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Abstract 

This paper is concerned with statistical meth-
ods for treating long-distance dependencies.  
We focus in particular on a case of substantial 
recent interest: that of long-distance depend-
ency effects in entity extraction.  We intro-
duce a new approach to capturing these effects 
through a simple feature copying preprocess, 
and demonstrate substantial performance 
gains on several entity extraction tasks. 

1 Long-distance dependencies 

The linguistic phenomena known as long-distance 
dependencies have a long history in computational 
linguistics.  Originally arising in phrase-structure 
grammar, the term aptly describes phenomena that 
are not strictly grammatical, and has thus gained 
currency in other endeavors, including that of con-
cern to us here: entity extraction.  The common 
thread, however, is simply that the treatment of a 
linguistic constituent α might be influenced by the 
treatment of a non-local constituent β. 

In phrase-structure grammar, dependencies 
arise between matrix phrases and the gapped 
phrases that they dominate, as in “the cake that I 
hope you’ll serve ε”.  The idea that these are long-
distance dependencies arises from the fact that the 
separation between linked constituents can be arbi-
trarily increased while their dependency continues 
to hold (as in “the cake that I hope you’ll ask Fred 
to tell Joan to beg Maryanne to serve ε”). 

With entity extraction, long-distance dependen-
cies typically occur between mentions of the same 
entity.  Consider, for example, the italicized refer-
ences to Thomas White in this newswire excerpt:  

Bank of America on Friday named Thomas 
White head of global markets.  White has 
been global head of credit products. 

The fact that the first of these mentions is easily 
understood as person-denoting has substantial 
bearing on interpreting the second mention as per-
son-denoting as well.  But while local evidence for 
personhood is abundant for the first instance (e.g., 
the given name “Thomas” or the verb “named”), 
the evidence local to the second instance is weak, 
and it is highly unlikely that a learning procedure 
would on its own acquire the relevant 5-gram con-
text (α has been βJJ γtitle).  The dependency between 
these instances of White is thus a significant factor 
in interpreting both as names. 

It is well known that capturing this kind of de-
pendency can dramatically improve the perform-
ance of entity extraction systems.  In this paper, we 
pursue a very simple method that enables statistical 
models to exploit these long-distance dependencies 
for entity extraction.  The method obtains compa-
rable or better results than those achieved by more 
elaborate techniques, and while we focus here on 
the specific case of entity extraction, we believe 
that the method is simple and reliable enough to 
apply generally to other long-distance phenomena.  

2 Approaches to name dependencies 

The problem of capturing long-distance dependen-
cies between names has a traditional heuristic solu-
tion.  This method, which goes back to systems 
participating in the original MUC-6 evaluation 
(Sundheim, 1995), is based on a found names list.  
The method requires two passes through the input.  
A first pass captures named entities based on local 
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evidence, and enters these names into a found 
names registry.  A second pass identifies candidate 
entities that were missed by the first pass, and 
compares them to entries in the registry.  Where 
there is string overlap between the candidate and a 
previously found name, the entity type assigned to 
the existing entry is copied to the candidate. 

Overall, this is an effective strategy, and we 
used it ourselves in a rule-based name tagger from 
the MUC-6 era (Vilain and Day, 1996).  The strat-
egy’s Achilles heel, however, is what happens 
when erroneous entries are added to the found 
names list.  These can get copied willy-nilly, 
thereby drastically increasing the scope of what 
may originally have started as a single local error.  
Clearly, the approach is begging to be given a 
firmer evidence-weighing foundation. 

2.1 A statistical hybrid 

An early such attempt at reformulating the ap-
proach is due to Minkheev et al (1999).   As with 
previous approaches, Mikheev and his colleagues 
use a rule-based first pass to populate a found-
names list.  The second pass, however, is based on 
a maximum entropy classifier that labels non-first-
passed candidates based on evidence accrued from 
matching entries on the found-names list.  The sta-
tistical nature of the decision eliminates some of 
the failure modes of the heuristic found-names 
strategy, and in particular, prevents the copying of 
single errors committed in the first pass.  The ma-
jor weakness of the approach, however, is the heu-
ristic first pass.  Minkheev et al note that their 
method is most effective with a high-precision 
found-names list, implemented as a tightly con-
trolled (but incomplete) rule-based first pass. 

2.2 Fully-statistical models 

Several more recent efforts have attempted to re-
move the need for a heuristic first-pass tagger, and 
have thus cast the problem as one-pass statistical 
models (Bunescu and Mooney, 2004; Sutton and 
McCallum, 2004; Finkel et al, 2005).  While the 
technical details differ, all three methods approach 
the problem through conditional random fields 
(CRFs).  In order to capture the long-distance de-
pendencies between name instances, these ap-
proaches extend the linear-chain sequence models 
that are typically used for extracting entities with a 
CRF (Sha and Pereira, 2003).  The resulting models 

consist of sentence-length sequences interlinked on 
those words that might potentially have long-
distance interactions.  Because of the graph-like 
nature of these models, the simplifying assump-
tions of linear-chain CRFs no longer hold.  Since 
complete parameter estimation is intractable under 
these conditions, these three approaches introduce 
approximate methods for parameter estimation or 
decoding (Perceptron training for the first, loopy 
belief propagation for the first two, Gibbs sampling 
and simulated annealing for the third). 

Krishnan and Manning (2006) provide a lucid 
critique of these extended models and of their 
computational ramifications.  In a nutshell, their 
critique centers on the complexity of constructing 
the linked graphs (which they deemed high), the 
stability of Perceptron training (potentially unsta-
ble), and the run-time cost of simulated annealing 
(undesirably high).  Since these undesirable prop-
erties are directly due to the treatment of long-
distance dependencies through graphical models, it 
is natural to ask whether graphical models are ac-
tually required to capture these dependencies. 

2.3 Avoiding non-sequential dependencies 

In point of fact, Krishnan and Manning (2006) pre-
sent an alternative to these graph-based methods.  
In particular, they break the explicit links that mu-
tually condition non-adjacent lexemes, and instead 
rely on separate passes in a way that is reminiscent 
of earlier methods.  A first-pass CRF is used to 
identify entities based solely on local information.  
The entity labels assigned by this first CRF are 
summarized in terms of lexeme-by-lexeme major-
ity counts; these counts are then passed to a second 
CRF in the form of lexical features. 

Consider, for example, a financial news source, 
where we would expect that a term like “Bank” 
might be assigned a preponderance of ORG labels 
by the first-pass CRF.  This would be signaled to 
the second-pass CRF through a token majority fea-
ture that would take on the value ORG for all in-
stances of the lexeme “Bank”. This effectively 
aggregates local first-pass labeling decisions that 
apply to this lexeme, and makes the second-pass 
CRF sensitive to these first-pass decisions.  Further 
refinements capture cases where a lexeme’s label 
diverges from the token majority, for example: 
“Left Bank,” where “Bank” will be assigned a 
LOC-valued entity majority feature whenever it ap-
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pears in that particular word sequence. By captur-
ing long-distance dependencies through lexical 
features, Krishnan and Manning avoid the need for 
graphical models, thus regaining tractability. 

How well does this work?  Returning to our 
earlier example, the idea behind these majority 
count features is that a term like “White” might be 
assigned the PER label by the first CRF when it ap-
pears in the context “Thomas White.”  Say, for the 
sake of argument, that sufficiently many instances 
of “White” are labeled PER by the first pass to sum 
to a majority.  The second-stage CRF might then be 
expected to exploit the majority count features for 
“White” to PER-label any instances of White that 
were left unlabeled in the first pass (or that were 
given erroneous first-pass labels). 

The method would be expected to fail, how-
ever, in cases where the first pass yields a majority 
of erroneous labels.  Krishnan and Manning sug-
gest that this is a fairly unlikely scenario, and dem-
onstrate that their approach effectively captures 
long-distance name dependencies for the CoNLL 
English name-tagging task.  They measured a best-
in-class error reduction of 13.3% between their 
two-pass method and a single-stage CRF equipped 
with comparable features.  

3 A contradictory data set 

Just how unlikely, however, is the majority-error 
scenario that Krishnan and Manning discount?  As 
it turns out, we encountered precisely this scenario 
while working with a corpus that is closely related 
to the CoNLL data used by Krishnan and Manning. 

The corpus in question was drawn from the on-
line edition of Reuters business news.  The articles 
cover a range of business topics: mergers and ac-
quisitions (M+A), stock valuations, management 
change, and so forth.  This corpus is highly perti-
nent to this discussion, as the CoNLL English data 
are also Reuters news stories, drawn from the gen-
eral news distribution.  Our business data thus rep-
resent a natural branch of the overall CoNLL data. 

A characteristic of these Reuters business sto-
ries that distinguishes them from general news is 
the prevalence of organization names, in particular 
company names.  In these data, instances of com-
pany names significantly outnumber the next-
most-common entities (money, dates, and the like).  
Even state-of-the-art CRFs trained on these data 
therefore err on the side of generating companies, 

meaning that in the absence of countermanding 
evidence (such as the presence of a person’s given 
name), an entity will tend to be labeled ORG by 
default.  Our earlier “Thomas White” example is a 
case in point: where the full name would typically 
be labeled PER, last-name-only instances (“White”) 
might go unlabeled or be marked ORGs. 

Table 1, above, shows a qualitative analysis of 
this phenomenon for PER entities in our M+A test 
set.  The table considers person-denoting entities 
with three or more instances in the test set (n=35), 
and summarizes the majority accuracy of the labels 
assigned to them by a feature-rich 1-pass CRF.  Of 
these thirty-five cases, we eliminate from consid-
eration six trivial test cases that are present unam-
biguously in the training data (e.g., “Carl Icahn”), 
since the CRF will effectively memorizes these 
cases during training.  Of the remaining twenty-
nine non-trivial cases, not quite half of them (45%) 
were accurately labeled by the CRF for the majority 
of their instances.  A larger number of entities ei-
ther received an incorrect majority label (38%) or 
were equivocally labeled, receiving an equal num-
ber of correct and incorrect tags (17%). 

For this data set then, majority count features 
are poor models of the long-distance dependencies 
between person names, as they are just about as 
likely to predict the wrong label as the correct one. 

4 A feature-copying alternative 

A further analysis of our business news test sample 
revealed an intriguing fact.  While in the absence 
of compelling evidence, the CRF might label a 
mention of a person entity as an org (or leave it 
unlabeled), for those mentions where compelling 
evidence existed, the CRF generally got it right.  By 
compelling evidence, we mean such linguistic cues 
as the presence of a given name, contextual prox-
imity to agentive verbs (e.g. “said”), and so forth. 

This suggests an alternative approach to captur-
ing these kinds of long-distance dependencies be-

Label accuracy count % test cases 
Trivially correct (present in 
both test and training) 

6 — 

Majority correct, test only 13 45% 
Majority incorrect, test only 11 38% 
Equivocal, test only 5 17% 

Table 1: effectiveness of majority counts as predictors 
of entity type, Reuters business news sample 
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tween names.  In contrast to previous approaches, 
what is needed is not so much a way of coordinat-
ing non-local decisions about an entity’s label, as a 
way of coordinating non-local evidence pertinent 
to the labeling decision.  That is, instead of condi-
tioning the labeling decision of a lexeme on the 
labeling decisions for that lexeme elsewhere in the 
corpus, we ought to condition the decision on the 
key evidence supporting those decisions. 

4.1 Displaced features 

Our approach operates by identifying those fea-
tures of a CRF that are most predictive over a cor-
pus.  Each of those features is then duplicated: for 
a given token α, one version of the feature applies 
directly to α, while the other version applies to all 
other instances where α’s word form appears in the 
current document.  In particular, what we duplicate 
is the indicator function for a feature.  The local 
version of an indicator Φ signals true if it applies 
locally to α, while the displaced version Φd signals 
true if it applies to any token α’ that is an instance 
of the same word from as α. 

To make this concrete, consider our opening 
example, now indexed with word positions: 

Thomas7 White8 … White13 has14 been15 … 

Say that Φ is a feature indicator that is true of a 
token αi just in case the token to its left, αi-1, is a 
given name.  In this instance, Φ(White8) is true and 
Φ(White13) is false.  Then Φd, the displaced version 
of Φ, will be true of αi just in case there is some 
token αj with the same word form such that Φ(αj) is 
true.  In this instance Φd(White8) and Φd(White13) 
are both true by virtue of Φ being true of White8. 

This feature displacement scheme introduces 
non-local evidence into labeling decisions, effec-
tively capturing the long-distance dependencies 
exhibited by name-tagging tasks.  The method dif-
fers from previous approaches in that the models 
are not made conditional on non-local decisions (as 
in the case of graphical models), nor are they made 
conditional on aggregated first-pass decisions (as 
in Krishnan & Manning), but rather are made con-
ditional on non-local evidence (displaced features). 

4.2 Identifying features to displace 

Because a typical entity extraction model can use 
tens or hundreds of thousands of features, it is not 
practical to displace every one of them.  Though 

technically this only doubles the number of fea-
tures under consideration, the lexical indexing rap-
idly gets out of hand.  In addition, training and run 
times increase and, in our experience, a risk of 
over-fitting emerges.  In point of fact, however, 
capturing long-distance name dependencies does 
not require us to replicate every last bit of feature-
borne evidence.  Instead, we only need to displace 
the evidence that is most reliably predictive. 

To select predictive features to displace, we’ve 
had most success with a method based on informa-
tion gain.  Specifically, we use a one-time pre-
process that measures feature gain relative to a 
corpus.  The pre-process considers the same com-
plement of feature schemas as are used by the ac-
tual CRF, and grounds the schemas on a training 
corpus to instantiate free lexical and P-O-S parame-
ters.  Gain for the instantiated features is measured 
through K-L divergence, and the n features with 
highest gain are then selected for displacement 
(with n typically ranging from 1,000 to 10,000). 

As in (Schneider, 2004), gain for a given fea-
ture Φ, is found through a variant of the familiar 
Kullback-Leibler divergence formula, 

€ 

DKL (P ||Q) = p(xi)log2
p(xi)
q(xi)i

∑  

For our purposes, the xi are the non-null entity 
labels defined for the training set (PER, ORG, etc.), 
P is the probability distribution of the labels over 
the training set, Q is the distribution of the labels 
over tokens for which Φ applies, and p and q are 
their respective smoothed probability estimates 
(Laplace smoothing).  Note in particular that this 
formulation excludes the null label (“not an en-
tity”).  This effectively means that K-L divergence 
is giving us a measure of the degree to which a 
feature predicts one or more non-null entity labels.  
Because the null label is generally the dominant 
label in named-entity tasks, including the null label 
in the calculation of K-L divergence tends to 
overwhelm the statistics, and leads to the selection 
of uninformative features that predict non-entities. 

Figure 1 demonstrates the effectiveness of this 
feature selection method, along with sensitivity to 
the threshold parameter.  The figure charts F-score 
on a Reuters business news task (M+A) as a func-
tion of the number of displaced features.  From a 
baseline of F=89.3, performance improves rapidly 
with the addition of displaced features to the CRF 
model, reaching a maximum of F=91.4 with the 
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addition of 1,000 displaced features.  Performance 
then fluctuates asymptotically around this level. 

The chart also shows comparable growth curves 
for two alternative feature selection methods.  The 
feature count method is similar to feature gain, but 
instead of ranking features with K-L divergence, it 
ranks them according to the number of times they 
match against the corpus.  Feature weight does not 
use a schema-grounding first pass to generate can-
didate features, but trains a CRF model on the cor-
pus, and then ranks features according to the 
weight assigned to them in the model.  In prelimi-
nary experiments, neither of these methods yielded 
as high-performing a set of displaced features as 
feature gain.  Additionally their growth curves ex-
hibit sensitivity to parameter setting, which sug-
gests a risk of over-fitting.  For these reasons, we 
did not pursue these approaches further. 

Note finally that the feature schemas we con-
sider for displacement only encode local evidence 
(see Table 2 below).  In particular, they do not en-
code the assigned label of a word form, as this 
would effectively introduce the kind of graphical 
conditional dependencies that lie outside the scope 
of linear-chain CRF methods. 

4.3 Training and decoding 

Aside from two pre-processing steps, training or 
decoding a CRF with displaced features is no dif-
ferent from training or decoding one with only 
conventional features.  As to the pre-processing 
steps, the first applies to the corpus overall, as we 
must initially select a collection of locally predic-
tive features to displace.  The second step applies 
on a per-document basis and consists of the crea-
tion of the inverted lexical indices that are used to 
trigger indicator functions for displaced features. 

While these additional steps complicate training 
and decoding somewhat, they have little effect on 
actual decoding run times.  Most importantly, they 
retain the linear-chain properties of the CRF, and 
therefore do not require the graphical modeling 
and involved parameter estimation called for by 
most previous approaches.  In addition, the training 
logistics are of a lesser magnitude than those re-
quired by Krishnan and Manning’s approach, since 
training their second-stage model first requires 
round-robin training of one-fold-left-out classifiers 
that estimate first-stage majority counts. 

5 Experimental design 

To evaluate the effectiveness of feature copying 
with long-distance dependencies, we undertook a 
number of information extraction experiments.  
We focused on the traditional name-tagging task, 
relying on both current and archival data sets.  For 
each data set, we trained entity-extraction models 
that corresponded to three different strategies for 
capturing long-distance dependencies. 

• Baseline model: a feature-rich CRF trained 
with only local features and no long-distance 
dependency features; 

• Feature-copying model: a CRF trained with 
the same local features, along with displaced 
versions of high-gain features; 

• Majority model: a re-implementation of the 
Krishnan and Manning strategy, using the 
same feature set as the baseline CRF as well 
as their majority count features. 

We used held-out development test sets to tune 
the selection of displaced features, in particular, 
the number of features to displace. 

5.1 CRF configurations 

We used the Carafe open-source implementation of 
sequence-based conditional random fields.1  Carafe 
has achieved competitive results for standard se-
quence modeling tasks (Wellner & Vilain, 2006, 
Wellner et al, 2007), and allows for flexible feature 
design.  Carafe provides several learning methods, 
including a fast gradient descent method using pe-
riodic step-size adjustment (Huang et al, 2007).  
Preliminary trials, however, produced better results 

                                                        
1 http://sourceforge.net/projects/carafe 

Figure 1: F score on the Reuters M+A task, as a 
 function of number of displaced features 
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with conditional log-likelihood learning (L-BFGS 
optimization).  We used this latter method here, 
L2-regularized by a spherical Gaussian prior with 
variance set to 10.0 (based on preliminary trials). 

Our baseline CRF was given a feature set that 
has proven its mettle in the literature (see Table 2).  
Along with contextual n-grams and the like, these 
features capture linguistic regularities through 
membership in vocabulary lists, e.g., first names, 
major geographical names, honorifics, etc.  They 
also include hand-engineered lists from our legacy 
rule-based tagger, e.g., head word lists for organi-
zation names, lists of agentive verbs that reliably 
apply to persons, date atoms, and more.  For part-
of-speech features, we either accepted the parts of 
speech provided with a data set, or generated them 
with our implementation of Brill’s method (Brill, 
1994).  For the majority count features, we used 
document and corpus versions the token and entity 
features described by Krishnan and Manning, but 
did not re-implement their super-entity feature. 

5.2 Experimental data 

We evaluated our approach on five different data 
sets: our current corpus of Web-harvested Reuters 
business news, as well as four archival data sets 
that have been reported on by other researchers.  
The business news data consist of a training corpus 
of mergers and acquisition stories (M+A), devel-
opment and evaluation test sets for M+A and test 
sets for three additional topics: hot stocks (HS), 
new initiatives (NI), and general business news 
(BN).   Table 3 provides an overview of our data 
sets and of some salient distinctions between them. 

All five extraction tasks require the reporting of 
three core entity types: persons, organizations, and 
locations; additional required types are noted in the 
table.  The reporting guidelines for the first four 
tasks are closely related: Reuters business and 
MUC-6 were annotated to the same original MUC-6 

standard, while MUC-7 and MNET extend the MUC-
6 standard slightly.  The CoNLL standard alone 
calls for a catch-all (and troublesome) MISC entity. 

5.3 Scoring metrics 

Previous results on these data sets have been re-
ported using one of two scoring methods: strict 
match (CoNLL) or match with partial credit, as cal-
culated by the MUC scorer (MUC-6, MUC-7, and 
MNET).  To enable comparisons to previously pub-
lished work, we report our results with the metric 
appropriate to each data set (we use the MUC scorer 
for Reuters).  These scoring distinctions are perti-
nent only to comparisons of absolute performance.  
In this paper, the interest is with relative compari-
sons across approaches to long-distance dependen-
cies, for which the scorers are kept constant. 

6 Experimental results 

Table 4 summarizes our experimental results for 
the seven test sets annotated to the MUC-6 standard 
or its close variants (we will consider the CoNLL 
task separately).  Along with F scores for our base-
line CRF, the table presents F scores and baseline-
relative error reduction (ΔE) for two approaches to 
long-distance name dependencies: feature dis-
placement (disp) and the Krishnan and Manning 
strategy (K+M).  We were pleased to see that fea-
ture displacement proved effective for all of the 
extraction tasks.  As the table shows, the addition 
of displaced features consistently reduced the re-
sidual error term left by the baseline CRF trained 
only with local features.  For the English-language 
corpora, the error reduction ranged from a low of 
11 % for the Reuters NI task to a high of 39% for 
the MUC-6 task.  The error reduction for the Span-
ish-language MNET task was lowest of all, at 8.9%. 

For all the English tasks, we consistently 
achieved better results with feature displacement 

lexical unigrams w-2 … w+2 
lexical bigrams w-2,w-1 … w+1,w+2 
P-O-S unigrams p-2 … p+2 
P-O-S bigrams p-2,p-1 … p+1,p+2 
substrings .*s or s.* ||s||≤4 
linguistic word lists gazetteers, date atoms, … 
regular expressions caps., digits, … 
“corp.” nearby also “ltd.” … 

Table 2: Baseline features; wi and pi respectively de-
note lexeme and P-O-S in relative position i. 

Corpus Language NU TM MI  Topics 
MUC-6 English ✓ ✓  mostly politics 
MUC-7 English ✓ ✓r  mostly politics 
MNET Spanish ✓ ✓r  mostly politics 
Reuters English ✓ ✓  business 
CoNLL English   ✓ all news 

Table 3: Data set characteristics.  All include persons, 
organizations, and locations; some have nu-
meric forms (NU), dates and times (TM) 
where r indicates relative dates, or misc (MI). 
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than with our version of Krishnan and Manning’s 
approach (we were not able to obtain Spanish K+M 
results by publication time).  In each case, dis-
placement produced a greater reduction in baseline 
error than did majority counts.  Furthermore, be-
cause both approaches start from the same baseline 
CRF, the resulting raw performance was conse-
quently also higher for displacement.  Note in par-
ticular the Reuters M+A test set: these are the data 
for which Table 1 suggests that majority counts 
would be poor predictors of long-distance effects.  
This prediction is in fact borne out by our results. 

6.1 Effects of linguistic engineering 

 We were interested to note that the feature dis-
placement method achieved both highest perform-
ance and highest error reduction for the MUC-6 
corpus (F=92.8, ∆E=39.3%) and for two of the 
Reuters test sets: M+A (F=91.4, ∆E=20.0%) and BN 
(F=91.8, ∆E=21.6%).  The MUC-6 F-score, in par-
ticular, is comparable to those of hand-built MUC-
era systems; in fact, it exceeds the score of our own 
hand-built MUC-6 system (Aberdeen et al, 1995). 

What is apparently happening is that these three 
data sets are well matched to a group of linguisti-
cally inspired lexical features with which we 
trained our baseline CRF.  In particular, our base-
line features include gazetteers and word lists 
hand-selected for identifying entities based on lo-
cal context: first names, agentive verbs, date at-
oms, etc.  This played out in two significant ways.  
First, these linguistic features tended to elevate 
baseline performance (see Table 4).  Second, these 
same features also proved effective when dis-
placed, as demonstrated by the substantial error 
reduction with displacement. Feature displacement 
thus further rewards sound feature engineering. 

6.2 Other MUC-related results 

The MUC-7 and Reuters hot stocks data (HS) pro-
vide informative contrasts.  For these data, feature 
displacement provided error reduction of 
∆E=13.9% and 13.4% respectively, which is less 

than for the top three data sets.  It is interesting to 
note that in both cases, the baseline score is also 
lower, suggesting again that the performance of 
feature copying follows the performance of base-
line tagging.  In the case of Reuters HS, the evalua-
tion data contained many out-of-training references 
to stock indices, which depressed baseline scores.  
Similar development-to-evaluation divergences 
have also been noted with the MUC-7 corpus. 

6.3 The CoNLL task 

Our results for the CoNLL task, reported in Table 5 
below, provide a different point of contrast.  The 
middle two rows of the table present the same ex-
perimental configurations as have been discussed 
so far.  For this data set, we note that feature dis-
placement does not perform as well as our re-
implementation of Krishnan and Manning’s strat-
egy in terms of both absolute score and error re-
duction.  Likewise, published results for other 
approaches mostly outperform displacement (see 
the first three rows in Table 5). 

One possible explanation lies with the linguistic 
features with which we approached CoNLL: these 
are the same ones we originally developed for 
MUC-6.  As noted earlier the CoNLL standard di-
verges in several ways from MUC-6.  In particular, 
CoNLL calls for a MISC entity that covers a range of 
name-like entities, e.g., events. MISC also, how-
ever, captures names that are trapped by tokeniza-
tion (“London-based”), as well as some MUC 
organizations (sports leagues).  This suggests that 
adapting our features to the CONLL task might help. 

MUC-6 MUC-7 MNET Reuters M+A Reuters BN Reuters HS Reuters NI  
F ΔE F ΔE F ΔE F ΔE F ΔE F ΔE F ΔE 

baseline 88.2 — 84.0 — 88.9 — 89.3 — 89.5 — 85.4 — 88.8 — 
disp. 92.8 39% 86.2 14% 89.9 8.9% 91.4 20% 91.8 22% 87.3 13% 90.1 11% 
K+M 91.5 28% 85.2 7.4% — — 90.4 11% 91.0 14% 86.3 6.2% 89.2 2.8% 

 
Table 4: Performance on seven test sets annotated to variants of the MUC-6 standard (MUC scorer). 

 
 base F LDD F ΔE 
Bunescu + Mooney 2004 80.09 82.30 11.1% 
Finkel et al 2005 85.51 86.86 9.3% 
Krishnan + Manning 2006 85.29 87.34 13.3% 
K+M (re-impl, MUC feats.) 84.3 86.0 10.7% 
displacement (MUC feats.) 84.3 85.8 9.6% 
displ. (CoNLL feats.) 85.24 86.55 8.9% 
displ. (CoNLL feats. + DS) 86.57 87.39 6.1% 

Table 5: Performance on the CoNLL task; LDD designates 
 use of long-distance dependency method. 
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The final two rows in Table 5 present attempts 
to tune our features to CoNLL.  This includes some 
features (the “CoNLL feats” in Table 5) indicating 
story topic, all-caps headline contexts, presence in 
a sporting result table, and similar idiosyncrasies.  
In addition, we also used features based on dis-
tributional similarity word lists (DS in the table) 
provided with the Stanford NER package.2 

While these feature engineering efforts proved 
effective, what we found surprised us.  As Table 5 
shows, the CoNLL features do substantially raise 
baseline performance, with the full set of new fea-
tures producing a baseline (F=86.6) that outper-
forms previously published baselines by over a 
point of F score.  In keeping with our observations 
for the MUC-annotated text, we would then have 
expected to see a comparable increase in the per-
formance of displaced features, i.e., a jump in error 
reduction relative to the baseline.  Instead, we 
found just the reverse.  Whereas displacement ac-
counts for a 1.5 point gain in F (∆E=9.6%) with the 
MUC baseline features, with the beter CoNLL fea-
tures, the gain due to displacement falls to 0.82 
points of F (∆E=6.1%).  While the final result with 
displacement (F=87.39) slightly edges out the pre-
vious high water mark of F=87.35 (Krishnan and 
Manning, 2005), the pattern is puzzling and not in 
keeping with our seven other data sets. 

One possible explanations lies again with the 
CoNLL standard.  The standard calls explicitly for 
inconsistent annotation of the same entity when 
used in different contexts.  Along with place names 
being called MISC in hyphenated contexts (noted 
above), some places must be called ORG when used 
to refer to sports teams – except in results tables, 
where they are sometimes LOC.  Such inconsisten-
cies subvert the notion of long-distance dependen-
cies by making these dependencies contradictory, 
thereby reducing the potential value of displace-
ment as a means for improving performance. 

7 Conclusions 

Earlier in this paper, we introduced the notion of 
long-distance dependencies through their original 
codification in the context of phrase-structure 
grammars.  By an interesting historical twist, the 
original solution to these grammatical long-
distance effects, known as gap threading (Pereira, 

                                                        
2 http://nlp.stanford.edu/software/CRF-NER.shtml 

1981), involved what is essentially a feature-
copying operation, namely unification of constitu-
ent features.  It is gratifying to note that the method 
presented here has illustrious predecessors. 

Regarding the particular task of interest here, 
entity extraction, this paper conclusively shows 
that a simple feature-copying method provides an 
effective method for capturing long-distance de-
pendencies between names.  For the MUC-6 task, in 
particular, this error reduction is enough to lift a 
middle-of-the-pack performance from our baseline 
CRF to a level that would have placed it among the 
handful of top performers at the MUC-6 evaluation. 

As noted, the method is also substantially more 
manageable than earlier approaches.  It avoids the 
intractability of graphical models and also avoids 
the approximations required by methods that rely 
on these models.  It also adds only minimal proc-
essing time at training and run times.  This pro-
vides a practical alternative to the method of 
Krishnan and Manning, who require twelve sepa-
rate training runs to create their models, and fur-
ther require a time-consuming run-time process to 
mediate between their first and second stage CRFs. 

We intend to take this work in two directions.  
First, we would like to get to the bottom of why the 
method did not do better with the CoNLL and MNET 
tasks.  As noted earlier, our hypothesis is that we 
would expect greater exploitation of long-distance 
dependencies if we first improved the performance 
of the baseline CRF, especially by improving the 
acuity of task-related features.  While it is not a 
key interest of ours to achieve best-in-class per-
formance on historical evaluations, it is the case 
that we seek a better understanding of the range of 
application of the feature copying method. 

Another direction of interest is to consider other 
problems that exhibit long-distance dependencies 
that might be addressed by feature copying.  Word 
sense disambiguation is one such case, especially 
given Yarowsky’s maxim regarding one sense per 
discourse, a consistency notion that seems tailor-
made for treatment as long-distance dependencies 
(Yarowsky, 1995).  Likewise, we are curious about 
the applicability of the method to reference resolu-
tion, another key task with long-distance effects. 

Meanwhile, we believe that this method pro-
vides a practical approach for capturing long-
distance effects in one of the most practical and 
useful application of human language technologies, 
entity extraction. 
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