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Abstract

Using the technique of ”semantic mirror-
ing” a graph is obtained that represents
words and their translations from a paral-
lel corpus or a bilingual lexicon. The con-
nectedness of the graph holds information
about the different meanings of words that
occur in the translations. Spectral graph
theory is used to partition the graph, which
leads to a grouping of the words according
to different senses. We also report results
from an evaluation using a small sample of
seed words from a lexicon of Swedish and
English adjectives.

1 Introduction

A great deal of linguistic knowledge is encoded
implicitly in bilingual resources such as par-
allel texts and bilingual dictionaries. Dyvik
(1998, 2005) has provided a knowledge discov-
ery method based on the semantic relationship be-
tween words in a source language and words in
a target language, as manifested in parallel texts.
His method is called Semantic mirroring and the
approach utilizes the way that different languages
encode lexical meaning by mirroring source words
and target words back and forth, in order to es-
tablish semantic relations like synonymy and hy-
ponymy. Work in this area is strongly related to
work within Word Sense Disambiguation (WSD)
and the observation that translations are a good
source for detecting such distinctions (Resnik &
Yarowsky 1999, Ide 2000, Diab & Resnik 2002).
A word that has multiple meanings in one lan-
guage is likely to have different translations in
other languages. This means that translations
serve as sense indicators for a particular source

word, and make it possible to divide a given word
into different senses.

In this paper we propose a new graph-based ap-
proach to the analysis of semantic mirrors. The
objective is to find a viable way to discover syn-
onyms and group them into different senses. The
method has been applied to a bilingual dictionary
of English and Swedish adjectives.

2 Preparations

2.1 The Translation Matrix
In these experiments we have worked with a
English-Swedish lexicon consisting of 14850 En-
glish adjectives, and their corresponding Swedish
translations. Out of the lexicon was created a
translation matrix B, and two lists with all the
words, one for English and one for Swedish. B
is defined as

B(i, j) =

{
1, if i ∼ j,
0, otherwise.

The relation i ∼ j means that word i translates
to word j.

2.2 Translation
Translation is performed as follows. From the
word i to be translated, we create a vector ēi, with
a one in position i, and zeros everywhere else.
Then perform the matrix multiplication Bēi if it
is a Swedish word to be translated, or BT ēi if it is
an English word to be translated. ēi has the same
length as the list in which the word i can be found.

3 Semantic Mirroring

We start with an English word, called eng11. We
look up its Swedish translations. Then we look up

1Short for english1. We will use swe for Swedish words.
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the English translations of each of those Swedish
words. We have now performed one ”mirror-
operation”. In mathematical notation:

f = BBT ēeng1.

The non-zero elements in the vector f represent
English words that are semantically related to
eng1. Dyvik (1998) calls the set of words that we
get after two translations the inverse t-image. But
there is one problem. The original word should not
be here. Therefore, in the last translation, we mod-
ify the matrix B, by replacing the row in B corre-
sponding to eng1, with an all-zero row. Call this
new modified matrix Bmod1. So instead of the ma-
trix multiplication performed above, we start over
with the following one:

Bmod1B
T ēeng1. (1)

To make it clearer from a linguistic perspective,
consider the following figure2.

eng2

swe1

33ffffffffff eng3

eng1
++XXXXXXXXXX //

33ffffffffff
swe2

33ffffffffff

++XXXXXXXXXX eng1

swe3 //

++XXXXXXXXXX eng4

eng5

The words to the right in the picture above
(eng2,...,eng5) are the words we want to divide
into senses. To do this, we need some kind of
relation between the words. Therefore we con-
tinue to translate, and perform a second ”mirror
operation”. To keep track of what each word in
the inverse t-image translates to, we must first
make a small modification. We have so far done
the operation (1), which gave us a vector, call it
e ∈ R14850×1. The vector e consists of nonzero in-
tegers in the positions corresponding to the words
in the invers t-image, and zeros everywhere else.
We make a new matrix E, with the same number
of rows as e, and the same number of columns as
there are nonzeros in e. Now go through every el-
ement in e, and when finding a nonzero element
in row i, and if it is the j:th nonzero element, then
put a one in position (i, j) in E. The procedure is
illustrated in (2).

2The arrows indicate translation.



1
0
2
1
0
3

 −→



1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 (2)

When doing our second ”mirror operation”, we do
not want to translate through the Swedish words
swe1,...,swe3. We once again modify the matrix
B, this time replacing the columns of B corre-
sponding to the Swedish words swe1,...,swe3, with
zeros. Call this second modified matrix Bmod2.
With the matrix E from (2), we now get:

Bmod2B
T
mod2E (3)

We illustrate the operation (3):

swe4 //
))SSSS eng6

eng2
55kkkk // swe5 //

))SSSS eng2

swe1
55kkkk
eng3

55kkkk
swe1 eng3

eng1
))SSSS //
55kkkk
swe2

55kkkk

))SSSS eng1 swe2 eng1

swe3 //
))SSSS eng4

))SSSS swe3 eng4

eng5 //
))SSSS swe6

55kkkk //
))SSSS eng5

swe7
55kkkk // eng7

Now we have got the desired relation between
eng2,...eng5. In (3) we keep only the rows corre-
sponding to eng2,...eng5, and get a symmetric ma-
trix A, which can be considered as the adjacency
matrix of a graph. The adjacency matrix and the
graph of our example are illustrated below.

A =


2 1 0 0
1 1 0 0
0 0 1 1
0 0 1 2

 (4)

eng2

eng3

eng4

eng5

Figure 1: The graph to the matrix in (4).

The adjacency matrix should be interpreted in the
following way. The rows and the columns corre-
spond to the words in the inverse t-image. Follow-
ing our example, eng2 corresponds to row 1 and
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column 1, eng3 corresponds to row 2 and column
2, and so on. The elements on position (i, i) in
A are the vertex weights. The vertex weight as-
sociated with a word, describes how many transla-
tions that word has in the other language, e.g. eng2
translates to swe4 and swe5 that is translated back
to eng2. So the vertex weight for eng2 is 2, as also
can be seen in position (1, 1) in (4). A high vertex
weight tells us that the word has a high number of
translations, and therefore probably a wide mean-
ing.

The elements in the adjacency matrix on posi-
tion (i, j), i ̸= j are the edge weights. These
weights are associated with two words, and de-
scribe how many words in the other language that
both word i and j are translated to. E.g. eng5
and eng4 are both translated to swe6, and it fol-
lows that the weight, w(eng4,eng5) = 1. If we in-
stead would take eng5 and eng7, we see that they
both translate to swe6 and swe7, so the weight be-
tween those words, w(eng5,eng7) = 2. (But this is
not shown in the adjacency matrix, since eng7 is
not a word in the inverse t-image). A high edge
weight between two words tells us that they share
a high number of translations, and therefore prob-
ably have the same meanings.

4 Graph Partitioning

The example illustrated in Figure 1 gave as a re-
sult two graphs that are not connected. Dyvik ar-
gues that in such a case the graphs represent two
groups of words of different senses. In a larger
and more realistic example one is likely to obtain
a graph that is connected, but which can be parti-
tioned into two subgraphs without breaking more
than a small number of edges. Then it is reason-
able to ask whether such a partitioning has a sim-
ilar effect in that it represents a partitioning of the
words into different senses.

We describe the mathematical procedure of par-
titioning a graph into subgraphs, using spectral
graph theory (Chung, 1997). First, define the de-
gree d(i) of a vertex i to be

d(i) =
∑

j

A(i, j).

Let D be the diagonal matrix defined by

D(i, j) =

{
d(i), if i = j,
0, otherwise.

The Laplacian L is defined as

L = D −A.

We define the normalised Laplacian L to be

L = D− 1
2 LD− 1

2 .

Now calculate the eigenvalues λ0, . . . , λn−1, and
the eigenvectors of L. The smallest eigen-
value, λ0, is always equal to zero, as shown by
Chung (1997). The multiplicity of zero among
the eigenvalues is equal to the number of con-
nected components in the graph, as shown by
Spielman (2009). We will look at the eigenvector
belonging to the second smallest eigenvalue, λ1.
This eigenpair is often referred to as the Fiedler
value and the Fiedler vector. The entries in the
Fiedler vector corresponds to the vertices in the
graph. (We will assume that there is only one
component in the graph. If not, chose the com-
ponent with the largest number of vertices). Sort
the Fiedler vector, and thus sorting the vertices in
the graph. Then make n− 1 cuts along the Fiedler
vector, dividing the elements of the vector into two
sets, and for each cut compute the conductance,
ϕ(S), defined as

ϕ(S) = d(V )
|∂(S, S̄) |
d(S)d(S̄)

, (5)

where d(S) =
∑

i∈S d(i). | ∂(S, S̄) | is the total
weight of the edges with one end in S and one end
in S̄, and V = S + S̄ is the set of all vertices in
the graph. Another measure used is the sparsity,
sp(S), defined as

sp(S) =
|∂(S, S̄) |

min(d(S), d(S̄))
(6)

For details, see (Spielman, 2009). Choose the cut
with the smallest conductance, and in the graph,
delete the edges with one end in S and the other
end in S̄. The procedure is then carried out until
the conductance, ϕ(S), reaches a tolerance. The
tolerance is decided by human evaluators, per-
forming experiments on test data.

5 Example

We start with the word slithery, and after the mir-
roring operation (3) we get three groups of words
in the inverse t-image, shown in Table 1. After
two partitionings of the graph to slithery, using the
method described in section 4, we get five sense
groups, shown in Table 2.
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smooth slimy saponaceous
slick smooth-faced
lubricious oleaginous
slippery oily slippy
glib greasy
sleek

Table 1: The three groups of words after the mir-
roring operation.

slimy glib oleaginous
smooth-faced slippery oily
smooth lubricious greasy
sleek slick
saponaceous slippy

Table 2: The five sense groups of slithery after two
partitionings.

6 Evaluation

A small evaluation was performed using a ran-
dom sample of 10 Swedish adjectives. We gen-
erated sets under four different conditions. For the
first, using conductance (5). For the second, using
sparsity (6). For the third and fourth, we set the
diagonal entries in the adjacency matrix to zero.
These entries tell us very little of how the words
are connected to each other, but they may effect
how the partitioning is made. So for the third, we
used conductance and no vertex weights, and for
the fourth we used sparsity and no vertex weights.
There were only small differences in results due to
the conditions, so we report results only for one of
them, the one using vertex weights and sparsity.

Generated sets, with singletons removed, were
evaluated from two perspectives: consistency and
synonymy with the seed word. For consistency a
three-valued scheme was used: (i) the set forms a
single synset, (ii) at least two thirds of the words
form a single synset, and (iii) none of these. Syn-
onymy with the seed word was judged as either
yes or no.

Two evaluators first judged all sets indepen-
dently and then coordinated their judgements. The
criterion for consistency was that at least one do-
main, such as personality, taste, manner, can be
found where all adjectives in the set are inter-
changeable. Results are shown in Table 3.

Depending on how we count partially consistent
groups this gives a precision in the range 0.57 to
0.78. We have made no attempt to measure recall.

Count Average Percentage
All groups 58 5.8 100
Consistent
groups

33 3.3 57

2/3 consistency 12 1.2 21
Synonymy
with seed word

14 1.4 24

Table 3: Classified output with frequencies from
one type of partition

It may be noted that group size varies. There are
often several small groups with just 2 or 3 words,
but sometimes as many as 10-15 words make up a
group. For large groups, even though they are not
fully consistent, the words tend to be drawn from
two or three synsets.

7 Conclusion

So far we have performed a relatively limited num-
ber of tests of the method. Those tests indi-
cate that semantic mirroring coupled with spectral
graph partitioning is a useful method for comput-
ing word senses, which can be developed further
using refined graph theoretic and linguistic tech-
niques in conjunction.

8 Future work

There is room for many more investigations of the
approach outlined in this paper. We would like
to explore the possibility to have a vertex (word)
belong to multiple synsets, instead of having dis-
crete cuts between synsets. In the present solu-
tion a vertex belongs to only one partition of a
graph, making it impossible to having the same
word belong to several synsets. We would also
like to investigate the properties of graphs to see
whether it is possible to automatically measure
how close a seed word is to a particular synset.
Furthermore, more thorough evaluations of larger
data sets would give us more information on how
to combine similar synsets which were generated
from distinct seed words and explore more com-
plex semantic fields. In our future research we will
test the method also on other lexica, and perform
experiments with the different tolerances involved.
We will also perform extensive tests assessing the
results using a panel of human evaluators.
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