
(Uptake07 raw-material Free-Energy89)

Our input conversion module detects event
frames and automatically creates an entry in
GenI’s generation lexicon for each frame, an-
chored on a noun or verb associated with the event
in our concept-to-word mapping lexicon. The en-
tries link the sets of relations in the frame to a tree
with the same number of arguments, attempting
to place entities that play agent and object par-
ticipants into subject/object positions in the tree if
they exist. Our algorithm also attempts to deter-
mine the best syntactic construction for the spe-
cific combination of participant relations, and de-
cides between selecting an active sentential tree,
a passive sentential tree, a complex noun phrase,
or a combination of these. This process also in-
volves deciding based on the event participants
whether the tree will be anchored on a transitive
verb, an intransitive verb, or a verb with a prepo-
sitional object, and assigning default prepositions
to event participants (unless we have more detail
specified in the lexicon, as described in the next
section). The elementary trees in the grammar

are named after the number of referring expres-
sions and prepositional phrases in the tree, and we
use this naming convention to automatically gen-
erate tree names (or tree family names) for lexi-
cal entries, thereby linking trees in the grammar to
GenI’s generation lexicon. The two S-rooted trees
in Fig 3 were selected based on automatically gen-
erated lexical entries for the two frames above.

4.1 Realisation
The GenI surface realizer selects elementary TAG
trees for (sets of) relations in its input and com-
bines them using the standard operations of sub-
stitution and adjunction to produce a single de-
rived tree. We have developed a feature-based lex-
icalized Tree Adjoining Grammar to generate sen-
tences from relations in the KB. Our grammar has
two important properties, following the approach
in (Banik, 2010):
(1) our grammar includes discourse-level elemen-
tary trees for relations that are generated in sepa-
rate sentences, and
(2) instead of the standard treatment of entities as
nouns or NPs substituted into elementary trees,
our grammar treats entities as underspecified re-
ferring expressions, leaving the generation of noun
phrases to the next stage. The underspecified re-
ferring expressions replace elementary trees in the
grammar, which the generator would otherwise
have to combine with substitution. This under-
specification saves us computational complexity
in surface realisation, and at the same time allows
us to make decisions on word choice at a later
stage when we have more information on the syn-
tax of the sentence and discourse history.

The output of the realizer is an underspecified
text in the form of a sequence of lemma - feature
structure pairs. Lemmas here can be underspeci-
fied – instead of an actual word, they can be an in-
dex or a sequence of indices pointing to concepts
in the KB. The syntax and sentence boundaries
are fully specified, and the output can be one or
more sentences long. The feature structures asso-
ciated with lemmas include all information neces-
sary for referring expression generation and mor-
phological realisation, which is performed in the
next phase. To give an example, the set of rela-
tions below would produce an output with 8 un-
derspecified referring expressions (shown as RX),
distributed over two sentences:

(Uptake07 path Plasma-membrane78)
(Uptake07 origin Extracellular-Side52)

24

(Uptake07 destination Cytoplasm39)
(Uptake07 agent Cell-Surface-Receptor79)
(Uptake07 instrument Coated-Vesicle49)
(Uptake07 object Cholesterol08)
(Uptake07 raw-material Chemical-Energy70)
(Uptake07 raw-material Free-Energy89)

NP(Uptake07) – RX[1] absorb RX[2] to RX[3] of RX[8]

with RX[4] from RX[5] through RX[6]. This process re-

quires RX[7].

The elementary trees selected by the realizer for
this output, and the correspondences between re-
lations and referring expressions are illustrated in
Fig.3.

4.2 Referring Expression Generation

The final stage in the NLG pipeline is performing
morphological realisation and spelling out the re-
ferring expressions left underspecified by the real-
isation module. The input to referring expression
generation is a list of lemma - feature structure
pairs, where lemmas are words on leaf nodes in
the derived tree produced by syntactic realisation.
In our system, some of the lemmas can be unspec-
ified, i.e., there is no word associated with the leaf
node, only a feature structure. For these cases, we
perform lexicon lookup and referring expression
generation based on the feature structure, as well
as morphological realisation. To give an example,
the input illustrated in the previous section will be
generated as

“Uptake of cholesterol by human cell– a cell
surface receptor absorbs cholesterol to the cyto-
plasm of a human cell with a coated vesicle from
an extracellular side through a plasma membrane.
This process requires chemical energy and free-
energy.”

Many concept labels in our ontology are very
complex, often giving a description of the concept
or the corresponding biology terminology, and
therefore these labels can only be used for NLG
under specific circumstances. To overcome this
problem, we have created a lexicon that maps con-
cept names to words, and the grammar has control
over which form is used in a particular construc-
tion. Accordingly, we distinguish between two
types of underspecified nodes:

• NP nodes where the lexical item for the
node is derived by normalizing the concept
class associated with the node (Uptake-Of-
Cholesterol-By-Human-Cell → “uptake of
cholesterol by human cell”)

• RX (referring expression) nodes where lex-
ical items are obtained by looking up class
names in the concept-to-word mapping lexi-
con (Uptake-Of-Cholesterol-By-Human-Cell
→ “absorb”)

The feature structures on RX nodes in the out-
put of GenI describe properties of entities in the in-
put, which were associated with that specific node
during realisation. The feature structures specify
three kinds of information:

• the identifier (or a list of identifiers) for the
specific instances of entities the RX node
refers to
• the KB class for each entity
• any cardinality constraints that were asso-

ciated with each entity for the relation ex-
pressed by the tree in which the RX node ap-
pears

We define cardinality constraints as a triple (Do-
main, Slot, Constraint) where the Constraint itself
is another triple of the form (ConstraintExpres-
sion, Number, ConstraintClass). ConstraintEx-
pression is one of at least, at most, or exactly
and ConstraintClass is a KB class over which the
constraint holds. There is usually (but not neces-
sarily) one or more relations associated with ev-
ery cardinality constraint. We say a triple (Do-
main Slot Range) is associated with a cardinality
constraint (Domain, Slot, (ConstraintExpression,
Number, ConstraintClass)) if

• the Domain and Slot of the associated triple
is equal to the Domain and Slot of the cardi-
nality constraint and

• one of the following holds:

– either (Range instance-of Constraint-
Class) holds for the range of the triple

– or Range is taxonomically related to
ConstraintClass (via a chain of subclass
relations)

We define a referring expression language
(Fig. 4) which describes groups of instance names
(variables) that belong to the same KB class, and
the associated cardinality constraints. Groups
themselves can be embedded within a larger group
(an umbrella), resulting in a complex expression
which gives examples of a concept (e.g., “three
atoms (a carbon and two oxygens)”). Expressions

25

<refex> = <umbrella> SPACE <refex> | <umbrella>
<umbrella> = <group> (<refex>)| <group>
<group> = <class> <instances> <constraints>
<instances> = :: <instance> <instances> | <instance>
<constraints> = : <constraint> <constraints> | <constraint>
<constraint> = <op> : <num> | unk : <dash-delimited-string>
<op> = ge | le | eq

Figure 4: Syntax of the referring expression language

in this language are constructed from triples dur-
ing the input conversion stage, when we perform
semantic aggregation. The groups are then passed
through elementary trees by the realisation module
(GenI) to appear in the output as complex feature
structures on leaf nodes of the derived tree. The re-
ferring expression generation module parses these
complex feature values, and constructs (possibly
complex) noun phrases as appropriate.

To illustrate some examples, the following fea-
ture value shows a simple referring expression
group which encodes two entities (Monomer14
and Monomer7) and two cardinality constraints (at
least 2 and at most 5). This expression will be gen-
erated as “between 2 and 5 monomers”:
Monomer::Monomer14::Monomer7:ge:2:le:5

We also allow more complex cardinality con-
straints which give the general type of an entity
and specify examples of the general type, as in “at
least 3 organic molecules (2 ATPs and an ethyl al-
cohol)”:
Organic-Molecule:ge:3
(ATP:: ATP80938:eq:2
Ethyl-Alcohol:: Ethyl-Alcohol80922)

The referring expression generation module
makes three main decisions based on the refer-
ring expression, additional feature structures on
the node, and discourse history: it chooses lem-
mas, constructs discriminators, and decides be-
tween singular/plural form. The algorithm for dis-
criminator choice in the referring expression gen-
eration module is illustrated in Fig 5. Our refer-
ring expression generation module, including dis-
course history tracking and determiner choice, is
made available in the Antfarm3 open source tool.

5 Giving Domain Experts Control over
Sentence Structure

By automatically associating event frames with el-
ementary trees we are able to generate a sentence
for all combinations of event-to-entity relations

3https://github.com/kowey/antfarm

Figure 6: Parameters in the concept-to-word map-
ping lexicon

without having to maintain the grammar and gen-
eration lexicon of the realizer as the knowledge
base evolves. However sentences generated this
way are not always well-formed. Events in the
KB can be realized with a wide range of verbs and
nouns, which require different prepositions or syn-
tactic constructions, and different types of events
may require different participants to be their gram-
matical subject or object. To give an example, for
events that have an agent, in the majority of the
cases we get a grammatical sentence if we place
the agent in subject position. If the frame lacks
an agent but has an object, we can usually gener-
ate a grammatical passive sentence, with the ob-
ject participant as the subject. However, it is often
the case that events do not have an agent, and we
get a grammatical (active) sentence by placing an-
other relation in the subject position e.g., base for
the event Store or instrument for Block. Which

26

for each group in the referring expression do
if all members of the group are first mentions and there are no distractors in the history: then

if the group has cardinality constraints: then
upper bound M → at most M
lower bound N → at least N (multiple group members in this case are also interpreted as lower bound)
both bounds→ between N and M or exactly N

else
one group member→ generate an indefinite determiner (a/an)
more than one member→ generate a cardinal

end if
end if
if the group is a first mention but there are distractors in the discourse history then

if the group has only one member then
if the group exactly matches one previous mention→ another
if the group exactly matches N > 1 previous mentions→ the Nth
if there is a 2-member group in the history, and one of the members was mentioned by itself→ the other
if the discourse history has more than one distractor→ a(n) Nth

end if
if there are multiple group members then

if the group is a subset of a previously mentioned group which has no distractors→ N of the
end if

end if
if the group is not a first mention then

if the group has upper and/or lower bounds→ the same
if the group has one member only→ the
if the group has multiple members→ the N

end if
end for

Figure 5: Algorithm for discriminator choice in our referring expression module

event participant can appear in subject and ob-
ject positions depends not only on the type of the
event, but also on the encoding guidelines which
are continuously evolving.

In order to improve the quality of the gener-
ated output, and to give domain experts control
over customizing the system without having to un-
derstand details of the grammar, we extended the
concept-to-word mapping lexicon with parameters
which control preposition choice, and allow cus-
tomization of the position of participating entities.
We developed a graphical user interface which al-
lows encoders (biology domain experts) to add
and edit these lexical parameters as they encode
concepts in the KB.

To give an example, in the absence of a lexical
item and any parameters for the event Glycogen-
Storage, our system would produce the following
default output, attempting to use the concept label
as the main verb of the sentence in an automati-
cally produced generation lexicon entry:

“Glycogen storage – glycogen is glycogened
storage in a vertebrate in a liver cell and a muscle
cell.”
In order to improve the quality of the output, one
of our biology teachers has customized the param-
eters in the lexicon to yield:

“Glycogen storage – glycogen is stored by a

Figure 7: Concept map for the event ’Reduction’

vertebrate within a liver cell and a muscle cell.”

This was achieved through a graphical user inter-
face which is part of the tool used for knowledge
encoding, and is illustrated in Fig 6. Our sys-
tem allows encoders to re-generate sentences af-
ter editing the parameters to see the effect of the
changes on the output. The top half of the win-
dow in in Fig 6 allows encoders to associate words
or phrases with concepts, where they can add as
many synonyms as they see fit. One of the syn-
onyms has to be marked as the primary form, to
be used for generation by default.4 For events,

4The concept-to-word mapping lexicon is shared between
the question interpretation and the NLG module, and the ad-
ditional synonyms are currently only used for mapping ques-

27

(a) “Plastocyanin reduces P700+” (b) “P700+ receives an electron from plastocyanin.”

Figure 8: Concept-to-word mapping parameters for the two synonyms of Reduction

the primary form is a verb and its nominalization,
and for entities it is a noun. The bottom half of
the window shows the parameter settings for each
synonym associated with the concept. Here the
encoders can specify relations which link the sub-
ject and object of a verb to the event (grammatical
subject/object), and assign prepositions to other
event-to-entity relations for the verb, when it is
used to realize the specified event. There is also
an option to tell the NLG system to ignore some
of the event participants when using a specific verb
for the event. This functionality is used for verbs
that already imply one of the participants. For ex-
ample, the word polymerization already implies
that the result of the event is a polymer. In these
cases there is no need for the NLG system to gen-
erate the implied participant (here, result). An-
other example is the verb reduce, which implies
that the object of the event is an electron. The ed-
itor allows the users to enter different parameter
values for the synonyms of the same event. For
example, the graph in Fig 7 could be described in
at least three different ways:

1. P700+ is reduced by plastocyanin
2. Plastocyanin reduces P700+
3. P700+ receives an electron from plastocyanin.

Here sentences 1 and 2 make no mention of the
electron involved in the process, but sentence 3 ex-
plicitly includes it. In order for the system to cor-
rectly generate sentences 1 and 2, the concept-to-
word mapping parameters for “reduce” (as a syn-
onym for Reduction) have to include an implied
participant. Otherwise the system will assume that
all participants should be mentioned in the sen-
tence, and it will generate “P700+ is reduced by
a plastocyanin of an electron”. Fig 8. illustrates
the different concept-to-word mapping parameters
needed for the two synonyms for Reduction in or-
der to generate the above sentences correctly.

tions onto concepts in the KB.

6 Conclusions

We have presented an NLG system which gen-
erates complex sentences from a biology KB.
Our system includes a content selection module,
which tailors the selected relations to the context
in which the output is displayed, and allows the
presentation module to send parameters to influ-
ence properties of generated outputs. We have de-
veloped a referring expression generation module
which generates complex noun phrases from ag-
gregated cardinality constraints and entities in the
input, and keeps track of discourse history to dis-
tinguish mentions of different groups of concepts.
Our system allows biology teachers to detect in-
consistencies and incompleteness in the KB, such
as missing cardinality constraints, errors where
two instances of the concept were added unnec-
essarily (unification errors on entities), and miss-
ing or incorrect relations. To make the system
robust, we have developed an algorithm to pro-
duce sentences and complex noun phrases for un-
seen combinations of event-to-entity relations in
the KB by automatically generating entries in the
lexicon of the GenI surface realizer. Our algorithm
makes default decisions on sentence structure and
ordering based on relations sent to the NLG sys-
tem, expressing the event’s participants. To allow
domain experts to easily improve the default out-
puts generated by our algorithm, we have defined
a framework for adding lexical parameters to con-
cepts, which allow non-NLG-experts to customize
the structure of generated sentences for events in
the KB as they are encoded. Although our system
currently only produces one or two possibly com-
plex sentences, it was designed to ultimately gen-
erate paragraph-length texts. This can be achieved
simply by adding more discourse-level elementary
trees to the grammar of the realizer, since our sys-
tem is already able to handle referring expressions
across sentence boundaries.

28

References
E. Banik. 2010. A Minimalist Architecture for Gener-

ating Coherent Text. Ph.D. thesis, The Open Univer-
sity, UK.

K. Barker, B. Porter, and P. Clark. 2001. A library of
generic concepts for composing knowledgebases. In
Proceedings K-CAP 2001, pages 14–21.

K. Bontcheva and Y. Wilks. 2004. Automatic report
generation from ontologies: the MIAKT approach.
In 9th Int. Conf. on Applications of Natural Lan-
guage to Information Systems, page 324335, Manch-
ester, UK.

K. Bontcheva. 2004. Open-source tools for creation,
maintenance, and storage of lexical resources for
language generation from ontologies. In 4th Conf.
on Language Resources and Evaluation, Lisbon,
Portugal.

D. Galanis and I. Androutsopoulos. 2007. Generat-
ing multilingual descriptions from linguistically an-
notated owl ontologies: the NaturalOWL system. In
INLG07, Schloss Dagstuhl, Germany, page 143146.

D. Gunning, V. K. Chaudhri, P. Clark, K. Barker, Shaw-
Yi Chaw, M. Greaves, B. Grosof, A. Leung, D. Mc-
Donald, S. Mishra, J. Pacheco, B. Porter, A. Spauld-
ing, D. Tecuci, and J. Tien. 2010. Project halo up-
date - progress toward digital aristotle. AI Magazine,
Fall:33–58.

A. K. Joshi and Y. Schabes. 1997. Tree-Adjoining
Grammars. In Grzegorz Rosenberg and Arto Sa-
lomaa, editors, Handbook of Formal Languages
and Automata, volume 3, pages 69–124. Springer-
Verlag, Heidelberg.

E. Kow. 2007. Surface realisation: ambiguity and
determinism. Ph.D. thesis, Universite de Henri
Poincare, Nancy.

C. Mellish and X. Sun. 2005. The semantic web as
a linguistic resource: Opportunities for natural lan-
guage generation. In Knowledge-Based Systems.

C.L. Paris. 1988. Tailoring object descriptions to the
users level of expertise. Computational Linguistics,
14(3):6478. Special Issue on User Modelling.

E. Reiter, R. Robertson, and L. M. Osman. 2003.
Lessons from a failure: generating tailored smok-
ing cessation letters. Artificial Intelligence, 144(1-
2):41–58.

A. Spaulding, A. Overholtzer, J. Pacheco, J. Tien, V. K.
Chaudhri, D. Gunning, and P. Clark. 2011. Inquire
for ipad: Bringing question-answering ai into the
classroom. In International Conference on AI in Ed-
ucation (AIED).

G. Wilcock. 2003. Talking owls: Towards an ontology
verbalizer. In Human Lan- guage Technology for
the Semantic Web and Web Services, ISWC03, page
109112, Sanibel Island, Florida.

29

