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Abstract

Multivariate analysis allows decoding of sin-
gle trial data in individual subjects. Since dif-
ferent models are obtained for each subject it
becomes hard to perform an analysis on the
group level. We introduce a new algorithm for
Bayesian multi-task learning which imposes a
coupling between single-subject models. Us-
ing the CMU fMRI dataset it is shown that the
algorithm can be used for concept classifica-
tion based on the average activation of regions
in the AAL atlas. Concepts which were most
easily classified correspond to the categories
shelter, manipulation and eating, which is in
accordance with the literature. The multi-task
learning algorithm is shown to find regions of
interest that are common to all subjects which
therefore facilitates interpretation of the ob-
tained models.

1 Introduction

Multivariate analysis allows decoding of neural rep-
resentations at the single trial level in single sub-
jects. Its introduction into the field of cognitive neu-
roscience has led to novel insights about the neu-
ral representation of cognitive functions such as lan-
guage (Mitchell et al., 2008), memory (Hassabis et
al., 2009), and vision (Miyawaki et al., 2008).

However, interpretation of the models obtained
using a multivariate analysis can be hard due to
the fact that different models are obtained for indi-
vidual subjects. For example, when analyzing K
separately acquired datasets, K sets of model pa-
rameters will be obtained which may or may not
show a common pattern. In some sense, we are in

need of a second-level analysis such that we can
draw inferences on the group level, as in the con-
ventional analysis of neuroimaging data using the
general linear model. One way to achieve this in
the context of multivariate analysis is by means of
multi-task learning, a special case of transfer learn-
ing (Thrun, 1996) where model parameters for dif-
ferent tasks (datasets) are estimated simultaneously
and no longer assumed to be independent (Caru-
ana, 1997). In an fMRI context, multi-task learning
has been explored using canonical correlation anal-
ysis (Rustandi et al., 2009).

In a Bayesian setting, multi-task learning is typ-
ically realized by assuming a hierarchical Bayesian
framework where shared prior distributions condi-
tion task-specific parameters (Gelman et al., 1995).
In this paper, we explore a new Bayesian approach
to multi-task learning in the context of concept clas-
sification; i.e., the prediction of the semantic cate-
gory of concrete nouns from BOLD response. Effec-
tively, we are using a shared prior to induce param-
eter shrinkage. We show that Bayesian multi-task
learning leads to more interpretable models, thereby
facilitating the interpretation of the models obtained
using multivariate analysis.

2 Bayesian multi-task learning

The goal of concept classification is to predict the
semantic category y of a presented (and previously
unseen) concrete noun from the measured BOLD re-
sponse x. In this paper, we will use Bayesian logis-
tic regression as the underlying classification model.
Let B(y; p) = py(1 − p)1−y denote the Bernoulli
distribution and l(x) = log(x/(1−x)) the logit link
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Figure 1: Contour plots of samples drawn from the prior for two regression coefficients β1 and β2 given three different
values of the coupling strength s. For uncoupled covariates, the magnitude of one covariate has no influence on the
magnitude of the other covariate. For strongly coupled covariates, in contrast, a large magnitude of one covariate
increases the probability of a large magnitude in the other covariate.

function. We are interested in the following predic-
tive density:

p(y | x,D,Θ) =
∫
B(y; l−1(xT β))p(β | D,Θ)dβ

where we integrate out the regression coefficients β
and condition on the response x, observed training
data D = (y,X) and hyper-parameters Θ. Using
Bayes rule, we can write the second term on the right
hand side as

p(β | D,Θ) ∝ p(D | β)p(β | Θ) (1)

where

p(D | β) =
∏
n

B(yn; l−1(xT
nβ))

is the likelihood term, which does not depend on the
hyper-parameters Θ, and p(β | Θ) is the prior on
the regression coefficients.

Let N (x; µ,Θ) denote a multivariate Gaussian
with mean µ and covariance matrix Θ. In order to
couple the tasks in a multi-task problem, we will use
the multivariate Laplace prior, which can be written
as a scale-mixture using auxiliary variables u and
v (van Gerven et al., 2010):

p(β | Θ) =
∫ (∏

k

N (βk; 0, u2
k + v2

k)

)
×N (u; 0,Θ)N (v; 0,Θ)du dv

The multivariate Laplace prior allows one to con-
trol the prior variance of the regression coefficients
β through the covariance matrix Θ of the auxiliary
variables u and v. This covariance matrix is conve-
niently specified in terms of the precision matrix:

Θ−1 =
1
θ
VRV.

Here, θ is a scale parameter which controls regu-
larization of the regression coefficients towards zero
and R is a structure matrix where rij = −s speci-
fies a fixed coupling strength s between covariate i
and covariate j. A negative rij penalizes differences
between covariates i and j, see van Gerven et al.
(2010) for details. V is a scaling matrix whose sole
purpose is to ensure that the prior variance of the
auxiliary variables is independent of the coupling
strength.1 Figure 1 shows the multivariate Laplace
prior for two covariates and three different coupling
strengths.

The specification of the prior in terms of θ and
R promotes sparse solutions and allows the inclu-
sion of prior knowledge about the relation between
covariates. The posterior marginals for the latent
variables (β,u,v) can be approximated using ex-
pectation propagation (Minka, 2001) and the poste-
rior variance of the auxiliary variables ui (or vi by
symmetry) can be interpreted as a measure of im-

1V is a matrix with
p

diag(R−1) on the diagonal.
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portance of the corresponding covariate xi since it
eventually determines how large the regression co-
efficients βi can become.

Interpretation becomes complicated whenever we
have collected multiple datasets for the same task
since each corresponding model may give differ-
ent results regarding the importance of the co-
variates used when solving the classification prob-
lem. Multi-task learning presents a solution to this
problem by dropping the assumption that datasets
{D1, . . . ,DK} are independent. Here, this is eas-
ily realized using the multivariate Laplace prior by
working with the augmented dataset

D∗ =




y1

y2
...

yK


,


X1 0 0 0
0 X2 0 0

0 0
. . . 0

0 0 0 XK




and by assuming that each covariate is coupled be-
tween datasets. I.e., the structure matrix is given by
elements

rij =


−s if i 6= j and

(i− j) modP = 0
1 + (K − 1) · s if i = j

0 otherwise

where P stands for the number of covariates in each
dataset. In this way, we have coupled covariates over
datasets with coupling strength s. Note that this cou-
pling is realized on the level of the auxiliary vari-
ables and not on the regression coefficients. Hence,
coupled auxiliary variables control the magnitude of
the regression coefficients β but the β’s themselves
can still be different for the individual subjects.

3 Experiments

In order to test our approach to Bayesian multi-task
learning for concept classification we have made
use of the CMU fMRI dataset2, which consists of
sixty concrete concepts in twelve categories. The
dataset was collected while nine English speakers
were presented with sixty line drawings of objects
with text labels and were instructed to think of the
same properties of the stimulus object consistently
during each presentation. For each concept there are

2http://www.cs.cmu.edu/∼tom/science2008

six instances per subject for which BOLD response
in multiple voxels was measured.

In our experiments we assessed whether previ-
ously unseen concepts from two different categories
(e.g., building-tool) can be classified correctly based
on measured BOLD response. To this end, all con-
cepts belonging to two out of the twelve semantic
categories were selected. Subsequently, we trained
a classifier on all concepts belonging to these two
categories save one. The semantic category of the
six instances of the left-out concept were then pre-
dicted using the trained classifier. This procedure
was repeated for each of the concepts and classifi-
cation performance was averaged over all concepts.
This performance was computed for all of the 66
possible category pairs.

In order to determine the effect of multi-task
learning, results were obtained when assuming no
coupling between datasets (s = 0) as well as when
assuming a very strong coupling between datasets
(s = 100). The scale parameter was fixed to θ =
1. In order to allow the coupling to be made, all
datasets are required to contain the same features.
One way to achieve this is to warp the data for each
subject from native space to normalized space and to
perform the multi-task learning in normalized space.
Here, in contrast, we computed the average activa-
tion in 116 predefined regions of interest (ROIs) us-
ing the AAL atlas (Tzourio-Mazoyer et al., 2002).
ROI activations were used as input to the classifier.
This considerably reduces computational overhead
since we need to couple just 116 ROIs instead of
approximately 20000 voxels between all nine sub-
jects.3 Furthermore, it facilitates interpretation since
results can be analyzed at the ROI level instead of at
the single voxel level. Of course, this presupposes
that category-specific information is captured by the
average activation in predefined ROIs, which is an
important open question we set out to answer with
our experiments.

4 Results

4.1 Classification of category pairs

We achieved good classification performance for
many of the category pairs both with and with-

3The efficiency of our algorithm depends on the sparseness
of the structure matrix R.
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Figure 2: Accuracies for concept classification of the 66
category pairs. The upper triangular part shows the re-
sults of multi-task learning whereas the lower triangular
part shows the results of standard classification. Non-
significant outcomes have been masked (Wilcoxon rank
sum test on outcomes for all nine subjects, p=0.05, Bon-
ferroni corrected).

out multi-task learning. Figure 2 shows these re-
sults where non-significant outcomes have been
masked. Interestingly, outcomes for all subjects
showed a preference for particular category pairs.
The concepts from building-tool, building-kitchen
and buildpart-tool had the highest mean classifica-
tion accuracies (proportion of correctly classifier tri-
als) of 0.78, 0.76 and 0.74, closely followed by con-
cepts from building-clothing and animal-buildpart
with a mean classification accuracy of 0.71.

This result bears a strong resemblance to the re-
cent work of Just et al. (2010). The authors con-
ducted a factor analysis of fMRI brain activation in
response to presentations of written words of differ-
ent categories and discovered three semantic factors
with the highest predictive potential: manipulation,
eating and shelter-entry. They subsequently used
these factors to select voxels for a features set and
were able to accurately identify the activation gen-
erated by concrete word using multivariate learning
methods on the basis of selected voxels. Moreover,
using the factor-related activation profiles they were
able to identify common neuronal signatures for par-
ticular words across participants. The authors sug-

Table 1: Stimulus words from the semantic categories
that showed best classification accuracies. Superscripts
indicate the words belonging to the list of ten words with
highest factor scores in the study by Just et al. (Just,
2010). We use the following abbreviations: s = shelter,
m = manipulation, e = eating.

Building Buildpart Tool Kitchen
apartments window chiselm glasse

barn doors hammerm knifem

houses chimney screwdriverm bottle
churchs closets pliersm cupe

igloo arch sawm spoonm

gest the revealed factors to represent major semantic
dimensions that relate to the ways the human being
can interact with an object. Although they assume
the existence of other semantic attributes that deter-
mine conceptual representation, the factors shelter,
manipulation and eating are proposed to be domi-
nant for the particular set of nouns. It is easy to draw
an analogy as the set of words used by Just and col-
leagues was exactly the same as in the current study.
Although the taxonomic categorization used in our
study does not exactly match the factor-based cate-
gorization, most of the items from categories build-
ing, buildpart, tool and kitchen show a strong corre-
spondence with one of the semantic factors and are
listed among ten words with highest factor scores
according to Just et al. (2010) (see Table 1).

The subsets of items that are set far apart in the
suggested semantic dimensions appear to be pre-
ferred by the classifier in our study. The classifier
was not able to identify the category of an unseen
concept in pairs building-buildpart and tool-kitchen,
possibly since they these categories shared the same
semantic features. Thus, the current study brings an
independent corroboration for the finding on the se-
mantic dimensions underlying concrete noun repre-
sentation.

4.2 Single versus multi-task learning

The use of AAL regions instead of native voxel ac-
tivity patterns allowed efficient multi-task learning
by coupling each region between nine subjects. Re-
liable classification accuracies were obtained for all
the participants, although there were strong differ-
ences in individual performances (Fig. 3). The move
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Figure 3: Classification performance per subject aver-
aged over all category pairs for standard classification and
multi-task learning (error bars show standard error of the
mean).

to multi-task learning seems to improve classifica-
tion results slightly in most of subjects, although the
improvement is not significant.

The main outcome and advantage of our approach
to multi-task learning is the convergence of models
obtained from different subjects. Figure 4 shows
that the subject-specific models become strongly
correlated when they are obtained in the multi-task
setting, even for weak coupling strengths. For strong
coupling strengths, the models are almost perfectly
correlated, resulting in identical models for all the
nine subjects as shown in Fig. 4 for the category pair
building-tool. It is important to realize here that the
model is defined in terms of the variance of the aux-
iliary variables, which acts as a proxy to the impor-
tance of a region. At the level of the regression coef-
ficients β, the model will still find subject-specific
parameters due to the likelihood term in Eq. (1).
Even though the contribution of each brain region
is constrained by the induced coupling, this does
not impede but rather improve classification perfor-
mance. This fact entitles us to believe that our ap-
proach to multi-task learning tracks down the com-
mon task-specific activations while ignoring back-
ground noise.

Our study demonstrates that Bayesian multi-task
learning allows generalization across subjects. Our
algorithm identifies identical cortical locations as
being important in solving the classification prob-
lem for all individuals within the group. The iden-
tified regions agree with previously published re-

sults on concept encoding. For example, the re-
gions which were considered important for the cat-
egory pair building-tool (Fig. 5) are almost indis-
tinguishable from those described in a recent study
by Shinkareva et al. (2008). These are regions that
are traditionally considered to be involved in read-
ing, objects meaning retrieval and visual semantic
tasks (Vandenberghe et al., 1996; Phillips et al.,
2002).

Strikingly, very similar regions were picked by
the classifier for the other two category pairs with
high classification accuracy, i.e., building-kitchen
and buildpart-tool. This fact brings back the issue
about the semantic factors relevant for the discrimi-
nation of the entities from these categories. The fac-
tors shelter, manipulation and eating are associated
with the concepts from the first three addressed cat-
egory pairs. The locations of voxel clusters associ-
ated with the semantic factors in (Just et al., 2010)
match the brain regions that contributed to the clas-
sification for the three most optimal pairs in our ex-
periment. In the Just et al. study these were left
and right fusiform gyri, left and right precuneus and
left inferior temporal gyrus for shelter, left supra-
marginal gyrus, left postcentral gyrus and left infe-
rior temporal gyrus for manipulation and left inferior
frontal gyrus, left middle/inferior frontal gyri, and
left inferior temporal gyrus for eating. The occipital
lobes detected exclusively in our experiment might
be explained by the fact that in our experiment the
subjects were viewing picture-text pairs in contrast
to only text in (Just et al., 2010).

5 Discussion

We have demonstrated that Bayesian multi-task
learning can be realized through Bayesian logistic
regression when using a multivariate Laplace prior
that couples features between multiple datasets.
This approach has not been used before and yields
promising results. As such it complements other
Bayesian and non-Bayesian approaches to multi-
task learning such as those reported in (Yu et al.,
2005; Dunson et al., 2008; Argyriou et al., 2008; van
Gerven et al., 2009; Obozinski et al., 2009; Rustandi
et al., 2009).

Results show that many category pairs can be
classified based on the average activation of regions
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Figure 4: Correlation matrices for subject-specific models for standard classification (A) and multi-task learning (B)
with weak coupling (s=1) for building versus tool. The right panel (C) shows the difference between the obtained
models for standard classification and strong coupling (s=100) for the thirty most important AAL regions.

in the AAL template. Although obtained accura-
cies are lower than those which would have been ob-
tained using single-voxel activations, it is interesting
in its own right that the activation in just 116 pre-
defined regions still allows concept decoding. How-
ever, it remains an open question to what extent clas-
sifiability truly reflects semantic processing instead
of sensory processing of words and/or pictures.

The coupling induced by multi-task learning leads
to interpretable models when using auxiliary vari-
able variance as a measure of importance. The ob-
tained models for the pairs which were easiest to
classify corresponded well to the results reported
in (Shinkareva et al., 2008) and mapped nicely onto
the semantic features shelter, manipulation and eat-
ing identified in (Just et al., 2010).

In this paper we used the multivariate Laplace

prior to induce a coupling between tasks. It is
straightforward to combine this with other coupling
constraints such as coupling nearby regions within
subjects. Our algorithm also does not preclude
multi-task learning on thousands of voxels. Com-
putation time depends on the number of non-zeros
in the structure matrix R and matrices containing
hundreds of thousands of non-zero elements are still
manageable with computation time being in the or-
der of hours.

Another interesting application of multi-task
learning in the context of concept learning is to cou-
ple the datasets of all condition pairs within a sub-
ject. This effectively tries to find a model where used
regions of interest can predict multiple condition
pairs. The correlation structure between the models
for each condition pair then informs about their sim-
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Figure 5: The brain regions contributing to the identification of building versus tool categories.

ilarity. An interesting direction for future research
is to perform multi-task learning on the level of the
semantic features that define a concept instead of on
the concepts themselves. If we are able to predict the
semantic features reliably then we may be able to
predict previously unseen concepts from their con-
stituent features (Palatucci et al., 2009).
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