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Abstract

Event extraction approaches based on ex-
pressive structured representations of ex-
tracted information have been a significant
focus of research in recent biomedical nat-
ural language processing studies. How-
ever, event extraction efforts have so far
been limited to publication abstracts, with
most studies further considering only the
specific transcription factor-related subdo-
main of molecular biology of the GENIA
corpus. To establish the broader relevance
of the event extraction approach and pro-
posed methods, it is necessary to expand
on these constraints. In this study, we pro-
pose an adaptation of the event extraction
approach to a subdomain related to infec-
tious diseases and present analysis and ini-
tial experiments on the feasibility of event
extraction from domain full text publica-
tions.

1 Introduction

For most of the previous decade, biomedical In-
formation Extraction (IE) efforts have focused pri-
marily on tasks that allow extracted information
to be represented as simple pairs of related enti-
ties. This representation is applicable to many IE
targets of interest, such as gene-disease associa-
tions (Chun et al., 2006) and protein-protein inter-
actions (Nédellec, 2005; Krallinger et al., 2007).
However, it has limited applicability to advanced
applications such as semantic search, Gene On-
tology term annotation, and pathway extraction,
tasks for which and relatively few resources or sys-
tems (e.g. (Rzhetsky et al., 2004)) have been intro-
duced. A number of recent studies have proposed

more expressive representations of extracted in-
formation, introducing resources supporting ad-
vanced IE approaches (Pyysalo et al., 2007; Kim
et al., 2008; Thompson et al., 2009; Ananiadou
et al., 2010a). A significant step in the develop-
ment of domain IE methods capable of extract-
ing this class of representations was taken in the
BioNLP’09 shared task on event extraction, where
24 teams participated in an IE task setting requir-
ing the extraction of structured representations of
multi-participant biological events of several types
(Kim et al., 2009).

While the introduction of structured event ex-
traction resources and methods has notably ad-
vanced the state of the art in biomedical IE rep-
resentations, the focus of event extraction studies
carries other limitations frequently encountered in
domain IE efforts. Specifically, resources anno-
tated for biomedical events contain exclusively
texts from publication abstracts, typically further
drawn from small subdomains of molecular biol-
ogy. These choices constrain not only the types of
texts but also the types of events considered, re-
stricting the applicability of event extraction. This
paper presents results from one ongoing effort to
extend an event extraction approach over these
boundaries, toward event extraction from full text
documents in the domain of infectious diseases.

In this study, we consider the subdomain related
to Type IV secretion systems as a model subdo-
main of interest within the broad infectious dis-
eases domain. Type IV secretion systems (T4SS)
are mechanisms for transferring DNA and pro-
teins across cellular boundaries. T4SS are found
in a broad range of Bacteria and in some Ar-
chaea. These translocation systems enable gene
transfer across cellular membranes thus contribut-
ing to the spread of antibiotic resistance and viru-

132



Figure 1: Event representation example. Inhibition of binding caused by phosphorylation is represented
using three events. The shaded text background identifies the text bindings of the events and entities.

lence genes making them an especially important
mechanism in infectious disease research (Juhas et
al., 2008). Type IV secretion systems are found in
plant pathogens, such as Agrobacterium tumefa-
ciens, the cause of crown gall disease as well as in
animal pathogens, such as Helicobacter pylori, a
cause of severe gastric disease. The study of T4SS
has been hampered by the lack of consistent termi-
nology to describe genes and proteins associated
with the translocation mechanism thus motivating
the use of natural language processing techniques
to enhance information retrieval and information
extraction from relevant literature.

2 Event Extraction for the T4SS Domain

This section presents the application of an event
extraction approach to the T4SS domain.

2.1 Event Extraction

We base our information extraction approach on
the model introduced in the BioNLP’09 shared
task on event extraction. Central to this approach
is the event representation, which can capture
the association of multiple participants in varying
roles and numbers and treats events as primary ob-
jects of annotation, thus allowing events to be par-
ticipants in other events. Further, both entities and
events are text-bound, i.e. anchored to specific ex-
pressions in text (Figure 1).

The BioNLP’09 shared task defined nine event
types and five argument types (roles): Theme spec-
ifies the core participant(s) that an event affects,
Cause the cause of the the event, Site a specific
domain or region on a participant involved in the
event, and ToLoc and AtLoc locations associated
with localization events (Table 1). Theme and
Cause arguments may refer to either events or
gene/gene product entities, and other arguments
refer to other physical entities. The Theme ar-
gument is always mandatory, while others can be
omitted when a relevant participant is not stated.

The event types were originally defined to cap-
ture statements of biologically relevant changes in

Event type Args Example
Gene expression T 5-LOX is coexpressed

Transcription T IL-4 transcription
Protein catabolism T IkB-A proteolysis

Localization T,L translocation of STAT6
Phosphorylation T,S NF90 was phosphorylated

Binding T+,S+ Nmi interacts with STAT
Regulation T,C,S IL-4 gene control

Positive regulation T,C,S IL-12 induced binding
Negative regulation T,C,S suppressed dimerization

Table 1: Event types targeted in the BioNLP’09
shared task and their arguments, with minimal
examples of each event type. Arguments ab-
breviate for (T)heme, (C)ause, (S)ite and L for
ToLoc/AtLoc, with “+” identifying arguments
than can occur multiple times. The expression
marked as triggering the event shown in italics.

the state of entities in a target subdomain involv-
ing transcription factors in human blood cells. In
adapting the approach to new domains, some ex-
tension of the event types is expected to be nec-
essary. By contrast, the argument types and the
general design of the representation are intended
to be general, and to maintain compatibility with
existing systems we aim to avoid modifying these.

2.2 T4SS Domain

A corpus of full-text publications relating to the
T4SS subdomain of the infectious diseases do-
main annotated for biological entities and terms of
interest to domain experts was recently introduced
by (Ananiadou et al., 2010b). In the present study,
we use this corpus as a reference standard defin-
ing domain information needs. In the following
we briefly describe the corpus annotation and the
view it provides of the domain.

The T4SS corpus annotation covers four classes
of tagged entities and terms: Bacteria, Cellular
components, Biological Processes, and Molecular
functions. The latter three correspond to the three
Gene Ontology (GO) (Ashburner et al., 2000) top-
level sub-ontologies, and terms of these types were
annotated with reference to both GO and relevance
to the interests of domain experts, with guidelines
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Bacterium
A. tumefaciens 32.7%
H. pylori 20.0%
L. pneumophila 16.3%
E. coli 12.3%
B. pertussis 3.0%

Cell component
T4SS 5.2%
Ti plasmid 5.1%
outer membrane 4.2%
membrane 3.5%
genome 3.4%

Biological process
virulence 14.1%
conjugation 7.9%
localization 6.1%
nuclear import 5.8%
transfer 5.1%

Molecular function
nucleotide-binding 20.3%
ATPase activity 17.3%
NTP-binding 14.7%
ATP-binding 12.2%
DNA-binding 9.1%

Table 2: Most frequently tagged terms (after normalization) and their relative frequencies of all tagged
entities of each of the four types annotated in the T4SS corpus.

Type Annotations
Bacteria 529

Cellular component 2237
Biological process 1873

Molecular function 197

Table 3: Statistics for the existing T4SS corpus
annotation.

requiring that marked terms be both found in GO
and associated with T4SS. These constraints as-
sure that the corpus is relevant to the informa-
tion needs of biologists working in the domain and
that it can be used as a reference for the study of
automatic GO annotation. In the work introduc-
ing the corpus, the task of automatic GO anno-
tation was studied as facilitating improved infor-
mation access, such as advanced search function-
ality: GO annotation can allow for search by se-
mantic classes or co-occurrences of terms of speci-
fied classes. The event approach considered in this
study further extends on these opportunities in in-
troducing a model allowing e.g. search by specific
associations of the concepts of interest.

The previously created annotation of the T4SS
corpus covers 27 full text publications totaling
15143 pseudo-sentences (text sentences plus table
rows, references, etc.) and 244942 tokens.1 A to-
tal of nearly 5000 entities and terms are annotated
in these documents; Table 2 shows the most fre-
quently tagged terms of each type after basic nor-
malization of different surface forms, and Table 3
gives the per-class statistics. Domain characteris-
tics are clearly identifiable in the first three tagged
types, showing disease-related bacteria, their ma-
jor cellular components, and processes related to
movement, reproduction and infection. The last
term type is dominated by somewhat more generic
binding-type molecular functions.

In addition to the four annotated types it was

1While the document count is modest compared to that
of abstract-based corpora, we estimate that in terms of the
amount of text (tokens) the corpus corresponds to over 1000
abstracts, comparable in size to e.g. the GENIA event corpus
(Kim et al., 2008).

recognized during the original T4SS corpus anno-
tation that genes and gene products are centrally
important for domain information needs, but their
annotation was deferred to focus on novel cate-
gories. As part of the present study, we introduce
annotation for gene/gene product (GGP) mentions
(Section 3.2), and in the following discussion of
applying an event extraction approach to the do-
main the availability of this class annotation as an
additional category is assumed.

2.3 Adaptation of the Event Model

The event model involves two primary categories
of representation: physical entities such as genes
and proteins are elementary (non-structured) and
their mentions annotated as typed spans of text,2

and events and processes (“things that happen”)
are represented using the structured event repre-
sentation described in Section 2.1. This division
applies straightforwardly to the T4SS annotations,
suggesting an approach where bacteria and cell
components retain their simple tagged-term repre-
sentation and the biological processes and molec-
ular functions are given an event representation.
In the following, we first analyze correspondences
between the latter two classes and BioNLP’09
shared task events, and then proceed to study the
event arguments and their roles as steps toward a
complete event model for the domain.

Molecular functions, the smallest class tagged
in the T4SS corpus, are highly uniform: almost
75% involve binding, immediately suggesting rep-
resentation using the Binding class of events de-
fined in the applied event extraction model. The
remaining functions are ATPase activity, together
with its exact GO synonyms (e.g. ATP hydrolase
activity) accounting for 19% of the terms, the gen-
eral type hydrolysis (4.5%), and a small number
of rare other functions. While these have no cor-
respondence with previously defined event types,

2Normalization identifying e.g. the Uniprot entry corre-
sponding to a protein mention may also be necessary, but here
excluded from consideration an independent issue.
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Class Category Freq

Location
Transfer 27.6%
Localization 15.6%
Import/export 14.5%
Virulence 14.1%

High-level Assembly 8.7%
process Conjugation 8.3%

Secretion 8.1%
(Other) 1.8%

Table 4: Categorization of T4SS corpus biologi-
cal processes and relative frequency of mentions
of each category of the total tagged.

their low overall occurrence counts make them of
secondary interest as extraction targets.

The biological processes are considerably more
diverse. To identify general categories, we per-
formed a manual analysis of the 217 unique nor-
malized terms annotated in the corpus as biologi-
cal processes (Table 4). We find that the majority
of the instances (58%) relate to location or move-
ment. As related types of statements are anno-
tated as Localization events in the applied model,
we propose to apply this event type and differen-
tiate between the specific subtypes on the basis of
the event arguments. A further 39% are of cate-
gories that can be viewed as high-level processes.
These are distinct from the events considered in
the BioNLP’09 shared task in involving coarser-
grained events and larger-scale participants than
the GGP entities considered in the task: for ex-
ample, conjugation occurs between bacteria, and
virulence may involve a human host.

To analyze the role types and arguments char-
acteristic of domain events, we annotated a small
sample of tagged mentions for the most fre-
quent types in the broad classification discussed
above: Binding for Molecular function, Transfer
for Location-related, and Virulence for High-level
process. The statistics of the annotated 65 events
are shown in Tables 5, 6 and 7. For Binding, we
find that while an estimated 90% of events in-
volve a GGP argument, the other participant of
the binding is in all cases non-GGP, most fre-
quently of Nucleotide type (e.g. NTP/ATP). While
only GGP Binding arguments were considered in
the shared task events, the argument structures are
typical of multi-participant binding and this class
of expressions are in scope of the original GE-
NIA Event corpus annotation (Kim et al., 2008).
Event annotations could thus potentially be de-
rived from existing data. Localization event
arguments show substantially greater variety and

Freq Arguments
78% Theme: GGP, Theme: Nucleotide

5.5% Theme: GGP, Theme: DNA
5.5% Theme: GGP, Theme: Sugar
5.5% Theme: Protein family, Theme: DNA
5.5% Theme: Protein, Theme: Nucleotide

Table 5: Binding event arguments.

Freq Arguments
16% Theme: DNA, From/To: Organism
16% Theme: DNA
16% Theme: Cell component
12% Theme: DNA, To: Organism

8% Theme: Protein family, From/To: Organism
4% Theme: GGP
4% Theme: GGP, To: Organism
4% Theme: GGP, From: Organism
4% Theme: Protein family, From: Organism
4% Theme: Protein family
4% Theme: Organism, To: Cell component
4% Theme: DNA From: Organism, To: Cell component
4% (no arguments)

Table 6: Localization (Transfer) event arguments.

Freq Arguments
64% Cause: GGP
16% Theme:Organism, Cause: GGP

8% Cause: Organism
8% (no arguments)
4% Cause: Protein family

Table 7: Process (Virulence) arguments.

some highly domain-specific argument combina-
tions, largely focusing on DNA and Cell compo-
nent (e.g. phagosome) transfer, frequently involv-
ing transfer between different organisms. While
the participants are almost exclusively of types
that do not appear in Localization events in exist-
ing annotations, the argument structures are stan-
dard and in our judgment reasonably capture the
analyzed statements, supporting the applicability
of the general approach. Finally, the argument
analysis shown in Table 7 supports the previous
tentative observation that the high-level biologi-
cal processes are notably different from previously
considered event types: for over 80% of these pro-
cesses no overtly stated Theme could be identified.
We take this to indicate that the themes – the core
participants that the processes concern – are ob-
vious in the discourse context and their overt ex-
pression would be redundant. (For example, in
the context virulence obviously involves a host and
conjugation involves bacteria.) By contrast, in the
corpus the entities contributing to these processes
are focused: a participant we have here analyzed
as Cause is stated in over 90% of cases. This
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Sentences Tokens
Abstracts 150 3789
Full texts 448 13375
Total 598 17164

Table 8: Statistics for the selected subcorpus.

novel pattern of event arguments suggests that the
event model should be augmented to capture this
category of high-level biological processes. Here,
we propose an event representation for these pro-
cesses that removes the requirement for a Theme
and substitutes instead a mandatory Cause as the
core argument. In the event annotation and exper-
iments, we focus on this newly proposed class.

3 Annotation

This section describes the new annotation intro-
duced for the T4SS corpus.

3.1 Text Selection

The creation of exhaustive manual annotation for
the full T4SS corpus represents a considerable an-
notation effort. Due to resource limitations, for
this study we did not attempt full-scope annota-
tion but instead selected a representative subset of
the corpus texts. We aimed to select texts that pro-
vide good coverage of the text variety in the T4SS
corpus and can be freely redistributed for use in re-
search. We first selected for annotation all corpus
documents with at least a freely available PubMed
abstract, excluding 3 documents. As the corpus
only included a single freely redistributable Open
Access paper, we extended full text selection to
manuscripts freely available as XML/HTML (i.e.
not only PDF) via PubMed Central. While these
documents cannot be redistributed in full, their
text can be reliably combined with standoff anno-
tations to recreate the annotated corpus.

In selected full-text documents, to focus anno-
tation efforts on sections most likely to contain re-
liable new information accessible to natural lan-
guage processing methods, we further selected the
publication body text, excluding figures and tables
and their captions, and removed Methods and Dis-
cussion sections. We then removed artifacts such
as page numbers and running heads and cleaned
remaining errors from PDF conversion of the orig-
inal documents. This selection produced a subcor-
pus of four full-text documents and 19 abstracts.
The statistics for this corpus are shown in Table 8.

GGP GGP/sentence
Abstracts 124 0.82
Full texts 394 0.88
Total 518 0.87

Table 9: Statistics for the GGP annotation.

3.2 Gene/Gene Product Annotation

As gene and gene product entities are central to
domain information needs and the core entities of
the applied event extraction approach, we first in-
troduced annotation for this entity class. We cre-
ated manual GGP annotation following the an-
notation guidelines of the GENIA GGP Corpus
(Ohta et al., 2009). As this corpus was the source
of the gene/protein entity annotation provided as
the basis of the BioNLP shared task on event ex-
traction, adopting its annotation criteria assures
compatibility with recently introduced event ex-
traction methods. Briefly, the guidelines spec-
ify tagging for minimal continuous spans of spe-
cific gene/gene product names, without differen-
tiating between DNA/RNA/protein. A “specific
name” is understood to be a a name that allows
a domain expert to identify the entry in a rele-
vant database (Entrez gene/Uniprot) that the name
refers to. Only GGP names are tagged, excluding
descriptive references and the names of related en-
tities such as complexes, families and domains.

The annotation was created on the basis of an
initial tagging created by augmenting the output
of the BANNER tagger (Leaman and Gonzalez,
2008) by dictionary- and regular expression-based
tagging. This initial high-recall markup was then
corrected by a human annotator. To confirm that
the annotator had correctly identified subdomain
GGPs and to check against possible error intro-
duced through the machine-assisted tagging, we
performed a further verification of the annotation
on approx. 50% of the corpus sentences: we com-
bined the machine- and human-tagged annotations
as candidates, removed identifying information,
and asked two domain experts to identify the cor-
rect GGPs. The two sets of independently pro-
duced judgments showed very high agreement:
holding one set of judgments as the reference stan-
dard, the other would achieve an f-score of 97%
under the criteria presented in Section 4.2. We
note as one contributing factor to the high agree-
ment that the domain has stable and systematically
applied GGP naming criteria. The statistics of the
full GGP annotation are shown in Table 9.

136



Events Event/sentence
Abstracts 15 0.1
Full texts 5 0.01
Additional 80 2.2
Total 100 0.16

Table 10: Statistics for the event annotation.

3.3 Event Annotation

Motivated by the analysis described in Section 2.3,
we chose to focus on the novel category of asso-
ciations of GGP entities in high-level processes.
Specifically, we chose to study biological pro-
cesses related to virulence, as these are the most
frequent case in the corpus and prototypical of the
domain. We adopted the GENIA Event corpus an-
notation guidelines (Kim et al., 2008), marking as-
sociations between specific GGPs and biological
processes discussed in the text even when these
are stated speculatively or their existence explic-
itly denied. As the analysis indicated this category
of processes to typically involve a single stated
participant in a fixed role, annotations were ini-
tially recorded as (GGP, process) pairs and later
converted into an event representation.

During annotation, the number of annotated
GGP associations with the targeted class of pro-
cesses in the T4SS subcorpus was found to be too
low to provide material for both training and test-
ing a supervised learning-based event extraction
approach. To extend the source data, we searched
PubMed for cases where a known T4SS-related
protein co-occurred with an expression known to
relate to the targeted process class (e.g. virulence,
virulent, avirulent, non-virulent) and annotated a
further set of sentences from the search results for
both GGPs and their process associations. As the
properties of these additional examples could not
be assured to correspond to those of the targeted
domain texts, we used these annotations only as
development and training data, performing evalu-
ation on cases drawn from the T4SS subcorpus.

As the annotation target was novel, we per-
formed two independent sets of judgments for all
annotated cases, jointly resolving disagreements.
Although initial agreement was low, for a final set
of judgments we measured high agreement, corre-
sponding to 93% f-score when holding one set of
judgments as the gold standard. The statistics of
the annotation are shown in Table 10. Annotations
are sparse in the T4SS subcorpus and, as expected,
very dense in the targeted additional data.

4 Experiments

4.1 Methods
For GGP tagging experiments, we applied a state-
of-the-art tagger with default settings as reference
and a custom tagger for adaptation experiments.
As the reference tagger, we applied a recent re-
lease of BANNER (Leaman and Gonzalez, 2008)
trained on the GENETAG corpus (Tanabe et al.,
2005). The corpus is tagged for gene and protein-
related entities and its texts drawn from a broad
selection of PubMed abstracts. The current revi-
sion of the tagger3 achieves an f-score of 86.4%
on the corpus, competitive with the best result re-
ported in the BioCreative II evaluation (Wilbur et
al., 2007), 87.2%. The custom tagger4 follows the
design of BANNER in both the choice of Con-
ditional Random Fields (Lafferty et al., 2001) as
the applied learning method and the basic feature
design, but as a key extension can further adopt
features from external dictionaries as both positive
and negative indicators of tagged entities. Tagging
experiments were performed using a document-
level 50/50 split of the GGP-annotated subcorpus.

For event extraction, we applied an adapta-
tion of the approach of the top-ranking system in
the BioNLP’09 shared task (Björne et al., 2009):
all sentences in the input text were parsed with
the McClosky-Charniak (2008) parser and the re-
sulting phrase structure analyses then converted
into the Stanford Dependency representation us-
ing conversion included in the Stanford NLP tools
(de Marneffe et al., 2006). Trigger recognition
was performed with a simple regular expression-
based tagger covering standard surface form vari-
ation. Edge detection was performed using a su-
pervised machine learning approach, applying the
LibSVM (Chang and Lin, 2001) Support Vector
Machine implementation with a linear kernel and
the feature representation of Björne et al˙ (2009),
building largely around the shortest dependency
path connecting a detected trigger with a candi-
date participant. The SVM regularization parame-
ter was selected by a sparse search of the parame-
ter space with evaluation using cross-validation on
the training set. As the class of events targeted for
extraction in this study are of a highly restricted
type, each taking only of a single mandatory Cause
argument, the construction of events from detected

3http://banner.sourceforge.net
4http://www-tsujii.is.s.u-tokyo.ac.jp/

NERsuite/
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Precision Recall F-score
Abstracts 68.1% 89.5% 77.3%
Full texts 56.9% 80.7% 66.7%
Total 59.4% 82.8% 69.2%

Table 11: Initial GGP tagging results.

triggers and edges could be implemented as a sim-
ple deterministic rule.

4.2 Evaluation Criteria
For evaluating the performance of the taggers we
apply a relaxed matching criterion that accepts a
match between an automatically tagged and a gold
standard entity if the two overlap at least in part.
This relaxation is adopted to focus on true tagging
errors. The GENETAG entity span guidelines dif-
fer from the GENIA GGP guidelines adopted here
in allowing the inclusion of e.g. head nouns when
names appear in modifier position, while the an-
notation guidelines applied here require marking
only the minimal name.5 When applying strict
matching criteria, a substantial number of errors
may trace back to minor boundary differences
(Wang et al., 2009), which we consider of sec-
ondary interest to spurious or missing tags. Over-
all results are microaverages, that is, precision, re-
call and f-score are calculated from the sum of true
positive etc. counts over individual documents.

For event extraction, we applied the BioNLP’09
shared task event extraction criteria (Kim et al.,
2009) with one key change: to make it possible
to evaluate the extraction of the high-level pro-
cess participants, we removed the requirement that
all events must define a Theme as their core argu-
ment.

4.3 Gene/Gene Product Tagging
The initial GGP tagging results using BANNER
are shown in Table 11. We find that even for the
relaxed overlap matching criterion, the f-score is
nearly 10% points lower than reported on GENE-
TAG in the evaluation on abstracts. For full texts,
performance is lower yet by a further 10% points.
In both cases, the primary problem is the poor
precision of the tagger, indicating that many non-
GGPs are spuriously tagged.

To determine common sources of error, we per-
formed a manual analysis of 100 randomly se-
lected falsely tagged strings (Table 12). We find

5GENETAG annotations include e.g. human ets-1 protein,
whereas the guidelines applied here would require marking
only ets-1.

Category Freq Examples
GGP family or group 34% VirB, tmRNA genes
Figure/table 26% Fig. 1B, Table 1
Cell component 10% T4SS, ER vacuole
Species/strain 9% E. coli, A348deltaB4.5
Misc. 9% step D, Protocol S1
GGP domain or region 4% Pfam domain
(Other) 8% TrIP, LGT

Table 12: Common sources of false positives in
GGP tagging.

Precision Recall F-score
Abstracts 90.5% 95.7% 93.1%
Full texts 90.0% 93.2% 91.6%
Total 90.1% 93.8% 91.9%

Table 13: GGP tagging results with domain adap-
tation.

that the most frequent category consists of cases
that are arguably correct by GENETAG annota-
tion criteria, which allow named protein families
of groups to be tagged. A similar argument can
be made for domains or regions. Perhaps not sur-
prisingly, a large number of false positives relate
to features common in full texts but missing from
the abstracts on which the tagger was trained, such
as figure and table references. Finally, systematic
errors are made for entities belonging to other cat-
egories such as named cell components or species.

To address these issues, we applied a domain-
adapted custom tagger that largely replicates the
features of BANNER, further integrating infor-
mation from the UMLS Metathesaurus,6 which
provides a large dictionary containing terms cov-
ering 135 different semantic classes, and a cus-
tom dictionary of 1081 domain GGP names, com-
piled by (Ananiadou et al., 2010b). The non-GGP
UMLS Metathesaurus terms provided negative in-
dicators for reducing spurious taggings, and the
custom dictionary positive indicators. Finally, we
augmented the GENETAG training data with 10
copies7 of the training half of the T4SS GGP cor-
pus as in-domain training data.

Table 13 shows the results with the domain-
adapted tagger. We find dramatically improved
performance for both abstracts and full texts,
showing results competitive with the state of the
art performance on GENETAG (Wilbur et al.,
2007). Thus, while the performance of an un-
adapted tagger falls short of both results reported

6http://www.nlm.nih.gov/research/umls/
7As the GENETAG corpus is considerably larger than the

T4SS GGP corpus, replication was used to assure that suffi-
cient weight is given to the in-domain data in training.
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Precision Recall F-score
Co-occurrence 65% 100% 78%
Machine learning 81% 85% 83%

Table 14: Event extraction results.

on GENETAG and levels necessary for practi-
cal application, adaptation addressing common
sources of error through the adoption of general
and custom dictionaries and the use of a small
set of in-domain training data was successful in
addressing these issues. The performance of the
adapted tagger is notably high given the modest
size of the in-domain data, perhaps again reflect-
ing the consistent GGP naming conventions of the
subdomain.

4.4 Event Extraction

We performed an event extraction experiment fol-
lowing the training and test split described in Sec-
tion 3.3. Table 14 shows the results of the ap-
plied machine learning-based method contrasted
with a co-occurrence baseline replacing the edge
detection with a rule that extracts a Cause edge for
all trigger-GGP combinations co-occurring within
sentence scope. This approach achieves 100% re-
call as the test data was found to only contain
events where the arguments are stated in the same
sentence as the trigger.

The results show that the machine learning ap-
proach achieves very high performance, matching
the best results reported for any single event type
in the BioNLP’09 shared task (Kim et al., 2009).
The very high co-occurrence baseline result sug-
gests that the high performance largely reflects the
relative simplicity of the task. With respect to
the baseline result, the machine-learning approach
achieves a 21% relative reduction in error.

While this experiment is limited in both scope
and scale, it suggests that the event extraction ap-
proach can be beneficially applied to detect do-
main events represented by novel argument struc-
tures. As a demonstration of feasibility the result
is encouraging for both the applicability of event
extraction to this specific new domain and for the
adaptability of the approach to new domains in
general.

5 Discussion and Conclusions

We have presented a study of the adaptation of an
event extraction approach to the T4SS subdomain
as a step toward the introduction of event extrac-

tion to the broader infectious diseases domain. We
applied a previously introduced corpus of subdo-
main full texts annotated for mentions of bacte-
ria and terms from the three top-level Gene On-
tology subontologies as a reference defining do-
main information needs to study how these can
be met through the application of events defined
in the BioNLP’09 Shared Task on event extrac-
tion. Analysis indicated that with minor revision
of the arguments, the Binding and Localization
event types could account for the majority of both
biological processes and molecular functions of
interest. We further identified a category of “high-
level” biological processes such as the virulence
process typical of the subdomain, which necessi-
tated extension of the considered event extraction
model.

Based on argument analysis, we proposed a rep-
resentation for high-level processes in the event
model that substitutes Cause for Theme as the
core argument. We further produced annotation
allowing an experiment on the extraction of the
dominant category of virulence processes with
gene/gene product (GGP) causes, annotating 518
GGP mentions and 100 associations between these
and the processes. Experiments indicated that with
annotated in-domain resources both the GGP enti-
ties and their associations with processes could be
extracted with high reliability.

In future work we will extend the model and
annotation proposed in this paper to the broader
infectious diseases domain, introducing annotated
resources and extraction methods for advanced in-
formation access. All annotated resources intro-
duced in this study are available from the GENIA
project homepage.8
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