
Proceedings of the NAACL HLT 2010 First International Workshop on Formalisms and Methodology for Learning by Reading, pages 78–86,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Unsupervised techniques for discovering ontology

elements from Wikipedia article links

Zareen Syed Tim Finin
University of Maryland, Baltimore County University of Maryland, Baltimore County

1000 Hilltop Circle 1000 Hilltop Circle

Baltimore, MD 21250, USA Baltimore, MD 21250, USA
zarsyed1@umbc.edu finin@umbc.edu

Abstract

We present an unsupervised and unrestricted

approach to discovering an infobox like on-

tology by exploiting the inter-article links

within Wikipedia. It discovers new slots and

fillers that may not be available in the

Wikipedia infoboxes. Our results demonstrate

that there are certain types of properties that

are evident in the link structure of resources

like Wikipedia that can be predicted with high

accuracy using little or no linguistic analysis.

The discovered properties can be further used

to discover a class hierarchy. Our experiments

have focused on analyzing people in Wikipe-

dia, but the techniques can be directly applied

to other types of entities in text resources that

are rich with hyperlinks.

1 Introduction

One of the biggest challenges faced by the Seman-

tic Web vision is the availability of structured data

that can be published as RDF. One approach is to

develop techniques to translate information in

spreadsheets, databases, XML documents and

other traditional data formats into RDF (Syed et al.

2010). Another is to refine the technology needed

to extract structured information from unstructured

free text (McNamee and Dang, 2009).

For both approaches, there is a second problem

that must be addressed: do we start with an ontol-

ogy or small catalog of ontologies that will be used

to encode the data or is extracting the right ontol-

ogy part of the problem. We describe exploratory

work on a system that can discover ontological

elements as well as data from a free text with em-

bedded hyperlinks.

Wikipedia is a remarkable and rich online en-

cyclopedia with a wealth of general knowledge

about varied concepts, entities, events and facts in

the world. Its size and coverage make it a valuable

resource for extracting information about different

entities and concepts. Wikipedia contains both free

text and structured information related to concepts

in the form of infoboxes, category hierarchy and

inter-article links. Infoboxes are the most struc-

tured form and are composed of a set of subject-

attribute-value triples that summarize or highlight

the key features of the concept or subject of the

article. Resources like DBpedia (Auer et al., 2007)

and Freebase (Bollacker et al., 2007) have har-

vested this structured data and have made it avail-

able as triples for semantic querying.

While infoboxes are a readily available source

of structured data, the free text of the article con-

tains much more information about the entity.

Barker et al. (2007) unified the state of the art ap-

proaches in natural language processing and

knowledge representation in their prototype system

for understanding free text. Text resources which

are rich in hyperlinks especially to knowledge

based resources (such as encyclopedias or diction-

aries) have additional information encoded in the

form of links, which can be used to complement

the existing systems for text understanding and

knowledge discovery. Furthermore, systems such

as Wikify (Mihalcea and Csomai, 2007) can be

employed to link words in free text to knowledge

resources like Wikipedia and thus enrich the free

text with hyperlinks.

We describe an approach for unsupervised on-

tology discovery from links in the free text of the

Wikipedia articles, without specifying a relation or

set of relations in advance. We first identify candi-

date slots and fillers for an entity, then classify en-

78

tities and finally derive a class hierarchy. We have

evaluated our approach for the Person class, but it

can be easily generalized to other entity types such

as organizations, places, and products.

The techniques we describe are not suggested

as alternatives to natural language understanding or

information extraction, but as a source for addi-

tional evidence that can be used to extract onto-

logical elements and relations from the kind of text

found in Wikipedia and other heavily-linked text

collections. This approach might be particularly

useful in “slot fillings” tasks like the one in the

Knowledge Base Population track (McNamee and

Dang, 2010) at the 2009 Text Analysis Confer-

ence. We see several contributions that this work

has to offer:

• Unsupervised and unrestricted ontology discov-

ery. We describe an automatic approach that

does not require a predefined list of relations or

training data. The analysis uses inter-article

links in the text and does not depend on existing

infoboxes, enabling it to suggest slots and fillers

that do not exist in any extant infoboxes.

• Meaningful slot labels. We use WordNet (Mil-

ler et al., 1990) nodes to represent and label

slots enabling us to exploit WordNet’s hy-

pernym and hyponym relations as a property hi-

erarchy.

• Entity classification and class labeling. We in-

troduce a new feature set for entity classifica-

tion, i.e. the discovered ranked slots, which per-

forms better than other feature sets extracted

from Wikipedia. We also present an approach

for assigning meaningful class label vectors us-

ing WordNet nodes.

• Deriving a class hierarchy. We have developed

an approach for deriving a class hierarchy based

on the ranked slot similarity between classes

and the label vectors.

In the remainder of the paper we describe the de-

tails of the approach, mention closely related work,

present and discuss preliminary results and provide

some conclusions and possible next steps.

2 Approach

Figure 1 shows our ontology discovery framework

and its major steps. We describe each step in the

rest of this section.

2.1 Discovering Candidate Slots and Fillers

Most Wikipedia articles represent a concept, i.e., a

generic class of objects (e.g., Musician), an indi-

vidual object (e.g., Michael_Jackson), or a generic

relation or property (e.g., age). Inter-article links

within Wikipedia represent relations between con-

cepts. In our approach we consider the linked con-

cepts as candidate fillers for slots related to the

primary article/concept. There are several cases

where the filler is subsumed by the slot label for

example, the infobox present in the article on “Mi-

chael_Jackson” (Figure 2) mentions pop, rock and

soul as fillers for the slot Genre and all three of

these are a type of Genre. The Labels slot contains

fillers such as Motown, Epic and Legacy which are

all Record Label Companies. Based on this obser-

vation, we discover and exploit “isa” relations be-

tween fillers (linked concepts) and WordNet nodes

to serve as candidate slot labels.

In order to find an “isa” relation between a con-

cept and a WordNet synset we use manually cre-

ated mappings by DBpedia, which links about

467,000 articles to synsets. However, Wikipedia

has more than two million articles1, therefore, to

map any remaining concepts we use the automati-

cally generated mappings available between

WordNet synsets and Wikipedia categories

(Ponzetto and Navigli, 2009). A single Wikipedia

article might have multiple categories associated

with it and therefore multiple WordNet synsets.

Wikipedia’s category system serves more as a way

to tag articles and facilitate navigation rather than

1
 This estimate is for the English version and does not

include redirects and administrative pages such as dis-

ambiguation pages.

Figure 1: The ontology discovery framework com-

prises a number of steps, including candidate slot and

filler discovery followed by slot ranking, slot selec-

tion, entity classification, slot re-ranking, class label-

ing, and class hierarchy discovery.

79

to categorize them. The article on Michael Jordan,

for example, has 36 categories associated with it.

In order to select an individual WordNet synset as

a label for the concept’s type, we use two heuris-

tics:

• Category label extraction. Since the first sen-

tence in Wikipedia articles usually defines the

concept, we extract a category label from the

first sentence using patterns based on POS tags

similar to Kazama and Torisawa (2007).

• Assign matching WordNet synset. We con-

sider all the WordNet synsets associated with

the categories of the article using the category

to WordNet mapping (Ponzetto and Navigli,

2009) and assign the WordNet synset if any of

the words in the synset matches with the ex-

tracted category label. We repeat the process

with hypernyms and hyponyms of the synset

up to three levels.

2.2 Slot Ranking

All slots discovered using outgoing links might not

be meaningful, therefore we have developed tech-

niques for ranking and selecting slots. Our ap-

proach is based on the observation that entities of

the same type have common slots. For example,

there is a set of slots common for musical artists

whereas, a different set is common for basketball

players. The Wikipedia infobox templates based

on classes also provide a set of properties or slots

to use for particular types of entities or concepts.

In case of people, it is common to note that

there is a set of slots that are generalized, i.e., they

are common across all types of persons. Examples

are name, born, and spouse. There are also sets of

specialized slots, which are generally associated

with a given profession. For example, the slots for

basketball players have information for basketball

related activities and musical artists have slots with

music related activities. The slots for “Mi-

chael_Jordan” include Professional Team(s), NBA

Draft, Position(s) and slots for “Michael_Jackson”

include Genres, Instruments and Labels.

Another observation is that people engaged in a

particular profession tend to be linked to others

within the same profession. Hence the maxim “A

man is known by the company he keeps.” For ex-

ample, basketball players are linked to other bas-

ketball players and politicians are linked to other

politicians. We rank the slots based on the number

of linked persons having the same slots. We gener-

ated a list of person articles in Wikipedia by get-

ting all Wikipedia articles under the Person type in

Freebase2. We randomly select up to 25 linked per-

sons (which also link back) and extract their candi-

date slots and vote for a slot based on the number

of times it appears as a slot in a linked person nor-

malized by the number of linked persons to assign

a slot score.

2.3 Entity Classification and Slot Re-Ranking

The ranked candidate slots are used to classify en-

tities and then further ranked based on number of

times they appear among the entities in the cluster.

We use complete link clustering using a simple slot

similarity function:

This similarity metric for slots is computed as the

cosine similarity between tf.idf weighted slot vec-

tors, where the slot score represents the term fre-

2
 We found that the Freebase classification for Person

was more extensive that DBpedia’s in the datasets avail-

able to us in early 2009.

Figure 2. The Wikipedia infobox

for the Michael_Jackson article has

a number of slots from appropriate

infobox templates.

80

quency component and the inverse document fre-

quency is based on the number of times the slot

appears in different individuals.

We also collapsed location expressing slots

(country, county, state, district, island etc.) into the

slot labeled location by generating a list of location

words from WordNet as these slots were causing

the persons related to same type of geographical

location to cluster together.

After clustering, we re-score the slots based on

number of times they appear among the individuals

in the cluster normalized by the cluster size. The

output of clustering is a vector of scored slots as-

sociated with each cluster.

2.4 Slot Selection

The slot selection process identifies and filters out

slots judged to be irrelevant. Our intuition is that

specialized slots or attributes for a particular entity

type should be somehow related to each other. For

example, we would expect attributes like league,

season and team for basketball players and genre,

label, song and album for musical artists. If an at-

tribute like album appears for basketball players it

should be discarded as it is not related to other at-

tributes.

We adopted a clustering approach for finding

attributes that are related to each other. For each

pair of attributes in the slot vector, we compute a

similarity score based on how many times the two

attribute labels appear together in Wikipedia per-

son articles within a distance of 100 words as

compared to the number of times they appear in

total and weigh it using weights of the individual

attributes in the slot vector. This metric is captured

in the following equation, where Df is the docu-

ment frequency and wt is the attribute weight.

Our initial experiments using single and com-

plete link clustering revealed that single link was

more appropriate for slot selection. We got clusters

at a partition distance of 0.9 and selected the larg-

est cluster from the set of clusters. In addition, we

also added any attributes exceeding a 0.4 score into

the set of selected attributes. Selected ranked slots

for Michael Jackson are given in Table 1.

2.5 Class Labeling

Assigning class labels to clusters gives additional

information about the type of entities in a cluster.

We generate a cluster label vector for each cluster

which represents the type of entities in the cluster.

We compute a list of person types by taking all

hyponyms under the corresponding person sense in

WordNet. That list mostly contained the profes-

sions list for persons such as basketball player,

president, bishop etc. To assign a WordNet type to

a person in Wikipedia we matched the entries in

the list to the words in the first sentence of the per-

son article and assigned it the set of types that

matched. For example, for Michael Jordan the

matching types found were basketball_player,

businessman and player.

We assigned the most frequent sense to the

matching word as followed by Suchanek et al.

(2008) and Wu and Weld (2008), which works for

majority of the cases. We then also add all the hy-

pernyms of the matching types under the Person

node. The vector for Michael Jordan has entries

basketball_player, athlete, businessperson, person,

contestant, businessman and player. After getting

matching types and their hypernyms for all the

members of the cluster, we score each type based

on the number of times it occurs in its members

normalized by the cluster size. For example for one

of the clusters with 146 basketball players we got

the following label vector: {player:0.97, contest-

ant:0.97, athlete:0.96, basketball_player:0.96}. To

select an individual label for a class we can pick

the label with the highest score (the most general-

Slot Score Fillers Example
Musician 1.00 ray_charles, sam_cooke ...

Album 0.99 bad_(album), ...

Location 0.97 gary,_indiana, chicago, …

Music_genre 0.90 pop_music, soul_music, ...

Label 0.79 a&m_records, epic_records, ...

Phonograph_

record
0.67

give_in_to_me,

this_place_hotel …

Act 0.59 singing

Movie 0.46 moonwalker …

Company 0.43 war_child_(charity), …

Actor 0.41 stan_winston, eddie_murphy,

Singer 0.40 britney_spears, …

Magazine 0.29 entertainment_weekly,…

Writing_style 0.27 hip_hop_music

Group 0.21 'n_sync, RIAA

Song 0.20 d.s._(song) …

 Table 1: Fifteen slots were discovered for musician

Michael Jackson along with scores and example fillers.

81

ized label) or the most specialized label having a

score above a given threshold.

2.6 Discovering Class Hierarchy

We employ two different feature sets to discover

the class hierarchy, i.e., the selected slot vectors

and the class label vectors and combine both func-

tions using their weighted sum. The similarity

functions are described below.

The common slot similarity function is the co-

sine similarity between the common slot tf.idf vec-

tors, where the slot score represents the tf and the

idf is based on the number of times a particular slot

appears in different clusters at that iteration. We

re-compute the idf term in each iteration. We de-

fine the common slot tf.idf vector for a cluster as

one where we assign a non-zero weight to only the

slots that have non-zero weight for all cluster

members. The label similarity function is the co-

sine similarity between the label vectors for clus-

ters. The hybrid similarity function is a weighted

sum of the common slot and label similarity func-

tions. Using these similarity functions we apply

complete link hierarchical clustering algorithm to

discover the class hierarchy.

3 Experiments and Evaluation

For our experiments and evaluation we used the

Wikipedia dump from March 2008 and the DBpe-

dia infobox ontology created from Wikipedia

infoboxes using hand-generated mappings (Auer et

al., 2007). The Person class is a direct subclass of

the owl:Thing class and has 21 immediate sub-

classes and 36 subclasses at the second level. We

used the persons in different classes in DBpedia

ontology at level two to generate data sets for ex-

periments.

There are several articles in Wikipedia that are

very small and have very few out-links and in-

links. Our approach is based on the out-links and

availability of information about different related

things on the article, therefore, in order to avoid

data sparseness, we randomly select articles with

greater than 100 in-links and out-links, at least

5KB page length and having at least five links to

entities of the same type that link back (in our case

persons).

We first compare our slot vector features with

other features extracted from Wikipedia for entity

classification task and then evaluate their accuracy.

We then discover the class hierarchy and compare

the different similarity functions.

3.1 Entity Classification

We did some initial experiments to compare our

ranked slot features with other feature sets ex-

tracted from Wikipedia. We created a dataset com-

posed of 25 different classes of Persons present at

level 2 in the DBpedia ontology by randomly se-

lecting 200 person articles from each class. For

several classes we got less than 200 articles which

fulfilled our selection criteria defined earlier. We

generated twelve types of feature sets and evalu-

ated them using ground truth from DBpedia ontol-

ogy.

We compare tf.idf vectors constructed using

twelve different feature sets: (1) Ranked slot fea-

tures, where tf is the slot score; (2) Words in first

sentence of an article; (3) Associated categories;

(4) Assigned WordNet nodes (see section 2.2); (5)

Associated categories tokenized into words; (6)

Combined Feature Sets 1 to 5 (All); (7-11) Feature

sets 7 to 11 are combinations excluding one feature

set at a time; (12) Unranked slots where tf is 1 for

all slots. We applied complete link clustering and

evaluated the precision, recall and F-measure at

different numbers of clusters ranging from one to

100. Table 2 gives the precision, recall and num-

ber of clusters where we got the maximum F-

measure using different feature sets.

82

 Feature set 10 (all features except feature 2) gave

the best F-measure i.e. 0.74, whereas, feature set 1

(ranked slots only) gave the second best F-measure

i.e. 0.73 which is very close to the best result. Fea-

ture set 12 (unranked slots) gave a lower F-

measure i.e. 0.61 which shows that ranking or

weighing slots based on linked entities of the same

type performs better for classification.

3.2 Slot and Filler Evaluation

To evaluate our approach to finding slot fillers, we

focused on DBpedia classes two levels below Per-

son (e.g., Governor and FigureSkater). We ran-

domly selected 200 articles from each of these

classes using the criteria defined earlier to avoid

data sparseness. Classes for which fewer than 20

articles were found were discarded. The resulting

dataset comprised 28 classes and 3810 articles3.

We used our ranked slots tf.idf feature set and

ran a complete link clustering algorithm producing

clusters at partition distance of 0.8. The slots were

re-scored based on the number of times they ap-

peared in the cluster members normalized by the

cluster size. We applied slot selection over the re-

scored slots for each cluster. In order to evaluate

our slots and fillers we mapped each cluster to a

DBpedia class based on the maximum number of

members of a particular DBpedia class in our clus-

ter. This process predicted 124 unique properties

for the classes. Of these, we were able to manually

align 46 to properties in either DBpedia or Free-

3
 For some of the classes, fewer than the full comple-

ment of 200 articles were found.

base for the corresponding class. We initially tried

to evaluate the discovered slots by comparing them

with those found in the ontologies underlying

DBpedia and Freebase, but were able to find an

overlap in the subject and object pairs for very few

properties.

We randomly selected 20 subject object pairs

for each of the 46 properties from the correspond-

ing classes and manually judged whether or not the

relation was correct by consulting the correspond-

No. Property Accuracy

1 automobile_race 1.00

2 championship 1.00

3 expressive_style 1.00

4 fictional_character 1.00

5 label 1.00

6 racetrack 1.00

7 team_sport 1.00

8 writing_style 1.00

9 academic_degree 0.95

10 album 0.95

11 book 0.95

12 contest 0.95

13 election 0.95

14 league 0.95

15 phonograph_record 0.95

16 race 0.95

17 tournament 0.94

18 award 0.90

19 movie 0.90

20 novel 0.90

21 school 0.90

22 season 0.90

23 serial 0.90

24 song 0.90

25 car 0.85

26 church 0.85

27 game 0.85

28 musical_instrument 0.85

29 show 0.85

30 sport 0.85

31 stadium 0.85

32 broadcast 0.80

33 telecast 0.80

34 hockey_league 0.75

35 music_genre 0.70

36 trophy 0.70

37 university 0.65

38 character 0.60

39 disease 0.60

40 magazine 0.55

41 team 0.50

42 baseball_club 0.45

43 club 0.45

44 party 0.45

45 captain 0.30

46 coach 0.25

 Avg. Accuracy: 0.81

Table 3: Manual evaluation of discovered properties

No. Feature Set k P R F

1 Ranked Slots 40 0.74 0.72 0.73

2 First Sentence 89 0.07 0.53 0.12

3 Categories 1 0.05 1.00 0.10

4 WordNet Nodes 87 0.40 0.22 0.29

5 (3 tokenized) 93 0.85 0.47 0.60

6 All (1 to 5) 68 0.87 0.62 0.72

7 (All – 5) 82 0.79 0.46 0.58

8 (All – 4) 58 0.78 0.63 0.70

9 (All – 3) 53 0.76 0.65 0.70

10 (All – 2) 58 0.88 0.63 0.74

11 (All – 1) 57 0.77 0.60 0.68

12 (1 unranked) 34 0.57 0.65 0.61

Table 2: Comparison of the precision, recall and F-

measure for different feature sets for entity classifi-

cation. The k column shows the number of clusters

that maximized the F score.

83

ing Wikipedia articles (Table 3). The average ac-

curacy for the 46 relations was 81%.

3.3 Discovering Class Hierarchy

In order to discover the class hierarchy, we took all

of the clusters obtained earlier at partition distance

of 0.8 and their corresponding slot vectors after

slot selection. We experimented with different

similarity functions and evaluated their accuracy

by comparing the results with the DBpedia ontol-

ogy. A complete link clustering algorithm was ap-

plied using different settings of the similarity func-

tions and the resulting hierarchy compared to

DBpedia’s Person class hierarchy. Table 4 shows

the highest F measure obtained for Person’s imme-

diate sub-classes (L1), “sub-sub-classes” (L2) and

the number of clusters (k) for which we got the

highest F-measure using a particular similarity

function.

The highest F-measure both at level 2 (0.63) and

level 1 (0.79) was obtained by simhyb with wc=0.2,

wl=0.8 and also at lowest number of clusters at L1

(k=8). The simhyb (wc=wl=0.5) and simlabel functions

gave almost the same F-measure at both levels.

The simcom_slot function gave better performance at

L1 (F=0.65) than the base line simslot (F=0.55)

which was originally used for entity clustering.

However, both these functions gave the same F-

measure at L2 (F=0.61).

4 Discussion

In case of property evaluation, properties for which

the accuracy was 60% or below include coach,

captain, baseball_club, club, party, team and

magazine. For the magazine property (correspond-

ing to Writer and ComicsCreator class) we ob-

served that many times a magazine name was men-

tioned in an article because it published some news

about a person rather than that person contributing

any article in that magazine. For all the remaining

properties we observed that these were related to

some sort of competition. For example, a person

played against a team, club, coach or captain. The

political party relation is a similar case, where arti-

cles frequently mention a politician’s party affilia-

tion as well as significant opposition parties. For

such properties, we need to exploit additional con-

textual information to judge whether the person

competed “for” or “against” a particular team,

club, coach or party. Even if the accuracy for fill-

ers for such slots is low, it can still be useful to

discover the kind of slots associated with an entity.

We also observed that there were some cases

where the property was related to a family member

of the primary person such as for disease, school

and university. Certain other properties such as

spouse, predecessor, successor, etc. require more

contextual information and are not directly evident

in the link structure. However, our experiments

show that there are certain properties that can be

predicted with high accuracy using the article links

only and can be used to enrich the existing infobox

ontology or for other purposes.

While our work has mostly experimented with

person entities, the approach can be applied to oth-

er types as well. For example, we were able to dis-

cover software as a candidate slot for companies

like Microsoft, Google and Yahoo!, which ap-

peared among the top three ranked slots using our

slot ranking scheme and corresponds to the prod-

ucts slot in the infoboxes of these companies.

For class hierarchy discovery, we have ex-

ploited the specialized slots after slot selection.

One way to incorporate generalized slots in the

hierarchy is to consider all slots for class members

(without slot selection) and recursively propagate

the common slots present at any level to the level

above it. For example, if we find the slot team to

be common for different types of Athletes such as

basketball players, soccer players etc. we can

propagate it to the Athlete class, which is one level

higher in the hierarchy.

5 Related Work

Unsupervised relation discovery was initially in-

troduced by Hasegawa et al. (2004). They devel-

oped an approach to discover relations by cluster-

ing pairs of entities based on intervening words

represented as context vectors. Shinyama and Se-

kine (2006) generated basic patterns using parts of

text syntactically connected to the entity and then

Similarity Function
k

(L=2)

F

(L=2)

k

(L=1)

F

(L=1)

simslot 56 0.61 13 0.55

simcom_slot 74 0.61 15 0.65

simlabel 50 0.63 10 0.76

simhyb wc=wl=0.5 59 0.63 10 0.76

simhyb wc=0.2, wl=0.8 61 0.63 8 0.79

Table 4: Evaluation results for class hierarchy predic-

tion using different similarity functions.

84

generated a basic cluster composed of a set of

events having the same relation.

Several approaches have used linguistic analysis

to generate features for supervised or un-

supervised relation extraction (Nguyen et al., 2007;

Etzioni et al., 2008; Yan et al., 2009). Our ap-

proach mainly exploits the heavily linked structure

of Wikipedia and demonstrates that there are sev-

eral relations that can be discovered with high ac-

curacy without the need of features generated from

a linguistic analysis of the Wikipedia article text.

Suchanek et al. (2008) used Wikipedia catego-

ries and infoboxes to extract 92 relations by apply-

ing specialized heuristics for each relation and in-

corporated the relations in their YAGO ontology,

whereas our techniques do not use specialized heu-

ristics based on the type of relation. Kylin (Weld

et al., 2008) generated infoboxes for articles by

learning from existing infoboxes, whereas we can

discover new fillers for several existing slots and

also discover new slots for infoboxes. KOG (Wu

and Weld, 2008) automatically refined the Wiki-

pedia infobox ontology and integrated Wikipedia’s

infobox-class schemata with WordNet. Since we

already use the WordNet nodes for representing

slots, it eliminates the need for several of KOG’s

infobox refinement steps.

While YAGO, Kylin and KOG all rely on rela-

tions present in the infoboxes, our approach can

complement these by discovering new relations

evident in inter-article links in Wikipedia. For ex-

ample, we could add slots like songs and albums to

the infobox schema for Musical Artists, movies for

the Actors infobox schema, and party for the Poli-

ticians schema.

6 Conclusions and Future Work

People have been learning by reading for thou-

sands of years. The past decade, however, has

seen a significant change in the way people read.

The developed world now does much of its reading

online and this change will soon be nearly univer-

sal. Most online content is read as hypertext via a

Web browser or custom reading device. Unlike

text, hypertext is semi-structured information, es-

pecially when links are drawn from global name-

space, making it easy for many documents to link

unambiguously to a common referent.

The structured component of hypertext aug-

ments the information in its plain text and provides

an additional source of information from which

both people and machines can learn. The work

described in this paper is aimed at learning useful

information, both about the implicit ontology and

facts, from the links embedded in collection of hy-

pertext documents.

Our approach is fully unsupervised and does

not require having a pre-defined catalogue of rela-

tions. We have discovered several new slots and

fillers that are not present in existing Wikipedia

infoboxes and also a scheme to rank the slots based

on linked entities of the same type. We compared

our results with ground truth from the DBpedia

infobox ontology and Freebase for the set of prop-

erties that were common and manually evaluated

the accuracy of the common properties. Our results

show that there are several properties that can be

discovered with high accuracy from the link struc-

ture in Wikipedia and can also be used to discover

a class hierarchy.

We plan to explore the discovery of slots from

non-Wikipedia articles by linking them to Wikipe-

dia concepts using existing systems like Wikify

(Mihalcea and Csomai, 2007). Wikipedia articles

are encyclopedic in nature with the whole article

revolving around a single topic or concept. Con-

sequently, linked articles are a good source of

properties and relations. This might not be the case

in other genres, such as news articles, that discuss

a number of different entities and events. One way

to extend this work to other genres is by first de-

tecting the entities in the article and then only

processing links in sentences that mention an entity

to discover its properties.

Acknowledgements

The research described in this paper was supported

in part by a Fulbright fellowship, a gift from Mi-

crosoft Research, NSF award IIS-0326460 and the

Johns Hopkins University Human Language Tech-

nology Center of Excellence.

85

 References

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann and Zachary Ives. 2007. DBpedia: A nu-
cleus for a web of open data. In Proceedings of the
6th International Semantic Web Conference: 11–15.

Ken Barker et al. 2007. Learning by reading: A proto-
type system, performance baseline and lessons
learned, Proceedings of the 22nd National Confer-
ence on Artificial Intelligence, AAAI Press.

K. Bollacker, R. Cook, and P. Tufts. 2007. Freebase: A
Shared Database of Structured General Human
Knowledge. Proceedings of the National Conference
on Artificial Intelligence (Volume 2): 1962-1963.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S. Weld. 2008. Open information extraction
from the web. Communications of the ACM 51, 12
(December): 68-74.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grish-
man. 2004. Discovering relations among named enti-
ties from large corpora. In Proceedings of the 42nd
Annual Meeting of the Association for Computa-
tional Linguistics: 415-422.

Jun’ichi Kazama and Kentaro Torisawa. 2007. Exploit-
ing Wikipedia as external knowledge for named en-
tity recognition. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning: 698–707.

Paul McNamee and Hoa Trang Dang. 2009. Overview
of the TAC 2009 knowledge base population track.
In Proceedings of the 2009 Text Analysis Confer-
ence. National Institute of Standards and Technol-
ogy, November.

Rada Mihalcea and Andras Csomai. 2007. Wikify!:
linking documents to encyclopedic knowledge. In
Proceedings of the 16th ACM Conference on
Information and Knowledge Management: 233–242.

George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine Miller. 1990.
WordNet: An on-line lexical database. International
Journal of Lexicography, 3:235–244.

Dat P. T. Nguyen, Yutaka Matsuo, and Mitsuru Ishizu-
ka. 2007. Subtree mining for relation extraction from
Wikipedia. In Proceedings of Human Language
Technologies: The Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics:125–128.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2008. Yago: A large ontology from
Wikipedia and WordNet. Web Semantics, 6(3):203–
217.

Zareen Syed, Tim Finin, Varish Mulwad and Anupam
Joshi. 2010. Exploiting a Web of Semantic Data for
Interpreting Tables, Proceedings of the Second Web
Science Conference.

Simone P. Ponzetto and Roberto Navigli. 2009. Large-
scale taxonomy mapping for restructuring and inte-
grating Wikipedia. In Proceedings of the Twenty-
First International Joint Conference on Artificial In-
telligence: 2083–2088.

Yusuke Shinyama and Satoshi Sekine. 2006. Pre-emp-
tive information extraction using unrestricted relation
discovery. In Proceedings of Human Language Tech-
nologies: The Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics:.

Daniel S. Weld, Raphael Hoffmann, and Fei Wu. 2008.
Using Wikipedia to bootstrap open information ex-
trac-tion. SIGMOD Record, 37(4): 62–68.

Fei Wu and Daniel S. Weld. 2008. Automatically refin-
ing the Wikipedia infobox ontology. In Proceedings
of the 17th International World Wide Web Confer-
ence, pages 635–644.

Wikipedia. 2008. Wikipedia, the free encyclopedia.

Yulan Yan, Naoaki Okazaki, Yutaka Matsuo, Zhenglu
Yang, and Mitsuru Ishizuka. 2009. Unsupervised re-
lation extraction by mining Wikipedia texts using in-
formation from the web. In Proceedings of the 47th
Annual Meeting of the Association for Computa-
tional Linguistics: Volume 2: 1021–1029.

86

